
KDDML System: Reference Guide

ANDREA ROMEI

University of Pisa
Department of Computer Science

http://kdd.di.unipi.it/kddml

May 5, 2006
KDDML System Version: 2.0.16 beta

Abstract

Knowledge discovery in databases (KDD) covers a wide range of applicative domains (retail,
marketing, finance, e-commerce, biology, privacy, only to cite a few ones), several models of rep-
resenting extracted patterns and rules (including classification models, association rules, sequential
patterns, clusters) and a large number of algorithms for data preprocessing, model extraction and
model reasoning.
KDDML is a middleware XML-based language (and system) needed to support the development
of final applications or higher level systems which need a mixture of database access, data pre-
processing, mining extraction and deployment.
As the name suggests, KDDML is heavily based on XML as a representation language for data,
models and queries. The language is primarily intended as a middleware language on the basis
of which higher abstraction levels can be built, such as vertical applications or more declarative
languages. Also, the language tries to be as much as possible independent from lower level imple-
mentations of data mining algorithms, with the aim of confining the technicalities at the level of
the implementation of the KDDML system.
This document describes in detail KDDML as KDD system whose design principles are motivated
by requirements derived from recurring patterns in the KDD process.

Requirements
Data Mining, UML principles and the KDDML language specification.

Licence
The KDDML system and this guide are published and distributed under the GNU general public
licence.

Copyright
University of Pisa
Department of Computer Science
Largo Bruno Pontecorvo, 3
56127, Pisa, ITALY

CONTENTS

1 KDDML system overview 7
1.1 System architecture. 7

1.1.1 Core layer. 7
1.1.2 Operators and algorithms layer. 10
1.1.3 Interpreter layer. .11
1.1.4 User interface layer. .11

1.2 Installing and configuring KDDML . 11
1.2.1 Downloading. .11
1.2.2 Installing the Java support. 12
1.2.3 Installing and running KDDML. 12
1.2.4 Integrating KDDML into your application. 12
1.2.5 Physical organization and external libraries. 12

1.3 Packages design overview. .13
1.4 Organization of this guide. .17

2 Core layer 18
2.1 Package kddml.Core. .18
2.2 Package kddml.Core.DataSources. 20
2.3 Package kddml.Core.DataMining. 22

2.3.1 Package kddml.Core.DataMining.AssociationRules. 24
2.3.2 Package kddml.Core.DataMining.SequentialPatterns. 26
2.3.3 Package kddml.Core.DataMining.ClassificationTrees. 29
2.3.4 Package kddml.Core.DataMining.Clustering. 31
2.3.5 Package kddml.Core.DataMining.Taxonomy. 35

2.4 Package kddml.Core.QueryElement. 36
2.4.1 Package kddml.Core.QueryElement.Condition. 37
2.4.2 Package kddml.Core.ProprietaryElement.Expression. 39

1

CONTENTS 2

2.5 Package kddml.Core.Scalar. .40
2.6 Extending the core layer. .41

2.6.1 Adding a new external resource. 41
2.6.2 Adding a new base condition specification. 41
2.6.3 Adding a new mining model. 42

3 Operators and algorithms layer 44
3.1 Package kddml.Operators. .44
3.2 Package kddml.Operators.IO. .48
3.3 Package kddml.Operators.Preprocessing. 49
3.4 Package kddml.Operators.DataMining. 50
3.5 Package kddml.Operators.Postprocessing. 51
3.6 Package kddml.Operators.Unclassified. 51
3.7 Extending the operators layer. .52

3.7.1 Adding a new algorithm. 52
3.7.2 Adding a new operator. .52
3.7.3 Adding a new class of algorithms. 53

4 Interpreter layer 56
4.1 Package kddml.Interpreter. .56
Appendices .62

A UML core layer diagrams 62

B UML operator layer diagrams 107

C UML interpreter layer diagrams 118

LIST OF TABLES

1.1 The system’s external libraries. .13

2.1 Correspondence between models and external resources manager. 42
2.2 Minimal set of classes/interfaces to define when adding a new model. 43

3.1 Correspondence between algorithms and interfaces. 53
3.2 Correspondence between operators and abstract classes. 54

3

LIST OF FIGURES

1.1 KDDML system architecture.. 8
1.2 The system’s home directory hierarchy.. 14
1.3 The dependencies between the top-level system packages.. 15
1.4 The dependencies between the operators layer packages.. 15
1.5 The dependencies between the core layer packages.. 16

2.1 The DTD of the elementCONDITIONas used in a KDD operator.. 37
2.2 The elementEXPRESSIONas used in a KDD operator.. 39

4.1 The core KDDML interpreter. .59
4.2 The KDDML interpreter .61

A.1 Package kddml.Core - Manager. 62
A.2 Package kddml.Core - KDD query. 63
A.3 Package kddml.Core - Types. .63
A.4 Package kddml.Core - Exceptions. 64
A.5 Package kddml.Core - Factory. .65
A.6 Package kddml.Core.DataSources - Manager. 66
A.7 Package kddml.Core.DataSources - Preprocessing. 67
A.8 Package kddml.Core.DataSources - Statistics. 68
A.9 Package kddml.Core.DataSources - Factory. 69
A.10 Package kddml.Core.DataMining - Model manager. 70
A.11 Package kddml.Core.DataMining - Data dictionary. 71
A.12 Package kddml.Core.DataMining - Mining schema. 71
A.13 Package kddml.Core.DataMining - Matrixes. 72
A.14 Package kddml.Core.DataMining - Model factory. 73
A.15 Package kddml.Core.DataMining.AssociationRules - Manager. 74
A.16 Package kddml.Core.DataMining.AssociationRules - Items. 75

4

LIST OF FIGURES 5

A.17 Package kddml.Core.DataMining.AssociationRules - Itemsets. 75
A.18 Package kddml.Core.DataMining.AssociationRules - Association Rules. 76
A.19 Package kddml.Core.DataMining.AssociationRules - Transactions. 76
A.20 Package kddml.Core.DataMining.AssociationRules - Factory. 77
A.21 Package kddml.Core.DataMining.SequentialPatterns - Manager. 78
A.22 Package kddml.Core.DataMining.SequentialPatterns - Sequence element. 79
A.23 Package kddml.Core.DataMining.SequentialPatterns - Sequence. 80
A.24 Package kddml.Core.DataMining.SequentialPatterns - Sequence rule. 81
A.25 Package kddml.Core.DataMining.SequentialPatterns - Delimiter. 82
A.26 Package kddml.Core.DataMining.SequentialPatterns - Data sequence. 82
A.27 Package kddml.Core.DataMining.SequentialPatterns - Factory. 83
A.28 Package kddml.Core.DataMining.ClassificationTrees - Manager. 84
A.29 Package kddml.Core.DataMining.ClassificationTrees - Nodes. 85
A.30 Package kddml.Core.DataMining.ClassificationTrees - Predicates. 86
A.31 Package kddml.Core.DataMining.ClassificationTrees - ScoreDistribution. 87
A.32 Package kddml.Core.DataMining.ClassificationTrees - Factory. 88
A.33 Package kddml.Core.DataMining.Clustering - Manager. 89
A.34 Package kddml.Core.DataMining.Clustering - Cluster description. 90
A.35 Package kddml.Core.DataMining.Clustering - Comparison measure. 91
A.36 Package kddml.Core.DataMining.Clustering - Attribute comparison measure. . . 92
A.37 Package kddml.Core.DataMining.Clustering - Clusters. 93
A.38 Package kddml.Core.DataMining.Clustering - Cluster statistics. 94
A.39 Package kddml.Core.DataMining.Clustering - Factory. 95
A.40 Package kddml.Core.DataMining.Taxonomy - Manager. 96
A.41 Package kddml.Core.DataMining.Taxonomy - Factory. 97
A.42 Package kddml.Core.QueryElement - Query element manager. 98
A.43 Package kddml.Core.QueryElement - Algorithm specification. 98
A.44 Package kddml.Core.QueryElement - XML element. 98
A.45 Package kddml.Core.QueryElement.Condition - Manager. 99
A.46 Package kddml.Core.QueryElement.Condition - Boolean condition. 99
A.47 Package kddml.Core.QueryElement.Condition - Compound condition. 99
A.48 Package kddml.Core.QueryElement.Condition - Base condition.100
A.49 Package kddml.Core.QueryElement.Condition - Factory.101
A.50 Package kddml.Core.QueryElement.Expression - Manager.102
A.51 Package kddml.Core.QueryElement.Expression - Factory.102
A.52 Package kddml.Core.Scalar - Scalar manager.103
A.53 Package kddml.Core.Scalar - Scalar types. .103
A.54 Package kddml.Core.Scalar - String type. .104
A.55 Package kddml.Core.Scalar - Enumeration type.104
A.56 Package kddml.Core.Scalar - File type. .104
A.57 Package kddml.Core.Scalar - List type. .105
A.58 Package kddml.Core.Scalar - Range type. .106

B.1 Package kddml.Operators - Operator settings and operator resolver. 107

LIST OF FIGURES 6

B.2 Package kddml.Operators - Algorithm settings task and algorithm resolver task. . 108
B.3 Package kddml.Operators - Operator and algorithm factory.109
B.4 Package kddml.Operators - Exceptions. .109
B.5 Package kddml.Operators.IO - Settings. .110
B.6 Package kddml.Operators.IO - Resolver. .111
B.7 Package kddml.Operators.Preprocessing - Settings.112
B.8 Package kddml.Operators.Preprocessing - Resolver.113
B.9 Package kddml.Operators.DataMining - Settings.114
B.10 Package kddml.Operators.DataMining - Resolver.115
B.11 Package kddml.Operators.Postprocessing - Settings.116
B.12 Package kddml.Operators.Postprocessing - Resolver.116
B.13 Package kddml.Operators.Unclassified - Settings.117
B.14 Package kddml.Operators.Unclassified - Resolver.117

C.1 Package kddml.Interpreter - Exceptions. .118
C.2 Package kddml.Interpreter - I/O. .119
C.3 Package kddml.Interpreter - Checker. .120
C.4 Package kddml.Interpreter - Executor. .121

CHAPTER 1

KDDML system overview

In this section the general architecture of the KDDML system is presented. It consists of three
layers for data/model access and representation, operators implementation and query interpreta-
tion. Modularity and extensibility are basic requirements in the design of the system architecture.
The KDDML system includes also a simple GUI for user friendly input of queries and for browsing
extracted knowledge. However, strictly speaking, the GUI is not part of the core of the system. In
fact, the general idea is that the KDDML queries can be generated by higher layers of abstractions
or by other programs, such as a vertical applications that need performing some KDD steps. In
other terms, programs can link the KDDML interpreter as an external library/driver, invoking the
interpreter during their executions. This document did not treat of the GUI level.

1.1 System architecture

The overall system architecture is depicted in figure1.1.
KDDML is implemented in Java, in order to be portable, and consists of more than 500 classes.

The overall architecture is structured in layers: each layer implements a specific functionality and
supplies an interface to the layer above. In the following, we give an overview of the design of
each layer, commenting on how they address the required objectives.

1.1.1 Core layer

The bottom layer manages the read/write access to data and models repositories and the read
access to data and models from external sources providing programmatic functionality to the higher
layers.

A relational table is represented as a proprietary XML file, containing the schemata and the
reference to the physical rows, which are stored in a Comma Separated Value (CSV) format. In
a CSV file, each record takes one line, and each field is separated by a comma. By convention,

7

CHAPTER 1. KDDML SYSTEM OVERVIEW 8

Figure 1.1: KDDML system architecture.

CHAPTER 1. KDDML SYSTEM OVERVIEW 9

missing or null values are represented with the symbol “?”. A preprocessing table (i.e. a table
used in the preprocessing step of the KDD process) is similar to a relational table, but in addiction
admits a reference to the preprocessing information, which are stored in CSV format too.

A mining model is represented as an extension of the PMML (Predictive Model Markup Lan-
guage)1.

Data and models manager

On the one side, the repository layer provides to higher levels a data/model access interface to
manage tables and mining models.

Accessing a table yields a Java object satisfying an interfaceInternalTableManager ,
which abstracts sequential read/write access to (a portion of) the table rows, and provides metadata
(such as column types and preprocessing history) and statistics on table columns.

Accessing a model yields a Java object satisfying an interfaceAssociationModelMana-
ger , TreeModelManager , ClusteringModelManager , SequenceModelManager or
HierarchyModelManager . Such interfaces provide programmatic read/write access to the
model contents, e.g.AssociationModelManager includes methods for adding and removing
rules and frequent itemsets. In addition, all the interfaces above extends the interfaceKDDML-
ModelManager , which provides model metadata (PMML data dictionary and mining schema)
read/write access.

Only manager interfaces methods are invoked by the classes belonging to upper level in order
to implement the language core operators.

Data and models factory

On the other side, the repository layer includes wrapper modules for accessing and importing
tables and models from external sources and to store, retrieve and delete objects in the reposi-
tories. Wrappers take care of translating the format of the data into the internal representation
(InternalTable or KDDMLModel). Automatic conversions are performed by the system on
data and metadata. Additional conversions can be forced by the preprocessing operators of the
KDDML language.

As far as data is concerned, there are wrappers around ARFF text files, serialized Weka tables
and RDBMS tables (accessed via JDBC). Concerning models, there is a wrapper importing from
PMML files2 and it is currently being defined a wrapper around serialized JDM (Java Data Mining)
objects3.

Wrappers are organized in factory classes, which provide objects for build data and models. All
factory classes extends the main classKDDMLObjectFactory . The “factory” approach allows
for separating the construction of data/model objects from the data/model object management:
adding a new data or model wrapper will not demand in future any change to the manager section.

1In actual version, KDDML uses the PMML 2.0 definition.
2Since the internal representation is an extension of PMML, this amounts to add default values for tags beyond the

standard.
3At the present, the system only incorporates some interfaces and empty classes for establishing a connection

toward a JDM engine. This interfaces will be implemented in future releases of KDDML.

CHAPTER 1. KDDML SYSTEM OVERVIEW 10

1.1.2 Operators and algorithms layer

The upper layer is composed of the implementations of language operators and it uses the manager
section of the core layer in order to define the kernel of each operator.

Recall below the XML syntax of a generic operator:

<OPERATOR_NAME xml_dest="results.xml" att1="v1" ... attM="vM">
<ARG1_NAME> </ARG1_NAME>
...
<ARGn_NAME> </ARGn_NAME>

</OPERATOR_NAME>

XML tags correspond to operations to data and/or models, XML sub-elements define argu-
ments passed to the operators and finally, XML attributes such as att1, ..., attM correspond to
parameters of those operations. Also algorithm specifications admit parameters, as reported be-
low:

<ALGORITHM algorithm_name="name">
<PARAM name="param_name_1", value="param_value_1"/>
...
<PARAM name="param_name_n", value="param_value_n"/>

</ALGORITHM>

This level is structured into two horizontal and autonomous sub-layers, called respectively the
operators settings sub-layerand theoperators resolver sub-layer.

The first one incorporates the definition of the parameters as used by an operator as well as
by an algorithm. As instance, it contains the definition of the minimum support for a generic
rules extraction algorithm. This sub-layer performs a correctness control about the types and the
usage of input attributes values related to the operator/algorithm. As instances, it checks that the
minimum support related to the Apriori algorithm is a real value between 0 and 1.

The operator resolver sub-layer contains the core implementation of the operator/algorithm.
We distinguish several different implementations patterns about the operators, according to the
KDD step supported and/or to their signature. As instance, mining operators have a typical behav-
ior: they scan the passed data, transform it into the required input, call the appropriate algorithm
(typically an external library) and, finally, transform its output into the appropriateKDDMLModel
object. A set of interfaces and abstract classes are used in order to distinguish the different imple-
mentation patterns.

OPERATORNAMEis implemented by means two Java classes placed in the package according
to the KDD step supported. The first one incorporates the XML attributes related to the operator
and their checking. The second one contains the physical implementation of the operator. Simi-
lar, each algorithm (both preprocessing and mining) implements two interfaces that encapsulate,
respectively, the algorithm parameters checking and the algorithm core implementation. As for
operators, interfaces are organized in a Java hierarchy structure, according to the type of algorithm
(e.g. sampling, normalization, clustering) involved.

The separation of the resolver-layer from the settings-layer allow us to separate the definition
of the parameters of the operator/algorithm from the real physical implementation.

CHAPTER 1. KDDML SYSTEM OVERVIEW 11

1.1.3 Interpreter layer

The interpreter layers accepts a validated KDDML query (either in an XML format or as DOM
tree), evaluates it, saves the final result into the repository and returns it as KDDMLObject. The
result can be further processed by standard XML management tools and libraries.

The evaluation of a query fragment as reported above consist of:

1. recursive evaluation of fragments from<ARG1NAME> ... </ARG1 NAME>to <ARGn-
NAME> </ARGn NAME>; in case the ith argument of<OPERATORNAME>is

expected of typexml , the element<ARGi NAME> ... </ARGi NAME>is itself the
result of its evaluation;

2. evaluation of attributesatt1 ... attM returning a set of scalar values;

3. a call to an operatorfOPERATOR NAME, accepting results from (1) and (2) and yielding the final
result of the fragment.

Moreover, a copy of the final result (which may be an intermediate result of a possibly larger
query) is stored in the (model or data) repository if the attributexml dest is specified.

1.1.4 User interface layer

The KDDML system includes a GUI for user friendly input of queries and for browsing of ex-
tracted knowledge. The GUI allows for:

• opening and modifying an existing query;

• creating a new query through a syntax driven editor, which builds valid queries against the
KDDML DTD;

• executing a validated query;

• transforming query results into HTML browsable format via XSL style sheets.

Strictly speaking, the GUI is not part of the core of the system. In fact, KDDML queries can
be generated by other programs, such as a vertical applications that need performing some KDD
steps. In other words, programs can link the KDDML interpreter as an external library/driver,
invoking the interpreter during their executions. This makes running KDDML queries as simple
as running SQL queries over RDBMS. The result of the invoked interpreter is returned as a DOM
object or an XML document, which can be further processed with standard tools.

1.2 Installing and configuring KDDML

1.2.1 Downloading

The latest version of KDDML is available on the web address:

http://kdd.di.unipi.it/kddml .

CHAPTER 1. KDDML SYSTEM OVERVIEW 12

1.2.2 Installing the Java support

KDDML is written in Java, except for some DM algorithm, which makes it run on almost every
platform. However C, C++ libraries are already incorporates inside the KDDML package distrib-
ution. Therefore it requires a Java Runtime Environment (JRE) or a Java Development Kit (JDK)
version 1.5 or above to be installed properly. Both are available athttp://java.sun.com/ .
KDDML can work on windows XP and linux platforms.

1.2.3 Installing and running KDDML

In order to install KDDML, choose an installation directory and uncompress the downloaded
archive.

Under windows you can unzip the package using WinZIP or similar and then start the GUI
application with therun gui.bat file stored in the root directory.

Under linux you must unzip the package using the command:

> unzip kddml XXX.zip

After this, to run the application you must give the right permission, for example, by typing:

> cd kddml
> chmod -R 777 * .

Finally, you can launch the KDDML low level gui typing

> ./run gui .

1.2.4 Integrating KDDML into your application

KDDML can easily be invoked from other Java applications. The class to use iskddml.Inter-
preter.QueryExecutor , and theMain method takes the name of the query as unique input
parameter4.

1.2.5 Physical organization and external libraries

The installation of KDDML will create the home directory which contains the files and directories
as listed in figure1.2. More in details, sub-directories include:

• [KDDML HOME]/bin : contains the Java executable bytecode;

• [KDDML HOME]/examples : contains a set of testing queries;

• [KDDML HOME]/project : contains the Java source code;

4See therun interpreter.bat andrun interpreter executable files placed in the root installation di-
rectory.

CHAPTER 1. KDDML SYSTEM OVERVIEW 13

• [KDDML HOME]/repository : includes the tables/models system repositories;

• [KDDML HOME]/resources/DTD : contains the DTD needed to parse all KDDML ob-
jects;

• [KDDML HOME]/resources/lib : contains the external libraries and the data mining
executable algorithms;

• [KDDML HOME]/resources/xsl : contains the stylesheet needed to translate XML into
HTML documents, for further visualization;

As reported in table1.1 KDDML uses external libraries in order to implement specific func-
tionality.

External library Current version Usage description
WEKA 3.4 weka.core package for instances representation
JASPER hibernate XML into HTML translation

JEP 2.3.0 parsing and evaluation of mathematical expressions
qizxopen 0.4 XQuery engine

Table 1.1: The system’s external libraries

1.3 Packages design overview

This section is provided to show graphical relationships between the various high level compo-
nents of the architecture. The figure1.3 depicts the packages related to the core layer, operators
layer and interpreter layers, and above all, it shows the dependencies between them. Notice that
the interpreter package uses functionality of the core and operators packages, but not viceversa.
In particular, there are not dependencies from the core package to the operator and interpreter
packages and from the operator package to the interpreter package. This feature satisfies the ar-
chitecture level design. Operators and core sub-packages are expanded in the figure1.4 and 1.5
respectively.

Below, a brief description of the top-level packages is reported:

• kddml.Utils : contains utility classes used inside the other packages;

• kddml.Core : defines the kernel of the KDDML system; it contains the definition of KD-
DML objects, i.e. relational tables, preprocessing tables, mining models, KDD queries,
scalar values;

• kddml.Core.DataSources : manages the data sources (i.e. relational tables and pre-
processing tables);

• kddml.Core.DataMining : manages mining models;

CHAPTER 1. KDDML SYSTEM OVERVIEW 14

Figure 1.2: The system’s home directory hierarchy.

• kddml.Core.DataMining.AssociationRules : manages association rules;

• kddml.Core.DataMining.ClassificationTrees : manages classification trees;

• kddml.Core.DataMining.Clustering : manages clusters;

• kddml.Core.DataMining.SequentialPatterns : manages sequential patterns;

• kddml.Core.DataMining.Taxonomy : manages hierarchies;

• kddml.Core.QueryElement : defines special elements as used inside a KDD query,
such as algorithm specifications, conditions or expressions.

• kddml.Core.Scalar : defines a scalar value, such as a string or a number;

• kddml.Operators : contains the operators and algorithms of the KDDML language;

• kddml.Operators.DataMining : contains mining operators for extract models;

CHAPTER 1. KDDML SYSTEM OVERVIEW 15

Figure 1.3: The dependencies between the top-level system packages.

Figure 1.4: The dependencies between the operators layer packages.

• kddml.Operators.DataMining.AssociationAlgorithms : contains algorithms
to extract association rules;

• kddml.Operators.DataMining.ClassificationAlgorithms : contains algo-

CHAPTER 1. KDDML SYSTEM OVERVIEW 16

Figure 1.5: The dependencies between the core layer packages.

rithms to extract classification trees;

• kddml.Operators.DataMining.ClusteringAlgorithms : contains algorithms
to extract clusters;

• kddml.Operators.DataMining.SequenceAlgorithms : contains algorithms to
extract sequential patterns;

• kddml.Operators.IO : defines operators used in order to import/export mining model
or data sources from the system;

• kddml.Operators.IO.ExternalResourceReader : contains operators that allow
to read an external model (e.g. a PMML model) or an external data source (e.g. an ARFF
file);

• kddml.Operators.IO.ExternalResourceWriter : contains operators that allow
to export a proprietary model or a data source into an external representation (e.g. a PMML
model or an ARFF file);

• kddml.Operators.IO.RepositoryResourceReader : contains operators that loads
a model/table from the system repository;

• kddml.Operators.Postprocessing : defines operators used in the postprocessing
step of the KDD process;

• kddml.Operators.Preprocessing : defines operators used in the preprocessing step
of the KDD process;

• kddml.Operators.Preprocessing.DiscretizationAlgorithms : contains
algorithms able to discretize the attribute of an input preprocessing table;

CHAPTER 1. KDDML SYSTEM OVERVIEW 17

• kddml.Operators.Preprocessing.NormalizationAlgorithms : contains al-
gorithms able to normalize a set attributes of an input preprocessing table;

• kddml.Operators.Preprocessing.RewritingAlgorithms : contains algorithms
able to rewrite the values of an input preprocessing attribute;

• kddml.Operators.Preprocessing.SamplingAlgorithms : contains algorithms
used for sampling of an input preprocessing table;

• kddml.Operators.Unclassified : defines unclassified operators (i.e operators that
do not belong to a specific KDD step);

• kddml.Interpreter : defines the interpreter layer;

• kddml.KDDMLGui : defines the low level GUI.

1.4 Organization of this guide

This document focuses on the architecture of the KDDML system without details about each class
and interfaces compounding the system.

In section 2 we present the KDDML object describing the core level KDDML packages and
class diagrams. This allow us to illustrate the relationship between the various interfaces and
classes. We always distinguish from manager and factory.

In section 3 we present how the KDDML operators and algorithms layer is structured and how
the operator layer can be extended in order to add further operators and algorithms.

In section4 we address the question on the KDDML query executor, showing and explaining the
Java fragment related to the core KDDML interpreter.

finally, appendix A, B and C provide UML diagrams about the core layer, the operators layer
and the interpreter layer, respectively.

CHAPTER 2

Core layer

This section describes the core level using UML class diagrams. For details on the inter-
faces and classes depicted below, refer to the accompanying Java documentation produced using
Javadoc. In order to make this chapter readable, all UML core figures are placed in appendixA.

2.1 Package kddml.Core

Thekddml.Core package manages the read/write access to data/models repositories and exter-
nal resources. This feature is provided by thefactory sub-layer. On the other side, the classes in
the package manages a read access to data/models content, giving a programmatic functionality to
the higher layers. This feature is provided by themanager sub-layer.

Core manager (see figureA.1)

KDDMLObject is the abstract root superclass of all KDDML objects. It contains the following
public abstract methods:

• public abstract KDDMLObjectType getType();
returns the type of this object. The classKDDMLObjectType contains an enumeration of
all legal types and it strictly depends on the KDDML langauge specification.

• public abstract void saveToRepository() throws KDDMLCoreException;
Saves the object into the system repository. The destination path is gathered by means a
protected variable belonging to the class that is defined in the constructor. The method
throws an exception if an I/O error occurs.

• public abstract boolean isEmpty();
tests if the object is empty. This depends on the type of the object. As instance, if a relational
table (resp. a RdA model) do not contain instances (resp. rules) then the method returnstrue.

18

CHAPTER 2. CORE LAYER 19

As shown in the section4.1, the KDDML query executor uses this methods during the interpreter
cycle.

Directly sub-classes ofKDDMLObject include:

• kddml.Core.DataMining.MiningModel used to implement a mining model;

• kddml.Core.DataSources.InternalTable that manages tables;

• kddml.Core.KDDQuery used to represent a KDD query as XML document;

• kddml.Core.QueryElement.XMLSpecialElement , that is a special common su-
perclass containing XML elements as used inside a KDD query, such as conditions specifi-
cation, algorithm settings and expressions;

• kddml.Core.Scalar.KDDMLScalar used to represent both XML attributes for lan-
guage algorithms/operators specification and simple scalar values that can be returned by a
KDD operator.

KDD query (see figure A.2)

A KDDQuery contains a KDD query as XML document.

Core exceptions (see figureA.4)

The classKDDMLCoreException extends thejava.lang.Exception to indicate condi-
tions that a reasonable application might want to catch. It has sub-classes to provide more sophis-
ticated exception handling; i.e. a sub-classes for each sub-package defined in the core layer. This
class implements theKDDMLCoreErrorCodes interface for enable error codes to upper layers.

Core factory (see figure A.5)

The factory classes allow to build a new KDDML object. Since all manager classes have protected
constructors, the use of a factory class is required in order to create a new object. KDDML factory
includes a set of classes able to build a new mining model, such as a set of association rules
or a classification tree, a new data source or a condition/expression specification for a language
operator.

The common superclass of factory sub-layer isKDDMLObjectFactory , whose main public
method is reported below:

• public abstract KDDMLObject newInstance() throws KDDMLCoreException;
returns a new instance of a KDDML object. It uses the manager sub-layer proprietary con-
structors in order to create the right parts composing the returned object. It throws an excep-
tion if an error occurs. The type of the returned object depends on witch class the method is
implemented; Java class casting can be used in order to get the required type.

As shown in the section4.1, the KDDML query executor uses this method during the interpreter
cycle.

Concerning data and models, the factory sub-layer is divided into three main set of classes:

CHAPTER 2. CORE LAYER 20

1. the repository factoryis used in order to load a physical object from the system repository.
Main sub-classes areModelRepositoryFactory placed in the packagekddml.Co-
re.DataMining andInternalTableRepositoryFactory placed in the package
kddml.Core.DataSources . Both classes extend the classKDDMLObjectReposi-
toryFactory .

2. theexternal resource factoryis used to access an external physical resource, such as a PMML
model or an ARFF file stored outside the repository. Main sub-classes are theModel-
ExternalFactory placed in the packagekddml.Core.DataMining and theIn-
ternalTableExternalFactory placed in the packagekddml.Core.DataSour-
ces ; KDDMLObjectResourceFactory is the common superclass of both classes;

3. finally, the proprietary factory is used to build the table/model directly from the pack-
age classes themselves or from external Java libraries, but not using physical resources.
Main classes are theModelProprietaryFactory placed in the packagekddml.Co-
re.DataMining and InternalTableProprietaryFactory placed in the pack-
age kddml.Core.DataSources ; KDDMLObjectResourceFactory is the com-
mon superclass of both classes.

2.2 Package kddml.Core.DataSources

TheDataSources package contains classes and interfaces to create and manage relational and
preprocessing tables. The available classes contain methods able to:

• read the data schemata of a table providing statistical information about attributes and in-
stances;

• translate a table from an external format into the internal representation (as XML and CSV
files)

• load in memory a sequential subset of the instances in order to read its content;

• store the table into the repository as XML and CSV format.

Relational tables manager (see figureA.6)

The classInternalTable is used to represent standard relational tables in which each col-
umn of the data corresponds to a logical attribute and each row corresponds to an individual case
(transaction). It is composed by:

• the data schemata, that includes types of attributes and some simple statistics on instances
values (classDataStatistics);

• the pointer to the physical data that is stored as a text file in a CSV format.

CHAPTER 2. CORE LAYER 21

The classTransactionalInternalTable is used to represent data in a transactional
format in which the table has an attributetransaction identifying the transaction and an at-
tribute event containing the single item. Transactions are ordered with respect to the attribute
transaction .

Finally, the classTimestampedInternalTable is similar to a transactional table, but
with an extra attributetimestamp . This attribute defines a partial time order between transac-
tions and items. Typically, this format is used for sequential patterns analysis.

Preprocessing tables manager (see figureA.7)

A PPInternalTable is a table used in the preprocessing task of the KDD process. It is
composed by:

• the data schema, that includes attributes types and some simple statistics on attribute values
(classDataStatistics);

• the pointer to the physical data that is stored as a text file in a CSV format;

• the pointer to the preprocessing data, including preprocessing information such as marks
associated to a physical instance value belonging to the data section. Also the preprocessing
section is in a CSV format, with the number of columns and rows coinciding with the number
of attributes and rows of the data section;

• the statistics related to the preprocessing section (classDataStatistics);

• the preprocessing history (classHistory) used to list the set of preprocessing operations
performed on the table.

Data statistics (see figureA.8)

DataStatistics provides a basic framework for representing univariate statistics. The statis-
tics for a model is made of the collection of the statistics for a single field.

A single AttributeStatistic has a type and, optionally, a taxonomy related to the
field. The statistic information depend on the type of the attribute. The taxonomy is not re-
quired and, it can be related to non-numeric attributes only. Attributes can be discrete (class
NominalStatistic), numerical (classNumericalStatistic) or string (classString-
Statistic). TheAttributeType class contains an enumeration of all legal attribute types.

This classes cannot be instanced outside of the package. They are automatically created by
using factory constructors.

Relational and preprocessing table factory (see figureA.9)

The factory classes belonging to this package allow to build a new table; in other terms, for each
factory class that extendsKDDMLObjectFactory , the main methodnewInstance()returns a
new InternalTable or PPInternalTable or TransactionalInternalTable or a
TimestampInternalTable instance as output.

CHAPTER 2. CORE LAYER 22

Concerning relational tables (bothInternalTable , TransactionalInternalTable
andTimestampInternalTable), the type of returned object depends on the attributes be-
longing to the data schemata1. In this case, the table format is automatically recognized by the
methodnewInstance()when the schemata is parsed. A relational table can be built by using one of
the following factory classes:

• InternalTableRepositoryFactory : it creates a new relational table porting it di-
rectly from the system data repository;

• WekaFactory : it creates a new relational table given an instance of theweka.core.In-
stances class;

• ARFFFactory : it creates a new relational table from a given ARFF file;

• DataBaseFactory : it create a table from gathered from a relational DBMS; the connec-
tion uses the JDBC bridge.

A preprocessing table (i.e.PPInternalTable) can be built by using one of the following
factory classes:

• PPInternalTableRepositoryFactory : it creates a new preprocessing table port-
ing it directly form the system data preprocessing repository.

• PPWekaFactory : it creates a newPPInternalTable given two instances of the class
weka.core.Instances . The first one contains the real physical instances; the second
one contains the preprocessing information related to the physical instances.

2.3 Package kddml.Core.DataMining

Model manager (see figureA.10)

The abstract classMiningModel is used to represent a generic PMML document. A mining
model is composed by:

• an header containing information on application name and application version;

• a data dictionary, containing definitions for fields as used in mining models.

• a mining schema, containing the field of data dictionary that a user has to provide in order to
apply the model.

• the content of the model, varying from a model to another in respect of the type of model
extracted (e.g. association rules, clusters, etc.).

1Remember that aTransactionalTable has an attributetransaction identifying the transaction and an
attributeevent containing the single item. ATimestampInternalTable is similar to a transactional table, but
with an extra attributetimestamp .

CHAPTER 2. CORE LAYER 23

Data Dictionary (see figure A.11)

TheDataDictionary contains definitions for fields as used in mining models. It specifies the
types and value ranges. These definitions are assumed to be independent of specific data sets as
used for training or scoring a specific model. It is composed by a list ofDataField each of them
containing the description of the data field.

TheDataField is composed by the name, the displayed name (that is a string which may be
used by applications to refer to that field), a field type and a vector of enumerated values containing
its values. The last one is used for categorical attributes only. The type can becategorical, for
discrete attributes,ordinal for string attributes orcontinuousfor numeric attributes.

Mining Schema (see figureA.12)

TheMiningSchema lists the fields used in the model. These fields are a subset of the fields in the
data dictionary. The mining schema contains information that is specific to a certain model, while
the data dictionary contains data definitions that do not vary with the model. AMiningSchema
is composed by a list ofMiningField each of them containing the description of the mining
field.

The MiningField is composed by the name and the usage type. The last one can beac-
tive, an input of the model,predicted, an output of the model, orsupplementary, holding only
descriptive information and ignored by the model.

Matrixes (see figure A.13)

In actual version, KDDML implements four types of matrixes:

1. a CategoryMatrix is the common superclass that represents a matrix whose axes are
categories;

2. aSymmetricMatrix is a category matrix in which the value at (j, k) position is the same
as the value at (k, j) position;

3. a DiagonalMatrix is a symmetric matrix in witch the non-diagonal values have zero
value;

4. aConfusionMatrix is a matrix that specifies the statistics of the correct predictions and
mispredictions. The rows represent the predicted classes whereas the columns indicate the
correct class values. The value at entry (j, k) is the number of predictions for class j when
k is the correct prediction. On the rows we assume the actual values. On the columns we
assume the predicted values. The classConfusionMatrix is used in the classification
model and it is placed in thekddml.Core.DataMining.ClassificationTrees
package.

Model Factory (see figure A.14)

TheModelRepositoryFactory is the common abstract superclass for the repository factory
classes managing models.

CHAPTER 2. CORE LAYER 24

The ModelProprietaryFactory is the common abstract superclass for the proprietary
factory classes managing models.

Finally, theModelExternalFactory is the common abstract superclass for the external
resource factory classes managing models. It defines a set of proprietary abstract methods to be
implemented under the subclasses in order to add a new model external resource (such as a text file
containing the model or another physical representation) into the system (see section2.6.1). Both
ModelExternalFactory andModelProprietaryFactory extend the most generic ab-
stract classModelResourceFactory .

2.3.1 Package kddml.Core.DataMining.AssociationRules

TheAssociationRules package contains classes and interfaces to generate and manage as-
sociation rules and frequent itemsets. The available classes contain methods able to:

• construct a predefined set of association rules or import them from an external resource (e.g.
a PMML model);

• add or remove association rules or frequent itemsets;

• read the content of the model;

• translate the set of association rules into a table representation;

• store the model into the repository as PMML or HTML document.

Association rules manager (see figureA.15)

KDDML association model deals with two types of association rules (itemsets):

• inter-attribute association rulesthan have the form“outlook=sunny AND windy=false→
play=yes“. This association rules are obtained from inter-attribute transaction.

• intra-attribute association rulessuch as“spaghetti AND tomato→ parmesan“; this associ-
ation rules are generated by using boolean transactions.

An AssociationModel consists of a set of attributes (such as the minimum support and
the minimum confidence) and three major parts:

1. a set of items;

2. a set of frequent itemsets;

3. a set of association rules.

An association model can contain any number (eventually empty) of items, itemsets and associa-
tion rules witch are ordered following a precise criterium. They are stored into ajava.Utils.-
TreeSet Java structure containing a comparator used to compare the objects (seeCompare-
Items, CompareItemsets, CompareAssociationRules classes).

An Itemset consists of a set of items with a related support.

CHAPTER 2. CORE LAYER 25

An AssociationRule defines a relationship between two itemsets where the antecedent
implies the consequent. An association rule,A → C, consists of the support, the confidence, the
antecedentItemset (A) and the consequentItemset (C).

Data transactions (see figureA.19)

The classTransaction represents a data transaction that is composed by one or more items.
Item can beintra-attribute (or boolean), i.e. with no value related, orinter-attribute, and it
consists of three major parts:

1. the item name;

2. the item value for inter-attribute items only;

3. a mapped value to which the original item name is mapped; this field is not required.

Each transaction only contains boolean items or inter-attribute items. In the first one case, the trans-
action is saidboolean; otherwise, the transaction is saidinter-attribute. No hybrid transactions
are allowed inside a model. As an instance, the inter-attribute transactionT1={carType=racing,
homeInsurance=low, married=false} is composed by three items with namescarType, homeInsur-
anceandmarried respectively and valuesracing, lowandfalserespectively. On the contrary, the
boolean transactionT2={milk, bread} stores only two boolean items with namesbreadandmilk
and without values associated.

The classItem admits additional features, such as the price or the quantity of a purchased
product. Each feature is stored in a distinct Java object namedItemFeature .

Finally, theTimestampedTransaction class is used in the sequential patterns analysis in
order to add a timestamp to the related transaction (see sect.2.3.2).

Association rules factory (see figureA.20)

The factory classes allow to build a new association model; in other terms, for each factory class
belonging to the package, the methodnewInstance()returns a newAssociationModel as out-
put.

An association model can be built by using one of the following factory classes:

• EmptyAssociationFactory : it generates an empty association model, i.e. without
itemsets or rules inside; further frequent itemsets or rules can be added later, by using the
related methods and constructors defined into the manager sub-layer.

• ItemsetAssociationFactory : it constructs a new association model from a given
set ofItemset classes. A minimum confidence must be also provided in the constructor.
The main methodnewInstance()first finds the list of items from the given itemsets, and then
it computes the set of association rules that satisfy the specified minimum confidence. A
public method allows to fix the maximum number of association rules to be generate.

• RulesAssociationFactory : it constructs a new association model given a set of
AssociationRule classes. A minimum support and a minimum confidence must be

CHAPTER 2. CORE LAYER 26

also provided in the constructor. The main methodnewInstance()then computes the set of
frequent itemsets from the specified association rules by using the given minimum support.
A protected method allows to fix the maximum number of itemsets to be generate.

• AssociationRepositoryFactory : it generates an association model directly from
the system model repository. In other terms, the main methodnewInstance()finds the phys-
ical XML model in the directory repository and then, it parses and transforms the loaded
model into an abstract object representation.

• PMML20AssociationFactory : it constructs a new association model from an external
PMML model. This class is PMML 2.0 compatible.

2.3.2 Package kddml.Core.DataMining.SequentialPatterns

TheSequentialPatterns package contains classes and interfaces to generate and manage
sequential patterns. The available classes contain methods able to:

• construct a predefined set of sequential patterns or import them from an external resource
(e.g. a PMML model);

• add or remove sequential patterns or rule sequences;

• read the content of the model;

• translate the set of sequential patterns into a table representation;

• store the model into the repository as PMML or HTML document.

Sequential patterns manager (see figureA.21)

A SequenceModel consists of a set of attributes (such as the minimum support, the minimum
confidence, the number of transaction in the data, etc.) and four major parts:

1. a list of items;

2. a list of sequence elements (i.e. itemsets), composing the sequences;

3. a list of frequent sequences;

4. a list (eventually empty) of sequence rules.

Any object is ordered following a precise criterium and stored into ajava.Utils.TreeSet
Java structure, containing a comparator used to compare the objects (seeCompareSequence-
Elements, CompareSequence, CompareSequenceRules classes).

Items are defined as in thekddml.Core.DataMining.AssociationRules package.
Sequence elements, sequences and sequence rules are described below.

CHAPTER 2. CORE LAYER 27

Sequence element (see figureA.22)

In PMML, the elements that compound a sequence can be either itemsets or set predicates. In
current version, KDDML implements itemsets, but it do not support the set predicates. However,
the abstract classSequenceElement contains the encapsulation of a generic sequence element
and can include both itemsets and set predicates as subclasses.

The subclassItemSetElement implements an itemset as used inside a sequence. It is com-
posed by a list of items as inkddml.Core.DataMining.AssociationRules.Item and
a support related to the sequence.

Sequence (see figureA.23)

A Sequence manages sequential patterns, i.e. an ordered collection of itemsets. A delimiter
is used as separator between two itemsets inside the sequence (see later). Thus, aSequence
consists of:

• the support, i.e. the ratio of the number of objects in the data for which this sequence holds
true, to the total number of objects in the data. This attribute is optional.

• the number of occurrences, i.e. the number of objects in the data for which this sequence
holds true. This attribute is optional.

• a list ofSequenceElement , each of them separated by one that follows with aDelimiter ,
that specify the kind of relation between elements.

A sequence must contain at least oneSequenceElement .

Sequence rule (see figureA.24)

A SequenceRule consists of an antecedentSequence and a consequentSequence , sepa-
rated by aDelimiter .

The Time between the antecedent sequence and the consequent sequence gives statistics on
the elapsed time between the antecedent and the consequence, while theTime between the an-
tecedent (resp. consequent) itemsets gives statistics on the total elapsed time from the first to the
last itemsets in the antecedent (resp. consequent) sequence rule. The elementsTime are optional
inside aSequenceRule : it is only statistics for information, not implying any constraints.

Delimiter (see figure A.25)

A Delimiter is the separation between two sets in a sequence, or between two sequences in a
sequence rule. It is composed by aDelimiterType and aGapType .

A DelimiterType states whether or not this set predicate occurred within the same event
or time period, as defined by a time window, (e.g. session) as the previous one. E.g., if items are
purchased during the same visit, delimiter would be“same time window”. If items are purchased
in separate visits, the value for delimiter would be“across time window”. In current version,
KDDML manages only“across time window”delimiter types.

CHAPTER 2. CORE LAYER 28

A GapType is the possible existence of set predicates between this and the previous set or
sequence. In PMML it can be“true” , “false” or “unknown”. In the first case, it represents an
open sequence, which allows for gaps between sequences (as does unknown). In a closed sequence
the gap is set to“false” , indicating that the two sequences being described are consecutive sets
in the data.“Unknown” expresses that may exists elements/sequences between two consecutive
sequences/rules. In current version, KDDML manages only“unknown” gap types.

Data sequence transaction (see figureA.26)

A DataSequence is a list of data transactions ordered by means a timestamp.
Each single transaction is represented by means an instance ofTimestampedTransaction

class. It extends the classTransaction placed in thekddml.Core.DataMining.Asso-
ciationRules package and offers a timestamp attribute in addiction.

Sequential patterns factory (see figureA.20)

The factory classes allow to build a new sequence model; in other terms, for each factory class
belonging to the package, the methodnewInstance()returns a newSequenceModel as output.

A sequence model can be built by using one of the following factory classes:

• EmptySequenceFactory : it generates an empty sequence model, i.e. without sequences
or sequence rules inside; further elements can be added later, by using the related methods
and constructors defined into the manager sub-layer.

• SequenceFactory : it constructs a new sequence model from a given set ofSequence
classes. A minimum support and a minimum confidence must be also provided in the con-
structor. The main methodnewInstance()do not compute sequence rules. A public method
allows to fix the maximum number of sequences to be generate; extra sequences are cut-off
from the model.

• RulesSequenceFactory : it constructs a new sequence model given a set ofSequence
classes and a set ofSequenceRule classes. A minimum support and a minimum confi-
dence must be also provided in the constructor. Two public methods allow to fix the maxi-
mum number of sequences and the maximum number of sequence rules to be generate; extra
sequences and sequence rules are cut-off from the model.

• SequenceRepositoryFactory : it generates a sequence model directly from the sys-
tem model repository. In other terms, the main methodnewInstance()finds the physical
XML model in the directory repository and then, it parses and transforms the loaded model
into an abstract object representation.

• PMML20SequenceFactory : it constructs a new sequence model from an external PMML
model. This class is PMML 2.0 compatible.

CHAPTER 2. CORE LAYER 29

2.3.3 Package kddml.Core.DataMining.ClassificationTrees

TheClassificationTrees package contains classes and interfaces to generate and manage
tree models. The available classes contain methods able to:

• construct a predefined classification tree or import it from an external resource (e.g. a PMML
model);

• read the content of the model;

• classify a set of given instances;

• store the model into the repository as PMML or HTML document.

The standard PMML model has been extended by KDDML in two cases.
In the first one, it has been used in order to add the notion of confusion matrix to a decision

tree model. A confusion matrix can be related both to the training set, used to build the model, and
to the test set, used to test the model. The definition is similar in both cases.

The second extension concerns meta-classifiers. We allow for classification models that exploit
predictions of two or more decision trees. In actual implementation, KDDML supports three voting
strategies:committe, and, or.

Tree model manager (see figureA.28)

The classTreeModel manages a classification tree. It consists of a reference to the node root.
Each nodes holds a logical predicate expression that defines the rule for choosing the node or any
of the branching nodes.

Optionally, a classification model can have two confusion matrixes related to the training and
test set respectively. This depends on the algorithm used to build the model. A confusion matrix is
a two-dimensional table that indicates the number of correct and incorrect predictions a tree model
made on specific data. It provides a measure of accuracy of the model. It has been described in
section 2.3.

Tree nodes (see figureA.29)

The main abstract classNode is an encapsulation for either defining a split or a leaf in a tree
model or a compound tree (using forand, or, committeeoperations).

A SimpleNode represent an internal or a leaf node in a simple classification tree. Every
SimpleNode contains a predicate that identifies a rule for choosing itself or any of its siblings. A
predicate may be an expression composed of other nested predicates. In addition, aSimpleNode
may contain a score distribution which characterizes the distribution of data at that node with
respect to a reference dataset.

Summarizing, aSimpleNode consists of:

• the list of children if the node is an internal node. Children areSimpleNode themselves;

• the reference to the father node if the node is not the root. The father is aSimpleNode
itself;

CHAPTER 2. CORE LAYER 30

• a not null predicate;

• the score distribution of data;

• the category for the target attribute assigned by the algorithm and, optionally, the number of
cases assigned to this tree node.

A CompoundTree represents a combination of classification trees. It is composed by a list
of one or moreNode (this means that compound operators can be nested). Combination can be
boolean orcommittee.

A CompoundBooleanTree implements a combination between two or more classification
trees with a boolean operatorandor or. They can be applied only on decision trees, in witch the
target attribute is binary and contains a positive class (e.g.true, yes) and a negative class (e.g.
false, no).

A CompoundBaggingsTree implements a combination between two or more classification
trees with a voting operator.

Predicates (see figureA.30)

A Predicate serves as the common representation for various types of predicates. A predicate
can be a simple comparison predicate (e.g.“ age < 20”) or a compound predicate (e.g.“age < 20
andsalary < 5000”).

The classSimplePredicate represents a simple predicate that consists of defining a rule
in the form of a simple boolean expression. The rule consists of a field, a binary comparison op-
erator, and a value. ASimplePredicate can be either aSimpleBooleanPredicate , a
SimpleComparisonPredicate or aSimpleSetPredicate , depending by the compari-
son operator.

A SimpleBooleanPredicate represents a simple boolean value, such astrueor false.
A SimpleComparisonPredicate consists of a single comparison between a logical at-

tribute value and a constant. The constant can be either numeric or categorical. ASimpleCom-
parisonPredicate consists of:

• a comparison operator (equal, not equal, less than, less or equal, greater than, greater or
equal);

• the name entry of one of the mining field elements at the mining schema;

• the information to evaluate or compare against.

A SimpleSetPredicate checks whether a field value is element of a set. The attribute
associated with this object can take one of following boolean operators:

• “Is in” which becomestrue if the value of the attribute is one of the specified set (e.g.,“color
is in {red, green}”);

• ’Is not in’ which becomestrue if the value of the attribute is not one of the specified set (e.g.,
“color is not in {white, black}”).

CHAPTER 2. CORE LAYER 31

A CompoundBooleanPredicate is a set of predicates connected by a logical or relational
operators. For example, “age< 30 and salary> 50K” is a compound predicate which is connected
by a booleanandoperator. Allowed boolean operators areand, or, xor andsurrogate.

Score Distribution (see figure A.31)

TheScoreDistribution implements a method to list predicted values in a classification trees
structure. If the node holds an enumeration, each entry of the enumeration is stored in an hashtable
structure where:

• the key is the category of the target attribute;

• the value is the size (i.e., the number of records) associated with the category.

When aSimpleNode is selected as the final node and if this node has no “score” attribute, then
the highest record count in theScoreDistribution determines which value is selected as
predicted class.

Tree model factory (see figureA.32)

The factory classes allow to build a new classification tree model; in other terms, for each factory
class belonging to the package, the methodnewInstance()returns a newTreeModel as output.

A classification tree can be built by using one of the following factory classes:

• ClassificationProprietaryFactory : it generates a classification model given a
Node as root of the tree and, optionally, the test and training confusion matrixes. The input
tree can be generated by using the methods and the constructors belonging to the manager
sub-layer.

• ClassificationRepositoryFactory : it generates a classification model directly
from the system model repository. In other terms, the main methodnewInstance()finds the
physical XML model in the directory repository and then, it parses and transforms the loaded
model into an abstract object representation.

• PMML20ClassificationFactory : it constructs a new tree model from an external
PMML model. This class is PMML 2.0 compatible.

2.3.4 Package kddml.Core.DataMining.Clustering

Clustering methods may be classified into three groups:distance-based, distribution-based(or
model-based), density-based methods.

Distance-basedclustering needs a distance or dissimilarity measurement based on which they
try to group those most similar objects into one cluster. K-Means is a distance-based partitioning
method.

Model-basedor distribution-basedclustering methods assume the data of each cluster con-
forms to a specific statistical distribution (e.g. the Gaussian distribution) and the whole dataset

CHAPTER 2. CORE LAYER 32

is a mixture of several distribution models. EM is an example of distribution-based partitioning
clustering that do not require the specification of distance measures.

Density-basedapproaches regard a cluster as a dense region of data objects.
In actual version, KDDML manages both center-based clustering and distribution-based clus-

tering. For each cluster, a center vector can be given. In center-based models a cluster is defined
by a vector of center coordinates. Some distance measure is used to determine the nearest center,
that is the nearest cluster for a given input record. For distribution-based models, the clusters are
defined by their statistics. Some similarity measure is used to determine the best matching cluster
for a given record. The center vectors then only approximate the clusters (i.e. the set of cases
belonging them).

The Clustering package contains classes and interfaces to generate and manage clusters.
The available classes contain methods able to:

• construct a predefined set of clusters or import them from an external resource (e.g. a PMML
model);

• read the content of the model;

• get the cluster containing a given input instance;

• store the model into the repository as PMML or HTML document.

Clustering model manager (see figureA.33)

A ClusteringModel basically consists of three parts:

1. a cluster description containing the fields as used in the center vectors for each cluster;

2. a comparison measure used to compare a record with a cluster seed that represents the clus-
ter;

3. a set (eventually empty) of clusters. Each cluster is defined by its center vector or by sta-
tistics, depending on the type of clustering (center-based or distribution-based respectively)
performed; this information is stored in the cluster description.

Cluster Description (see figureA.34)

TheClusterDescription contains the fields as used in the center vectors for each cluster.
The fields which are used in the center vectors are normalized, in particular this allows to map
categorical input fields into numeric values in center vectors. AClusterDescription is
composed by the description of one or moreClusteringField .

EachClusteringField represents a single clustering field and consists of four major parts:

1. the name referring a mining schema field;

2. a field weight that is the importance factor for the field. This field is used in the comparison
functions in order to compute the comparison measure. The default value is1.0;

CHAPTER 2. CORE LAYER 33

3. the similarity scale that is the distance such that similarity becomes0.5;

4. the attribute comparison measure that is a function of taking two field values and a similarity
scale to define similarity/distance. It can benull , for example when a distribution-based
function is used.

Other features depend on the type of clustering field that can be discrete or continuous.
For aDiscreteClusteringField a list of categories is given.
For aContinuousClusteringField a normalization matrix is given. This matrix repre-

sents the linear norm for this numeric field. The matrix is 2 X n. The first row contains the origin
values. The second row contains the normalized values.

Comparison Measures (see figureA.35)

A ComparisonMeasure is used to compare a record with a cluster seed that represents the
cluster. This is important in order to determine the nearest cluster for a given input instance. Com-
parison measures are defined both for centroid-based clustering and distribution-based clustering.

A DistributionBasedComparisonMeasure is allowed only for distribution-based
clustering. If this is the case, the distribution probability (i.e. the distribution probability that
the instance belongs to the set of clusters) is of interest and the comparison measure is computed
on cluster statistics information only. In actual implementation, KDDML supports theEM(Expec-
tation Maximization) comparison function.

In CentroidBasedComparisonMeasure , the distance between the input instance and
the seed of the cluster is of interest. A centroid-based measure can be used both for distribution-
based clustering and for centroid-based clustering. In the first one case, the seed of the cluster is
calculated from the cluster statistics. In the second case, the cluster seed coincides with the cluster
centroid. When two records are compared then either the distance or the similarity is of interest. In
both cases the measures can be computed by a combination of an“inner function” and an“outer
function”. The “inner function” compares two single field values and the “outer function” com-
putes an aggregation over all fields. TheCentroidBasedComparisonMeasure describes
the aggregation function to determine the similarity between two single cases (outer comparison
function). It is composed by the function name and a list of one or more attribute comparison
measures (“inner functions”). Depending on the attribute kind, the aggregated value is optimal if it
is 0 (for distance measure) or greater values indicate optimal fit (for similarity measure). In actual
implementation, the “outer function” can be one of:

• EUCLIDEAN;

• SQUAREDEUCLIDEAN;

• TANIMOTO;

• MINKOWKI;

• CITY BLOCK;

• JACCARD;

CHAPTER 2. CORE LAYER 34

• SIMPLE MATCHING;

• BINARY SIMILARITY ;

• CHEBYCHEV.

Attribute Comparison Measure (see figure A.36)

TheAttributeComparisonMeasure class describes the comparison function to be used to
determine the similarity between two values of an attribute (“inner comparison function”) in a
centroid-based comparison measure. In actual implementation, the inner function can be one of:

• ABSOLUTEDIFFERENCE;

• GAUSSIANSIMILARITY ;

• DELTA;

• EQUAL;

• SIMILARITY MATRIX.

Clusters (see figureA.37)

A Cluster represents a single cluster inside the model and it is composed by five major parts:

1. a unique identifier;

2. the cluster name;

3. the number of elements (of the original population) belonging to the cluster;

4. a cluster distribution that holds information about the instances belonging to the cluster. This
field is required for distribution-based clustering only and can be omitted otherwise;

5. a covariances matrix that contains information on overall data distribution. A covariance ma-
trix stores coordinate-by-coordinate variances (diagonal cells) and covariances (non-diagonal
cells). The covariance matrix is optional.

A cluster can be centroid-based or distribution-based, depending on the type of clustering per-
formed.

In aCentroidBasedCluster , a vector of center coordinates is used in order to represents
the seed of the cluster.

For aDistributionBasedCluster , the seed is defined by the statistics related to this
cluster.

CHAPTER 2. CORE LAYER 35

Cluster Statistics (see figureA.38)

A ClusterStatistic holds statistical information about the overall background population.
It is required for distribution-based clustering only.

It is composed by one or moreStatisticField which stores information about a single
mining field belonging to the model. This includes discrete statistics or continuous statistics which
include possible field values and interval boundaries.

For discrete fields, aDiscreteStatisticField is used. It contains the frequencies of
the categories computed on instances belonging to the cluster. This information is stored in a
java.util.Hashtable structure.

For continuous fields, aContinuousStatisticField is used. It contains the mean and
the standard deviation of instances belonging to the cluster.

A ClusterStatistic may also contain a cluster priors, that is the prior probability (com-
puted on background population) that an instance belongs to the cluster.

In center-based models, a cluster is defined by a vector of center coordinates. Some distance
measure is used to determine the nearest center, that is the nearest cluster for a given input record.
For distribution-based models, the clusters are always defined by their statistics. However, the
definition of a cluster may contain a center vector as well as statistics.

Clustering factory (see figure A.39)

The factory classes allow to build a new clustering model; in other terms, for each factory class
belonging to the package, the methodnewInstance()returns a newClusteringModel as out-
put.

A clustering tree can be built by using one of the following factory classes:

• EmptyClusteringFactory : it generates an empty set of clusters. For the clustering, a
comparison function and a cluster description are required. They can be generated by using
the methods and the constructors belonging to the clustering manager sub-layer. The type of
clustering depends on theClusterDescription provided.

• ClusteringRepositoryFactory : it generates a clustering model directly from the
system model repository. In other terms, the main methodnewInstance()finds the physical
XML model in the directory repository and then, it parses and transforms the loaded model
into an abstract object representation.

• PMML20ClusteringFactory : it constructs a new clustering model from an external
PMML model. This class is PMML 2.0 compatible.

2.3.5 Package kddml.Core.DataMining.Taxonomy

The values of a categorical field can be organized in a hierarchy. The representation of hierarchies
in KDDML is based on parent/child relationships; a tabular format is used to provide the data for
these relationships. The actual values are stored in the hierarchy object. So, the tabular data can
also be part of the PMML document itself. The table would be recursive in the sense that a value
in the parent column can also appear in the child column.

CHAPTER 2. CORE LAYER 36

TheTaxonomy package contains classes and interfaces to generate and manage hierarchies.
The available classes contain methods able to:

• construct a predefined hierarchy or import them from an external resource (e.g. a PMML
model);

• remove nodes from the hierarchy;

• read the content of the hierarchy;

• store the model into the repository as PMML or HTML document.

Taxonomy manager (see figureA.40)

A HierarchyModel contains an item hierarchy. It consists of the hierarchy name and the
pointer to the hierarchy root. Root node, leaf nodes and internal nodes of the hierarchy are managed
by using theHierarchyNode class.

A HierarchyNode is composed by the node name, the pointers to the children (eventually
empty) and the pointer to the father node (eventually empty). Father node and children nodes
areHierarchyNode themselves.

Taxonomy factory (see figureA.41)

The factory classes allow to build a new hierarchy; in other terms, for each factory class belonging
to the package, the methodnewInstance()returns a newHierarchyModel as output.

A hierarchy can be built by using one of the following factory classes:

• HierachyHashtableFactory : it generates a new taxonomy model given ajava.u-
tils.Hashtable containing the association child/parent of the hierarchy nodes. In the
hash-table, the key is the node children name and the value is the parent node name.

• HierarchyRepositoryFactory : it generates a hierarchy model directly from the sys-
tem model repository. In other terms, the main methodnewInstance()finds the physical
XML model in the directory repository and then, it parses and transforms the loaded model
into an abstract object representation.

2.4 Package kddml.Core.QueryElement

This package includes classes that define an XML special elements to be used inside a KDD
query, such as conditions and algorithm specifications, mathematic expressions or generic XML
elements.

CHAPTER 2. CORE LAYER 37

Query element manager (see figureA.42)

XMLSpecialElement is the common abstract class for a KDD query elements. It includes as
subclasses:

• a condition specification;

• an expression;

• an algorithm specification;

• a generic XML element.

Algorithm specification (see figure B.2)

The classKDDMLAlgorithm manages parameters associated with a particular preprocessing or
mining algorithm. It is composed by the algorithm name and a list of parameter settings containing
the parameter name (formal parameter) and the parameter value (actual parameter).

Generic XML element (see figure ??)

The classXMLincorporates a generic XML object belonging to the KDD query. It is stored as
XML element that is evaluated directly from the language operator.

2.4.1 Package kddml.Core.QueryElement.Condition

This package implements a condition specification as used in a KDD query. A condition is useful
to evaluate boolean operators on table attributes and/or constants (e.g.“give me all rows in which
the attributetemperature is less than 80”). Recall its DTD reported in figure2.1.

<!ELEMENT CONDITION (TRUE|FALSE|OR_COND|NOT_COND|AND_COND|BASE_COND)>
<!ELEMENT TRUE EMPTY>
<!ELEMENT FALSE EMPTY>
<!ELEMENT OR_COND ((OR_COND|NOT_COND|AND_COND|BASE_COND),

(OR_COND|NOT_COND|AND_COND|BASE_COND)+)>
<!ELEMENT AND_COND ((OR_COND|NOT_COND|AND_COND|BASE_COND),

(OR_COND|NOT_COND|AND_COND|BASE_COND)+)>
<!ELEMENT NOT_COND ((OR_COND|NOT_COND|AND_COND|BASE_COND))>
<!ELEMENT BASE_COND EMPTY>
<!ATTLIST BASE_COND op_type %string; #REQUIRED

term1 %any_type; #REQUIRED
term2 %any_type; #IMPLIED
term3 %any_type; #IMPLIED>

Figure 2.1: The DTD of the elementCONDITIONas used in a KDD operator.

CHAPTER 2. CORE LAYER 38

Condition Manager (see figure A.45)

A Condition can be a boolean condition, a base condition or a compound condition.

Boolean condition (see figureA.46)

The classBooleanCondition represents a basic boolean constant, such astrueor false.

Base condition (see figureA.48)

The abstract classBaseCondition encapsulates the primitiveBASECONDelement, as shown
in figure 2.1. A primitive condition is used in order to evaluate boolean operators (such as“not
equal”) on table attributes and/or constants. Here, table attributes stand both for relational (or
preprocessing) table columns and model properties (e.g. the support of an association rule). Table
attributes can be referred by using the special symbol “@” in the value attribute. Operators can be
unary, binary or ternary, as expressed by theterm1 , term2 , term3 fields in the related DTD.

A BaseCondition class is composed by:

• the type of the operator (e.g.not equal , less or equal);

• a ternary list containing string values that encapsulates the terms. The second (resp. third)
element of the list is missing in case of unary (resp. binary) operator type;

• a ternary list containing boolean values. Each boolean value isfalseif the related term value
is a table attribute instead of a constant.

TheBaseCondition class already implements some basic operators, such asequal , not e-
qual , greater , greater or equal , less , less or equal , with usual significate. A
specific language operator condition extends the abstract classBaseCondition and it can define
further proprietary base condition operators.

Each primitive condition is accomplished with a description condition class. The abstract class
BaseConditionDescr contains an enumeration of all operators related to the primitive condi-
tion, i.e. it lists the legal condition operators. Moreover, it defines methods performing a correct-
ness checking about terms values, in respect to the operator specification.

Compound condition (see figureA.47)

A CompoundCondition realizes a combination between one or more conditions through log-
ical operators, such asNOT, AND, OR. It is composed by a list one or moreCondition that can
be, recursively, bothBaseCondition , BooleanCondition andCompoundCondition .
In the case ofOrCondition , the list size is exactly one.

Condition Factory (see figure A.49)

The classConditionFactory allows to build a new condition specification given the DOM
representation of the related XML element.

CHAPTER 2. CORE LAYER 39

2.4.2 Package kddml.Core.ProprietaryElement.Expression

This package implements an expression specification as used in a KDD operator. An expression
is defined by means the combination of mathematical operators (such assum, division , etc.)
on table attributes and/or constants (e.g.“sum the content of the attributetemperature with
the content of the attributehumidity ”). An expression is similar to a condition, but it returns a
scalar value instead of a boolean value. The DTD is reported in figure2.2.

<!ELEMENT EXPRESSION (BASE_TERM|SEQ_TERM|IF_TERM)>
<!ELEMENT SEQ_TERM ((BASE_TERM|SEQ_TERM|IF_TERM),

(BASE_TERM|SEQ_TERM|IF_TERM)+)>
<!ATTLIST SEQ_TERM op_type

(concat|equal|sum|multiply|subtract|divide) #REQUIRED>
<!ELEMENT BASE_TERM EMPTY>
<!ATTLIST BASE_TERM value %any_type; #REQUIRED>
<!ELEMENT IF_TERM (CONDITION, (BASE_TERM|SEQ_TERM|IF_TERM),

(BASE_TERM|SEQ_TERM|IF_TERM)?)>

Figure 2.2: The elementEXPRESSIONas used in a KDD operator.

Expression Manager (see figureA.50)

An Expression is composed by a base statement, a sequential statement or a conditional state-
ment.

The classBaseTerm provides primitive numerical/string constants or table attribute names.
We can distinguish the last one from the constants by using the special symbol “@” before the
attribute name.

TheSeqTerm class includes basic operations (addition, multiplication, subtraction, division,
comparisonof numbers andconcatenation, comparisonof strings) on terms. It is composed by a
pointer to the operator type and a list of one or moreExpression .

Finally, theIfTerm class manages the conditional statement used to evaluate athenstatement
or an (optional)elsestatement according to a condition. It is composed by three elements:

1. a requiredExpression representing thethenstatement;

2. an optionalExpression representing theelsestatement;

3. a condition specification, as defined in theIF EXPRESSIONCONDITIONclass (see sect.
2.4.1).

Expression Factory (see figureA.51)

The classExpressionFactory allows to build a new expression specification given the DOM
representation of the XML element.

CHAPTER 2. CORE LAYER 40

2.5 Package kddml.Core.Scalar

This package is used by KDDML to represent XML attributes as used inside a KDD operator
or an algorithm specification. It also serves in order to represent the result of language operators
whose output is a scalar value.

Scalar Manager (see figureA.52)

A KDDMLScalar is composed by a value and a pointer to the type of the object.
The value is a Java math expression (e.g. “3+4*2”) or a constant (e.g. “12.3”, “foo”) that is

parsed and evaluated by KDDML when required.
The type is important in order to check the correctness of the input scalar value. Checking is

performed, for example, by the KDDML interpreter during the parsing of the KDD query.

Scalar Types (see figureA.53)

The KDDMLScalarType incorporates a type related to a scalar value. It can be one of the
following:

• StringType (see figureA.54): a generic string;

• FileReaderType (see figureA.56): a file reader, used in order to read the content of a
physical file. In this case, the scalar value contains the pointer to the physical file; KDDML
checks whether the specified path exist when checking is performed.

• FileWriterType (see figure A.56): a file writer, used in order to write on a physical
file. In this case, the scalar value contains the pointer to the physical file; KDDML checks
whether the specified path exist when checking is performed.

• EnumerationType (see figureA.55): an enumeration in which scalar value can be one
of a list of acceptable values.

• ListType (see figureA.57): a list of values in a comma separated form. Values can be of
various type:java.lang.String (e.g. “sunny, overcast, rainy”),java.lang.Integer
(e.g. “-1, 2, 6”),java.lang.Double (e.g. “-3.4, 0.0, 0.2”).

• RangeType (see figureA.58): range of values used to contain all the values between the
minimum and maximum values, where the minimum/maximum value can be considered
either included or excluded from the range. Range can be bothjava.lang.Integer
and java.lang.Double type. KDDML checks that the scalar value is included in the
specified range when checking is performed.

The interfaceKDDMLScalarTypeEnum lists all the accepted scalar types. When not speci-
fied,KDDMLScalar assumes that the type of the scalar is aStringType by default.

CHAPTER 2. CORE LAYER 41

2.6 Extending the core layer

The design of the KDDML system had to take into special account the requirements of extensi-
bility. The extension related to the core layer can be distinguished into:

• external data resources extensibility:means adding a new physical data resource similar to
the ARFF format, already included in the system. Typical examples include theC4.5 data
format, files in binary or XML format or proprietary data representation.

• external model resources extensibility:means adding a new physical resource to an existent
mining model. Typical examples include further versions of PMML, text files or proprietary
model representation.

• condition extensibility: means adding a new condition specification for a given language
operator.

• models extensibility: means adding a new form of extracted knowledge to the system. This
means also to add a new type to the the core layer.

2.6.1 Adding a new external resource

Adding a new data resource

To add a new external data resource, the abstract classkddml.Core.DataSources.In-
ternalTableExternalFactory must be extended. This requires the implementation of
some abstract protected methods that are used inside the methodnewInstance() (see the ac-
companying KDDML and WEKA2 API Java documentation for details).

Adding a new model resource

To add a new model resource, an appropriate abstract class must be extended. This requires the im-
plementation of some abstract protected methods that are used inside the methodnewInstance() .
The table2.1specifies which class must be extended according to the type of model involved (see
the accompanying API Java documentation for details).

2.6.2 Adding a new base condition specification

To add a new base condition, two appropriate abstract class must be extended:

• kddml.Core.ProprietaryElement.Condition.BaseCondition ;

• kddml.Core.ProprietaryElement.Condition.BaseConditionDescr .

This requires the implementation of some abstract protected methods (see the accompanying API
Java documentation for details).

The name of the classes created must coincide with the name of the parent operator containing
the condition, followed by the extensionsCONDITIONand CONDITION DESCRrespectively.

2Remember that the packagekddml.Core.DataSources uses theweka.core package in order to represent
tables.

CHAPTER 2. CORE LAYER 42

Model involved Class to extend
Association rules kddml.Core.DataMining.AssociationRules.AssociationExternalFactory

Sequential patterns kddml.Core.DataMining.SequentialPatterns.SequenceExternalFactory
Tree kddml.Core.DataMining.ClassificationTree.ClassificationExternalFactory

Clustering kddml.Core.DataMining.Clustering.ClusteringExternalFactory
Hierarchy kddml.Core.DataMining.Taxonomy.HierarchyExternalFactory

Table 2.1: Correspondence between models and external resources manager

2.6.3 Adding a new mining model

Adding a new mining model means add a new type to the core level and implement a new package
of appropriate classes and interfaces.

Adding a new type

The kddml.Core.KDDMLObjectType lists all legal object types as used in the KDDML
language specification. A new type (i.e. a new mining model) can be easily added to the system
adding to this class the following Java code:

...
public final static KDDMLObjectType MY_NEW_MODEL = new KDDMLObjectType(

"MyNewModel",
"my new model description",
RepositoryResolver.MODELS_PATH + "myNewModel" + File.separator,
"kdd_query_my_new_model",
"MY_NEW_MODEL",
"pmml_v2_0.dtd",
"MyNewModel.xsl");

...

The protected constructor of the classKDDMLObjectType accepts as input the following
arguments:

1. a name identifying the new model;

2. a model description;

3. the pointer to the physical repository containing the new mining models;

4. the XML entity name as defined in the KDDML DTD definition. It is required for mining
models;

5. the operator core name as in KDDML language operator definition (i.e. the prefix used by
the KDDML operators that use the model);

6. the name referring the DTD file related to this model (pmml v2 0.dtd if the PMML rep-
resentation is used);

CHAPTER 2. CORE LAYER 43

7. the name referring the XSL file related to this model. The XSL stylesheet file is used in order
to translate the XML model representation into an HTML model representation for further
model visualization.

Adding a new package

A new package, named as instanceMyNewModel, must be located in thekddml.Core.Da-
taMining sub-package. This package will contain all classes and interfaces able to manage the
new model.

The next step is to insert inside this package a set of minimal classes and interfaces and integrate
them into the system. In order to do this, the distinction between factory sub-layer and manager
sub-layer must be preserved. The table2.2 shows the minimum set of classes and interfaces to
implement and the relative classes and interfaces that must be extended.

New class/interface Class/interface to extend
Factory sub-layer

MyNewModelProprietaryFactory kddml.Core.DataMining.ModelProprietaryFactory
MyNewModelExternalFactory kddml.Core.DataMining.ModelExternalFactory

MyNewModelRepositoryFactory kddml.Core.DataMining.ModelRepositoryFactory

Manager sub-layer
MyNewModel kddml.Core.DataMining.MiningModel

MyNewModelManager kddml.Core.DataMining.MiningModelManager

Table 2.2: Minimal set of classes/interfaces to define when adding a new model

Further classes and interfaces must be implemented in the factory and manager sub-layers.
Concrete classes will extend the external and proprietary factory in order to import the model from
various resources. Further classes and interfaces will manage single components of the model pro-
viding to the upper layer a programmatic functionality of the content model. Their implementation
depends on the structure of the mining model involved and on the functionality provided. However,
the general organization of the core layer would not have to be changed.

CHAPTER 3

Operators and algorithms layer

This section describes the operators and algorithms layer using UML class diagrams. For
details on the interfaces and classes depicted below, refer to the accompanying Java documentation
produced using Javadoc. In order to make this chapter readable, all UML figures are placed in
appendixB.

3.1 Package kddml.Operators

The packagekddml.Operators encapsulates the definition of KDDML language operators
and algorithms, both about their settings proprieties and physical concrete realization.

Operator settings and operator resolver (see figureB.1)

Operators settings and operators resolver sub-layers are composed by a set of classes structured in
two hierarchies.

The OperatorSettings is the root abstract class that incorporates XML attributes spec-
ification related to a language operator. Attributes-list declarations specify the name, the usage,
the data type, and default value (if any) of each attribute. The type of an attribute can be one of
the specified by the classkddml.Core.KDDMLScalarType . The usage can berequired(the
attribute must have a value every time this algorithm is listed),fixed (it is not required, but if it
occurs, it must have the specified default value), orimplied(it is not required, and no default value
is provided). A sub-class that extendsOperatorSettings requires the implementation of the
following abstract methods:

• public abstract String[] listAttributes();
returns the list of attributes belonging to the operator specification.

44

CHAPTER 3. OPERATORS AND ALGORITHMS LAYER 45

• public abstract Boolean isRequired(String attributename);
returnsBoolean.TRUE if a given attribute is required in the operator specification; returns
Boolean.FALSE if the attribute is fixed or implied; returnsnull if attribute name
do not belong to the list of attributes returned by the methodlistAttributes().

• public abstract Boolean isFixed(String attributename);
returnsBoolean.TRUE if a given attribute is fixed (i.e. with a constant value) in the oper-
ator specification; returnsnull if attribute namedo not belong to the list of attributes
returned by the methodlistAttributes(); returnsBoolean.FALSE otherwise.

• public abstract String getDefaultAttributeValue (String attributename);
returns the default value related to a given input attribute. Returnsnull if the attribute
do not admit a default value or ifattribute name do not belong to the list of attributes
returned by the methodlistAttributes(). An attribute can be given any legal value as a default.
The attribute value is not required on each element in the document, but if it is not present,
it will appear to be the specified default. If the attribute is implied and it is not included in
the element, the operator assumes that this is the attribute value.

• public abstract KDDMLScalarType getAttributeType(String attributename);
returns the type related to a given input attribute. KDDML supports the attribute types as
expressed by the classkddml.Core.Scalar.KDDMLScalarType . Returnsnull if
the attribute name do no belong to the list of attributes returned by the methodlistAttributes().

• public void checkCorrelationBetweenAttributes(Hashtable<String, KDDMLScalarManager>
attributes) throws SettingsException;
checks the correctness of the correlation between operator attributes. This method is empty
for a specific operator if and only if all attributes are independent. As instance, theuser
attribute andpassword attribute in theDATABASELOADERoperator are independent.
On the contrary, the attributeold attribute names and the attributenew attribu-
te names in the PP RENAMEATTRIBUTESoperator are not independent because they
must share the same number of elements. The method can incorporate further controls be-
tween input attributes: e.g., that some particular events are true when the attribute value is
used. By default, this method is empty and it can be override under subclasses (i.e. operators)
when necessary.

The main purpose of theOperatorSettings class is to make a correctness control about
the input attributes ofOPERATORNAME. In order to do this, the class contains some methods that
can be invoked by the interpreter of the system:

• public void checkAttributes(Hashtable<String, KDDMLScalarManager> attributes) throws
SettingsException;
performs a correctness control about the input attributes of the operator. Attributes are given
as hash-table where the key is the XML attribute name and the value of the hash-table is
the XML attribute value as instance of the interfacekddml.Core.Scalar.KDDML-
ScalarManager . More precisely, for each attribute returned bylistAttributes(), the method
checks if the hash-table contains or do not contain the attribute. In the first one case, a

CHAPTER 3. OPERATORS AND ALGORITHMS LAYER 46

type checking is performed on attribute value comparing the type returned by the method
getAttributeType(attrname)with the type of theKDDMLScalar representing the value of
the attribute. The method throws an exception if a type error occurs for a given attribute.
In the second one case, if the attribute is required (i.e. the methodisRequired()returns
Boolean.TRUE), then the method throws an exception.

• public Hashtable<String, KDDMLScalarManager> refreshAttributes(Hashtable<String,-
KDDMLScalarManager> attributes);
sets the types and the default values of all attributes returned by thelistAttributes()method.
The type is obtained by means the methodgetAttributeType(attrname)that takes the at-
tribute name as input. If the attribute value is fixed (i.e. the methodisFixed(attr name)
returnsBoolean.TRUE), then its value is replaced with the default value in the input hash-
table that is obtained by using the methodgetDefaultValue(attrname). Finally, if an optional
attribute do not belong to the hash-table and a default value is provided for that attribute, then
its value is added to the input hash-table. The method returns the input hash-table updated
as output.

TheOperatorResolver is the root abstract class that contains the physical implementation
of the operator. A class that extends theOperatorResolver class requires the implementation
of the following abstract methods:

• public abstract KDDMLObjectType getArgumentType(int i);
returns the expected type of the ith argument of the operator. Returns an instance of the
kddml.Core.KDDMLObjectType class ornull if the operator do not admit argument
as ith child;

• public abstract boolean runTimeCheckNeeded();
returnstrue if the type of the result of theexecute(settings, arguments)method is not fixed
at compile time, but need to be checked at run-time against the one required by the operator
calling. This is required for operators with no fixed output types, such asEXT CALL or
SEQQUERY. By default, this method returnsfalse ;

• public abstract boolean abortIfIsEmpty();
returnstrue if the execution of the query must be interrupted by the interpreter when an
empty result is returned as output (e.g. a table with an empty set of instances). By default,
this method returnsfalse .

• public boolean saveXMLOutput();
returnstrue if the result of theexecute(settings, arguments)method must be stored in the
system repository. If the method returnsfalse , then the interpreter will not store the result
in the system repository. This is required, as instance, by the repository loading operators,
such asRDALOADERor TABLE LOADER. By default, the operator returnstrue .

• public abstract int estimatedRAMUsage();
returns the estimated RAM usage for the operator. Must be a value between0 and1024MB.
By default, the method returns256;

CHAPTER 3. OPERATORS AND ALGORITHMS LAYER 47

• public abstract boolean highDiskAccessIsNeeded(),;
returnstrue if the operator performs an high number of I/O operation to the hard-disk. By
default, the method returnsfalse ;

• public abstract KDDMLObject execute(Hashtable<String, KDDMLScalarManager> set-
tings, Vector<KDDMLObject> arguments) throws ResolverException, CoreException;
returns the result of evaluating the operator over the passed arguments and attributes. At-
tributes are given as hash-table, where the key is the name of the XML attribute related to
the operator and the value is akddml.Core.Scalar.KDDMLScalar object containing
the attribute value. Attribute value is checked by the interpreter layer and it is correct when
the method is invoked. Arguments are given as vector ofkddml.Core.KDDMLOjbect .
The different implementations of the execute method can be distinguished according to the
type of operator.

Another purpose of theOperatorResolver class is to perform a correctness control about
the types of the input object of the operator, as reported by the method below:

• public void checkArgumentTypes(Vector<KDDMLObject> arguments) throws ResolverEx-
ception;
checks that input arguments have type as required by thegetArgumentType(i)method. Throws
an exception if an incompatible type is found for an input argument.

Algorithms settings task and algorithms resolver task (see figureB.2)

Algorithms settings task and algorithms resolver task are composed by a set of interfaces struc-
tured in two hierarchies.

The AlgorithmSettingsTask is the root interface that incorporates XML parameters
specification related to an algorithm (both preprocessing and mining). As for the XML attributes
related to an operator, parameters-list declarations specify the name, the usage of the parameter,
the data type, and default value (if any) of each parameter. Similar to theKDDMLOperator-
Settings class, methods contained in this interfaces are used to perform a correctness control
about algorithm parameters (see theAlgorithmSettingsTask interface API for details).

TheAlgorithmResolverTask is the root interface that incorporates the physical imple-
mentation of an algorithm. We distinguished different implementation patterns for each algorithm,
according to the type of knowledge extracted.

Typically, a mining algorithm is an external libraries (such asYaDT, DCI or Weka algorithms)
which requires its own input format and provides its own output format. As a consequence, the
implementation of the algorithm normally scans passed data, transforms it into the required input,
call the actual algorithm, and finally interprets the output to return an appropriate KDDMLObject
(see theDMAlgorithmResolverTask interface API for details).

Differently from data mining algorithms, preprocessing algorithm are mainly implemented in
the KDDML system (i.e., not calling external programs) and they work directly on proprietary
preprocessing tables (see thePPAlgorithmResolverTask interface API for details).

CHAPTER 3. OPERATORS AND ALGORITHMS LAYER 48

Operators and algorithms factory (see figureB.3)

Factory classes at operators layer allow to create a new resolver/settings instance of a given KD-
DML operator/algorithm.

The classkddml.Operators.KDDMLOperator manages the creation of operators. KD-
DML uses the Java reflection in order to load a new operator instance: checking is by name, com-
paring the XML tag related to the operator with the classes name implementing it. More in detail,
an operator is supported if there are two classes in the sub-packages list of thekddml.Operators
package. The first one extends the abstract classkddml.Operators.KDDMLOperator-
Settings and contains the attributes specification of the operator; its name ends with the tag
SETTINGS. The second one must extend the abstract classkddml.Operators.KDDMLOpe-

ratorResolver and contains the core implementation of the operator; its name ends with the
tag RESOLVER.

The classkddml.Operators.AlgorithmFactory produces language algorithms in-
stances. Also for operators, KDDML uses the Java reflection in order to load a new algorithm
instance.

Operator exceptions (see figureB.4)

The classesSettingsException andResolverException manage exception that can be
throw in the settings sub-layer and in the resolver sub-layer respectively.

3.2 Package kddml.Operators.IO

This package includes operators that populate the KDDML data/models repository from exter-
nal resources or that export a table/model in the repository to external format. The package is
structured in three sub-packages:

1. kddml.Operators.IO.RepositoryResourceReader : it contains the operators
that load a table/model from the system repository. A repository resource reader operator
has a fixed signature, with no children and only one attribute, namedxml source . This
attribute identifies the object in the repository.

2. kddml.Operators.IO.ExternalResourceReader : it includes operator that ac-
cess to an external table/model resource (e.g. an ARFF file or a PMML model) and trans-
form it into the internal proprietary representation. An operator belonging to this package
do not admit input arguments, but it uses attributes in order to locate the resource.

3. kddml.Operators.IO.ExternalResourceWriter : it contains operators that get
a data/model as input and save it into an external representation (e.g. a table into an ARFF
file or a model into a PMML model).

CHAPTER 3. OPERATORS AND ALGORITHMS LAYER 49

Settings (see figureB.5)

RepositoryResourceReaderSettings , ExternalResourceReaderSettings and
ExternalResourceWriterSettings are the main settings super-classes of the I/O pack-
age. All this classes extend the abstract classkddml.Operators.IO.IOSettings .

Resolver (see figureB.6)

RepositoryResourceReaderResolver , ExternalResourceReaderResolver and
ExternalResourceWriterResolver are the main resolver super-classes of the I/O pack-
age. All this classes extend the abstract classkddml.Operators.IO.IOResolver .

The execute(settings, arguments)method is overrides both in the classRepositoryRe-
sourceReaderResolver and in the classExternalResourceReaderResolver , ac-
cording to the fixed operator signature.

3.3 Package kddml.Operators.Preprocessing

The packagekddml.Operators.Preprocessing contains operators as used in the pre-
processing step of the KDD process. Classes are structure in two main groups in order to dis-
tinguished operators that load a preprocessing algorithm (such as a sampling or a discretization
algorithm) from all other preprocessing operators.

The first one group includesPP SAMPLING, PP NUMERICDISCRETIZATION, PP NOR-
MALIZATION andPP REWRITINGoperators. This operators admit a fixed signature, taking a
preprocessing table as first argument, the algorithm specification as second argument and returning
a preprocessing table as output.

The second one group includes all other preprocessing operators. They take aPPtable object
as first argument and return aPPtable object, as shown by the following signature:

f<PP ...> : PPtable× ... → PPtable.

Settings (see figureB.7)

The main settings super-classes includePPAlgorithmLoadingSettings andPPSettings .
The first one extends theAlgorithmLoadingSettings class, containing the code to load

an external algorithm (both preprocessing and mining). Operator attributes include thexml dest
and thealgorithm name containing the name of the algorithm to load. The last one is added
to the list of attributes by the interpreter, during the parsing of the query. The methodscheckAt-
tributes(attributes)and refreshAttributes(attributes)are overloaded, in order to load the external
algorithm (by using theAlgorithmFactory class) and to check the algorithm parameters (by
using theAlgorithmSettingsTask interface methods).

ThePPSettings class extends theOperatorSettings class and contains settings about
all other preprocessing operators.

CHAPTER 3. OPERATORS AND ALGORITHMS LAYER 50

Resolver (see figureB.8)

The main resolver super-classes includePPAlgorithmLoadingResolver and PPReso-
lver .

The first one extends theAlgorithmLoadingResolver class, containing the code to load
an external algorithm (both preprocessing and mining). The methodexecute(arguments, attributes)
is specialized in thePP SAMPLINGRESOLVER, PP NUMERICDISCRETIZATION RESOL-
VER, PP NORMALIZATIONRESOLVER, PP REWRITINGRESOLVERclasses. This method
uses theAlgorithmFactory in order to create a new instance of the algorithm asSampling-
AlgorithmResolverTask , DiscretizationAlgorithmResolverTask , Normali-
zationAlgorithmResolverTask , RewritingAlgorithmResolverTask , respective-
ly. Then, it uses the methods containing in this interfaces to resolve the algorithm and generate the
output preprocessing table.

The PPResolver class extends theOperatorResolver class and contains the resolver
implementation about all other preprocessing operators. It distinguishes three implementation
patterns for theexecute(arguments, attributes)method, according to the type of transformation
performed on input preprocessing table. ThePPResolver class admits three sub-classes:

1. the SchemaLevelTransformation class includes preprocessing operators perform-
ing an input data scan that modify only the data schemata on the input preprocessing ta-
ble, without change the physical content of each row (e.g.PP FILTER ATTRIBUTES,
PP RENAMEATTRIBUTES);

2. the InstanceLevelDependentTransformation class includes preprocessing op-
erators performing an input data scan that is dependent on the values assumed by all input
instances (e.g.PP SAMPLING, PP SORTINGATTRIBUTES). This class of operators is
main-memory and they cannot work on a single instance at once, but require the entire
dataset loaded in RAM. Data schemata do not change;

3. finally, the InstanceLevelIndependentTransformation class includes prepro-
cessing operators performing an input data scan that is independent on the values assumed by
all other instances (e.g.PP NORMALIZATION, PP REMOVEROWS). This class of operators
is not main-memory and they can work on a single instance at once. The operator only reads
a block of instances, computes the new tuples and forgets the block again; that is, at each
point in time only a small sub-set of the database is in main memory. Data schemata do not
change.

3.4 Package kddml.Operators.DataMining

The packagekddml.Operators.DataMining contains operators to extract a mining model
by using an external algorithm, such asRDAMINER, TREEMINER, CLUSTERMINERandSE-
QUENCEMINERoperators. This operators admit a fixed signature taking a relational table as first
argument, the algorithm specification as second argument and returning a mining model as output:

f<MODEL MINER> : table× alg→ model.

CHAPTER 3. OPERATORS AND ALGORITHMS LAYER 51

Settings (see figureB.9)

The main settings super-class isDMAlgorithmLoadingSettings that extends theAlgo-
rithmLoadingSettings class, containing the code to load an external algorithm (both pre-
processing and mining). Operator attributes include thexml dest and thealgorithm name,
containing respectively the name of output destination and the name of the algorithm to load.
The last one is added to the list of attributes by the interpreter, during the parsing of the query.
In the AlgorithmLoadingSettings class, the methodscheckAttributes(attributes)and re-
freshAttributes(attributes)are overloaded, in order to load the external algorithm (by using the
AlgorithmFactory class) and then to check the algorithm parameters (by using theAlgo-
rithmSettingsTask interface methods).

Resolver (see figureB.10)

The main resolver superclass isDMAlgorithmLoadingResolver that extends theAlgo-
rithmLoadingResolver class, containing the code to load an external algorithm (both pre-
processing and mining). The methodexecute(arguments, attributes)is specialized in theRDA-
MINERRESOLVER, TREEMINERRESOLVER, CLUSTERMINERRESOLVERand SEQUE-

NCEMINERRESOLVERclasses. This method uses theAlgorithmFactory in order to cre-
ate a new instance of the algorithm asAssociationAlgorithmResolverTask , Classi-
ficationAlgorithmResolverTask , ClusteringAlgorithmResolverTask , Se-
quenceAlgorithmResolverTask , respectively. Then, it uses the methods containing in
this interfaces to resolve the algorithm.

3.5 Package kddml.Operators.Postprocessing

This package includes operators as used in the post-processing step of the KDD process.

Settings (see figureB.11)

The classPostProcessingSettings manages the parameters settings of the post-processing
operators.

Resolver (see figureB.12)

The classPostProcessingResolver is the resolver superclass that all post-processing op-
erators must extend. Since a post-processing operator is generic, neither theexecute(settings, ar-
guments)method, nor other method of the superclass is specialized inside this class.

3.6 Package kddml.Operators.Unclassified

This package includes operators that do not cover a particular phase of the KDD process.

CHAPTER 3. OPERATORS AND ALGORITHMS LAYER 52

Settings (see figureB.13)

The classUnclassifiedSettings manages the parameters settings of the unclassified oper-
ators.

Resolver (see figureB.14)

The classUnclassifiedResolver is the resolver superclass that all unclassified operators
must extend. Since an operator of this type is generic, neither theexecute(settings, arguments)
method, nor other method of the superclass is specialized inside this class.

3.7 Extending the operators layer

The extension related to the operator layer can be distinguished into:

• preprocessing and mining algorithm extensibility;

• operator extensibility;

• model extensibility.

3.7.1 Adding a new algorithm

ALGORITHMNAME(e.g. APRIORI) is implemented as two Java classes for settings sub-layer
and resolver sub-layer, named respectivelyALGORITHMNAMESETTINGSandALGORITHM-
NAMERESOLVER(e.g. APRIORI SETTINGS, APRIORI RESOLVER). As reported in table

3.1, the two classes must be placed in the right package location, according to the type of knowl-
edge extracted, and must implement the relative interfaces.

As final step, a new entry to the relative algorithm list must be added in thekddml.Ope-
rators.AlgorithmFactory class. Lists are implemented as final, static arrays of strings,
containing the unique names of the algorithms1.

3.7.2 Adding a new operator

OPERATORNAMEis implemented as two Java classes for settings sub-layer and resolver sub-
layer, named respectivelyOPERATORNAMESETTINGSandOPERATORNAMERESOLVER. As
reported in table3.2, the two classes must be placed in the right package location, according to
the KDD step supported, and must extend the relative abstract class. All abstract methods of
super-classes require to be implemented; other methods can be overloaded only if necessary.

1Names are not case sensitive.

CHAPTER 3. OPERATORS AND ALGORITHMS LAYER 53

Type of Package location Interfaces to implement
algorithm

Discretization kddml.Operators.Preprocessing.DiscretizationAlgorithmSettingsTask
DiscretizationAlgorithms DiscretizationAlgorithmResolverTask

Normalization kddml.Operators.Preprocessing.NormalizationAlgorithmSettingsTask
NormalizationAlgorithms NormalizationAlgorithmResolverTask

Sampling kddml.Operators.Preprocessing. SamplingAlgorithmSettingsTask
SamplingAlgorithms SamplingAlgorithmResolverTask

Rewriting kddml.Operators.Preprocessing. RewritingAlgorithmSettingsTask
RewritingAlgorithms RewritingAlgorithmResolverTask

RdA extraction kddml.Operators.DataMining. AssociationAlgorithmSettingsTask
AssociationAlgorithms AssociationAlgorithmResolverTask

Classification kddml.Operators.DataMining. ClassificationAlgorithmSettingsTask
ClassificationAlgorithms ClassificationAlgorithmResolverTask

Clustering kddml.Operators.DataMining. ClusteringAlgorithmSettingsTask
ClusteringAlgorithms ClusteringAlgorithmResolverTask

Sequence extraction kddml.Operators.DataMining. SequenceAlgorithmSettingsTask
SequenceAlgorithms SequenceAlgorithmResolverTask

Table 3.1: Correspondence between algorithms and interfaces

3.7.3 Adding a new class of algorithms

KDDML can be extended with further knowledge, as instance with a regression model or a neural
network2. This operation usually requires to add a new set of algorithm to the system, in order to
extract the new mining model.

Step 1: create a new algorithms sub-package

A new package, named as instanceMyNewKnowledgeAlgorithms , must be located in the
kddml.Operators.DataMining sub-package. This package will contain all algorithms that
can be used in order extract the new knowledge.

Step 2: define the setting and resolver task interfaces

Two interfaces must be defined in order to manage all algorithms belonging to the new knowledge
class. The first one, named as instanceMyNewModelAlgorithmSettingsTask , must ex-
tend the interfaceDMAlgorithmSettingTask . The second one, named as instanceMyNew-
ModelAlgorithmResolverTask , must extend the interfaceDMAlgorithmSettings-
Task . Both interfaces must be placed in the package created at step 1.

2However, this considerations can be extended also to the algorithms used in the preprocessing step.

CHAPTER 3. OPERATORS AND ALGORITHMS LAYER 54

Type of operator Package location Classes to extend
I/O

repository kddml.Operators.IO. RepositoryResourceReaderSettings
reader RepositoryResourceReader RepositoryResourceReaderResolver

external kddml.Operators.IO. ExternalResourceReaderSettings
reader ExternalResourceReader ExternalResourceReaderResolver

external kddml.Operators.IO. ExternalResourceWriterSettings
writer ExternalResourceWriter ExternalResourceWriterResolver

Preprocessing
schema level kddml.Operators. PPSettings

transformation Preprocessing SchemaLevelTransformation
instance level kddml.Operators. PPSettings

dependent Preprocessing InstanceLevelDependentTransformation
transformation
instance level kddml.Operators. PPSettings
independent Preprocessing InstanceLevelIndependentTransformation

transformation
PP algorithm kddml.Operators. PPAlgorithmLoadingSettings

loading Preprocessing PPAlgorithmLoadingResolver

Data Mining
DM algorithm kddml.Operators. DMAlgorithmLoadingSettings

loading DataMining DMAlgorithmLoadingResolver

Postprocessing
generic kddml.Operators. PostProcessingSettings

postprocessing Postprocessing PostProcessingResolver

Others
unclassified kddml.Operators. UnclassifiedSettings

Unclassified UnclassifiedResolver

Table 3.2: Correspondence between operators and abstract classes

Step 3: add algorithms to the system

Thekddml.Operators.AlgorithmFactory produces KDDML algorithms. A new class
of algorithms can be easily added to the system adding to this class the following Java code:

...
public final static AlgorithmFactory MY_NEW_MODEL_ALGORITHMS = new AlgorithmFactory(

"MyNewClassAlg", {"my_new_alg_1", "my_new_alg_2"}, "MY_NEW_MODEL_MINER",
"kddml.Operators.DataMining.MyNewKnowledgeAlgorithms");

...

The protected constructor of the classAlgorithmFactory that as input the following argu-
ments:

CHAPTER 3. OPERATORS AND ALGORITHMS LAYER 55

1. a name identifying the class of algorithms;

2. the list of supported algorithms;

3. the XML tag name of the operator supporting the class of algorithms;

4. the package name that allows to locate the algorithms.

In order to implementmy new alg 1 and my new alg 2, their settings and resolver classes
must be placed in the package created at step one and must extend the interfaces defined at step
two.

Step 4: add a new mining operator

Finally, a new KDDML operator (e.g.MYNEWMODELMINER) that loads the new set of algo-
rithms can be defined as specified in the previous section.

CHAPTER 4

Interpreter layer

This section describes the interpreter level using UML class diagrams. For details on the inter-
faces and classes depicted below, refer to the accompanying Java documentation produced using
Javadoc. All UML figures are placed in appendixC.

4.1 Package kddml.Interpreter

The packagekddml.Interpreter contains class and interfaces for the execution of a KDD
query. The main class isQueryExecutor that accepts a validated KDDML query (either in
XML format or as a DOM tree), evaluates it, save the final result in the repository and returns it as
KDDMLObject. It implements three interfaces in order to provide his services to the upper layers:

1. InterpreterIO : it allows to set I/O proprieties to be applied before the query execution;

2. InterpreterChecker : it provides methods in order to validate a KDD query, before its
execution;

3. InterpreterRunner : it contains the methods to manage the main execution of the in-
terpreter cycle.

Exceptions (see figureC.1)

The main classKDDMLInterpreterException extends thejava.lang.Exception to
indicate conditions that a reasonable application might want to catch. It has sub-classes to provide
more sophisticated exception handling. More in detail:

• ExecutionException : exception throws if a generic error occurs during the query exe-
cution;

56

CHAPTER 4. INTERPRETER LAYER 57

• TypeCheckingException : exception throws when a type error occurs during the query
execution: as instance, if an object of typeT is returned by an operator, but a different type
was expected. Type checking is mainly static, i.e. applied before the execution of the query
during the parsing of the XML document, but some operators, such asEXT CALL, may
require a dynamic type checking performed at run-time.

• InvalidKDDMLQueryException : exception throws when the input query is not valid.
This exception is static, i.e. it is throws before during the checking of the query, as instance
when an operator (resp. algorithm) has an illegal attribute (resp. parameter).

• DBMSConnectionException exception throws if a connection to an external DBMS
fails.

• EmptyResultsException : exception throws when an empty output object is returned
by an operator, but it is not required by the interpreter.

• UnsupportedAlgorithmException : exceptions throws when a required algorithm is
not supported by the system.

Interpreter I/O (see figure C.2)

TheInterpreterIO interface contains the following abstract methods:

• public void enableVerboseMode(boolean enable);
it enables (or disables) the output messages in the standard output during the execution of
the query.

• public void enableLogFile(boolean enable);
when the input argument istrue, the method prints the output messages in a log file stored
in the root directory during the execution of the query.

Interpreter checking (see figure C.3)

TheInterpreterChecker interface contains the following abstract methods:

• public void validateQuery() throws InvalidKDDMLQueryException, UnsupportedAlgorith-
mException, DBMSConnectionException;
tests if the query is valid before his execution. More precisely, it recursively tests that:

1. the attributes are valid (i.e. they respect the DTD specification), for each operator
belonging to the query;

2. the parameters are valid (i.e. they respect the DTD specification), for each algorithm
belonging to the query;

3. all required algorithms inside the input query are supported by the system;

4. the conditions signature are valid, for each condition specification belonging to the
query.

CHAPTER 4. INTERPRETER LAYER 58

If the query contains aDATABASELOADERor a DATABASEWRITERoperator, then the
operator checks for user and password fields used during the JDBC connection. If user and
password are not specified in the query syntax, then a pop-up frame will be open at run-time.

Interpreter execution (see figure C.4)

TheInterpreterRunner interface contains the following abstract methods:

• public KDDMLObject getResult();
returns the object obtained after the execution of the query. Can returnnull if the query do
not provide a result (e.g. if an exception occurs) or before invoking the methodresolve().

• public String getMessageResult();
returns the message describing the result of the execution: returns“error: < exception
description>” if an exception occurs during the query execution; returns“success” if no
errors occur; returnsnull if the method is invoked before the methodresolve().

• public void resolve() throws ExecutionException, TypeCheckingException, EmptyResultsEx-
ception, InvalidKDDMLQueryException, UnsupportedAlgorithmException;
starts the interpreter on the KDD query, storing the final object result inside a class variable.
The method throws an exception if an error occurs.

The core algorithm of the interpreter is reported in Fig.4.1. The interpreter recursively tra-
verse the DOM tree representation of the query, yielding aKDDMLObject as a result. Also, the
expected type of the result is passed together the query.

At each tag, the strict functional interpretation is applied. AOperatorResolver object
and aOperatorSettings object are constructed from the XML tag using a factory of objects
from the operators layer (line 8-11). At line 13 the set of attributes for the current operator is
stored inside an hash-table structure1. In the next two lines, the list of XML elements representing
the children of the current tag operator are extracted. Then, each sub-element is evaluated (line
17-21), returning a vector ofKDDMLObject . The operator provides the expected type for the
sub-element. Finally, arguments types are checked atline 24and the current operator is executed
on the vector and hash-table above (line 25). Exceptions are raised on critical situations (lines
29-31).

The general interpreter of KDDML is however a little bit more complex. Tags with meta-
meaning, such as<IF> and<CALL QUERY>must be taken into account. Figure4.2 shows the
overall interpreter, which distinguishes three cases:

• The<IF> tag (line 13-23) has a non-strict semantics. The methodgetConditionInputStm()
returns the<COND>sub-element that is evaluated first, returning aKDDMLObject . The
XQuery expression is then evaluated (line 18), returning a truth value. Based on that, the
<THEN>or the<ELSE>branch are evaluated and their result returned as the overall result.
A run-time checking in performed on output result.

1The interpreter assumes that the query is valid before executing it; i.e. the set of attributes and algorithm parame-
ters has been checked by using the appropriate method.

CHAPTER 4. INTERPRETER LAYER 59

1. protected KDDMLObject resolveCore(Element query, ResultType type)
2. throws ExecutionException, TypeCheckingException,
3. EmptyResultsException, InvalidKDDMLQueryException,
4. UnsupportedAlgorithmException
5. {
6. try {
7. String tag_name = query.getTagName();
8. OperatorResolver opr =
9. OperatorFactory.newResolverInstance(tag_name);
10. OperatorSettings ops =
11. OperatorFactory.newSettingsInstance(tag_name);
12.
13. Hashtable attributes = prepareAttributes(query);
14. Vector params = new Vector();
15. Vector children = XMLDocument.getChildren(query);
16.
17. for (int i=0; i<children.size(); i++) {
18. Element elem = (Element) children.get(i);
19. KDDMLObject obj = resolve(elem, opr.getArgumentType(i));
20. params.add(obj);
21. }
22.
23. attributes = ops.refreshAttributes(attributes);
24. opr.checkArgumentTypes(params);
25. return opr.execute(attributes, params);
26. catch(OperatorException e1) {
27. throw new ExecutionException(...);
28. }
29. catch(KDDMLCoreException e2) {
30. throw new ExecutionException(...);
31. }
32. }

Figure 4.1: The core KDDML interpreter

CHAPTER 4. INTERPRETER LAYER 60

• The <CALL QUERY>tag (line 27-31) has a meta-interpretation. We recall that attributes
specify actual and formal parameters for the called queries. The methodloadQuery()loads
the called query from the system repository. Them, it performs a parameters substitution
(i.e. each formal parameter is replaced with the actual parameter) returning the query that
must be evaluated by the interpreter. Also in this case, a run-time checking is performed on
output result.

• The third case is the KDDML core interpreter of Fig.4.1 (lines 34-53). When the method
resolveCore(query)terminates, the integrity of the final result is checked, as shown atline
35. If the operator claims for dynamic type checking, the returned result is checked against
the expected type (lines 42-44). Further control concerns empty output, as shown atlines
46-48. Finally, if the result needed to be stored in the data/model repository, the method
saveToRepository()is invoked (lines 50-52).

Finally, observe that as shown by the overall query execution code, the KDDML interpreter
layer is not affected by any system extension, both concerningalgorithms extensibility, operators
extensibilityandmodel extensibility.

CHAPTER 4. INTERPRETER LAYER 61

1. protected KDDMLObject resolve(Element query, KDDMLObjectType type)
2. throws ExecutionException, TypeCheckingException,
3. EmptyResultsException, InvalidKDDMLQueryException,
4. UnsupportedAlgorithmException
5. {
6. KDDMLObject result = null;
7. Element children = query.getChildren();
8. String tag_name = query.getTagName();
9.
10. switch(tag_name) {
11. case "IF":
12.
13. IfResolver ifr = new IfResolver(query);
14. // evaluates the condition
15. KDDMLObject cond_obj = resolve(ifr.getConditionInputStm(),
16. KDDMLObjectType.ANY);
17.
18. if(ifr.evaluateXQueryExpression(cond_obj.getPhysicalObject())
19. result = resolve(ifr.getThenStm(), type);
20. else
21. result = resolve(ifr.getElseStm(), type);
22. runTimeChecking(result, type);
23. break;
24.
25. case "CALL_QUERY":
26.
27. CallQueryResolver resolver = new CallQueryResolver(query);
28. Element calledQuery = resolver.loadQuery();
29. result = resolve(calledQuery, type);
30. runTimeChecking(result, type);
31. break;
32.
33. default:
34. result = resolveCore(query);
35. if (result == null) {
36. throw new EmptyResultsException(tag_name);
37. }
38.
39. String xml_dest = query.getAttribute("xml_dest");
40. OperatorResolver opr =
41. OperatorFactory.newResolverInstance(tag_name);
42. if ((opr.runTimeCheckNeeded())) {
43. runTimeChecking(result, type);
44. }
45.
46. if ((result.isEmpty()) && (opr.abortIfIsEmpty())) {
47. throw new EmptyResultsException(tag_name);
48. }
49.
50. if ((xml_dest != null) && (opr.saveXMLOutput())) {
51. result.saveToRepository();
52. }
53. break;
54. }
55. return result;
56. }

Figure 4.2: The KDDML interpreter

APPENDIX A

UML core layer diagrams

Figure A.1: Package kddml.Core - Manager

62

APPENDIX A. UML CORE LAYER DIAGRAMS 63

Figure A.2: Package kddml.Core - KDD query

Figure A.3: Package kddml.Core - Types

APPENDIX A. UML CORE LAYER DIAGRAMS 64

Figure A.4: Package kddml.Core - Exceptions

APPENDIX A. UML CORE LAYER DIAGRAMS 65

Figure A.5: Package kddml.Core - Factory

APPENDIX A. UML CORE LAYER DIAGRAMS 66

Figure A.6: Package kddml.Core.DataSources - Manager

APPENDIX A. UML CORE LAYER DIAGRAMS 67

Figure A.7: Package kddml.Core.DataSources - Preprocessing

APPENDIX A. UML CORE LAYER DIAGRAMS 68

Figure A.8: Package kddml.Core.DataSources - Statistics

APPENDIX A. UML CORE LAYER DIAGRAMS 69

Figure A.9: Package kddml.Core.DataSources - Factory

APPENDIX A. UML CORE LAYER DIAGRAMS 70

Figure A.10: Package kddml.Core.DataMining - Model manager

APPENDIX A. UML CORE LAYER DIAGRAMS 71

Figure A.11: Package kddml.Core.DataMining - Data dictionary

Figure A.12: Package kddml.Core.DataMining - Mining schema

APPENDIX A. UML CORE LAYER DIAGRAMS 72

Figure A.13: Package kddml.Core.DataMining - Matrixes

APPENDIX A. UML CORE LAYER DIAGRAMS 73

Figure A.14: Package kddml.Core.DataMining - Model factory

APPENDIX A. UML CORE LAYER DIAGRAMS 74

Figure A.15: Package kddml.Core.DataMining.AssociationRules - Manager

APPENDIX A. UML CORE LAYER DIAGRAMS 75

Figure A.16: Package kddml.Core.DataMining.AssociationRules - Items

Figure A.17: Package kddml.Core.DataMining.AssociationRules - Itemsets

APPENDIX A. UML CORE LAYER DIAGRAMS 76

Figure A.18: Package kddml.Core.DataMining.AssociationRules - Association Rules

Figure A.19: Package kddml.Core.DataMining.AssociationRules - Transactions

APPENDIX A. UML CORE LAYER DIAGRAMS 77

Figure A.20: Package kddml.Core.DataMining.AssociationRules - Factory

APPENDIX A. UML CORE LAYER DIAGRAMS 78

Figure A.21: Package kddml.Core.DataMining.SequentialPatterns - Manager

APPENDIX A. UML CORE LAYER DIAGRAMS 79

Figure A.22: Package kddml.Core.DataMining.SequentialPatterns - Sequence element

APPENDIX A. UML CORE LAYER DIAGRAMS 80

Figure A.23: Package kddml.Core.DataMining.SequentialPatterns - Sequence

APPENDIX A. UML CORE LAYER DIAGRAMS 81

Figure A.24: Package kddml.Core.DataMining.SequentialPatterns - Sequence rule

APPENDIX A. UML CORE LAYER DIAGRAMS 82

Figure A.25: Package kddml.Core.DataMining.SequentialPatterns - Delimiter

Figure A.26: Package kddml.Core.DataMining.SequentialPatterns - Data sequence

APPENDIX A. UML CORE LAYER DIAGRAMS 83

Figure A.27: Package kddml.Core.DataMining.SequentialPatterns - Factory

APPENDIX A. UML CORE LAYER DIAGRAMS 84

Figure A.28: Package kddml.Core.DataMining.ClassificationTrees - Manager

APPENDIX A. UML CORE LAYER DIAGRAMS 85

Figure A.29: Package kddml.Core.DataMining.ClassificationTrees - Nodes

APPENDIX A. UML CORE LAYER DIAGRAMS 86

Figure A.30: Package kddml.Core.DataMining.ClassificationTrees - Predicates

APPENDIX A. UML CORE LAYER DIAGRAMS 87

Figure A.31: Package kddml.Core.DataMining.ClassificationTrees - ScoreDistribution

APPENDIX A. UML CORE LAYER DIAGRAMS 88

Figure A.32: Package kddml.Core.DataMining.ClassificationTrees - Factory

APPENDIX A. UML CORE LAYER DIAGRAMS 89

Figure A.33: Package kddml.Core.DataMining.Clustering - Manager

APPENDIX A. UML CORE LAYER DIAGRAMS 90

Figure A.34: Package kddml.Core.DataMining.Clustering - Cluster description

APPENDIX A. UML CORE LAYER DIAGRAMS 91

Figure A.35: Package kddml.Core.DataMining.Clustering - Comparison measure

APPENDIX A. UML CORE LAYER DIAGRAMS 92

Figure A.36: Package kddml.Core.DataMining.Clustering - Attribute comparison measure

APPENDIX A. UML CORE LAYER DIAGRAMS 93

Figure A.37: Package kddml.Core.DataMining.Clustering - Clusters

APPENDIX A. UML CORE LAYER DIAGRAMS 94

Figure A.38: Package kddml.Core.DataMining.Clustering - Cluster statistics

APPENDIX A. UML CORE LAYER DIAGRAMS 95

Figure A.39: Package kddml.Core.DataMining.Clustering - Factory

APPENDIX A. UML CORE LAYER DIAGRAMS 96

Figure A.40: Package kddml.Core.DataMining.Taxonomy - Manager

APPENDIX A. UML CORE LAYER DIAGRAMS 97

Figure A.41: Package kddml.Core.DataMining.Taxonomy - Factory

APPENDIX A. UML CORE LAYER DIAGRAMS 98

Figure A.42: Package kddml.Core.QueryElement - Query element manager

Figure A.43: Package kddml.Core.QueryElement - Algorithm specification

Figure A.44: Package kddml.Core.QueryElement - XML element

APPENDIX A. UML CORE LAYER DIAGRAMS 99

Figure A.45: Package kddml.Core.QueryElement.Condition - Manager

Figure A.46: Package kddml.Core.QueryElement.Condition - Boolean condition

Figure A.47: Package kddml.Core.QueryElement.Condition - Compound condition

APPENDIX A. UML CORE LAYER DIAGRAMS 100

Figure A.48: Package kddml.Core.QueryElement.Condition - Base condition

APPENDIX A. UML CORE LAYER DIAGRAMS 101

Figure A.49: Package kddml.Core.QueryElement.Condition - Factory

APPENDIX A. UML CORE LAYER DIAGRAMS 102

Figure A.50: Package kddml.Core.QueryElement.Expression - Manager

Figure A.51: Package kddml.Core.QueryElement.Expression - Factory

APPENDIX A. UML CORE LAYER DIAGRAMS 103

Figure A.52: Package kddml.Core.Scalar - Scalar manager

Figure A.53: Package kddml.Core.Scalar - Scalar types

APPENDIX A. UML CORE LAYER DIAGRAMS 104

Figure A.54: Package kddml.Core.Scalar - String type

Figure A.55: Package kddml.Core.Scalar - Enumeration type

Figure A.56: Package kddml.Core.Scalar - File type

APPENDIX A. UML CORE LAYER DIAGRAMS 105

Figure A.57: Package kddml.Core.Scalar - List type

APPENDIX A. UML CORE LAYER DIAGRAMS 106

Figure A.58: Package kddml.Core.Scalar - Range type

APPENDIX B

UML operator layer diagrams

Figure B.1: Package kddml.Operators - Operator settings and operator resolver

107

APPENDIX B. UML OPERATOR LAYER DIAGRAMS 108

Figure B.2: Package kddml.Operators - Algorithm settings task and algorithm resolver task

APPENDIX B. UML OPERATOR LAYER DIAGRAMS 109

Figure B.3: Package kddml.Operators - Operator and algorithm factory

Figure B.4: Package kddml.Operators - Exceptions

APPENDIX B. UML OPERATOR LAYER DIAGRAMS 110

Figure B.5: Package kddml.Operators.IO - Settings

APPENDIX B. UML OPERATOR LAYER DIAGRAMS 111

Figure B.6: Package kddml.Operators.IO - Resolver

APPENDIX B. UML OPERATOR LAYER DIAGRAMS 112

Figure B.7: Package kddml.Operators.Preprocessing - Settings

APPENDIX B. UML OPERATOR LAYER DIAGRAMS 113

Figure B.8: Package kddml.Operators.Preprocessing - Resolver

APPENDIX B. UML OPERATOR LAYER DIAGRAMS 114

Figure B.9: Package kddml.Operators.DataMining - Settings

APPENDIX B. UML OPERATOR LAYER DIAGRAMS 115

Figure B.10: Package kddml.Operators.DataMining - Resolver

APPENDIX B. UML OPERATOR LAYER DIAGRAMS 116

Figure B.11: Package kddml.Operators.Postprocessing - Settings

Figure B.12: Package kddml.Operators.Postprocessing - Resolver

APPENDIX B. UML OPERATOR LAYER DIAGRAMS 117

Figure B.13: Package kddml.Operators.Unclassified - Settings

Figure B.14: Package kddml.Operators.Unclassified - Resolver

APPENDIX C

UML interpreter layer diagrams

Figure C.1: Package kddml.Interpreter - Exceptions

118

APPENDIX C. UML INTERPRETER LAYER DIAGRAMS 119

Figure C.2: Package kddml.Interpreter - I/O

APPENDIX C. UML INTERPRETER LAYER DIAGRAMS 120

Figure C.3: Package kddml.Interpreter - Checker

APPENDIX C. UML INTERPRETER LAYER DIAGRAMS 121

Figure C.4: Package kddml.Interpreter - Executor

	Table of contents
	KDDML system overview
	System architecture
	Core layer
	Operators and algorithms layer
	Interpreter layer
	User interface layer

	Installing and configuring KDDML
	Downloading
	Installing the Java support
	Installing and running KDDML
	Integrating KDDML into your application
	Physical organization and external libraries

	Packages design overview
	Organization of this guide

	Core layer
	Package kddml.Core
	Package kddml.Core.DataSources
	Package kddml.Core.DataMining
	Package kddml.Core.DataMining.AssociationRules
	Package kddml.Core.DataMining.SequentialPatterns
	Package kddml.Core.DataMining.ClassificationTrees
	Package kddml.Core.DataMining.Clustering
	Package kddml.Core.DataMining.Taxonomy

	Package kddml.Core.QueryElement
	Package kddml.Core.QueryElement.Condition
	Package kddml.Core.ProprietaryElement.Expression

	Package kddml.Core.Scalar
	Extending the core layer
	Adding a new external resource
	Adding a new base condition specification
	Adding a new mining model

	Operators and algorithms layer
	Package kddml.Operators
	Package kddml.Operators.IO
	Package kddml.Operators.Preprocessing
	Package kddml.Operators.DataMining
	Package kddml.Operators.Postprocessing
	Package kddml.Operators.Unclassified
	Extending the operators layer
	Adding a new algorithm
	Adding a new operator
	Adding a new class of algorithms

	Interpreter layer
	Package kddml.Interpreter
	Appendices

	UML core layer diagrams
	UML operator layer diagrams
	UML interpreter layer diagrams

