An XML Based Environment in Support of the
Overall KDD Process

Piero Alcamo, Francesco Domenichini and Franco Turini
Dipartimento di Informatica, Universita di Pisa
Corso Italia 40, I-56125 Pisa, Italy
alcamo@di.unipi.it domenich@di.unipi.it turini@di.unipi.it

November 10, 2000

Abstract

An XML based environment for Knowledge Discovery in Databases is
presented. The aim is to develop an environment in which several kinds
of knowledge extraction operations can be combined, in order to describe
and solve complex knowledge extraction problems.

Knowledge extraction problems and their results are specified by means
of XML documents, and the environment allows the user to follow the ex-
traction process in an interactive way.

A Prolog engine is integrated in the environment in order to use, in
the querying process, domain knowledge coded by means of Prolog facts
and rules.

The expressiveness and the flexibility of the environment is illustrated
by presenting an example where clustering and classification are combined.

The open architecture of the environment makes it easy to extend it
in order to support the entire KDD process.

1 Introduction

Because of the importance of its applications, Knowledge Discovery in Databases
is a fast growing research area.
Two are the main issues:

1. Designing better knowledge extraction and data mining tools
2. Creating a uniform environment in support of the overall KDD process.

Important characteristics of such an environment are the possibility of an
interactive and stepwise application of the tools, the integration of their results,
and the possibility of using background knowledge of the application domain.

Our work follows this line with the objective of making different data mining
tools inter-operable and the possibility of interactively perform the KDD process
by using a rich query language.

1.1 The problem

We believe that an environment in which all the steps of the KDD process can
be viewed in an uniform way is a fundamental research issue.

As a first step towards this objective, we realized an environment that can
support the Data Mining step of the KDD process.

In order to do so we thought that a common representation for KDD prob-
lems and their results was fundamental; this common representation allows the
definition of an environment with the following characteristics:

1. Inter-operability between different Data Mining tools
Data Mining tools have reached a good level of efficiency and scalability.
However, due to their use of private data models for their results, they are
not able to inter-operate.

2. Flexibility and extendibility
KDD is an emerging field and it is in continuous evolution. An environ-
ment for its support must have an open architecture in order to be easily
extended when new technologies appear.

3. Expressiveness of the query language
Knowledge extraction problems are complex and heterogeneous and a
query language able to describe them must have a good level of expres-
siveness.

1.2 The approach

Our aim, as mentioned above, is to define a common representation for knowl-
edge extraction problems and their results, and then to show how an environ-
ment based on such a representation can support the KDD process. To reach
a good level of inter-operability as mentioned in point 1 above we have chosen
to use XML for representing inputs and outputs of data mining tools. XML is
an emerging standard for data representation and exchange and its use in this
context can give us the level of inter-operability that is needed.

The use of XML as a representation language give us the possibility of build-
ing a flexible and extensible environment. In fact the rapidly evolving world of
XML keeps producing essential technologies for making our environment, more
and more usable.

Our choice of using XML as the target language for the results of Data
Mining algorithms has guided us in the choice of the language for the represen-
tation of the knowledge extraction problems. In fact in order to make problems
and their results closer, we have chosen to represent also knowledge extraction
problems in XML itself.

The choice of XML has led us to the definition of an XML based mark-up
language named KDDML in which Knowledge extraction problems and their
results are represented as XML documents. Representing Knowledge extraction
problems as XML documents makes them independent from the tools used for

their solution. In fact an XML document defines only what to do, without
specifying how to do it.

Upon this mark-up language we have developed, using some XML related
technologies, a complete environment in support of the Data Mining step of
the KDD process. The environment is entirely written in Java, and we have
used some tools developed by the IBM AlphaWorks group that will be briefly
described in the next section.

As to the representation of domain knowledge to be used in the overall KDD
process, we have chosen to integrate into our environment, again by using XML,
a Prolog engine.

Domain knowledge can then be naturally represented in a logic based fashion

2 XML: eXtensible Markup Language

XML, “Extensible Mark-up Language” is a standard recently approved by the
W3C that is widely believed to become a universal format for data exchange on
the Web [W3CXML].
XML supports electronic exchange of machine-readable data on the web,
whereas HTML currently support exchange of human-readable documents.
XML is a strict fragment of SGML, and it is more powerful than HTML in
three major respect:

1. Users can define new tag names at will.
2. Document structures can be nested to any level.

3. Any XML document can contain an optional description of its grammar
to be used by applications that need to perform structural validation. The
grammar portion is called Document Type Description (DTD).

Data in XML are grouped into elements delimited by tags, and elements can
be nested. Figure 1 illustrates an example of XML data. The strings enclosed
between < and >, like Person, firstname, lastname, e-mail, link, are called
tags. Each start-tag <abc> must have a matching end-tag </abc>, and the
XML fragments between these matching tags are called element.

Data in XML are self-describing semi-structured data.

As mentioned above, XML allows the user to define the structure of his
tags, by means of a simple grammar in which it is possible to specify regular
expressions between elements (DTD), in order to define how elements can be
nested It is also possible to characterize the elements by means of attributes.

An example of such a declaration is presented in Figure 2 for the Personal
data of Fig. 1.

A full data model for XML documents is currently not yet defined. However
the W3C has proposed a set of interfaces that allows one to represent, access and
modify XML documents. This set of interfaces is known as Document Object
Model (DOM) [W3CDOM] in the literature.

<Personal>
<Person id="121">
<firstname> Paolo</firstname>
<lastname> Rossi </lastname>
<e-mail> rossi@azienda.com</e-mail>
<link subordinated="122"/>
</Person>
<Person id="122">
<firstname> Pietro</firstname>
<lastname> Verdi </lastname>
<link manager="121"/>
</Person>
</Personal>

Figure 1: An Example of XML Data

<!ELEMENT Personal (Person+)>
<!ELEMENT Person(firstname+, lastname, e-mail?, linkx*)>
<!'ATTLIST Person id ID #REQUIRED>
<!ELEMENT firstname #PCDATA>
<!ELEMENT lastname #PCDATA>
<!'ELEMENT e-mail #PCDATA>
<!'ELEMENT link EMPTY>
<!ATTLIST link manager IDREF #IMPLIED
subordinated IDREFS #IMPLIED>

Figure 2: An Example of a DTD

An implementation of DOM, called XML4J [XML4J], entirely written in
Java, has been realized by the IBM AlphaWorks research group, and it is widely
used in the research community. Since it comes as a Java AP, it is easy to use
and to integrate with other Java based tools.

Another technology, proposed by W3C, is the Extensible Stylesheet Lan-
guage (XSL), that includes a transformation language to associate XML docu-
ments to stylesheets that define their visualization on common browsers.

Such a transformation is realized by a software module called XSL processor,
that reads a XML document and the associated stylesheet, and returns the
related HTML document.

An well-known and widely used XSL processor is LotusXSL [LotXSL], de-
veloped by IBM, that supports the last XSL specification promoted by W3C.

In our system we have used XML4J to retrieve the information contained in
XML documents, and LotusXSL to present documents to the user.

3 Environment architecture

In approaching the problem of defining a common representation for knowledge
extraction problems and their results we followed the viewpoint of Imielinsky
and Mannila [IM 96], who define the KDD process as a querying process, for
which an appropriate language has to be defined.

In particular, according to this approach, two are the classes of objects
fundamental for the whole process:

KDD object that is a result of a data mining step, e.g.a rule, a classifier, or
a clustering.

KDD query that is a predicate which returns a set of objects that can either
be KDD objects or database objects such as records or tuples.

To this purpose, we defined, using XML, a mark-up language called KDDML
that allow us to represent in a common way KDD objects and KDD queries.

The use of such uniform language provides us with some important advan-
tages:

e A better integration between data mining results;

e The possibility of reusing of data mining results;

e The possibility of performing the extraction process step by step;
e The possibility of sharing the results among different users

KDDML has been used as the starting point to develop the entire environ-
ment.

3.1 KDDML

KDDML is a mark-up language that allow one to represent in a uniform way
KDD objects and KDD queries as defined above.

As showed in Fig. 3, the root element of KDDML is KDDML_OBJECT, and
it derivatives can be:

KDD_QUERY a generic KDD query, i.e. a composition of invocations to
external Data Mining algorithms and of by using appropriate operators.
Queries can use a conditional operator and, within a conditional, it is
possible to query an expert system, that is implemented in Prolog. Fur-
thermore, KDD_QUERIES can be nested

KDDML_OBJECT

‘ KDD_QUERY ‘ ‘ KDD_OBJECT ‘ ‘ KDD_TUPLE ‘ ‘KDD_HIERARCHY‘ ‘KDD_FUNCTIO%

‘ KDD_RULES‘ ‘ KDD_TREES ‘ ‘KDD_CLUSTERS‘

Figure 3: KDDML

KDD_OBJECT i.e. patterns as returned by external Data Mining algorithms.
A KDD_OBJECT can be:

KDD_RULES representing associations rules;
KDD_TREES representing classifications trees;
KDD_CLUSTERS representing the result of clustering;

KDD_TUPLE i.e. a database object, such as records or tuples of a database
relation, or the result obtained by submitting a query to a Prolog engine;

KDD _HIERARCHY i.e. the representation of a hierarchy on a particular
set of items;

KDD _FUNCTION that is used for the representation of the signature of the
operators.

It is important to notice that the use of KDDML makes it possible to rep-
resent not only KDD objects and KDD queries, but also other objects such as
database objects, in order to allow the construction of complex KDD queries
that may cross the border between tuples (database objects) and KDD object
several times possibly using multiple layers of nesting.

To make the extraction of information at different abstraction levels possible,
as suggested in [HF 95], KDDML allows the definition and use of hierarchies on
sets of items.

3.2 KDD_RULES

The element KDD_RULES is used to represent a set of association rules as
showed in the follow DTD:

<!ELEMENT KDD_RULES (RDA+|DOUBLE_RULES+)>
<VELEMENT RDA (BODY,HEAD,TIME?)>
<!ATTLIST RDA rda_id ID #REQUIRED
support CDATA #REQUIRED
confidence CDATA #REQUIRED>
<!ELEMENT BODY (ITEM)+>
<!ELEMENT HEAD (ITEM)+>
<!ELEMENT ITEM EMPTY>
<!ATTLIST ITEM ItemName CDATA #REQUIRED>
<!ELEMENT TIME (CICLE|CALENDAR)>
<!ELEMENT CICLE EMPTY>
<!'ATTLIST CICLE length CDATA #REQUIRED
begin CDATA #REQUIRED>
<!ELEMENT CALENDAR (RANGE)+>
<!ELEMENT RANGE EMPTY>
<!ATTLIST RANGE begin CDATA #REQUIRED
end CDATA #REQUIRED>
<!ELEMENT DOUBLE_RULES (RDA,RDA)>

In the definition of such DTD we have considered the main components of
a generic association rule, that are its Body, Head, support and confidence.

The element KDD_RULES can be composed by one or more RDA elements,
representing a single association rule, or by one or more elements named DOU-
BLE_RULES, used to represent a set of pairs of associations rules, that hold at
two distinct level of a hierarchy of items.

The element RDA is composed by an element BODY, representing the body
of the rule, an element HEAD, representing the head of the rule, and by an
optional element TIME, indicating the time component of an association rule.

The element BODY and the element HEAD are composed by one or more
element named ITEM, containing a single item.

The element TIME is composed by an element CYCLE, that represent a
cycle of a cyclic association rule, or by an element CALENDAR, representing a
calendar of a calendric association rule.

An example of an XML document representing a set of rules is showed on
fig. 4.

3.3 KDD_TREES

The element KDD_TREES is used to represent a classification tree or a forest of
trees, that can be queried according either to a majority voting or to an and/or
strategy, in order to classify new tuples.

The main component of a classification tree are the nodes (the root and the
internal nodes), the edges and the leaves; all these components are represented
in our language by an XML document.

Furthermore, in our language, it is possible to represent the database schema
of the training set.

<?xml version="1.0" encoding="UTF-8"7>
<!DOCTYPE KDDML_OBJECT SYSTEM "kdd.dtd">
<KDDML_OBJECT>
<KDD_RULES>
<RDA rda_id="rulel" support="0.25" confidence="1">
<BODY>
<ITEM ItemName="ski_pants"/>
</B0ODY>
<HEAD>
<ITEM ItemName="hiking_boots"/>
</HEAD>
</RDA>
<RDA rda_id="rule2" support="0.25" confidence="0.5">
<BODY>
<ITEM ItemName="col_shirts"/>
<ITEM ItemName="jackets"/>
</BODY>
<HEAD>
<ITEM ItemName="brown_boots"/>
</HEAD>
</RDA>
</KDD_RULES>

Serda_id="rule1" Serda_id="rule2"
support="0.25" support="0.25"
® confidence="1" © confidence="0.5"

: : . . :
ItemName="sky_pants’ ItemName="hiking_boots" ItemName="col_shirts' ItemName="jackets" ItemName="brown_boots"

Figure 4: Set of association rules and graphic representation

<!ELEMENT KDD_TREES (SCHEMA, (AND_TREES|OR_TREES|COMMITTEE |NODE|LEAF))>

<!ATTLIST KDD_TREES class_att CDATA #REQUIRED>

<!ELEMENT AND_TREES (NODE | LEAF)+>

<!ELEMENT OR_TREES (NODE | LEAF)+>

<!ELEMENT COMITATO (NODE | LEAF)+>

<!ELEMENT EDGE (NODE | LEAF)>

<!'ATTLIST EDGE attribute_value CDATA #REQUIRED
operator CDATA #REQUIRED>

<!ELEMENT NODE (EDGE)+>

<!ATTLIST NODE attribute_name CDATA #REQUIRED>

<!ELEMENT LEAF EMPTY>

<!ATTLIST LEAF classification CDATA #REQUIRED>

The element KDD_TREES is composed by an element SCHEMA, represent-
ing the dataset schema, and by an element chosen between:

NODE representing the root;
EDGE if the tree is composed by only one leaf;

AND_TREES, OR_TREES or COMMITTEE , used if we want to repre-
sent a forest of trees, combined according to the three different strategies

This element has an attribute class_att, containing the name of the class
attribute.

The element SCHEMA is defined by the following DTD:

<!ELEMENT SCHEMA (ATTRIBUTE)+>

<!ATTLIST SCHEMA logic_name CDATA #REQUIRED>
<!ELEMENT ATTRIBUTE (INT|ENUMERATED)>
<!ATTLIST ATTRIBUTE name CDATA #REQUIRED>
<!ELEMENT INT EMPTY >

<!ELEMENT ENUMERATED EMPTY>

<!'ATTLIST ENUMERATED value CDATA #REQUIRED>

This element is composed by one or more elements ATTRIBUTE, each of
them specifying the type of a particular field of the training set. The attribute
“logic_.name” contains the name of such training set.

The element ATTRIBUTE can be composed by an element INT, if the the
correspondent field of the training set is numeric, or by an element ENUMER-
ATED, if it refers to an enumerated field.

The element NODE is composed by one or more elements EDGE, represent-
ing an outgoing edge from the corresponding node.

The element EDGE can be composed by an element NODE, representing the
node linked to the edge, or by an element LEAF, representing a leaf of the tree;
this element has two attributes that specify the label of the edge, containing
the condition on the attributes.

Finally, the element LEAF is composed by an attribute that specifies the
classification value of the leaf.

An example of an XML document representing a classification tree is shown
on fig. 5.

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE KDDML_QOBJECT SYSTEM "kdd.dtd">

<KDDML_OBJECT>
<KDD_TREES class_att="play">
<SCHEMA logic_name="weather.symbolic">
<ATTRIBUTE name="outlook'">
<ENUMERATED value="sunny"/>
<ENUMERATED value="overcast"/>
</ATTRIBUTE>
<ATTRIBUTE name="humidity">
<ENUMERATED value="high"/>
<ENUMERATED value='"normal"/>
</ATTRIBUTE>
<ATTRIBUTE name="windy">
<ENUMERATED value="TRUE"/>
<ENUMERATED value="FALSE"/>
</ATTRIBUTE>
<ATTRIBUTE name="play">
<ENUMERATED value="yes"/>
<ENUMERATED value="no"/>

</ATTRIBUTE>
</SCHEMA>
<NODE attribute_name="outlook'>
<EDGE operator="=" attribute_value='"sunny">
<NODE attribute_name="humidity">
<EDGE operator="=" attribute_value="high">
<LEAF classification="no"/>
</EDGE>
<EDGE operator="=" attribute_value="normal">
<LEAF classification="yes"/>
</EDGE>
</NODE>
</EDGE>
<EDGE operator="=" attribute_value="overcast'">
<LEAF classification="yes"/>
</EDGE>
</NODE>

</KDD_TREES>
</KDDML_OBJECT>

eattribute_name="outlook"

elogic_name="weather.symbolic"

ATTRIBUTE

T
. .
value="no" classification="yes"

T T
. .
value="overcast" value="yes"

:
.
value="sunny"

operator

attributo_value="high" -

sattibute vaue="normd"

o
o

dassifiction="no" dlassfication="yes’

Figure 5: A classification tree and its graphic representation

10

3.4 KDD_CLUSTERS

This element is used to represent the result of probabilistic clustering.
We chose to represent every single cluster produced by the clustering algo-
rithm by means of its centroid element, from which we can find the tuple set

assigned to the cluster.
The elements used to represent a set of clusters are deefined in the following
DTD:

<!ELEMENT KDD_CLUSTERS (CLUSTER+)>
<VATTLIST KDD_CLUSTERS source CDATA #REQUIRED
algorithm CDATA #REQUIRED
num_clusters CDATA #REQUIRED>
<!ELEMENT CLUSTER (CENTROID)>
<!ATTLIST CLUSTER prob CDATA #IMPLIED
id CDATA #REQUIRED
card CDATA #REQUIRED>
<!ELEMENT CENTROID (ATTR_NOM|ATTR_NUM)+>
<!ELEMENT ATTR_NOM (DISTR_VALUE)+>
<VATTLIST ATTR_NOM name CDATA #REQUIRED>
<!ELEMENT DISTR_VALORE EMPTY>
<VATTLIST DISTR_VALORE value CDATA #REQUIRED
num_inst CDATA #REQUIRED>
<!ELEMENT ATTR_NUM EMPTY>
<VATTLIST ATTR_NUM name CDATA #REQUIRED
mean CDATA #REQUIRED
variance CDATA #REQUIRED>

The element KDD_CLUSTERS is composed by one or more elements named
CLUSTER, representing a single extracted cluster, and by three attributes that
stand for the dataset (“source” attribute), the clustering algorithm in use (“al-
gorithm” attribute), and the number of extracted clusters (“num_clusters” at-
tribute).

The element CLUSTER is composed by an element CENTROID, represent-
ing the centroid element of the cluster, and by three attributes that indicates
the a priori probability of cluster (“prob” attribute), an identification key (“id”
attribute), and the number of tuples assigned to the cluster (“card” attribute).

The element CENTROID is composed by one or more element that can be
ATTR_NOM or ATTR_NUM elements, representing a single field of the schema
dataset; ATTR_NOM is used if the field is nominal, while ATTR_NUM is used
when the field is numeric.

The element ATTR_-NOM is composed by one or more element DISTR_VALUE,
representing a possible value of the nominal field and the number of instances
in which this value is present.

The element ATTR_NUM is composed by three attributes that contain the
name of the field, the mean and the standard deviation.

An example of an XML document representing a clustering is showed on
fig. 6.

11

<?xml version="1.0" encoding="UTF-8"7>
<!DOCTYPE KDDML_OBJECT SYSTEM "/tesi/ambiente/kddlang/kdd.dtd" >
<KDDML_0OBJECT>
<KDD_CLUSTERS source="/arff-files/iris.arff" algorithm="EM" num_clusters="3">
<CLUSTER id="0" prob="0.3333" card="50">
<CENTROID>
<ATTR_NUM name="sepallength" mean="5.006" stdev="0.3525"/>
<ATTR_NUM name="sepalwidth" mean="3.418" stdev="0.381"/>
<ATTR_NOM name="class">
<DISTR_VALUE value="Iris-setosa" num_inst="50"/>
<DISTR_VALUE value="Iris-virginica" num_inst="0"/>
</ATTR_NOM>
</CENTROID>
</CLUSTER>
<CLUSTER id="1" prob="0.32237" card="48">
<CENTROID>
<ATTR_NUM name="sepallength" mean="6.6306" stved="0.5977"/>
<ATTR_NUM name="sepalwidth" mean="2.9977" stved="0.3042"/>
<ATTR_NOM name="class">
<DISTR_VALUE value="Iris-setosa" num_inst="0"/>
<DISTR_VALUE value="Iris-virginica" num_inst="47.96"/>
</ATTR_NOM>
</CENTROID>
</CLUSTER>
</KDD_CLUSTERS>
</KDDML_OBJECT>

='5.006" mean="6,6306"
Sev="03525" sder="0381" Sdev="05%7"

T T
value="lris-setosa" value="lris-virginica" value="lris-setosa" value="Iris-virginica"
num_insi="50" num_ing="0" num_ing="0" num_in="47.96"

Figure 6: A set of clusters and graphic representation

12

3.5 KDD_QUERY

The element KDD_QUERY is used to represent a generic query.

As mentioned above, the result of a KDD query must be a set of either KDD
objects or database objects. Furthermore the query language must allow the
reuse of previous knowledge, and, above all,it must support a closure principle
in order to combine and refine the extracted knowledge.

To do that, a query must have a nested structure, in which it should be
possible to combine an arbitrary number of sub-queries containing invocations
to external Data Mining algorithms, combined by operators. Moreover, it is
necessary to check that sub-queries are properly nested, in order to avoid that a
sub-query returns a result that doesn’t meet the requirements of the operators
combining them.

For example, suppose to have the query: “Find the database tuples that are
exceptions to the set of associations rules obtained by filtering the result of the
Apriori algorithm on a database relation”

Notice that there are three fundamental steps (sub-queries) in the previous

query:
1. Extraction of the association rules by using the Apriori algorithm;
2. Filtering the extracted association rules;
3. Extraction of tuples that are exceptions to the filtered associations rules.

In order to control the nesting of sub-queries, we group the invocations of
external Data Mining algorithms and operators that returns the same kind of
knowledge in the same class, defined by means of a XML entities, as shown in
the list below:

data_source invocations to operators that return databases objects; such op-
erators can be also realized as predicates querying a Prolog expert system,
and returning the set of ground answers as database tuples. In this way,
during the overall KDD process we can refer both to extensional knowl-
edge, i.e. data held in a database, and to intensional knowledge, i.e. data
that can be “inferred” by using the deductive capabilities of a Prolog
engine, or a deductive database in general. This last feature allows us a
natural representation of background knowledge.

kdd_query_trees invocations to external Data Mining algorithms and opera-
tors that return classification trees;

kdd_query_rules invocations to external Data Mining algorithms and opera-
tors that returns association rules;

kdd_query_clusters invocations to external Data Mining algorithms and op-
erators that returns sets of clusters.

13

In order to illustrate these concepts, we show a portion of Document Type
Definition of the KDD_QUERY element. It must be composed by one element
that denotes an invocation to an external Data Mining algorithm (contained in
the external_call entity) or the invocation to operators returning the same kind
of results (contained in the learning-op entity):

<!ELEMENT KDD_QUERY (%external_call;|learning op;)>

As an example of invocation to an external Data Mining algorithm we show
the element definition related to the MINE_RULE element:

<!ELEMENT MINE_RULE (APRIORI,%data_source;)>

<V'ATTLIST MINE_RULE xml_dest CDATA #IMPLIED>

<!ELEMENT APRIORI EMPTY>

<!'ATTLIST APRIORI number_of_rules CDATA #IMPLIED
min_support CDATA #IMPLIED
min_confidence CDATA #IMPLIED >

The element MINE_RULE is composed by an element that represents the
specific algorithm, Apriori in this case , and an element of the data_source class,
that represents the invocation to operators that returns tuples.

The element APRIORI is empty and contains some attributes representing
the interface to the algorithm.

An example of MINE_RULE use is the following:

<MINE_RULE xml_dest="MineBasket.xml">
<APRIORI min_confidence="0.6" min_support="0.4"
number _of _rules="30"/>
<FILE_ARFF nome_file="coop.arff"/>
</MINE_RULE>

In this example we choose the element FILE_ARFF from the class data_source
as the input.
The entity external_call also contain the definition of two other elements:

MINE_TREE for the extraction of classification trees, using two algorithms:
C4.5,1D3

MINE_CLUSTERS for the extraction of clusters, using the EM algorithm.

As an example of an invocation to an operator we show the element PRE-
SERVED_RULES:

<!ELEMENT PRESERVED_RULES (%kdd_query_rules;,%kdd_query_rules;,
HIERARCHY_FILE)>
<!'ATTLIST PRESERVED_RULES xml_dest CDATA #REQUIRED>

This element represents the invocation to the operator that determines the set
of pairs of rules that hold at two different abstraction level of a hierarchy, and it
is composed by two sets of rules (chosen from the kdd_query_rules class defined
above), and by an element that represents the hierarchy.

An example of its use is the following;:

14

<PRESERVED_RULES xml_dest="Coop.xml">
<MINE_RULE>
<APRIORI min_confidence="0.7" min_support="0.4"
number _of _rules="10"/>
<FILE_ARFF nome_file="coop.arff"/>
</MINE_RULE>
<FILE_RULES nome_file="FilterMineCoopGen.xml"/>
<FILE_HIERARCHY nome_file="categoryCoop.xml"/>
</PRESERVED_RULES>

In this example the two sets of rules needed by PRESERVED_RULES are
specified by means of the MINE_RULE element (defined above), and by FILE_RULES
element that stands for the reference to an external file containing a set of rules.

In the entity learning_op we have also defined others operators on algorithm
results, that are listed above:

FILTER _RULES given a set of rules returns the ones, that satisfy a filter
specified by a boolean formula.

RULE_SUPPORT given a set of tuples returns the ones that support a spec-
ified set of rules.

RULE_EXCEPTION given a set of tuples returns the ones that are excep-
tions to a specified set of rules.

AND_TREE, OR_TREE allow us to query a set of trees according either to
an and or to an or strategy.

COMMITTEE allows us to query a set of trees according to a majority voting
strategy.

CLASSIFY classifies a given set of tuples, using a classification tree.

MAX_OF returns the set of tuples that belongs to the cluster of maximum
cardinality.

N_CLUSTER_OF returns the set of tuples that belong to a cluster specified
by its identification number.

PROLOG_QUERY executes a specified Prolog query (on specified sets of
facts and rules), and returns the ground answers as a set of tuples; when
no answers are found it returns an empty set of tuples.

All these operators can be conditioned, in the sense that a conditional
operator can be used to combine two alternatives subqueries, that are selected
according to the evaluation of a condition, which is evaluated on a particular
relation (i.e. a set of tuples).

The operator that implements such a choice is called COND, and it has the
following DTD:

15

<!ELEMENT COND_OP (CONDITION?, %data_source,
(Yiexternal _call|%meta_learning op),
(Y%external_call|%meta_learning_op))>
<!ATTLIST COND_OP xml_dest CDATA #IMPLIED>

As showed above an instance of the COND_OP operator must contain:

1. An (optional) element representing a condition, i.e. a boolean formula re-
garding the values contained in a set of tuples; using XML we have defined
a simple grammar that allows us to represent also quantified conditions,
i.e. boolean conditions in the range of a standard quantifier (for each, ex-
ists). When no condition is specified, it means that we want to check the
emptiness of a particular set of tuples; when this set of tuples is computed
by querying the prolog system, this correspond to checking a condition
implemented in an expert system style.

2. An element representing a set of tuples, on which the previous condition
is evaluated; obviously the set of tuples can be computed by using any
of the operators returning set of tuples, including queries to Prolog based
deductive databases.

3. Two elements representing the alternatives sub_queries.

As an example suppose that we want to extraxt a set of associations rules,
and that we want to choose the data set to use according to the evaluation
of a condition on the results of a Prolog query. If the Prolog query is Pro-
log_Query(X,Y) (which facts and rules are specified in a file called Prolog_query.pl)
and we want to check that exists a solution in which X values 10 and Y values
5, we have to write the following query:

<MINE_RULE xml_dest=’’cond_rules’’>
<APRIORI min_confidence="0.7" min_support="0.4" number_of_rules="10"/>
<COND_0P>
<CONDITION quantifier=’’exists’’>
<AND_C>
<VARIABLE_CONDITION name=’’X’’ value=’’10’’>
<VARIABLE_CONDITION name=’’Y’’ value=’’5’’>
</AND_C>
</CONDITION>
<PROLOG_QUERY pred_name=’’Prolog_Query’’ facts_rules=’’Prolog_Query.pl’’>
<VARIABLE name=’’X’’/>
<VARIABLE name=’’Y’’/>
</PROLOG_QUERY>
<FILE_ARFF name=’’coop.arff’’/>
<FILE_ARFF name=’’basket.arff’’/>
</COND_0P>
</MINE_RULE>

16

The example above shows also that KDDML, like all others markup lan-
guages, is not an user friendly language, and specify a query using it may be
(expecially for non XML experts) quite complex. However, as we will describe
later, we have developed a GUI in wich the user can find a syntax driven editor
by wich specify its queries.

The COND_OP operator can be specified at any nesting level in a query,
and the syntax driven editor mentioned above will force us to specify the rigth
type of knowledge as alternative subqueries.

3.6 System Architecture

KDDML is the basis on which we constructed our environment in support of
Knowledge Extraction.

In defining the environment we chose to handle Data Mining algorithms as
black boxes.

Fig. 7 depicts the whole architecture. As shown in the figure, the neutral
representation provided by XML/DOM plays a central role.

To build our environment we have used four “External components”:

XMLA4J to support XML/DOM neutral representation [XML4J]
WEKA a Java based package of data mining tools [WEKA]

LOTUSXSL to transform XML document in HTML document visualizable
on common browsers

SICSTUS PROLOG a Prolog engine easy to use in Java based applications
[LotXSL)

Below we briefly describe the functionalities of the principal components:

3.6.1 Query Executor

This is the key component of the environment. Its aim is to resolve knowledge
extraction problems expressed by KDD_QUERY in KDDML.

The Query Executor component gets the KDD_QUERY, in the form of a
DOM tree, from the Graphic User Interface. In order to execute such a query,
it performs a visit of the DOM tree and it performs the operations that it
encounters.

When it encounters an external call to a Data Mining algorithm, it interacts
with the WEKA component, in order to extract the required knowledge. The
results are fed to the Query Executor component via the Wrappers, that take
care of their translation in the KDDML format.

When it encounters an operator call, it cooperates with the Operators com-
ponent, that executes the required operator and returns the result in KDDML
format.

All results obtained in this process are translated, by using the LOTUSXSL
component, into HTML format and presented to the user inside a browser.

17

DATA

LotusXSL F
le Sicstus
\ Prolog
4
Query
Executor

o

DOM Trees

Repository

Operators

WEKA

Graphic User

! XML/DOM neutral rappresentation :
Interface | |

XML4J

(Parser) (DOM Implementatior)

Figure 7: Environment Architecture

3.6.2 Graphic User Interface

This component allows the user to interact with the environment and to exploit
its characteristics.
The GUI is divided in two parts:

e A generic component for handling knowledge extraction problems, and to
retrieve previously extracted knowledge. The construction of a new query
is supported by a syntax driven editor that guides the user in the process.

e A browser that allow the visualization of the HTML pages representing
the results.
3.6.3 Wrappers

This component takes care of taking the results produced by the WEKA com-
ponent and to transform them into DOM trees. After performing this trans-
formation, the Wrapper component returns the result to the Query Executor
component.

3.6.4 Operators

This component provides the implementation of the operators defined in the
KDDML language. Every time it is invoked, it executes the required opera-

18

R I T e e e i i

WrapperApriori

Wrapperl d3

] opermors | iieriaceon

Query
Executor

Package QueryErrorListener
.DocEmpﬁyExcepti on
- NoFileException

- § .QuayExcq:)ti on
ol e R—
.GUI ErrorListener
B T—

- DBtoARFF

Interface

Figure 8: Packages

tor and returns the result, in the form of DOM tree, to the Query Executor
component.

3.6.5 Repository

This component is used to store the queries created and the results obtained,
in order to retrieve them later for further use.

The environment described above is entirely implemented in Java, and the
code is organized in packages, as showed in fig. 8, each of them implements the
functionalities of the corresponding component of the environment.

4 How to use KDDML

The aim of this section is to show, by meansof two examples, the potentialityof
our markup language and of the overall environment.

In the first example we will show how our environment make easy to combine
several types of knowledge, solving a knowledge extraction problem regarding
clustering and classification.

19

The combination of several types of knowledge is fundamental for an envi-
ronment in support of the KDD process, along with the possibility to exploit a
certain type of background knowledge.

In the second example we will show how background knowledge can be ex-
ploited, querying an expert system in order to decide what to do with a certain
type of extracted knowledge.

4.1 Example 1: combining several type of knowledge

As mentioned above, the aim of this example is to show how our environment
supports the Data Mining step of the KDD process, and how it allows the
combination of several knowledge extraction techniques.

We will consider a widely used dataset, available from the UCI repository
[UCT], in which 214 types of glass are described by means of 9 numeric attributes,
and grouped in 7 classes with reference to their commercial use.

The problem is to generate a classifier and to use it to classify new instances.

We follow the strategy illustrated in fig. 9:

1. a first clustering on the Glass dataset;
2. a second clustering;

3. the extraction of a set of classification trees from the clusters obtained in
steps 1 and 2;

4. the combination of the classification trees obtained in step 3 in order to
construct a new classifier, and classification of a new set of instances.

Is worth observing that to implement the above strategy it is necessary to com-
bine clustering operations with the extraction of classification trees.

4.1.1 Step 1: Clustering on the Glass dataset

The graphic user interface provides a syntax driven editor that allows the user
to specify only valid and well-formed KDD queries.

By using the editor the user can specify the query relative to the first clus-
tering step, as showed in fig. 10.

This query specifies that the tuples contained in the file “glass.arff” must be
partitioned in 3 clusters by using the EM algorithm with at most 100 iterations.

When the user executes the query, it is passed to the Query_Executor in
the form of a DOM tree. The Query_Executor performs a depth-first search
resolving all the sub-queries.

In this case no sub-query must be resolved, and the Query_Executor will
invoke directly the EM algorithm using the WrapperEM class, in order to obtain
the result as a KDDML document.

Finally the Query_Executor will use the XMLtoHTML class in order to
present the user with the results in the shape of HTML pages, as showed in
fig. 11.

20

Classify Step 4
Treel Tree?2 Tree3 Step 3
Cluster 4 Cluster 5 Step 2
Cluster 1 Cluster 2 Cluster 3 Step 1
Data
Figure 9: Strategy
3 KDDML : a markup language for KDD H= B
File Browser View
XML View Allowable Elements | Attributes |

=KDDOML_OBJECT=
=KDD_QUERY name="queryClusterGlass3.xml*=
=MINE_CLUSTER #ml_dest="ClusterGlass3 xml"=
=EM max_iterations="100" nurn_clusters="3"=
=FILE_ARFF nome_file="glass.arf'f=
<iMINE_CLUSTER=
</KDD_QUERY>
=/KDDML_OBJECT=

Execute

Insert

Messages

KDDML Docurnent Type Definition succestully parsed

Mo errors or warmings found during parsing.

Click on Execute to exec it

The file named Cuml-filesigueriesiguenyClusterGlass3 xml contains a valid KDD_QUERY

Figure 10: Graphic user interface

21

i Result page - Microsoft Intemet Explorer B

| Ele Modiica Visudiess Prefeti Stumenti 2

g a

Query |;|‘;nj

= |

=03 mine cLusTer
B aigorithm: EM
Number of clusters: 3 CLUSTERIN:0:
B tax number of iterations: 100

. P biability - 0.047891 40385408042
B) FILE_ARFF glass arff vior probability

. Cardinality: 10
+ Clugter surnmarny:

The file /xmiiles/queries/ queryClusterGlassZ.xmi
containing the XML document rappresenting the R
cuery has been added to the Query category of the

Repositary

Name | Mean | St Dev
RI 1.5187 | 0.0015
Na | 13.2340 | 04448
Mg | 30778 | 0.7087
al 1324 | 03713
si | 72554z | 0.5417
& 05111 | 0.2086
‘ ca 8833 | 0.4653
I I]
] [[[2 Risarse del computer

Figure 11: Step 1: Clustering on the Glass dataset

All the HTML pages designed to present the results of a data mining step
are structured in the same way, that is the representation of the query in the left
frame (with links to partial results), and the representation of the final result
in the right frame.

4.1.2 Step 2: Second clustering step

To obtain a better partitioning of the glass dataset, we have decided to perform
a further clustering operation in order to partition the tuples of the third cluster
obtained in the previous step.

The query that specifies this operation and its results are presented in fig
12.

This query is very similar to the one of the previous step; the only difference
is that the dataset on which the EM algorithm must operate is obtained by using
the N_CLUSTER_OF operator, that returns the tuples assigned to a particular
cluster.

In this case, therefore, the Query_Executor finds a sub-query to resolve that
produce the tuples that must be partitioned as partial results.

22

i Result page - Microsoft Intemet Explorer [_[=]x]

| Ele Modiica Visudiess Prefedti Stumenti 2 ﬁ

‘ Query | =l ‘ ol || Clusters |
=03 mine cLusTer
B aigorithm: EM T

Number of clusters: 2
B tax number of iterations: 100
ey cLUSTER oF
Number: 1
B FILE_CLUSTERS ClusterGlassa smi

+ Prior probability - 0.361236204176937
. Cardinality : 51
+ Clugter surnmarny:

o Mumerical attributes
The file fxmi-files/queries/queryClusterGlass2 1. xml

containing the XML document rapprasenting the
Guery has been added to the Query categary of the Name | Mean | St Dev
Repository
RI 1.5211 | 0.0036
Na | 13.4604 | 0905
Mg | 29086 | 1.5665
al 116 | 04553
si | 723728 | 08574
& 0219 | 0251
‘ ca ‘ 103089 | 1.7905
I I]
] [[[2 Risarse del computer

Figure 12: Step 2: Second clustering step

4.1.3 Step 3: Extraction of a set of classification trees

The aim of this step is to extract three classifications trees using the clusters
obtained in the previous steps.

The three queries that specifies this operations are very similar, and each of
them invokes the C4.5 algorithm on the tuples of the specified cluster.

An example of query and the relative result is showed in fig. 13; in this case
too, the Query_Executor must retrieve the tuples belonging to the specified
clusters in order to extract the valid classification tree.

23

a Result page - Microsoft Intemet Explorer MEHE

JEM& Modiica Visualizza Preferti Stumenti 7

‘ Query Decision Tree =l ‘ hu
e pne Teee e
e pgorithm: ca.5 =1 LY
B ot pruned: false =2l r
hum. instances for each leat, 1 Bl o35
Conficence for pruning:0.25 B2
Binary split for nominal attributes:false Em =035
e clusTer o Bs
B number. 0 = Y
FILE_CLUSTERS Clustertlass3.smi E”@ Al
=l =075
The file /xml-files/queries/gqueryTreeGlass30. mi B 3
containing the XML document rappresenting the Efm »0.75
query has been added to the Query categary of the @ 1
Repository.
CONFUSION MATRIX
11213 4|5 (6|7
1|z2|0fjo0fojojojo
2|1|6j0jojojojo
a|o0jojrjojojojo
4 |0j0j0jojojojoO
FARPPRE . ;IJ
|@ ‘ | ‘g Fiisorse del computer

Figure 13: Step 3: Extraction of a set of classification trees

4.1.4 Step 4: Classification of a new tuple set

The aim of this step is to classify a new set of tuples by using the classification
trees obtained in the previous step.

The query and its results are shown in fig. 14; in this case, the Query_Executor
must retrieve the three classification trees referred by name in the element
FILE_TREE and combine them.

The classification value for each instance is obtained by a majority voting
strategy; it is important to observe that some tuples are not classified because
a majority vote has not been reached.

24

i Result page - Microsoft Intemet Explorer (=]

| Ele Modiica Visudiess Prefedti Stumenti 2 i

‘ Query | =l ‘ i RI Na Mg Al Si K ca Ba Fe Glass_Type m
=03 cLassiry 152101 | 1364 | 449 | 1.1 | 7178 | 006 | B.75 o o 1
B FILE_ARFF glassTest. arit
el commTTeE 151761 | 1335 | 36 | 138 | 7273 o043 | 783 o a 1
B FILE_TREE TreeGlass30.xml
FALE TREE AlberoGlass320.xml 151618 | 1353 | 955 | 1.54 | 7299 | 039 | 7.78 0 o 2
B ALE TREE AlberoGlass321.xml
2
The file fxmifilesiqueries/gqueryClassifyGlass. xml il zs s i P s = © e
containing the XML document rappresenting the
query has been added to the Query category of the 1532 | 1372 | 372 | 051 | 7175 (003 | 1006 | O 018 7
Repository,
151848 | 1364 | 387 | 127 | 7196 | 054 | 832 o |o32 1
151808 | 1388 | 335 | 123 | 7208 | 059 | 891 0 o 1
151655 | 1341 | 339 | 128 | 7264 | 052 | 865 0 o H
152121 | 1403 | 376 | 058 | 7179 | 011 | 0965 0 o 3
15241 | 1383 | 29 | 117 || 7115 | oo || 1079 | © o 1
151934 | 1364 | 354 | 0.75 | 7265 | 016 | 880 | 0.15 | 0.24 1
151680 | 1267 | 283 | 1.71 | 73.21 | 073 | 854 o o 2 L
&) [[[=) Riserse del computer

Figure 14: Step 4: Classification of a new tuple set

4.2 Example 2: using background knowledge

As mentioned above an important capability of our system is the possibility to
exploit background knowledge, and now we will show an illustrative example on
how to do it.

We will use a market basket dataset, that contains transactions of an Italian
Supermarket done during Christmas period; the problem we want to solve is to
find a set of associations rules and then if we find them “interesting”, according
to our background knowledge, determine which of them survive or decay upon
a product hierarchy.

The role of our background knowledge is central in this process, and an
expert system can do it easily and in the right way; in this example we will
suppose to have a Prolog coded expert system that can be queried in order to
know if a certain set of rules is interesting or not.

The interestingness of a set of rule may be determined by quantitative param-
eters, such as the amount of the transactions related to them, or by qualitative
parameters, such as the presence of certain product inside them.

The expert system we suppose to use in this example is able to check if a
certain set of rules, relative to a certain data set, matches those parameters,
and so if it is “interesting” according to our background knowledge.

The expert system has an interface of the form “Check_Rules(X,Y)” where
X is the name of the XML document containg the set of rules, and Y is the

25

> MINE Pl E

Al APHILIH

"lhll-.al-:,..w-_u.;- 7 7

B Numoer ofndes 100 0. Rules Body ey Head Supp. Conl
B Mrarwm corficence 0 7

B FILE_&RIFF coaplowst af

BTjis_ei -
e ak pancion_Tede onaie Ch=Cale O T i
The die ani-Hesguenesg e Secl o
ortarery e <M L docudienl Fapoeseniing (L] er w—-“:'.hr:ruzl F— — .
e guery hias besn addsd 0 e duery
Fiesgory of tha Fapot any R
e el [—— - — o :
[l e
e & g S oo
ragoigd B _fe el -y - oI 4

T g B _ il) > OOl arm 1

Figure 15: Step 1: Extraction of associations rules

name of the dataset used to extract the rules.
To solve this knowledge extraction problem we have to do two fundamental
steps:

1. Extract a set of association rules from the data set

2. Query the expert system, and if those rules are interesting determine which
of them survive upon a particular product hierarchy

4.2.1 Step 1: Extraction of association rules

As mentioned above, in this step we want to extract from our transaction data
a set of association rules; in our environment we can use the well known Apriori
algorithm to do that, specifying the desired values for support and confidence.
The query can easily be composed using the graphic user interface, and the
related results are presented in fig. 15; in this query we specify that we want to
extract a set of 100 rules from a dataset called “coopLower”, and those rules
must have at least a confidence and a support of 0.7.

26

| | e view | e b s | s
[kDoMWL _aBIECT m ' |
% [KDO_QUERY remes=Espss i3 us rpam|
& D9 cann_ap
& [PROLOG_CUERY presi_nameschach_nibas mam_pae? facts ndesssheck_Rules pl
[0} TER M v s o i i 1
) TER M wakit=erap
% [PRESEFVED_RLALER
[FILE_FULES ik_nasnem et 1-aml
% DI MHE RULE
[sFrER min_ e 1T frin_slipn 7 Tl] (6
% [CENERALIZE krpais=1
[FILE_&RFF fi _roarromco op Liwsar
) HERARS Hy_PROLG e na iasdaop gl
(Y HIE R Hy PR DL file_na e op g
) FILE_FULES k_n il e-a k-1 aml

[FOOM. D mesnt Type Coniion = ucomefully pams s

|ha miroes arwEmings found during persing

Thefla names] - Cdkd dm Bam Hileasg s iy ey sl ¢ Ayl KDD_UERY
|CAbeH o Exuairka b eata: i

¥ "

Figure 16: Step 2: Creating the query

4.2.2 Step 2: Querying the expert system

Now we want to check if the rules extracted in the previous step are interest-
ing, and to do that we have to query the expert system mentioned above; as
mentioned in section 3.5 in KDDML a Prolog query can be represented by
an element called PROLOG_QUERY that is characterized by three attribute
regarding the name of the predicate, its ariety, and the Prolog file where it is
defined.

In section 3.5, we described the COND_OP element that is used to repre-
sent a choice; when the switching condition is expressed by means of a PRO-
LOG_QUERY element the semantic of the COND_OP element is to check if
exists a solution to the Prolog query specified.

To solve our problem we will use this feature of the COND_OP element,
querying our expert system to know if the rules extracted in the previous step
are interesting; if there is a solution, and so the rules are interesting, we will
check with the PRESERVE_RULE operator wich of them survive upon a fixed
product hierarchy, otherwise we will return the “non interesting” rule set.

In this case the two set of rules needed by the PRESERVE_RULE element are
specified by means of a FILE_RULE element, to specify the previous extracted
set of rules, and a MINE_RULE element, to specify the set of rules relative to
the generalized transactions.

The overall query can be specified using the graphic user interface as showed

27

e
oy W A Prpparery " %, PrecT

Figure 17: Step 2: Query results

in fig. 16, and the results obtained are presented in fig. 17.

5 Conclusions

In this paper we have presented the design and the characteristics of an environ-
ment for supporting part of the process of Knowledge Discovery in Databases.
More specifically, we have designed a query language that allows us to specify
sophisticated combinations of data mining steps. One of the design require-
ments was flexibility and openness. We tried to satisfy the requirements by
approaching the design of the support for a KDD process as the design of a
query language on one side, and by using the standard XML for representing
intermediate results. We are confident that the above choices will allow us
to extend the environment to include support for the other steps of the KDD
process.

One of our next objectives is to extend the query language with the pos-
sibility of exploiting background domain knowledge in order to drive the data
mining steps. Rather than making our query language a full fledged knowledge
representation language we are planning to integrate a knowledge representation
language, like for example Prolog, as an external component. The interaction
between our query executor and the knowledge representation language can be
organized around the idea of defining a standard XML representation for goals
and answers and the construction of appropriate wrappers.

28

References

[HF 95]

[TM 96]

[LotXSL]

[UCT

[XML4J]

[WEKA]

[W3CDOM]

[W3CXML]

[W3CXSL]

J. Han and Y. Fu. Discovery of Multi-Level Association Rules from
Large Databases. Proceeding of The 21th International Conference
on Very Large Databases, pages 420-431, September 1995.

Imielingki, T.; and Mannila.H. 1996. A Database Perspective of
Knowledge Discovery. In Communications of the ACM, 39(11):58-
64.

IBM’s LOTUS XSL
http://www.alphaworks.ibm.com /formula/xsl

UCI KDD Archive
http://kdd.ics.uci.edu/

IBM’s Alphaworks XMTL4J
http://www.alphaworks.ibm.com/formula/xml

WEKA: Waikato Environment for Knowledge Analysis
http:/ /www.cs.waikato.ac.nz/ml/weka

Document Object Model specification
http://www.w3c.org/DOM.

eXtensible Markup Language specification
http://www.w3c.org/XML.

eXtensible StyleSheet Language specification
http://www.w3c.org/XSL.

29

