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Abstract

Knowledge discovery in databases (KDD) covers a wide range of application domains (retail,
marketing, finance, e-commerce, biology, privacy, only to cite a few ones), several models of rep-
resenting extracted patterns and rules (including classification models, association rules, sequential
patterns, clusters) and a large number of algorithms for data preprocessing, model extraction and
model reasoning.

KDDML is a middleware XML-based language (and system) needed to support the development
of final applications or higher level systems which need a mixture of database access, data pre-
processing, mining extraction and deployment.

As the name suggests, KDDML is heavily based on XML as a representation language for data,
models and queries. The language is primarily intended as a middleware language on the basis
of which higher abstraction levels can be built, such as vertical applications or more declarative
languages. Also, the language tries to be as much as possible independent from lower level imple-
mentations of data mining algorithms, with the aim of confining the technicalities at the level of
the implementation of the KDDML system.

This document describes in detail KDDML as KDD language whose design principles are moti-
vated by requirements derived from recurring patterns in the KDD process.
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Copyright

KDDLab group

University of Pisa

Department of Computer Science
Largo Bruno Pontecorvo, 3
56127, Pisa, ITALY



CONTENTS

1 Getting started 7
1.1 Motivations . . . . . . o o e e e 7
1.2 KDDML language Overview. . . . . . . . . . o v i i e e e e e 9

121 Asimplesample. . . . . . . ... 9
1.2.2 KDDMLastypedlanguage. . . . . . ... ... ... .. ... ..., 10
1.3 Organizationofthisguide. . . . . . . . . . . . .. .. . .. .. 11

2 KDDML Objects 12
2.1 ObjectsHierarchy . . . . . . . . . . . . e 12
2.2 Datarepresentation . . . . . . . . . ... e e 13

221 Llogicaldata . . . . . . . . . ... 14
2.2.2 TaxONOMIES . . . . . . v o e e e 16
2.2.3 Physical data: relational tables, transactional tables and timestamp tablés
2.2.4 Preprocessingtables. . . . . .. .. ... .. ... 21
2.3 Knowledge representation . . . . . . . . .. ... e 23
2.3.1 Associationmodel. . . . . ... Lo L 24
2.3.2 Sequencemodel . . .. ... ... 26
233 Treemodel. . . . . . . ... 26
2.3.4 Clusteringmodel . . . .. .. ... .. ... .. ... 28
2.3.5 Hierarchymodel. . . . . . ... ... ... . 30
24 KDDML Scalar. . . . . . . e 30
2.5 Queriesrepresentation . . . . . .. ... 30

3 KDDML operators 39

3.1 Classificationofoperators. . . . . . . . . . . . . e 40
3.1.1 l/Ooperators. . . . . . .. e e 40
3.1.2 Preprocessingoperators. . . . . . . .. . e e e 40
3.1.3 Miningoperators. . . . . . . ... e e e e e 42



CONTENTS

3.2

2
3.1.4 Postprocessingoperatars . . . . . . ... e e e e e e 42
3.1.5 Controlflowoperators . . . . . . .. .. .. 44
3.1.6 Unclassifiedoperators . . . . . . . . . . . . .. 44
Operators specification . . . . . . . . . . . .. . . e 44
3.21 ARFELOADER . . . . . . . e 44
3.2.2 ARFEWRITER . . . . . . e 45
3.2.3 CALLQUERY . . . . . e a7
3.24 CLUSTERCENTROID . . .. .. ... . . e 48
3.25 CLUSTERLOADER . . . . . .. . . . . i e . 48
3.26 CLUSTERMINER . . . . . .. . . . . . 49
3.2.7 CLUSTERNUMBER . . ... ... . . . . . e 50
3.2.8 CLUSTERPARTITION . . . . . . . e e e 51
3.2.9 CLUSTERPARTITION.SPARROW . . . . . . ... ... ... ..... 51
3.2.10 DATABASELOADER . . . . . . . . . . e 52
3.2.11 DATABASEWRITER . . . . . . . . . 54
3.2.12 EXTCALL . . . . . 55
3.2.13 HIERARCHYLOADER. . . . . . . . . e 56
3214 IF . . . e 56
3.2.15 MISCLASSIFIED . . . . . . . . . e 57
3.2.16 PARQUERY . . . . . . . e 58
3.2.17 PMMLCLUSTERLOADER . . . . . . . . . .. . 59
3.2.18 PMMLRDA_LOADER . . . . . . . . 60
3.2.19 PMMLSEQUENCELOADER . . . . . . . .. . .. ... .. ... ... 61
3.2.20 PMMLTREELOADER. . . . . . . . . . e e 61
3.2.21 PPADD HIERARCHY . . . . . . . . e 62
3.2.22 PPCHANGETYPE . . . . . . . e 63
3.2.23 PEDIVIDING ATTRIBUTE . . . ... .. . .. . 64
3.2.24 PPFILTERATTRIBUTES . .. . .. . . . .. . . .. 65
3.2.25 PPFOLDING . . . . . . . e 66
3.2.26 PPHIERARCHICAL DISCRETIZATION . . . ... .. ... ... ... 66
3.2.27 PPMARKING . . . . . 67
3.2.28 PPMARK DUPLICATES . . . . . . . . . e 69
3.2.29 PPMERGEDUPLICATES . . . . . . . . . o 70
3.2.30 PENEWATTRIBUTE . . . . . . . . . e 71
3.2.31 PPNORMALIZATION . . . . . . e e e 72
3.2.32 PENUMERICDISCRETIZATION . . . . . . . . . ... o .. 73
3.2.33 PENUMERIC_LABELING . . . . .. .. ... .. . . . .. 73
3.2.34 PPREMOVEROWS . . . . . . . . . e 74
3.2.35 PPRENAMEATTRIBUTES . . . . . . . . .. .. . . 75
3.2.36 PPREWRITING . . . . . . . . e e e e e 76
3.2.37 PEPSAMPLING . . . . . . . e 79
3.2.38 PPSORTINGATTRIBUTE . . . . . . . . . . e 79
3.2.39 PPTABLE 2 TABLE . . . . . . . . . . . i 80
3.2.40 PPTABLE LOADER . . . . . . . . . . . it 81



CONTENTS 3
3.241 RDAEXCEPTION. . . . . . . e e e e 81
3.242 RDAFILTER. . . . . . . e e e e 82
3.243 RDALOADER. . . . . . . e 83
3.244 RDAMINER . . . . . . . . . e 84
3.245 RDAPRESERVED . . . . . . . . . e 85
3.246 RDASATISFY . . . . . e 86
3.247 SCALAR. . . . . e 87
3.2.48 SEQUENCEAGGREGATEFILTER . . . . .. ... ... ... ..... 87
3.2.49 SEQUENCEEXCEPTION . . . . . . . . ... . . 90
3.250 SEQUENCHILTER . . . . . . . . . . e 90
3.251 SEQUENCH. OADER . . . . . . . . e e 92
3.2.52 SEQUENCBVAXIMAL FILTER . . ... ... . ... ... . ..... 93
3.253 SEQUENCBMINER . . . . . . . . . . . . . e 93
3.254 SEQUENCERULE . . ... ... ... . . . .. . . . .. 94
3.255 SEQUENCESATISFY . . . . . . e e e e 96
3.256 SEQUENCHIMESTAMP_FILTER . . .. ... .. ... ... ..... 97
3.257 SEQQUERY . . . . . . . e 99
3.258 TABLE2 HIERARCHY . . . . . . . . . . . . .. 99
3.259 TABLE2 PPTABLE . . ... .. ... . . . . . .. 100
3.2.60 TABLELOADER . . . . . . . . . e 101
3.2.61 TREECLASSIFY . . . . . . e 102
3.2.62 TREELOADER . . . . . . . . . e e 102
3.2.63 TREEMETA CLASSIFIER. . . . . . . . . . .. .. . . . ... 103
3.2.64 TREEMINER . . . . . . . . . . . . . e 104

4 KDDML algorithms 106

4.1 Classification ofalgorithms. . . . . . ... ... ... ... .......... 107
4.1.1 Discretizationalgorithms. . . . .. ... ... ... ... ....... 107
4.1.2 Normalization algorithms. . . . . . . ... ... ... .. .. ... 107
4.1.3 Rewritingalgorithms . . . . .. ... ... ... ... . L. 107
4.1.4 Sampling algorithms . . . . . . .. .. ... .. ... L 108
4.1.5 RdAmineralgorithms. . . . . . .. . ... ... ..o 109
4.1.6 Treemineralgorithms. . . . . . ... .. ... ... ... ....... 109
4.1.7 Cluster mineralgorithms.. . . . . .. .. ... ... ... ....... 109
4.1.8 Sequencemineralgorithms . . . . . .. ... ... ... ... ... 110

4.2 Algorithms specification. . . . . . . . . . . . . 110
421 Byclustersampling. . . . . . .. ... 110
4.2.2 CAGE (CellulAr GEneting programmingtool) . . . . . . ... ... .. 111
4.2.3 DCI (DirectCount & Intersect). . . . . . ... .. ... ... ..... 113
4.2.4 EM (Expectation Maximization) . . . . . .. ... .. ... .. ..., 114
4.2.5 Equal frequency discretization. . . . . . .. ... ... oL, 115
426 KMeans . . . . . . . . e e 116
4.2.7 Min-max normalization. . . . . ... .. ... ... ... .. 118
4.2.8 Natural binning discretization . . . . .. .. ... .. ... ...... 118



CONTENTS 4
429 PrefixSpan . . . . ... e 120
4210 RuleM . . . . e 121
4211 RUleS . . . . e 122
4212 RuleT . . . e 124
4.2.13 Simplesampling. . . . . . . ... ... 125
4.2.14 Stratifiedsampling . . . . . . . . .. 127
4.2.15 YaDT (Yet Another Decision Tree builder) . . . . . . .. .. ... ... 128
4.2.16 Z-score normalization. . . . . . . . . .. ... 129

AppendiCes . . . . . . e 132
A Extending the KDDML language 132
A.l Addinganewalgorithm . . . .. ... ... ... ... .. .. ... . ..., 132
A.2 Addinganewoperator. . . . . . . .. e e e e e 132
A3 Addinganewmodel. . . . . .. ... . ... 134
A.4 Example: adding anaive bayesmodel. . . . . ... ... ... o L. 135
A4.1 Physicalmodel. . . . .. ... 135
A4.2 Modelentity . . . ... .. . . 136
Ad.3 Operators. . . . . . . o e e e e 136
A.4.4 Operatorone: modelloader . . . . .. ... ... ... ........ 136
A.4.5 Operatortwo: modelminer. . . . . . ... ... ... ... ... ... 136
A.4.6 Operatorthree: classifier. . . . . .. ... ... ... .. ... .... 137



2.1
2.2
2.3
2.4
2.5

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
3.10
3.11
3.12
3.13
3.14
3.15

4.1
4.2
4.3
4.4
4.5
4.6

LIST OF TABLES

The weatherdataset. . . . . . . . . . . . . .. . . . .. . . 17
A sample transactionaltable . . . . . .. ... ... ... ... .. .. ... 20
A sample timestamptable. . . . . .. ... ... o 21
Condition specification for the elementTlEERM of expressions. . . . . . .. .. 37
Correspondence between XML entities and KDDML types. . . . . . .. . .. 38
/O operators. . . . . . . . e e e 40
Preprocessingoperatars . . . . . . . . . e e e e e e e 42
MiNiNg OPerators. . . . . . . . o i e e e e 42
Postprocessing operators. . . . . . . . ... e e e 43
Control flow operators. . . . . . . . . . . .. 44
Unclassified operators. . . . . . . . . . . . . . e 44
Element BASECOND for IFoperator. . . . . . . ... .. .. .. . ... .... 58
Element BASECOND for PPMARKING operator. . . . . .. .. ... .. ... 69
Element BASECOND for the PPREMOVE ROWS operator . . . . . ... . .. 76
Element BASECOND for the PPREWRITING operator. . . . . .. ... .. .. 78
Element BASECOND for the RDAFILTER operator . . . . .. .. .. ... .. 84
An example of market sequencedataset . . . . .. ... .. ... ... .. .. 88
Element BASECOND for the SEQUENCEAGGREGATEFILTER operator. . . 89
Element BASECOND for the SEQUENCE-ILTER operator . . . . . . . .. .. 92
An example of item hierarchy as relationaltable. . . . . ... ... ... ... 100
Discretization algorithms . . . . . . . . . . . .. ... 107
Normalization algorithms . . . . . . . . . .. . ... ... ... ... ... .. 107
Rewriting algorithms. . . . . . . . . .. .. ... .. ... .. 108
Data sampling algorithms. . . . . . . . . .. .. ... ... ... . ...... 108
RdAAmineralgorithms . . . . . . . . . . . . . . . .. . 109
Treemineralgorithms. . . . . . . . . . . .. . . . 109



LIST OF TABLES 6

4.7 Clustermineralgorithms . . . . . . . . . . .. .. .. .. 109
4.8 Sequence mineralgorithms. . . . . . .. ... ... o L oL 110
4.9 by cluster _sampling parameters.. . . ... .. ... ... ... ... .. 111
4.10 CAGE parameters. . . . . . . . . . . e e e 112
4,11 DClparameters . . . . . . . o i e e e e 114
4,12 EM parameters. . . . . . . . e e e e e e 115
4.13 equal _frequency _discretization parameters. . . . ... ... ... .. 116
4.14 KMeans parameters. . . . . . . . . . . . e e e e 117
4.15 min _-max_normalization parameters. . . . . . ... ..o 118
4.16 natural _binning _discretization parameters. . . . .. ... ... ... 120
4.17 prefixspan parameters . . . . . . ... e e e 121
4.18 rule _mrewriting parameters. . . . . . ... e e 122
4.19 rule _s_rewriting parameters. . . . . . ... 124
4.20 rule _t rewriting parameters. . . . . . ... 125
4.21 simple _sampling parameters.. . . . .. .. .. ... ... .. ... 126
4.22 stratified _sampling parameters.. . . . .. ... ... .. 0. 128

4,23 YaDT parameters . . . . . . . . e e e e e e 129



CHAPTER 1

Getting started

With the rapid computerization of businesses and organizations, a huge amount of data has been
collected and stored in databases, and the rate at which data are stored is growing at a phenomenal
rate. As aresult, traditional ad hoc mixtures of statistical techniques and data management tools are
no longer adequate for analyzing this vast collection of data. Knowledge Discovery in Databases
(or KDD in short) has emerged as a growing field of multidisciplinary research for discovering
interesting/useful knowledge from large databases. KDD covers a wide range of application do-
mains (retail, marketing, finance, e-commerce, biology, privacy, only to cite a few ones), several
models of representing extracted patterns and rules (including classification models, association
rules, sequential patterns, clusters) and a large number of algorithms for data preprocessing, model
extraction and model reasoning.

1.1 Motivations

KDD [1] is the process of finding “nuggets” of knowledge. Itis a complex task, heavily dependent

on the problem and on the data at hand. As described in the CRISP-DM process Zhatieidy

consist of several repeated phases including business problem understanding, data comprehension,
data preparation, modelling (or data mining), evaluation and deployment. The development of
KDD solutions requires then to specify the tasks at each phase and the interactions/dependencies
among them. Most of the times, this results is a complex process, requiring to combine different
sources of data and knowledge, and with many tasks iterated in order to reach a (unfortunately,
local) optimum. Figurél.1shows an example of KDD process.

KDD technology has reached a maturity state as far as the design of efficient knowledge extrac-
tion algorithms is concerned. This is witnessed by the large number of commercial tools (including
all major RDBMS) offering KDD algorithms. On the contrary, the design of final applications is
still an “art”, obtained by composing algorithm libraries, proprietary API's, SQL queries and stored
procedure calls to RDBMS, anduch mucltode.

7
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Figure 1.1: The KDD process

At present, there is a fervent activity of standardization in the area of mining model representa-
tion and access and of mining algorithms APBS, [4]. We think that a middleware language and
system is needed to support the development of final applications or higher level systems which
need a mixture of database access, data preprocessing, mining extraction and deployment. XML
appears as a bridge between database technology and data mining tools. However, its use seems
limited to the exchange of mining models between applications. We would like to go further and
conceive a language (and system) where XML is used for processing data and mining models as
well. XML is largely used as a machine-processable language, e.g. in the web technology. It
seems then natural to express KDD operations as XML elements.

In the rest of the document, we concentrate on the description of KDDML as KDD language
whose design principles are motivated by requirements derived from recurring patterns in the KDD
process.
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1.2 KDDML language overview

KDDML (Knowledge Discovery in Database Mark-up Language) is a middleware language (and
system) needed to support the development of final applications or higher level systems which
demand a KDD integrated environment.

The KDDML language is XML-based both for query syntax and data/model representation,
in order to favormachine-processability. However, the semantics is purely “functional”, which
ensuresompositionality of operators. Compositionality is granted bylasure principle.

The semantics of a KDDML language expression is either a model or a data table. Therefore,
we call a KDDML language expressionkkDDML query, in order to emphasize that a result
is expected. We will survey operators on data access and preprocessing, model extraction and
deployment, and control flow operators. Concerning data and model representation, an XML-
based approach is adopted here as well. In particular, models are represented using an extension
of the Predictive Markup Modelling Language standard (PMM3]) About relational tables, we
use a proprietary representation that is a mixture between XML and text.

The KDDML language assumedata repository containing relational and preprocessing ta-
bles, amodel repositorycontaining mining models, andguery repository containing queries.
Tables, models and queries can be referenced by an identiftdDML queries are XML-
documents, where XML tags correspond to operations on data and/or models, XML attributes
correspond to parameters of those operations and XML sub-elements define arguments passed to
the operators.

1.2.1 A simple sample

As an example, the query of figuite2 specifies the construction and application of a decision tree.
The root tag iKKDDQUERY >with the query nhame as an attribute.

<TREECLASSIFY> is the operator that applies a decision tree to predict the class of tuples in
a test set. The attributenl _dest="results.xml" states that the results of the classification
are stored in the data repository for further processing or analysis.

The tree to be applied is provided by the first sub-element (witkTeREEMINER> which
specifies the construction of a classification tree.

The test set is provided by the second element (withiB§BLE LOADER?, which specifies
a relational table nameestSet.xml gathered from the local data repository.

In turn, the construction of a decision tree (®REEMINER>) takes place on a training
set trainingSet.arff in ARFF format by applying a decision tree induction algorithm
(here, YADT from p]) with parameters concerning the pruning strategy of the algorithm (tag
<ALGORITHMY». The name of the class attribute is provided as attribute ocfTHREEMINER>
element. As it will be shown later on, the KDDML language embeds a library of (pre-processing
or mining) algorithms and basic mechanisms for adding new ones.

Before applying the algorithm on the training set, a preprocessing step is performed. The
<PP_REMOVERROWS»perator allow us to remove all instances having a missing value for the

1In the actual implementation, the identifier coincides with the name of the file where they are stored.
2The ARFF format is a text file consisting of a list of instances with the attribute value for each instance being
separated by a comma.
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<KDD_QUERY name="sample">
<TREE_CLASSIFY xml_dest="results.xml">
<TREE_MINER xml_dest="tree.xml" target_attribute="class">
<PP_TABLE_2_TABLE>
<PP_REMOVE_ROWS>
<TABLE_2_ PP TABLE>
<ARFF_LOADER arff_file_name="trainingSet.arff"* />
</ITABLE_2_PP_TABLE>
<CONDITION>
<BASE_COND op_type="is_missing" terml="@temperature"/>
</CONDITION>
</PP_REMOVE_ROWS>
</PP_TABLE_2_TABLE>
<ALGORITHM algorithm_name="YADT">
<PARAM name="confidence_for_pruning" value="0.4"/>
<PARAM name="num_instances_for_leaf" value="2"/>
</ALGORITHM>
</TREE_MINER>
<TABLE_LOADER xml_source="testSet.xml"/>
</TREE_CLASSIFY>
</KDD_QUERY>

Figure 1.2: A sample KDDML query.

attributetemperature  (tag <CONDITION>). Finally, the operatorsTABLE 2 PP_.TABLE>
and<PP_TABLE 2 _TABLE>allow us, respectively, to start and to finalize the preprocessing step
ontrainingSet.arff

1.2.2 KDDML as typed language

As one could expect, arguments of an operator must be of an appropriate type and sequence, i.e.
an operatosignaturemust be specified. We denote the signature of an opefator x ...t, — t
returning typet by defining a DTD for KDDML queries that constraints sub-elements to be of
typety, ...,t,. Thus, KDDML queries corresponds to terms in the algebra of operators, though
syntactically represented as XML documents.

Intuitively, there is one type for data sources, one type for preprocessing tables, one type for
each mining model (classification tree, association rules, sequential patterns, clusters) and one type
for hierarchies. Other proprietary objects denote special arguments such as algorithms definition
or conditions on table attributes. As shown in the next chapter, we call the root tag of language
objects aixKDDMLObject.

Under this interpretation, the semantics of a KDDML query amounts to a strict functional
execution of the corresponding term. The evaluation of an XML-fragment:

<OPERATOR_NAME xml_dest="results.xml" attl="v1" ... attM="vM">
<ARG1 _NAME> .... </ARG1_NAME>
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<ARGNn_NAME> .... </ARGn_NAME>
</OPERATOR_NAME>

consists of:
1. evaluation of attributeattl ... attM returning a set of scalar values;

2. recursive evaluation of fragments frotdRGLNAME> ... </ARG1 NAME>to <ARGn-
NAME> .... </ARGn _NAME>this evaluation returns a set KDDMLODbject.

3. a call to an operatofyperator nave, @ccepting results from (1) and (2) and yielding the final
result of the fragment; also the final result iIKBDMLODbject .

Moreover, a copy of the final result (which may be an intermediate result of a possibly larger

guery) is stored in the (model or data) repository if the attribumé _dest is specified. Notice

that repositories are persistent, so to favor the reuse of extracted knowledge and preprocessed data.
As a by-product, the language satisfied@sure principle namely that any operator returning

typet can be used wherever an argument of tyerequired. Also, validation of queries as XML

documents against the DTD corresponds to static type-checking of operators in the query. As an

example, this fragment of the DTD:

<IELEMENT TREE_CLASSIFY ((%kdd_query_trees;),(%kdd_query_table;))>
<IATTLIST TREE_CLASSIFY xml_dest CDATA #IMPLIED>

requires that the first sub-elementofREECLASSIFY> be one of those in the entitydd-
_query _trees (i.e. all operators returning a tree model) and the second one is in the entity
kdd _query _table (i.e. all operators returning a table). In other terms, TREECLASSIFY
operator is a functiorf tree_crassiry> : tree X table — table. The DTD is then another (simple
and general) way of specifying an algebra of types and operators.

1.3 Organization of this guide

This document focuses on the language KDDML.: concepts, DTD specifications and algorithms
definitions. Background knowledge concerns XML and the related Document Type DefirGtion [

In section2 we provide a complete description of the objects (i.e. types) composing the KDDML
language: as previously reported, a DTD specification has been provided in order to define
regular KDDML objects;

in sections3 and 4 we report, respectively, the operators (sucifBEECLASSIFY) and algo-
rithms (such a¥aDT) language specification;

finally, in appendixA we explain how the DTD'’s of the language have to be extended in order to
introduce new algorithms, operators or models.



CHAPTER 2

KDDML Objects

KDDML is a middleware mark-up language that allows one to represent models, tables and
KDD queries in a uniform way. The aim is to develop an environment in which several kinds of
knowledge extraction operations can be combined, in order to describe and solve complex knowl-
edge extraction problems. As shown in the previous section, KDDML adopts the emerging XML
standard as a glue for query definition and data/model representation. In this section, we concen-
trate on the description of the KDDML objects that represent the core of the KDDML language.

2.1 Objects Hierarchy

When addressing the problem of defining a common representation for knowledge extraction
problems and their results, we followed the viewpoint of Imielinsky and Mannilawho define
two classes of fundamental objects: tK®D object (hereKDDMLObject) that is a result of a
KDD step such as a table or a set of association rules, anditizquery that is a predicate which
returns a result that is a KDD object.
The overall hierarchy dKkDDMLODbject is reported in figure2.1. Note that there is a subtype
of KDDMLObject for each possible result returned by an operator.
The set of types of KDDML operators consists of:

e PMMLrepresents a PMML model, i.e, a pattern returned by a DM algorithms or a post-
processing operator. In the actual implementation, we have considered association rules
(rda ), clusters €luster ), classification treedree ), sequential patternséquences )
and item hierarchieserarchy ).

e KDDMLTABLE represents both a relational tabtalfle ), such as the records of a data-
base relation or text file, and a preprocessing taPletdble ), obtained by applying a
preprocessing operator, such as a sampling or a normalization operator. Both relational and
preprocessing tables are in a proprietary format described later.

12
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Figure 2.1: Object hierarchy in the KDDML language

‘ Relational J

Preprocessing J

e KDDML Scalar represents a generic scalar valaeglar ), such as a number or a string.

e KDDQuery represents a KDD query, i.e. a composition of invocations to DM and pre-
processing algorithms by means of appropriate operators. Queries can use a conditional or
sequence operator, and they can be nested.

Other special types (not shown in figure) are used to define algorithm setiiggsithm ),
and condition specificationggndition ) on constant and/or table attribute values. Finally, a
typeexpression is defined to support the use of mathematical operations.

Notice that the use of KDDML makes it possible to represent not only models or KDD queries,
bus also objects such as tables or algorithms, in order to allow the construction of complex KDD
gueries that may cross the border between tuples and models several times possibly by using mul-
tiple layers of nesting. In the next sections, we describe KDDML objects more in detail.

2.2 Data representation

The KDDML language refers to two data repositories, containing relational tables and preprocess-
ing tables in different spacenames.

A relational table is represented as an XML file, containirgchemaand a reference to the
actual data, which are stored in CSV (Comma Separated Values) format. In principle, however,
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the coding of actual data can have any format: CSV has been chosen here as a trade-off between
readability (vs binary files) and space occupancy (vs XML).

A preprocessing table (PP table in short) is used in the preprocessing step of the KDD process.
With respect to the relational table, a PP table is composed by the data schema, the actual data
and, in addition, by preprocessing information such as marks associated to the physical instance
values. In the actual implementation, also the preprocessing information is stored in CSV format,
but other kind of representations can be available in future.

The KDDMLTABLE element represents both relational tables and PP tables and his DTD is
reported in figure2.2

<IELEMENT KDDML_OBJECT (KDDML_TABLE)>
<IELEMENT KDDML_TABLE(SCHEMA,(PPSCHEMA)?)>

<IATTLIST KDDML_TABLE data_file CDATA #REQUIRED>
<IATTLIST KDDML_TABLE pp_data_file CDATA #IMPLIED>

Figure 2.2: TheKkDDMLTABLEelement.

Summarizing, KDDMLTABLE s always composed by:

1. a logical schema (elemeBICHEMAthat includes attribute types and some simple statistic
on attributes values;

2. the physical instances referred by using the attrilolstia _file  containing the name of
the CSV file that is stored in the data repository.

A preprocessing table is similar to a relational table, but, in addition, it uses the element
PPSCHEMANd the attributgop_data _file in order to localize preprocessing description of
data (see later). Notice that both the elenfARECHEMANd the attributpp data _file are not
required; this distinguishes relational tables from preprocessing tables.

2.2.1 Logical data

Data connectivity standards offer APIs for connecting to a data source, for issuing SQL queries,
for navigating returned record sets, and for accessing database and record set meta-data. However,
this level of APIs can be considered as a physical level. A higher abstraction level concerns logical
data, i.e. domains of data to be used as input to data mining operations in order to specify the type
of usage of attributes in building and applying a mining model.

The elemenSCHEMApecifies metadata information, that is necessary to obtain some kind of
information about each attribute, which cannot be automatically derived from the attribute values.
The statistics for a table are made of the collection of the statistics for the single fields.

The figure 2.3 shows the DTD related to the elemé®€HEMAThis element is composed
by one or more elemen&TTRIBUTE, each of which specifies the name, the type and the sta-
tistics about a particular field of the table. The name of a data field must be unique in the data
schema, and the order the attributes corresponds to the column position in the data section of the
physical CSV file. For example, if an attribute is declared as the third one, then KDDML expects
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<IELEMENT SCHEMA (ATTRIBUTE+)>

<IATTLIST SCHEMA logical_name CDATA #REQUIRED>

<IATTLIST SCHEMA number_of attributes CDATA #REQUIRED>

<IATTLIST SCHEMA number_of instances CDATA #REQUIRED>

<IELEMENT ATTRIBUTE (STRING_DESCRIPTION |
NOMINAL_DESCRIPTION |
NUMERIC_DESCRIPTION), TAXONOMY?>

<IATTLIST ATTRIBUTE name CDATA #REQUIRED>

<IATTLIST ATTRIBUTE type (numeric|nominallstring) #REQUIRED>

<IATTLIST ATTRIBUTE number_of _missed_values CDATA #REQUIRED>

<IATTLIST ATTRIBUTE number_of missed values perc CDATA #REQUIRED>

Figure 2.3: ThesCHEMAIement.

that all values of that attribute will be found in the third comma delimited column. The attribute
logical _name contains the logical name of the table. Other attributes contain the number of
columns fumber _of _attributes ) and the number of instancesumber _of _instances )
belonging to the table.

The name (resp. type) of the attribute is expressed by using the attniduorie (resp. type )
in the ATTRIBUTE element. The datatype can be any of the three types currently supported by
KDDML.:

e numeric (both integer and real),
e discrete (binary, nominal or categorical),
e string.

Statistics on attribute values depend on the type of the attribute, as expressed by means the el-
ementsNUMERICDESCRIPTION NOMINALDESCRIPTION and STRING DESCRIPTION
Thenumber _of _missed _values (resp.number of missed _values _perc ) attribute con-
tains the absolute (resp. percentage) number of values that are missing for that attribute with re-
spect to the total number of instances.

Finally, the elemenTAXONOMuefines a new logical level, and it allows us to assign an item
hierarchy to a table column as meta-data information (see se2tidd).

Discrete attributes

Discrete values are defined by providing a nominal specification listing the possible values belong-
ing to a set of one or more elements, as reported in the DTD of figuteAs shown in the figure,

the element NOMINALDESCRIPTION is composed by one or more elements VALUE, each

of them representing the category of the nominal attribute. Atmaber _of _values attribute

counts the number of distinct categories belonging to the attribute. For each categuatuthe
attribute contains the name of the category, whilectirelinality (resp.cardinality _perc )
attribute provides the absolute (resp. percentage) number of instances with value equals to the cat-
egory name, with respect to the total number of instances without missing values for that attribute.
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<IELEMENT NOMINAL_DESCRIPTION (VALUE)+>

<IATTLIST NOMINAL_DESCRIPTION number_of_values CDATA #REQUIRED>
<IELEMENT VALUE EMPTY>

<IATTLIST VALUE value CDATA #REQUIRED>

<IATTLIST VALUE cardinality CDATA #REQUIRED>

<IATTLIST VALUE cardinality_perc CDATA #REQUIRED>

Figure 2.4: TheNOMINALDESCRIPTIONelement.

Numeric attributes

As to numeric attributes (see figur25), the element contains the mean, the standard deviation,
the sum, the squared sum, the min and the max values defined as usual.

<IELEMENT NUMERIC_DESCRIPTION EMPTY>

<IATTLIST NUMERIC_DESCRIPTION mean CDATA #REQUIRED>
<IATTLIST NUMERIC_DESCRIPTION std_dev CDATA #REQUIRED>
<IATTLIST NUMERIC_DESCRIPTION sum CDATA #REQUIRED>
<IATTLIST NUMERIC_DESCRIPTION sumSq CDATA #REQUIRED>
<IATTLIST NUMERIC_DESCRIPTION min CDATA #REQUIRED>
<IATTLIST NUMERIC_DESCRIPTION max CDATA #REQUIRED>

Figure 2.5: ThReNUMERICDESCRIPTIONelement.

String attributes

String attributes (see figurg.6) do not contain further features.

<IELEMENT STRING_DESCRIPTION EMPTY>

Figure 2.6: Thé&STRING DESCRIPTIONelement.

As an example, in figure2.7 the XML document describing theeather data set of table
2.1is reported.

2.2.2 Taxonomies

A taxonomy represents hierarchical relationships between categories. Generally, the topmost
categories are most general, and the leaves are most specific or referring to specific item categories.
In KDDML taxonomies can exist both as explicit relationships between categories represented
as a mining model (see figur2.1), and as logical data element related to a non-numeric attribute.
The elemenTAXONOMUf figure 2.8 models the last one case.
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<KDDML_TABLE data_file="weather.csv">
<SCHEMA logical_name="weather" number_of attributes="4"
number_of_instances="12">
<ATTRIBUTE name="outlook" number_of missed_values="2"
number_of_missed_values_perc="17%" type="nominal">
<NOMINAL_DESCRIPTION number_of_values="3">

</NOMINAL_DESCRIPTION>
</ATTRIBUTE>
<ATTRIBUTE name="temperature" number_of missed_values="0"
number_of _missed_values_perc="0%" type="numeric">
<NUMERIC_DESCRIPTION mean="75.08" variance="47.35" sum="901.0"
sumSq="68171.0" min="64.0" max="85.0"/>
</ATTRIBUTE>
<ATTRIBUTE name="humidity" number_of _missed_values="2"
number_of _missed_values_perc="17%" type="numeric">
<NUMERIC_DESCRIPTION mean="78.5" variance="80.5" sum="785.0"
sumSq="62347.0" min="65.0" max="90.0"/>
</ATTRIBUTE>
<ATTRIBUTE name="play" number_of_missed_values="0"
number_of_missed_values_perc="0%" type="nominal">
<NOMINAL_DESCRIPTION number_of values="2">
<VALUE value="yes" cardinality="8" cardinality_perc="67%"/>
<VALUE value="no" cardinality="4" cardinality_perc="33%"/>
</NOMINAL_DESCRIPTION>
</ATTRIBUTE>
</SCHEMA>
</KDDML_TABLE>

Figure 2.7: The logical schema of the weather dataset.

outlook | temperature | humidity | play
sunny 85 85 no
sunny 80 90 no
overcast 83 86 yes
NULL 65 70 no
overcast 64 65 yes
sunny 72 95 no
sunny 69 NULL yes
rainy 75 80 yes
sunny 75 70 yes
overcast 72 90 yes
overcast 81 75 yes
rainy 71 NULL no
NULL 80 74 yes

Table 2.1: The weather dataset

The name of the hierarchy is expressed by using the attniaute in the TAXONOM#&lement.
As shown, a taxonomy is created from a sequence of one or more parent/child tables (element
CHILD_PARENY with associated some attributes:
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<IELEMENT TAXONOMY (CHILD_PARENT+) >

<IATTLIST TAXONOMY name CDATA #REQUIRED >

<IELEMENT CHILD_PARENT (INLINE_TABLE)>

<IATTLIST CHILD_PARENT child_field CDATA #REQUIRED
parent_field CDATA #REQUIRED
parent_level_field CDATA #IMPLIED
is_recursive (no | yes) "no"
root_name CDATA #REQUIRED>

<IELEMENT INLINE_TABLE (ROW) >

<IELEMENT ROW EMPTY>

<IATTLIST ROW member CDATA #REQUIRED>

<IATTLIST ROW group CDATA #REQUIRED>

Figure 2.8: ThefAXONOM#lement.

child _field defines the name of the field which contains the child value for each record
in theINLINE _TABLEelement.

parent _field defines the name of the field which contains the parent value for each
record in thdNLINE _TABLEelement.

e root _name contains the root hierarchy name.
e is _recursive is"yes” if avalue in the parent field can also be used in a child field.

The tabular data is part of the XML document itself by using the eleridifNE _TABLE that
includes one or more rows (elemdRO\) each of which defines the parent/child relationship by
means of the attributegoup andmember respectively.

As an example, the XML fragment of figur2.9 describes how to assign the hieraraityes-
states-countriesf figure 2.10to the string attributeity as metadata information (see also the
PP_ADDHIERARCHYoperator in sect3.2.2)).

2.2.3 Physical data: relational tables, transactional tables and timestamp
tables

Physical data are represented in KDDML as text files in Comma Separated Value (CSV), as it is
used in Microsoft Excel. In a CSV file, each record takes one line, and each field is separated by a
comma. Leading and trailing space-characters adjacent to comma field separators are ignored. By
convention, missing or null values are represented with the syifbol . As an example, the
figure 2.11illustrates the weather dataset of talilel in a CSV format.

Concerning data format, in KDDML, physical data can occur in three different forms:

1. relational table,

2. transactional table,
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<ATTRIBUTE name="city" number_of missed_values="0"
number_of_missed_values_perc="0%" type="string">
<STRING_DESCRIPTION/>
<TAXONOMY name="cities-states-countries">
<CHILD_PARENT child_field="member" parent_field="group"
is_recursive="yes" root_name="USA">
<INLINE_TABLE>
<ROW member="California" group="USA"/>
<ROW member="lllinois" group="USA"/>
<ROW member="Chicago" group="Illinois"/>
<ROW member="Long Beach" group="California"/>
<ROW member="San Jose" group="California"/>
</INLINE_TABLE>
</CHILD_PARENT>
</TAXONOMY>
</ATTRIBUTE>

Figure 2.9: The hierarchy cities-states-countries as metadata information.

s LEVEL2

California Ilinois LEVEL1

e 4 \ 4

[LungEeach [ San Jose ] [ Chicago ] LEVELO

Figure 2.10: The hierarchy cities-states-countries.

3. andtimestamp table.

The format of KDDML tables is automatically recognized by the system when loaded from the
data repository or from an external resource.

Relational format

In therelational formaf each column of the data corresponds to a logical attribute tergpe-
rature, play . Each row of the data corresponds to an individual case (transaction) to be
considered during mining. This data format is also knowsiagle-record case tabld-igure 2.11
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sunny,85,85,n0
sunny,80,90,no
overcast,83,86,yes
rainy,70,?,yes
?,65,70,n0
overcast,64,65,yes
rainy,75,80,yes
sunny,75,70,yes
overcast,72,90,yes
overcast,81,75,yes
rainy,71,?,no
?,80,74,yes

Figure 2.11: weather.csv

illustrates a typical example of relational table.

Transactional format

Sparse data is more effectively stored itransactional format Here, data that have a variable
number of entries (or items) out of many possible ones can be stored more compactly, since only
the actually present items are stored in the table. A transactional table (also knowitiagcord
case tablg has an attributéransaction identifying the transaction and an attribigeent
containing the single item. Transactions are ordered with respect to the attrémgaction
Other columns are allowed in the table (e.g., the price or quantity of items for each transaction), but
they can be ignored by the operator, depending on the context. Missing values are not allowed in
transaction field andevent field. This representation is typically used for association rules.
Table 2.2illustrates a typical example in the market basket analysis field. The order, in which
attributestransaction andevent occur, does not matter; attributggantity  andprice
are optional.

Transaction | Event | Quantity | Price
id_1 milk 2 0.75
id_1 water 10 3.20
id_1 bread 2 0.60
id_2 water 5 2.10
id_2 wine 1 5.50
id_3 potatoes 4 6.60
id_3 milk 2 0.75
id_4 bread 4 1.20

Table 2.2: A sample transactional table
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Timestamp format

Thetimestamp format  is similar to a transactional table, but with an extra attritiurtes-

stamp , that does not admit missing values. Typically, this format is used for sequential pattern
analysis, since the attributenestamp defines a partial time order between transactions and
items. The semantics of attributes depend on the context. As instance, in the web log analysis
(resp. medical record analysis), ttnansaction attribute can coincide with the user identifier
(resp. name of the patient), themestamp attribute coincides with the time of the visit (resp. day

of control) and, finally, the@vent attribute coincides with the web page visited (resp. symptom).
Table 2.3shows the same data of takke?, but with thetimestamp attribute in addition. As for
transactional tables, the ordering in which attributesisaction  , timestamp andevent

occur does not matter; attributggantity  andprice are optional.

Transaction | Timestamp | Event | Quantity | Price
id_1 monday milk 2 0.75
id_1 saturday | water 10 3.20
id_1 saturday bread 2 0.60
id_2 monday water 5 2.10
id_2 monday wine 1 5.50
id_3 tuesday | potatoes 4 6.60
id_3 wednesday| milk 2 0.75
id 4 saturday bread 4 1.20

Table 2.3: A sample timestamp table

2.2.4 Preprocessing tables

This object is used to represent tables as used in the preprocessing step of the KDD process. A
PPtable is composed by:

e thedata schemgahat includes attribute types and some simple statistics on attribute values;
¢ thephysical data sectioas a text file in a CSV format;

e the preprocessing data sectipmcluding preprocessing information suchraarksassoci-
ated to a physical instance value belonging to the data section. Also the preprocessing section
is in a CSV format, with the number of columns and rows coinciding with the number of
attributes and rows of the data section. By convention, all instances values of preprocessing
section are set to a missing value when the preprocessing phase starts;

e the preprocessing historysed to list the set of preprocessing operations performed on the
table.
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As a consequence, a preprocessing table defines bdBCHEMA&lement of figure2.3and the
PPSCHEMAlement of figure2.12 The last one contains the logical description of preprocessing
attribute$ and the preprocessing history (elemei8TORY) related to the table.

<IELEMENT PPSCHEMA ((ATTRIBUTE+), HISTORY)>

<IATTLIST PPSCHEMA logical_name CDATA #REQUIRED>
<IATTLIST PPSCHEMA number_of_attributes CDATA #REQUIRED>
<IATTLIST PPSCHEMA number_of instances CDATA #REQUIRED>

Figure 2.12: The?PSCHEMAIement.

Preprocessing section

Preprocessing information concanarksandexceptions

Markscontains some information related to physical instance values. This information is added
in the preprocessing section of a PPtable, in correspondence to the related attribute value of a
physical record. As an instance consider Weather dataset of table2.1. We can decide to
mark all instances in which the attribuemperature is not in the interva([70, 80]. The result
obtained is shown in figure2.13 in which the preprocessing section of the weather dataset is
reported. This information can be processed later, for example, in order to filter the instances out of
range, or to rewrite their values with a new temperature value, according to a specific mathematical
function. KDDML supports more than one mark for each instance value. Each mark is separated
by a semicolon symbol. Marks are always explicitly added by the user by using a well-defined
operator.

?,out_of range;,?,?
?,2,?2,?

?,out_of range;,?,?
?,2,2,?
?,2,?2,?
?,out_of _range;,?,?
?,2,?2,?
?,2,2,?
29009

?,out_of range;,?,?
?,2,?2,?
?,2,?2,?

Figure 2.13: weathemetadata.csv

1The number of preprocessing attributes coincides with the number of attributes belonging to the data sec-
tion. The preprocessing attribute name coincides with the attribute name of the data section followed by the string
“_metadata ”; its type is string.
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Exceptionare similar to marks, but they are automatically added by the system when a partic-
ular event occurs. A typical exception can be generated when we try to match an attribute value
against a pattern using a regular expression, but the patterns matching is not satisfied. If this is
the case, then the error can be raised and its description can be added in the preprocessing section
of the PPtable as an exception, in correspondence to the instance in which the error occurs. With
respect to marks, an exception starts with the*Eageption”.

Preprocessing history

As shown in figure2.14, the elemenHISTORYis composed by one or moRREPROCESSING-
_TASKelements, each of them containing information on preprocessing operations performed on
the PPtable. More precisely, the attribaperator _name contains the name of preprocess-

ing operator used, while thegescription attribute contains the list of parameter used by the
operator. An example of preprocessing history is reported in figui&

<IELEMENT HISTORY (PREPROCESSING_TASK+)>

<IELEMENT PREPROCESSING_TASK EMPTY>

<IATTLIST PREPROCESSING_TASK operation_name CDATA #REQUIRED>
<IATTLIST PREPROCESSING_TASK description CDATA #REQUIRED>

Figure 2.14: ThéHISTORYelement.

<HISTORY>
<PREPROCESSING_TASK operation_name="TABLE_2_ PPTABLE"
description="Start pre-processing"/>
<PREPROCESSING_TASK operation_name="PP_MARKING"
description="Marked attribute temperature if temperature is not
in [70, 80] with label out of range"/> </HISTORY>

Figure 2.15: A sampl&lISTORYelement.

2.3 Knowledge representation

As for data, the KDDML language usesnaodel repository containing extracted data mining
models, which can be referenced by an identifier (in a different namespace for each model). Model
entities are defined to represent DM models such as association rules, clusters, classification trees,
sequential patterns and item hierarchies. KDDML represents models as an extenBMivibf
(Predictive Model Markup Languagehnd currently it uses the PMML 2.0 versiasi.[

PMML is an industry standard for representating models as XML documents. It consists of

DTDs for a wide spectrum of models, and it is used for describing the structure and intents of
the data mining models. PMML helps in defining semantically expressive data mining models
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from which different predictive models can be built. While PMML is becoming a primary stan-
dard, adopted by major commercial suites, it is worth noting that it does not cover the process of
extracting models, but rather the exchange of the extracted knowledge.

Each PMML model is always composed by three basic elerfients

e adata dictionarycontaining the definitions for the fields that are used in the mining model,
such as the type and the value range. These definitions are assumed to be independent from
specific data sets, used for training or scoring a specific model,

e a mining schemdhat lists fields used by the model (i.e., it lists the fields which a user
must provide in order to apply the model). These fields are a subset of the fields in the
data dictionary. In other terms, the mining schema contains information that is specific to a
certain model, while the data dictionary contains data definitions that do not vary with the
model. For instance, the mining schema specifies the usage type of an attribute (i.e. active,
predicted or supplementary). Data dictionary and mining schema define the logical level of
a model;

e amodel descriptiortontaining the physical model and varying from a model to another.

An example of PMML model containing a set of association rules is reported in figl@

The PMML DTD contains a mechanism for extending the contents of a model. Extension
elements are included in the contents definition of many element types. These extension elements
have ANY as the contents model to allow considerable freedom in the nature of the extensions. As
mentioned later, KDDML uses the extension mechanism in some cases.

2.3.1 Association model
Description

Association rule mining finds interesting associations or correlation relationships among a large
set of data items. A typical example of association rule mining is market basket analysis, that
analyzes customer buying habits by finding associations among the different items that customers
place in their shopping baskets.

KDDML association model deals with two types of association rules:

1. inter-attribute association rulethan have the formoutlook=sunny AND windy=false—
play=yes". It is the association among a set of attributes in a flat relation.

2. intra-attribute association rulesuch asspaghetti AND tomate— parmesan’ also known
asboolean association rules

The model reported in figur@.16 contains inter-attribute association rules. As we can notice, the
attributevalue of the elementtem allows us to distinguish the two types of association rules.

2PMML v. 2.0 uses the elemefiransformationDictionary in order to map user data to values that
are easier to use in the specific model. TransformationDictionary element is a bridge between the
MiningSchema and theDataDictionary elements. In the current version, KDDML do not support the trans-
formation dictionary of PMML.
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<?xml version="1.0" encoding="UTF-8"?> <PMML version="2.1">
<Header copyright="Copyright (c) 2004 - Universita di Pisa, Dipartimento di Informatica.">
<Application name="KDDML (Knowledge Discovery in Databases Markup Language)" version="2.0"/>
</Header>
<DataField name="outlook" optype="categorical">
<Value value="rainy"/>
<Value value="overcast"/>
<Value value="sunny"/>
</DataField>
<DataField name="temperature" optype="continuous"/>
<DataField name="humidity" optype="continuous"/>
<DataField name="windy" optype="categorical">
<Value value="TRUE"/>
<Value value="FALSE"/>
</DataField>
<DataField name="play" optype="categorical">
<Value value="yes"/>
<Value value="no"/>
</DataField>
</DataDictionary>
<AssociationModel functionName="associationRules" algorithmName="DCI - ISTI-CNR, Pisa, ltaly"
modelName="weather_rda" minimumSupport="0.3" minimumConfidence="0.3"
numberOfTransactions="20" numberOfltems="4" numberOfltemsets="5"
numberOfRules="2" maxNumberOfltemsPerTA="3" avgNumberOfltemsPerTA="2.6">
<MiningSchema>
<MiningField name="outlook" usageType="active"/>
<MiningField name="temperature" usageType="supplementary"/>
<MiningField name="humidity" usageType="supplementary"/>
<MiningField name="windy" usageType="active"/>
<MiningField name="play" usageType="active"/>
</MiningSchema>
<ltem id="1" value="outlook=sunny"/>
<ltem id="2" value="play=no"/>
<Item id="3" value="play=yes"/>
<ltem id="4" value="windy=FALSE"/>
<ltemRef itemRef="3"/>
</ltemset>
<Itemset id="2" numberOfltems="1" support="0.5">
<ltemRef itemRef="4"/>
</ltemset>
<ltemset id="3" numberOfltems="1" support="0.4">
<ItemRef itemRef="1"/>
</ltemset>
<ltemRef itemRef="2"/>
</ltemset>
<Itemset id="5" numberOfltems="2" support="0.4">
<ltemRef itemRef="3"/>
<ltemRef itemRef="4"/>
</ltemset>
<AssociationRule support="0.4" confidence="0.666667" antecedent="1" consequent="2"/>
</AssociationModel>
</PMML>

Figure 2.16: A sample of PMML document

Compatibility with PMML v. 2.0

KDDML offers a full compatibility towards PMML v. 2.0 association model.
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Extension mechanism

Not used.

2.3.2 Sequence model
Description

The problem of discovering sequential patterns is to find inter-transaction patterns such that the
presence of a set of items is followed by another item in the time-stamp ordered transaction set.
For instance, in a web server transaction logs, a visit by a customer is recorded over a period of
time. The time stamp associated with a transaction in this case will be a time interval which is
determined and attached to the transaction during the data cleaning or transaction identification
processes.

Compatibility with PMML v. 2.0

In its current version, the sequence model supported by KDDML is a subset of the PMML se-
guence model. The PMML elements that KDDML do not support are:

e SetPredicate  thatis a set of predicates made up of simple boolean expressions;

e Delimiter  (partially) that is the separation between two sets8equence , or between
two sequences in&equenceRule . In this case, KDDML supports only the element with
attributesdelimiter equal toacrossTimeWindow andgap equal tounknown .

Extension mechanism

Not used.

2.3.3 Tree model
Description

A tree model in data mining is used to predict the class of an observation with unknown categorical
label. A classification tree is a flow-chart-like structure, where each internal node denotes a test on
an attribute, each branch represents an outcome of the test, and the leaf nodes represent classes o
class distributions. The top-most node in a tree is the root node.

In order to classify an unknown sample, the attribute values of the sample are tested against
the decision tree. A path is traced from the root to a leaf node that holds the class prediction for
that sample. Given a pre-determined set of classes in the target attribute, classification analyzes the
build data to determine to which class a given observation belongs.

A decision tree is a classification tree in which the target attribute is binary. A tree model
consists of a reference to tidode root. Each node holds a logical predicate expression that
defines the rule for choosing the node or any of the branching nodes.
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Compatibility with PMML v. 2.0
KDDML offers a full compatibility towards PMML v. 2.0 tree model.

Extension mechanism

Extension mechanism has been used in two cases.

In the first one, it has been used in order to add the notion of confusion matrix to a decision
tree model. A confusion matrix is a two-dimensional table that reports the number of times a case
with actual clasg is predicted by the classification model as having clasgherec andp range
over all class values. As described by the DTD of fig@é7 a confusion matrix can be related
both to thetraining set(elementX-ConfusionMatrixTraining ), used to build the model,
and to thaest se{elementX-ConfusionMatrixTest ), used to test the model. The definition
is similar in both cases.

<IELEMENT X-ConfusionMatrixTraining (Array, Matrix)>

<IATTLIST X-ConfusionMatrixTraining x-incorrectlylnst CDATA #REQUIRED>
<IATTLIST X-ConfusionMatrixTraining x-incorrectlylnstPerc CDATA #IMPLIED>
<IATTLIST X-ConfusionMatrixTraining x-totallnst CDATA #REQUIRED>
<IELEMENT X-ConfusionMatrixTest (Array, Matrix)>

<IATTLIST X-ConfusionMatrixTest x-incorrectlyinst CDATA #REQUIRED>
<IATTLIST X-ConfusionMatrixTest x-incorrectlylnstPerc CDATA #IMPLIED>
<IATTLIST X-ConfusionMatrixTest x-totallnst CDATA #REQUIRED>

Figure 2.17: The DTD representing a confusion matrix.

A confusion matrix is composed by @&aray element containing the list of class values and a
Matrix element containing the number of correct and incorrect predictions in which the row and
column indexes refer to the classes of the target attribiiiee required attribute-totallnst
counts the total number of cases in the training or test set. xdiheorrectlylnst (resp
x-incorrectlylnstPerc ) attribute counts the absolute (resp. percentage) number of incor-
rectly classified cases with respect to the total number of cases.

In the example reported in figure.18 a confusion matrix for a class with valugss andno
is reported. As we can notice, the accuracy of the model in the training set is 50%.

The second extension concerns meta-classifiers. We allow for classification models that exploit
predictions of two or more decision trees. A classic example concerns voting trees, which are
intended to overcome the bias due to the random selection of the training set or due to the choice
of specific algorithms and parameters. For instance, givéistinct classifier, . . ., ¢,, avoting
classifierassigns to a tuple the class mostly assigned,by. ., c,,.

To represent a voting classifier, we augment PMML withXk€otingTree  tag, as reported
in figure 2.19 Thecombination _type attribute contains the combination procedure that has
been used. In the current implementation, KDDML supports three voting stratemiesnitte,
and, or. We refer to theTREEMETACLASSIFIER operator in section3.2.63for details. The
attributespositive  _class andnegative _class contains, respectively, the positive (e.g.

3For the definition of the elementgray andMatrix see PMML.
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<TreeModel ...>
<MiningSchema>

</MiningSchema>
<Node>

</Node>
<Extension>
<X-ConfusionMatrixTraining x-incorrectlylnst="200"
x-incorrectlylnstPerc="50%"
x-totallnst="400">
<Array n="2" type="string">"yes" "no"</Array>
<Matrix>
<Array n="2" type="real">100 150</Array>
<Array n="2" type="real">50 100</Array>
</Matrix>
</X-ConfusionMatrixTraining>
</Extension>
</TreeModel>

Figure 2.18: A sample of confusion matrix.

<IELEMENT X-VotingTree EMPTY>

<IATTLIST X-VotingTree combination_type (and|orjcommittee) #REQUIRED>
<IATTLIST X-VotingTree number_of trees CDATA #REQUIRED>
<IATTLIST X-VotingTree positive_class CDATA #IMPLIED>

<IATTLIST X-VotingTree negative_class CDATA #MPLIED>

Figure 2.19: The DTD representing a voting tree.

false, ng and negative classes (efgue, ye$ required if the combination type is and/or. Finally,
the attributenumber _of _trees counts the number of models that have been used for the voting.

The example reported in figur.20represents a boolean AND classifier among two decision
trees.

2.3.4 Clustering model
Description

The process of grouping a set of physical objects into classes of similar objects is called clustering.
A cluster is a collection of data objects that are similar within the same cluster and are different
from the objects in other cluster.

Clustering methods may be classified into three groups: distance-based, distribution-based (or
model-based), density-based methods.
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<TreeModel ...>
<MiningSchema>

</MiningSchema>
<Node>
<Extension>
<X-VotingTree combination_type="and" number_of trees="2"
positive_class="yes" negative_class="no"/>
</Extension>
<True/>
<Node score="will play">

</Node>
<Node score="no play">

</Node>

</Node>
</TreeModel>

Figure 2.20: A sample of voting tree.

Distance-based clusteringeeds a distance or dissimilarity measurement based on which they
try to group those most similar objects into one cluster. K-Me&his [distance-based partitioning
method.

Model-basedor distribution-based clusteringnethods assume that the data of each cluster
respect a specific statistical distribution (e.g. the Gaussian distribution) and the whole dataset is
a mixture of several distribution models. EM|[is an example of distribution-based partitioning
clustering that does not require the specification of distance measures.

Density-base@pproaches consider a cluster as a dense region of data objects.

The current version of PMML manages both center-based clustering and distribution-based
clustering. As a consequence, KDDML offers a full support to the two types of clustering.

Compatibility with PMML v. 2.0

KDDML offers a full compatibility towards PMML v. 2.0 clustering model except for the element
Covariances belonging to theCluster element. The covariances matrix is used to store
coordinate-by-coordinate variances and covariances of the cluster points.

Extension mechanism

The extension mechanism has been used to define a proprietary distance measure fordhe EM [
clustering algorithm, as reported in the DTD of figu2e21 (see sect.4.2.4.
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<IELEMENT X-EMDistance (%NUM-ARRAY;)>

Figure 2.21: Algorithm EM extension.

The X-EMDistance element takes an array of doutfl@s input, containing the prior proba-
bilities for each cluster in a distribution-based clustering.

2.3.5 Hierarchy model
Description

The values of a categorical field can be organized into a hierarchy. The representation of hier-
archies in PMML is based on parent/child relationships. A tabular format is used to provide the
data for these relationships. A taxonomy is then constructed from a sequence of one or more
parent/child tables.

In KDDML, the actual values are stored in the hierarchy object. So, the tabular data is part of
the PMML document itself. The table is recursive, in the sense that a value in the parent column
can also appear in the child column.

Compatibility with PMML v. 2.0

In the current version, KDDML supports the PMML eleménlineTable that stores data
inside the XML document. A further extension of the system can be provided in order to support
also theTableLocator  strategy.

Extension mechanism

The PMML element§ableLocator  andInlineTable are not yet completely defined be-
cause other standardization groups are working on these issues. As a consequence, a proprietary
definition of the elemeninlineTable has been adapted to the model (see s&tR.). The
figure 2.22describes the hierarchujties-states-countriesf figure 2.9as physical PMML model.
The figure 2.23shows the needed DTD extension.

2.4 KDDML Scalar

A KDDML scalar is a basic object that contains a number or a string constant. The flyR4de
describes his DTD.

2.5 Queries representation

Recall the KDDML language operator structure:

4For the definition of the entittUM-ARRAee PMML.
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<PMML version="2.0">
<Header copyright="Copyright (c) 2004 - Universita’ di Pisa, Dipartimento di Informatica™>
<Application name="KDDML (Knowledge Discovery in Databases Markup Language)" version="2.0"/>
</Header>
<DataField name="child" optype="ordinal"/>
<DataField name="parent" optype="ordinal"/>
<Taxonomy name="cities-states-countries">
<ChildParent childField="member" parentField="group" isRecursive="yes" x-RootName="USA">
<InlineTable>
<Extension>
<Row member="California" group="USA"/>
<Row member="lllinois" group="USA"/>
<Row member="Chicago" group="lllinois"/>
<Row member="Long Beach" group="California"/>
<Row member="San Jose" group="California"/>
</Extension>
</InlineTable>
</ChildParent>
</Taxonomy>
</DataDictionary>
</PMML>

Figure 2.22: The hierarchgities-states-countriess PMML model.

<IELEMENT row EMPTY>

<IATTLIST row member CDATA #REQUIRED>

<IATTLIST row group CDATA #REQUIRED>

<IATTLIST ChildParent x-RootName CDATA #REQUIRED>

Figure 2.23: Taxonomy model extension.

<I[ELEMENT KDDML_OBJECT (KDDML_SCALAR)>
<IELEMENT KDDML_SCALAR EMPTY>

<IATTLIST KDDML_SCALAR value CDATA #REQUIRED>
<IATTLIST KDDML_SCALAR type (numeric | string) "string">

Figure 2.24: Th&KkDDMLSCALARelement.

<OPERATOR_NAME xml_dest="results.xml" attl="v1" ... attM="vM">
<ARG1_NAME> .... </ARG1_NAME>

<ARGn_NAME> .... </ARGn_NAME>
</OPERATOR_NAME>

XML tags correspond to operations on data and modelsxithiedest attribute is the name of
the object to be saved in the system data/model repository. The attribute is optional; if it is omitted,
no results will be stored in the repository. Other XML attributes correspond to parameters of the
operator (e.g. the target attribute name for a tree miner operator). Finally, XML sub-elements
define the arguments passed to the operator.

Under this interpretation, arguments of an operator must be of an appropriate type and each
operator returns a well-defined object. The elemeDDQUERY(see figure 2.25 is used to
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represent a generic query. The attribntane in the KDDQUERYelement contains the name of
the query. The optional attribuggar _list lists the set of formal parameters to be replaced by
the actual parameters when the query is invoked by means the opefditbrQUERY(see section
3.2.3.

<IELEMENT KDDML_OBJECT (KDD_QUERY)>
<IELEMENT KDD_QUERY (%kdd_operator;)>

<IATTLIST KDD_QUERY name %string; #REQUIRED>
<IATTLIST KDD_QUERY par_list %string_list; #IMPLIED>

<IENTITY % kdd_operator
"(%kdd_query_clusters;|%kdd_query_rules;|%kdd_query_sequence;|
%kdd_query_table;|%kdd_query_trees;|%kdd_query_hierarchy;|
%kdd_query_scalar;|%kdd_query_PPtable;|%kdd_query_object;)">

Figure 2.25: The&KkDDQUER}lement

As mentioned above, the result of a KDD query must be a set of either models, or tables, or
scalars. Furthermore the query language must allow the reuse of previous knowledge, and, above
all, it must support &losure principlein order to combine and refine the extracted knowledge. To
do that, a query must have a nested structure, in which it should be possible to combine an arbitrary
number of sub-queries containing invocations to DM algorithms or other operators. Moreover, it is
necessary to check that sub-queries are properly nested, in order to avoid that a sub-query returns
a result that doesn’t meet the requirements of the operators combining them.

In order to control the nesting of sub-queries, we group the invocations of operators that returns
the same kind of knowledge in the same class, defined by means of a XML entities, as described
below. The entitkdd _operator reported in figure2.25contains an enumeration of all KDDML
operators classified according to the entity they belong.

Relational tables entity

The entitykdd _query _table (see figure 2.26) contains all operators returning a relational
table as output.

<IENTITY % kdd_query_table
"(ARFF_LOADER|CLUSTER_CENTROID|CLUSTER_NUMBER|CLUSTER_PARTITION|
DATABASE_LOADER|MISCLASSIFIED|PP_TABLE_2_TABLE|RDA_EXCEPTION|
RDA_SATISFY|SEQUENCE_EXCEPTION|SEQUENCE_SATISFY|TABLE_LOADER|
TREE_CLASSIFY|%kdd_query_object;)">

Figure 2.26: Th&dd _query _table entity.

Sthat includes also transactional tables and timestamp tables, as described Rha&ct.
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Preprocessing tables entity

The entitykdd _query _PPtable (see figure2.27) contains all operators returning a preprocess-
ing table.

<IENTITY % kdd_query_ PPtable
"(PP_ADD_HIERARCHY|PP_CHANGE_TYPE|PP_DIVIDING_ATTRIBUTE]|

PP_FILTER_ATTRIBUTES|PP_FOLDING|PP_HIERARCHICAL_DISCRETIZAION]|
PP_MARKING|PP_MARK_DUPLICATES|PP_MERGE_DUPLICATES]|
PP_NEW_ATTRIBUTE|PP_NORMALIZATION|PP_NUMERIC_DISCRETIZATION|
PP_NUMERIC_LABELING|PP_REMOVE_ROWS|PP_RENAME_ATTRIBUTES]|
PP_REWRITING|PP_SAMPLING|PP_SORTING_ATTRIBUTE|PP_TABLE_LOADER|
TABLE_2_ PP_TABLE|%kdd_query_object;)">

Figure 2.27: Th&dd _query _PPtable entity.

Association rules entity

The entitykdd _query _rules (see figure2.28 contains all operators returning an association
model.

<IENTITY % kdd_query_rules
"(RDA_FILTER|JDM_CONNECTION|RDA_LOADER|PMML_RDA_LOADER|RDA_MINER|
RDA_PRESERVED|%kdd_query_object;)">

Figure 2.28: Thédd _query _rules entity.

Tree model entity

The entitykdd _query _trees (see figure2.29 contains all operators returning a classification
tree.

<IENTITY % kdd_query_trees
"(JDM_CONNECTION|PMML_TREE_LOADER|TREE_LOADER]|
TREE_META_CLASSIFIER|TREE_MINER|%kdd_query_object;)">

Figure 2.29: Th&dd _query _trees entity.

Clustering model entity

The entitykdd _query _cluster  (see figure2.30 contains all operators returning a clustering
model.
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<IENTITY % kdd_query_clusters
"(CLUSTER_LOADER|CLUSTER_MINER|JDM_CONNECTION|PMML_CLUSTER_LOADER]|
%kdd_query_object;)">

Figure 2.30: Th&dd _query _clusters entity.

Items hierarchy entity

The entitykdd _query _hierarchy  (see figure2.31) contains all operators returning an item
hierarchy.

<IENTITY % kdd_query_hierarchy
"(HIERARCHY_LOADER|IJDM_CONNECTION|TABLE_2 HIERARCHY|
%kdd_query_object;)">

Figure 2.31: Th&dd _query _hierarchy entity.

Sequences entity

The entitykdd _query _sequence (see figure2.32) contains all the operators returning sequen-
tial patterns.

<IENTITY % kdd_query_sequence
"(PMML_SEQUENCE_LOADER|SEQUENCE_AGGREGATE_FILTER|SEQUENCE_FILTER|
SEQUENCE_LOADER|SEQUENCE_MAXIMAL_FILTER|SEQUENCE_MINER|
SEQUENCE_RULE|SEQUENCE_TIMESTAMP_CONSTRAINT|%kdd_query_object;)">

Figure 2.32: Th&dd _query _sequence entity.

Scalar entity

The entitykdd _query _scalar (see figure2.33 contains all operators returning a number or a
string.

<IENTITY % kdd_query_scalar
"(ARFF_WRITER|DATABASE_WRITER|EXT_CALL|SCALAR|%kdd_query_object;)">

Figure 2.33: Th&dd _query _scalar entity.
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kdd object entity

Some KDDML operators do not have a precise signature. In other terms, the output type of the
operator can be unknown at compile-time, and it can be derived only at run-time by the KDDML
interpreter, when the query is executed. For instance, considéf tbperator (sect.3.2.19 that
evaluates a condition on an input object and, on the basis of the boolean result, it evalldds a
branch or areLSEbranch. Therefore, a further entity (see fig@&4) is needed in order to group
all operators returning a generic KDDML object whose type is unknown at compile-time.

<IENTITY % kdd_query_object
"(CALL_QUERY|SEQ_QUERY|PAR_QUERY]|IF)">

Figure 2.34: Th&dd _query _scalar entity.

Other special objects are used to define algorithm settings, condition and expression specifica-
tions and generic XML elements, as reported below. They are defined by means XML elements
(and not by entities) since they are only input types for operators (never output types).

Algorithm settings

An algorithm settings object captures the parameters associated with a particular algorithm. It
allows a knowledgeable user to fine tune algorithm parameters. Generally, not all parameters must
be specified, however, those specified are taken into account by the KDDML executor.

This entity is used to specify a data mining or preprocessing algorithm; it is composed by the
algorithm namedentifying the algorithm, and by a list glarameter specificationsith parameter
name and parameter value (e.g., the minimum support for a rda miner algorithm). Its definition is
reported in the DTD of figure2.35

<I[ELEMENT ALGORITHM (PARAMp

<IATTLIST ALGORITHM algorithm_name %string; #REQUIRED>
<IELEMENT PARAM EMPTY>

<IATTLIST PARAM name %string; #REQUIRED>

<IATTLIST PARAM value %any_type; #REQUIRED>

Figure 2.35: The element ALGORITHM.

The attributealgorithm  _nameis the name of the algorithm (e.gpriori, em, etc.). The ele-
ment root can be composed by a listoARAMelements, representing a single algorithm parame-
ter. We can specify the parameter name and the parameter value by using the respective required
attributes. In the definition of DTD, we prefer to maintain a non-strict semantic for algorithm
specification in order to preserve an high language extendibility: adding a new pre-processing or
mining algorithm in future do not require any DTD modification. Therefore, the parameter value
can assume any generic type (number, or string).
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Conditions

This entity is defined to represent a condition specification. The condition can be used to evaluate
boolean operators (such as™) on table attributes and/or constants. Here, table attributes stand
for both relational (or preprocessing) table columns and model properties (e.g. the support of an
association rule).

As shown in figure2.36 the elemen€CONDITIONis composed by aAND, OR, NOTcom-
bination between primitive cases (elem&RSECOND Each base condition can be expressed
using the attributep _type , representing the name of the boolean operator. The arguments to the
operator can be given using ttexm XML attributes. As shown, operators can be unary, binary
or ternary. By convention, it is possible to denote an input table column instead of a constant using
the special symbol “@” before the attribute name intéren XML attribute.

An example of condition application has been reported in the query of figjLite

<IELEMENT CONDITION (TRUE|FALSE|OR_COND|NOT_COND|AND_COND|BASE_COND)>
<IELEMENT TRUE EMPTY>
<IELEMENT FALSE EMPTY>
<IELEMENT OR_COND ((OR_COND|NOT_COND|AND_CONDI|BASE_COND),
(OR_CONDINOT_COND|AND_CONDI|BASE_COND)+)>
<IELEMENT AND_COND ((OR_COND|NOT_COND|AND_COND|BASE_COND),
(OR_CONDINOT_COND|AND_CONDI|BASE_COND)+)>
<I[ELEMENT NOT_COND ((OR_COND|NOT_COND|AND_CONDI|BASE_COND))>
<IELEMENT BASE_COND EMPTY>
<IATTLIST BASE_COND op_type %string; #REQUIRED
terml %any_type; #REQUIRED
term2 %any_type; #IMPLIED
term3 %any_type; #IMPLIED>

Figure 2.36: The element CONDITION.

Expressions

This object is used to represent language expressions. Expressions are similar to conditions, but
they return a scalar (i.e., a number or a string) instead of a boolean value.

As shown in figure 2.37, the EXPRESSIONelement admits a sequential statement (element
SEQTERM, including basic operationga@dition, multiplication, subtraction, divisioof numbers
andconcatenatiorof strings) on primitive terms. Also a conditional statement (elerffenTERM
is admitted. It is used to evaluatetlzen statement or an (optionadlsestatement according to
a condition whose specification is reported in figue36 and table 2.4. Finally, the element
BASETERMSs used to provide numeric/string constants or table attribute rfames

6As for conditions, with the special symbol “@” in thvalue attribute of theBASETERMelement we denote an
input table column.
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<IELEMENT EXPRESSION (BASE_TERM|SEQ_TERM]|IF_TERM)>
<IELEMENT SEQ TERM ((BASE_TERM|SEQ_TERM|IF_TERM),
(BASE_TERM|SEQ_TERM|IF_TERM)+)>

<IATTLIST SEQ_TERM op_type

(concat|equal|sum|multiply|subtract|divide) #REQUIRED>
<IELEMENT BASE_TERM EMPTY>
<IATTLIST BASE_TERM value %any_type; #REQUIRED>
<IELEMENT IF_TERM (CONDITION, (BASE_TERM|SEQ_TERM|IF_TERM),

(BASE_TERM|SEQ_TERM|IF_TERM)?)>

Figure 2.37: The element EXPRESSION.

| OpType | Term 1 type | Term 2 type | Term 3 type |
equal, not_equal @attribute @attribute -
numeric or string constant
greater, greater_or_equal | @numericattribute | @numericattribute -
less lessor_equal numeric constant
is_missing @attribute - -

Table 2.4: Condition specification for the elementfTERM of expressions

Generic XML

The XML type denotes arguments that are generic XML elements to be evaluated directly by
the operator. Its semantics is to model XML tags that are not interpreted directly by KDDML, but
simply passed to the operator as arguments. So, as shown in #d@fiets DTD is totally generic.

<IELEMENT GENERIC_ELEMENT ANY>

Figure 2.38: The element GENERIC _ELEMENT.

In summary, the set of types of a KDDML operator is reported in tébke
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| KDDML Type | DTD Entity / XML element |

Description \

|

nle

el

el

table kdd_query_table all operators returning a relational table
PPtable kdd_query_PPtable | all operators returning a preprocessing taf
rda kdd_query_rules | all operators returning an association mog
tree kdd_query_trees | all operators returning a classification mod
cluster kdd_query_cluster all operators returning a cluster model
hierarchy kdd_query_hierarchy all operators returning an item hierarchy
sequence kdd_query_sequence all operators returning a sequence mode¢
scalar kdd_query_scalar all operators returning a scalar
any kdd_query_object all operators returning any type
alg ALGORITHM an algorithm specification
condition CONDITION a condition specification
expression EXPRESSION an expression specification
xml GENERIC_ELEMENT a generic XML element

Table 2.5: Correspondence between XML entities and KDDML types
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KDDML operators

This chapter contains all the KDDML language operators specification. For each operator it
reports:

1. the operator name represented by an XML root tag;
the XML Document Type Definition;

the usage description of the operator;

the KDD phase supported by the operator;

the operator signature;

S

a list of required XML attributes with usage description;
7. a list of optional XML attributes with usage description.

Language operators will be presented according to a lexicographic ordering.

39
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3.1 Classification of operators

In chapter two we have seen that operators can be classified on the basis of the type they re-
turn. Before introducing the KDDML language specification, we give a different classification of
operators, according to the KDD phase supported.

3.1.1

I/O class includes operators that populate the KDDML data/models repository from external re-
sources or that export a table/model in the repository to external format. The3akddows the
I/O operators currently implemented in KDDML.

I/O operators

Operator Name \ Description | Sect.
ARFF_LOADER It loads an ARFF source 3.2.1
ARFF_WRITER It accesses to a table in the repository 3.2.2
and transforms it into an ARFF file
CLUSTER_LOADER It loads a cluster model from the repository| 3.2.5
DATABASE_LOADER It loads a relational table from a database | 3.2.10
DATABASE_WRITER It accesses to a table in the repository 3.2.11
and transforms it into a SQL table
HIERARCHY_LOADER It loads an item hierarchy from the repository 3.2.13
PMML _CLUSTER_LOADER It loads an external PMML cluster model | 3.2.17

PMMIL_RDA_LOADER It loads an external PMML association model 3.2.18

PMML _SEQUENCE_LOADER It loads an external PMML sequence model 3.2.19
PMML _TREE LOADER It loads an external PMML tree model 3.2.20
PP_TABLE_LOADER It loads a preprocessing table from the repositorg.2.40
RDA_LOADER It loads an association model from the repositor.2.43
SEQUENCE_LOADER It loads a sequence model from the repository 3.2.51
TABLE_2_HIERACHY It loads an item hierarchy from a table 3.2.58
TREE_LOADER It loads a classification tree from the repository3.2.62

Table 3.1: 1/O operators

3.1.2 Preprocessing operators

Preprocessing is a time-consuming phase of the KDD process, including tasks such as:

e data cleaning;
e data reduction;

e data discretization;
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e data transformation.

The table 3.2 reports the preprocessing operators implemented in KDDML divided in respect of
the preprocessing step supported; however, some operators are multi-task. Every preprocessing
operator takes 8Ptable object as first argument and return®Btable object, as shown by

the following signature:

fepp_~ : PPtable X ... — PPtable.

Operator Name Description Sect. Prepr.
Step
PP_MARKING It marks the preprocessing values of arB.2.27
attribute according to a condition
PP_MARK _DUPLICATES It marks duplicated instances 3.2.28 Data
cleaning
PP_MERGE_DUPLICATES It finds and unifies instances that | 3.2.29
are duplicates
PP_FILTER _ATTRIBUTES It select (or remove) a list of attributes 3.2.24
PP_REMOVE_ROWS It deletes rows according to a condition3.2.34 Data
reduction
PP_SAMPLING It performs a sampling on input table 3.2.37
PP_ADD_HIERARCHY It assigns an hierarchy object to a tahle3.2.21
column as meta-data information
PP_HIERARCHICAL. It performs a categoric discretization 3.2.26 Data
DISCRETIZATION of a nominal attribute discretiz.
PP_NUMERIC- It discretizes a numeric attribute | 3.2.32
DISCRETIZATION
PP_CHANGE_TYPE It changes the logical type of one | 3.2.22
or more attributes
PP _DIVIDING _ATTRIBUTE It partitions the values of an input | 3.2.23
attribute into two new attributes
PP_FOLDING It removes a specified attribute copying3.2.25
its values into a destination attribute
PP_NEW_ATTRIBUTE It adds a new attribute to the input tahle3.2.30 Data
transform.
PP_NORMALIZATION It performs a normalization of a 3.2.31
numeric attribute
PP_NUMERIC_LABELING It converts a nominal attribute into a| 3.2.33
numeric attribute
PP_RENAME_ATTRIBUTES It renames a list of attributes 3.2.35
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PP_REWRITING It rewrites the values of an attribute| 3.2.36
according to a regular expression
PP_SORTING_ATTRIBUTE It sorts the values of a given attribute 3.2.38

PP_TABLE_2_TABLE It finalizes the preprocessing phase 3.2.39 -
TABLE_2_PP_TABLE It starts the preprocessing phase | 3.2.59
Table 3.2: Preprocessing operators

3.1.3 Mining operators

KDDML enables users to build model in the functional areas: classification, association rules,
clustering, etc. To build models, users define tasks, which minimally require the input parameters
model name and mining settings expressed by using the XML eleAl€BORITHMsee figure
2.35. Mining data can be given as first argument of the operator. The result is a mining model.

Summarizing, there is an operator for each mining model supported by the language (see table
3.3) and the signature of operators is fixed apriori for each operator:

f<KNUWLEDGEJVIINER> :table X alg — model.

Operator Name | Description | Sect.

CLUSTER_MINER It extracts a clustering model by using | 3.2.6
a mining algorithm

RDA_MINER It extracts a set of association rules by usin§.2.44
a mining algorithm

SEQUENCE_MINER It extracts a sequence model by using| 3.2.53
a mining algorithm

TREE_MINER It extracts a classification tree by using| 3.2.64
a mining algorithm

Table 3.3: Mining operators

3.1.4 Postprocessing operators

Extracted models can be applied on (new) data to predict features or to select data accordingly to
the knowledge stored in the model. The taBld shows the postprocessing operators that include:

e model application including operators to apply extracted model,
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e model testing that gives an estimate of the accuracy a model has in predicting the target of a

supervised model;

e model meta-reasoning including operators to combine two or more models;

43

e model filtering including operators to filter extracted models according to some feature.

Operator Name Description Sect. | Model(s)
involved
CLUSTER_CENTROID Given a cluster model it returns 3.24
tuples describing the centroids
CLUSTER_NUMBER Returns the tuples of a dataset 3.2.7
belonging to a given cluster
CLUSTER_PARTITION Partitions the tuple of a dataset 3.2.8 | clusters
according to a clustering model
CLUSTER _PARTITION Partitions the tuple of a dataset by 3.2.9
_SPARROW using the SPARROW algorithm
RDA_EXCEPTION Selects the transaction that are exception3.2.41
to a set of association rules
RDA_SATISFY Selects the transaction satisfying 3.2.46 rda
a set of association rules
RDA_PRESERVED Selects the rules preserving 3.2.45 rda,
over an item hierarchy hierarchy
SEQUENCE_AGGREGATE It returns the sequential patterns 3.2.48
_FILTER satisfying an aggregate constraint
SEQUENCE_EXCEPTION | It selects the transaction that are exceptior.2.49
to a set of sequential patterns
SEQUENCE _FILTER It returns the sequential patterns 3.2.50
satisfying a condition sequence
SEQUENCE_RULE It computes sequence rules from a set 3.2.54
of sequential patterns
SEQUENCE_SATISFY It selects the transaction satisfying | 3.2.55
a set of sequential patterns
SEQUENCE_TIMESTAMP | It returns the sequential patterns satisfying3.2.56
_FILTER a time-stamp constraint
MISCLASSIFIED It selects the misclassified instances | 3.2.15
of an input table
TREE_CLASSIFY If classifies an input table on 3.2.61 tree
a classification tree
TREE_META _CLASSIFIER It combines two or more tree classifier| 3.2.63

using a committee strategy

Table 3.4: Postprocessing operators
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3.1.5 Control flow operators

The semantic of the KDDML language can be augmented with operators that allow for better
control of flow of data and model in queries. Tat8e5 shows that operators.

Operator Name | Description | Sect.
CALL_QUERY | Itretrieves and evaluates queries in the query reposito.2.3
IF Definition of the decision statement 3.2.14
PAR_QUERY Definition of potential parallelism 3.2.16
SEQ_QUERY Definition of sequential statement 3.2.57

Table 3.5: Control flow operators

3.1.6 Unclassified operators
The table 3.6 shows all the other KDDML language operators.

Operator Name | Description | Sect.
EXT CALL It calls an external program 3.2.12
SCALAR It returns the value of an XML attribute as scalaB.2.47

Table 3.6: Unclassified operators

3.2 Operators specification

3.2.1 ARFFLOADER
DTD

<IELEMENT ARFF_LOADER EMPTY>

<IATTLIST ARFF_LOADER xml_dest %string; #IMPLIED>
<IATTLIST ARFF_LOADER arff_file_name 9%string; #REQUIRED>
<IATTLIST ARFF_LOADER arff_file_path %string; #IMPLIED>
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Description

ARFF (Attribute-Relation File Formatfile is a text file that consists of a list of instances with

the attribute value for each instance being separated by commas. The name of the dataset is in-
troduced by a@@relation tag, and the names, types and values of each attribute are defined by
@attribute  tags. The data section of the ARFF file begin with ®elata tag. By convec-

tion, missing values are represented by a single question mark. Values that contain spaces must be
guoted. Each attribute in the data set has its @attribute  statement which uniquely defines

the name of that attribute and it is data type. The order the attributes are declared indicates the
column position in the data section of the file. The format for@attribute  statementis:

@attribute< attribute name- < datatype>

The datatype can be numeric (integer or real), string or nominal. Nominal values are defined
by providing a nominal specification listing the possible valdesnominal-namet, <nominal-
name2-, <nominal-name3, etc}. As an example, the weather dataset in ARFF format is reported
in figure 3.1 The operator loads an ARFF source gathered via local file system or via ftp, http
protocols. Mapping from ARFF types to the logical types of the output table is automatic.

KDD phase

Resource loading.

Signature

fareF roapEr : empty — table

Required attributes

e arff _file _name: the name of the input ARFF file.

Optional Attributes
e Xxml _dest ;

o arff _file _path : is the external path identifying the ARFF file. ARFF file can be ob-
tained via a local file system (e.gD:/MyRepository/) or via an internet repository (e.g.
ftp://www.foo.edu/ARFF/). If the attribute is omitted, the ARFF source is read directly from
the data system repository.

3.2.2 ARFFWRITER
DTD

<I[ELEMENT ARFF_WRITER (%kdd_query_table;)>
<IATTLIST ARFF_WRITER xml_dest %string; #IMPLIED>
<IATTLIST ARFF_WRITER arff_dest %string; #REQUIRED>
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@relation weather

@attribute outlook {sunny, overcast, rainy}
@attribute temperature numeric

@attribute humidity numeric

@attribute windy {TRUE, FALSE}
@attribute play {yes, no}

@data

sunny,85,85,?,no
sunny,80,90,TRUE,no
overcast,83,86,FALSE,yes
rainy,70,?,FALSE,yes
rainy,68,80,FALSE,yes
?,65,70,?,n0

Figure 3.1: The weather dataset in ARFF format.

Description

The operator accesses a relational table contained in the data repository, and it transforms the table
into an ARFF file (see sect3.2.1). The mapping from the data source to the logical types of the
output ARFF format is automatic.

The operator returns an integer, containing the total number of table rows involved.

KDD phase

None.

Signature

fareruwrrTER © table — scalar

Required attributes
e arff _dest : itis the complete path containing the destination ARFF file (B-gMyRepo-
sitory/weather.arff).
Optional Attributes

e Xml _dest .
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3.2.3 CALL_QUERY
DTD

<IELEMENT CALL_QUERY EMPTY>

<IATTLIST CALL_QUERY query_name %string; #REQUIRED>
<IATTLIST CALL_QUERY query_path %string; #IMPLIED>
<IATTLIST CALL_QUERY formal_parameters_list %string; #IMPLIED>
<IATTLIST CALL_QUERY actual_parameters_list %string; #IMPLIED>

Description

The CALL QUERYstatement retrieves and evaluates queries in the repository and it replaces for-
mal parameters with actual parameters at run-time. Query admits parameters, whose list is spec-
ified by means XML attributes; the operator performs a position mapping between formal para-
meters and actual parameters. The syntax for using a formal parameter inside a query (the called
query) requires to write it between $ sign (e.g.: $perc$).

The operator returns the same kind of result of the called query. Since the type may not be
known at compile time (e.g., when the query name itself is provided by a parameter), the type of
the result is checked at run-time.

KDD phase

Control flow.

Signature

foarr query : empty — any

Required attributes

e query _name: the name of the xml file referring the query.

Optional Attributes

e query _path : isthe external path identifying the query. If the attribute is omitted, the query
source is read directly from the queries system repository.

e formal _parameters _ist the list of formal parameters that is in a comma separated
format (e.g.perc, source, dekt

e actual _parameters _list the list of actual parameters. The list is given in a comma
separated format (e.g0.6, weather, resultand a position mapping with the values of
formal _parameters _list is performed.
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3.24 CLUSTERCENTROID

DTD

<IELEMENT CLUSTER_CENTROID (%kdd_query_clusters;)>
<IATTLIST CLUSTER_CENTROID xml_dest %string; #IMPLIED>
Description

Given a cluster model, it returns tuples describing the cluster centroids. The centroid is dependent
on the type of clustering.

For centroid-based clustering, there is an instance identifying the cluster. This instance will be

reported by the operator as centroid.

For distribution-based clustering, the centroid is defined by statistics and depends on the type
of attributes. In particular, for numeric attributes, the centroid contains the mean of instances

belonging to the cluster. For nominal attributes, the most probable category (i.e. the category with

the largest frequency) is reported as value for that attribute.

KDD phase

Model application.

Signature

foLuster_centroID ¢ Cluster — table

Required attributes

None.

Optional Attributes

e Xml _dest .

3.2.5 CLUSTERLOADER
DTD

<IELEMENT CLUSTER_LOADER EMPTY>
<IATTLIST CLUSTER_LOADER xml_source %string; #REQUIRED>

Description

It loads a cluster model from the system repository.

KDD phase

Resource loading.
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Signature

f<cLusTEr LoaDER> © empty — tree.
Required attributes
e xml _source : the XML file source contained in the models repository.

Optional attributes

None.

3.2.6 CLUSTERMINER

DTD

<IELEMENT CLUSTER_MINER((%kdd_query_table;), ALGORITHM)>
<IATTLIST CLUSTER_MINER xml_dest %string; #IMPLIED>
Description

The operator extracts a cluster model by using a mining algorithm. The operator takes a table
representing the training set and a cluster miner algorithm, and it returns a set of clusters as output.
The algorithm specification (i.e. the algorithm name and the list of expected parameters) is ex-
pressed by using the XML elemeAt. GORITHMSsee figure 2.35. In section 4.1.7, the list of
supported clustering algorithms is reported.

The data schema of the input data source depends on the algorithm specification. In other words,
some attributes can be ignored during mining if their types are not supported by the algorithm.
For example, some clustering algorithms cannot work on string attributes. However, preprocessing
operators can be used to adapt the input table to specific data mining algorithms.

KDD phase

Data mining.

Signature

f<CLUSTERJVIINER> :table X alg — cluster.

Required attributes

None.
Optional attributes

e Xml _dest .
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3.2.7 CLUSTERNUMBER
DTD

<IELEMENT CLUSTER_NUMBER ((%kdd_query_clusters;),
(%kdd_query_table;))>

<IATTLIST CLUSTER_NUMBER xml_dest %string; #IMPLIED
cluster_number %integer; #IMPLIED>

Description

Given a cluster model and a dataset, this operator returns only the tuples of the dataset belonging
to a specified cluster.

The mapping between attributes used in the clustering and attributes in the input table is by name.
Therefore, the clustering model and the data source must be compatible. In particular, a table is
compatible with a model if for each active mining fieidelonging to the model, there is an at-
tribute in the table with the same name and type.

The prediction of which cluster contains the instance is performed by comparing the instance and
the cluster centroid. When two records are compared then either the distance or the similarity is of
interest. In both cases the measures can be computed by a combinatiomérafunctionand
anouter function Theinner functioncompares two single fields (e.g. absolute difference between
continuous attributes) values and thigter function(e.g. euclidean distance) computes an aggre-
gation over all fieldsinner functionandouter functiorare stored in the clustering model when the
clusters are built.

The operator can be also used to predict the tuples belonging to the cluster with maximal cardinal-

ity.

KDD phase

Model application.

Signature

f<CLUSTERJ\IUMBER> : cluster X table — table.

Required attributes

None.

Optional Attributes

e Xml _dest .

1An active mining field is a field used as input to the model. In other terms, the user must supply all the active
mining fields in order to apply the model.
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e cluster _number: a non-negative integer representing the index of the cluster. If the at-
tribute is omitted, the operator returns all the instances belonging to the cluster with maximal
cardinality.

3.2.8 CLUSTERPARTITION
DTD

<IELEMENT CLUSTER_PARTITION ((%kdd_query_clusters;),

(%kdd_query_table;))>
<IATTLIST CLUSTER_PARTITION xml_dest %string; #IMPLIED>
Description

Given a cluster model and a dataset, this operator adds to the tuples a new numeric attribute
cluster _number containing the index of the cluster that includes the record. In order to under-
stand how the mapping between instances and clusters is performed, see the CLNSWVIHER
operator (sect3.2.7).

KDD phase

Model application.

Signature

f<CLUSTERJ’ARTITION> : cluster X table — table.

Required attributes

None.

Optional Attributes

e Xml _dest .

3.2.9 CLUSTERPARTITION _SPARROW
DTD

<IELEMENT CLUSTER_PARTITION_SPARROW ((%kdd_query_table;))>
<IATTLIST CLUSTER_PARTITION_SPARROW xml_dest %string; #IMPLIED>
<IATTLIST CLUSTER_PARTITION_SPARROW num_agents %integer; "100">
<IATTLIST CLUSTER_PARTITION_SPARROW num_iterations %integer; "200">
<IATTLIST CLUSTER_PARTITION_SPARROW density_threshold %integer; "19">
<IATTLIST CLUSTER_PARTITION_SPARROW visibility radius %integer; "9">
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Description

Given a dataset, this operator computes a clustering partition of input instances and it adds to the
tuples a new numeric attributduster _number containing the index of the cluster that includes
the record. The operator uses the Sparrdi@ glgorithm in order to extract the set of clusters.

Sparrow is a new parallel algorithm that uses the new swarm intelligence based techniques to
investigate clustering in spatial data. The algorithm combines a smart exploratory strategy based
on a flock of birds that move around a cellular landscape that contains the data set with a density-
based cluster algorithm to discover clusters of arbitrary shape and size in spatial data. Agents
use modified rules of the standard flock algorithm to transform an agent into a hunter foraging
for clusters in spatial data. Clusters are discovered applying the heuristic principles of the spatial
clustering algorithm DBSCAN.

Input table admits two numerical attributes only. The first one represents the spacial x-coordinate;
the second one represents the spacial y-coordinate. Other columns are not admitted in the input
table and no missing values are allowed.

KDD phase

Model application.

Signature

f<cLusTER PARTITION SPARROWS> © T@ble — table.

Required attributes

None.

Optional Attributes

e xml _dest .
e num.agents : a positive integer representing the number of agents to use. Default: 100.

e num.iterations . a positive integer representing the maximum number of iterations be-
fore the algorithm converges. Default: 200.

e density _threshold : a positive integer representing the density threshold used by Spar-
row during mining. Default: 19.

e visibility _radius : a positive integer representing the visibility radius. Default: 9.

3.2.10 DATABASELOADER
DTD
<IELEMENT DATABASE_LOADER EMPTY>
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<IATTLIST DATABASE_LOADER xml_dest %string; #IMPLIED
sql_query %string; #REQUIRED
database _name %string; #REQUIRED
user %string; #IMPLIED
password %string; #IMPLIED
logical_relation_name %string; #IMPLIED>

Description

The operator allows a transparent access to relational tables belonging to local or remote RDBMS
sources via simple SQL SELECT queries.

The mapping from SQL types to the logical types of the output table is automatic. Numeric SQL
types (assmall intor real) are mapped into numeric attributes, while non-numeric SQL types (as
varchar) are mapped into string attributes. However, preprocessing operators allows for specifying
different logical types of attributes for loaded tables.

The operator uses the JDB@afa Database Connectivjtyelational database connectivity stan-
dard as a DBMS bridge. The URL for the connection with the DBMS and the SQL query can
be specified directly as input XML attributes. User and password are not required in the operator
definition; if they are omitted, a pop-up frame will be automatically opened in order to initialize
the DBMS connection.

KDD phase

Resource loading.

Signature

JfoaTapase Loaper © €mpty — table

Required attributes

e sgl _query : the sql query as string. If the SQL query does not return a table as output (for
example, when using ddPDATEstatement), the operator will return an error message.

e database _name: the database URL identifying the RDBMS to be used during connection.
At present, KDDML accepts connectivity via Oracle or SQL Server databases. Below, the
URL connection strings currently available are repotted

— SQL Server via JTDS driver:
jdbc:jtds:sglserver://<host>:<port>/<database> :

Notice that JDBC drivers, in general, are pure Java classes, independent from operating system, that are packed
as Java archive (.jar) files. Other JDBC drivers can be easily added to the system (language). In order to make a JDBC
driver available for KDDML, you should obtain the driver from your database (or 3rd party JDBC driver) developer,
and then put its .jar file into the KDDML installation directory.
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— SQL Server via Microsoft driver:
jdbc:microsoft:sqlserver://<server _name>:<port>;
DatabaseName=<database _name>,

— Oracle JDBC driver:
jdbc:oracle:thin:[<user>/<password>]@//<host>[:<port>]/<service>

— PostgreSQL:
jdbc:postgresql://<host>:<port>/<database> ;
Optional Attributes

e Xxml _dest .
e user : the user name to be used during connection.
e password : the password to be used during connection.

e logical _relational _name: the logical relation name to be assigned to output table.

3.2.11 DATABASEWRITER
DTD

<IELEMENT DATABASE_WRITER (%kdd_query_table;)>

<IATTLIST DATABASE_WRITER xml_dest %string; #IMPLIED>
<IATTLIST DATABASE_WRITER database name %string; #REQUIRED>
<IATTLIST DATABASE_WRITER table_name %string; #REQUIRED>
<IATTLIST DATABASE_WRITER user %string; #MPLIED>

<IATTLIST DATABASE_WRITER password %string; #IMPLIED>

Description

The operator accesses a relational table contained in the data repository and it transform the table
into a SQL table. The mapping from the data source to the logical types of the database format
is not automatic. A requirement of the operator is that in the destination database an empty SQL
table must exist; this is the target relational table. No type control is performed by the operator
between the logical proprietary types of the attributes and the SQL types of columns belonging to
the target SQL table. The operator returns an integer, containing the total number of table rows
involved.

KDD phase

None.

Signature

foatapasewrrTER : table — scalar
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Required attributes
e database _name: itisthe database URL identifying the RDBMS to use during connection
(see the DATABASELOADER operator in sectior8.2.10for more details).
Optional Attributes
e Xxml _dest .
e user : itis the user name used during connection.
e password : itis the password used during connection.

e table _name: itis the empty target SQL table created in the specified database.

3.2.12 EXTCALL
DTD

<IELEMENT EXT_CALL (%kdd_query_scalar;) * >
<IATTLIST EXT_CALL xml_dest %string; #/MPLIED>
<IATTLIST EXT_CALL path %string; #REQUIRED>

Description

The operator allows for calling external programs, including e.g., calls to RDBMS stored proce-
dures.

It takes a set of scalars used as a command line argument to the called program, and it returns a
new scalar containing a boolean value representing the success or the failure of the external call.
KDD phase

None.

Signature

f<scaLars @ scalar X --- X scalar — scalar.

Required attributes

e path : the complete path containing the external program (@:@isr/bin/MyProgram.exe).

Optional Attributes

e Xml _dest .
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3.2.13 HIERARCHY _LOADER

DTD

<IELEMENT HIERARCHY_LOADER EMPTY>

<IATTLIST HIERARCHY_LOADER xml_source %string; #REQUIRED>
Description

It loads an item hierarchy from the system model repository.

KDD phase

Resource loading.

Signature

J<n1Erarcuy LoapER> © €mply — hierarchy.

Required attributes
e xml _source : the XML file source contained in the models repository.

Optional attributes

None.

3.2.14 IF
DTD

<IELEMENT IF (%kdd_operator;, CONDITION, THEN, ELSE)>
<IATTLIST IF xml_dest %string; #IMPLIED>

<IELEMENT THEN (%kdd_operator;)>

<IELEMENT ELSE (%kdd_operator;)>

Description

The operator evaluates a condition on an input object and, on the basis of the boolean result, it
evaluates (in non-strict semantic)T&{dENbranch or arELSE branch. The condition regards a
Xquery [11] expression evaluated on the physical XML document representing the input object
(see later).

More precisely, the operator take as input four objects:

1. a query fragment that is evaluated as first and returnikPBML object ;

2. a boolean condition evaluated on titBDML object above;
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3. a query fragment representing thelENbranch evaluated only if the condition returns true;
4. a query fragment representing tBeESE branch evaluated only if the condition returns false.

The operator returns the same kind of result of TREENbranch or th&eLSE branch (i.e. any
type returned by the operators belonging to the ety operator ). Since the type may not
be known at compile time, the type of the result is checked at run-time.

KDD phase

Control flow.

Signature

f<1r> 1 any X condition X any X any — any.

Required attributes

None.
Optional attributes
e Xxml _dest .

Condition specification

In reference to the figur.36 legal values for the XML attributep _type are reported below:

e equal, not_equal, greater, greater_or_equal, less lessor_equal used for relational op-

erators on a XQuery expression and a constant. More precisely, the first term is a Xquery
expression whose evaluation must return a constant value that is then compared with the sec-

ond term of the relational operator. The Xquery expression is evaluated on the input XML
physical object that can be referred by using the notation $input (e.g. return $input//X-
ConfusionMatrixTraining/@x-incorrectlylnst). Current version of KDDML adopts the Qizx
[12] implementation of XQuery.

The table 3.7 contains the types of primitive terms (XML attributesm1, term2, term3 )
to be used for eachp _type legal value.

3.2.15 MISCLASSIFIED
DTD

<IELEMENT MISCLASSIFIED (%kdd_query_table;)>
<IATTLIST MISCLASSIFIED xml_dest %string; #IMPLIED>
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I OpType | Term 1 type | Term 2 type | Term 3 type ||
equal, not_equal X-query expression constant -
constant
greater, greater_or_equal || X-query expression numeric constant -
less lessor_equal numeric constant

Table 3.7: Element BASEEOND for IF operator

Description

The operator takes a table whose instances have been previously classified via a classification tree
(see sect.3.2.61), and it returns a new table with the misclassified recooudy.
The input table must contain at least two attributes:

1. the real target attribute containing the observed values;

2. the predicted target attribute whose values have been predicted by the classification tree; its
name coincides with the name of the real attribute, but with extenpi@dlicted

KDD phase

Preprocessing.

Signature

Jurscrasstriep : table — table

Required attributes

None.

Optional Attributes

e Xml _dest .

3.2.16 PARQUERY
DTD
<IELEMENT PAR_QUERY (%kdd_operator;,(%kdd_operator;)+)>

3In a misclassified instance, the value of the classification attribute and the value of the predicted attribute differ.
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Description

The PARQUERY element models potential parallelism between KDDML operators. The return
value of the PARQUERY is assumed to be the last operator in the sequence of their arguments.
Note that with this assumption, PAQUERY is functionally equivalent to SEQUERY (see sect.
3.2.57, and then it can be implemented as a sequential operator when physical parallelism is not
available. Currently KDDML version do not support explicit parallelism.

KDD phase

Control flow.

Signature

f<PAR,QUERY> . any X - X any — any

Required attributes

None.

Optional attributes

None.

3.2.17 PMML_CLUSTER_LOADER
DTD

<IELEMENT PMML_CLUSTER_LOADER EMPTY>
<IATTLIST PMML_CLUSTER_LOADER xml_dest %string; #IMPLIED>
<IATTLIST PMML_CLUSTER_LOADER pmml_source %string; #REQUIRED>

Description

It loads an external PMML model containing a cluster model. At the present, KDDML supports
the PMML 2.0 version for a cluster model.

KDD phase

Resource loading.

Signature

J<pmuL_cLusTER LOADER> @ empty — cluster.



CHAPTER 3. KDDML OPERATORS 60

Required attributes

e pmml_source : the external PMML source. PMML file can be gathered from the local file
system (e.gD:/MyRepository/weather.xml) or from web, using the ftp, http protocols (e.g.
ftp://www.foo.edu/PMML/weather.xml).

Optional attributes

e Xml _dest .

3.2.18 PMML_RDA_LOADER
DTD

<IELEMENT PMML_RDA_LOADER EMPTY>
<IATTLIST PMML_RDA_LOADER xml_dest %string; #IMPLIED>
<IATTLIST PMML_RDA_LOADER pmml_source %string; #REQUIRED>

Description

It loads an external PMML model containing a set of association rules. At the present, KDDML
supports the PMML 2.0 version for association rules.

KDD phase

Resource loading.

Signature

f<pumL DA LOADER> : empty — rda.

Required attributes

e pmml_source : the external PMML source. PMML file can be gathered from the local file
system (e.gD:/MyRepository/weather.xml) or from web, using the ftp, http protocols (e.g.
ftp://www.foo.edu/PMML/weather.xml).

Optional attributes

e xml _dest .
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3.2.19 PMML_SEQUENCE LOADER

DTD

<IELEMENT PMML_SEQUENCE_LOADER EMPTY>

<IATTLIST PMML_SEQUENCE_LOADER xml_dest %string; #IMPLIED>

<IATTLIST PMML_SEQUENCE_LOADER pmml_source %string; #REQUIRED>

Description

It loads an external PMML model containing a sequence model. At present, KDDML supports
the PMML 2.0 version for sequential patterns.

KDD phase

Resource loading.

Signature

J<punL_sEquENCE LoaDER> © €MptY — Sequence.

Required attributes

e pmml_source : the external PMML source. The PMML file can be gathered either from
the local file system (e.gD:/MyRepository/weather.xml) or from the web, by using the ftp,
http protocols (e.gftp://www.foo.edu/PMML/weather.xml).

Optional attributes

e xml _dest .

3.2.20 PMML_TREE_LOADER

DTD

<IELEMENT PMML_TREE_LOADER EMPTY>

<IATTLIST PMML_TREE_LOADER xml_dest %string; #IMPLIED>

<IATTLIST PMML_TREE_LOADER pmml_source %string; #REQUIRED>

Description

It loads an external PMML model containing a tree model. At present, KDDML supports the
PMML 2.0 version for a tree model.

KDD phase

Resource loading.
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Signature

Jf<puML_TREE LoaDER> © €mpty — tree.

Required attributes

e pmml_source : the external PMML source. PMML file can be gathered from the local file
system (e.gD:/MyRepository/weather.xml) or from web, using the ftp, http protocols (e.g.
ftp://www.foo.edu/PMML/weather.xml).

Optional attributes

e Xml _dest .

3.2.21 PPADD _HIERARCHY
DTD

<I[ELEMENT PP_ADD_HIERARCHY ((%kdd_query_PPtable;),
(%kdd_query_hierarchy;))>

<IATTLIST PP_ADD_HIERARCHY xml_dest %string; #IMPLIED>

<IATTLIST PP_ADD_HIERARCHY attribute_name %string; #REQUIRED>

Description

The operator assigns an hierarchy object to a table column as meta-data information. This oper-
ator works only on data schemata: neither the physical records, nor the preprocessing section are
affected.

KDD phase

Preprocessing.

Signature

f<PPADDJ'IIERARCHY> : PPtable X hierarChy — PPtable.
Required attributes

e attribute  _name: the name of the input table attribute. The logical type of the attribute
must be nominal or string.

Optional Attributes

e Xml _dest .
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3.2.22 PPCHANGE _TYPE
DTD

<IELEMENT PP_CHANGE_TYPE ((%kdd_query_PPtable;))>

<IATTLIST PP_CHANGE_TYPE xml_dest %string; #IMPLIED>

<IATTLIST PP_CHANGE_TYPE attributes_list %string; #REQUIRED>
<IATTLIST PP_CHANGE_TYPE new_type (numeric|string|nominal) #REQUIRED>

Description

The operator changes the logical type of one or more attributes. The following conversions are
allowed:

e from numeric attributes to nominal or string attributes;
e from nominal attributes to numeric or string attributes;
¢ from string attributes to numeric or nominal attributes.

Notice that the conversion from nominal or string to a numeric type succeeds only if the input at-
tribute values are effectively numbers (see also thé&NRRMERIC_LABELING in section 3.2.33.

This operator works only on data schemata: neither the physical records, nor the preprocessing
section are affected.

KDD phase

Preprocessing.

Signature

f<PP,CHANGE,TYPE> : PPtable — PPtable.
Required attributes

e attributes _list : the list of attributes of the input table whose type must be changed.
The list is given in a comma separated format (e.g. outlook, play).

e new_type : the conversion type. Can lp@imerig string or nominal

Optional Attributes

e Xml _dest .
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3.2.23 PPDIVIDING _ATTRIBUTE

DTD

<IELEMENT PP_DIVIDING_ATTRIBUTE (%kdd_query_PPtable;)>
<IATTLIST PP_DIVIDING_ATTRIBUTE xml_dest %string; #IMPLIED>
<IATTLIST PP_DIVIDING_ATTRIBUTE source_attribute_name %string; #REQUIRED>
<IATTLIST PP_DIVIDING_ATTRIBUTE

destination_attribute_name_1 %string; #REQUIRED>
<IATTLIST PP_DIVIDING_ATTRIBUTE

destination_attribute_name_2 %string; #REQUIRED>
<IATTLIST PP_DIVIDING_ATTRIBUTE regular_expression %string; #REQUIRED>
<IATTLIST PP_DIVIDING_ATTRIBUTE remove_source_attribute (truelfalse) "false">
<IATTLIST PP_DIVIDING_ATTRIBUTE mark_exception %string; #FIXED "no_RE_match">

Description

Given a preprocessing table, the operator partitions the values of an input attribute into two new
string attributes. The splitting point is computed on the basis of a regular expression. A regular
expression is a set of characters that determines a pattern or a template used to match a string.
For each instance, the operator attempts to match the entire attribute value against the pattern.

If the pattern matching succeeds, then the first occurrence matching the pattern is the sub-string to
be assigned to the first output attribute. The rest of the input value becomes the sub-string to be
assigned to the second output attribute.

If the attribute value is missing for an instance, or if the pattern matching fails, the correspondent
preprocessing value for that instance is marked with the exception siwirflgE match . In this

case, output destination attributes will be assigned to a missing value for that instance.
Destination attributes are added by the operator at the end of the data schema with a string type.

KDD phase

Preprocessing.

Signature

f<ppp1viDING ATTRIBUTES> | PPtable — PPtable.
Required attributes

e source _attribute _name: the source attribute name.
e destination _attribute _name_1: the first destination attribute name.
e destination _attribute _name_2: the second destination attribute name.

e regular _expression :the regular expression to be used to find the splitting point.
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Optional Attributes

e xml _dest .

e remove _source _attribute . can betrue or false If the first case, the input source
attribute will be removed from the output table. By default, the attribute valtedse

3.2.24 PPFILTER ATTRIBUTES
DTD

<IELEMENT PP_FILTER_ATTRIBUTES ((%kdd_query PPtable;))>
<IATTLIST PP_FILTER_ATTRIBUTES attributes_list %string_list; #REQUIRED>
<IATTLIST PP_FILTER_ATTRIBUTES take_or_remove (take|remove) "take">
<IATTLIST PP_FILTER_ATTRIBUTES xml_dest %string; #IMPLIED>
Description

Select (or remove) a list of attributes from the input preprocessing table.

KDD phase

Preprocessing.

Signature

f<pp FILTER ATTRIBUTE> : PPtable — PPtable.
Required attributes

e attributes _list : the set of attributes to be selected (or removed). The list of attributes
is given in a comma separated format (egtlook, play, windy.
Optional Attributes

e Xml _dest .

e take _or remove : can betake or remove In the first case, the resultant table will be
composed only by the list of provided attributes. Otherwise, the specified attributes will be
removed from the input data source. By default, the attribute assuta&s\alue.
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3.2.25 PPFOLDING
DTD

<IELEMENT PP_FOLDING ((%kdd_query_PPtable;))>

<IATTLIST PP_FOLDING xml_dest %string; #IMPLIED>

<IATTLIST PP_FOLDING source_attribute_name %string; #REQUIRED>
<IATTLIST PP_FOLDING destination_attribute_name %string; #REQUIRED>

Description

The operator removes from the input preprocessing source the column of a specified attribute,
and it copies its values into a destination attribute. Every instance is replicated and every pair of
instances can be distinguished only for the destination attribute values. As a consequence, if the
input data source is ad x Mtable, the operator returns a new preprocessing table witl2bl2¢
M-1. Also the preprocessing section is replicated.

The input source attribute and the destination attribute must share the same type in the input table.

KDD phase

Preprocessing.

Signature

f<pproLpmngs> : PPtable — PPtable.
Required attributes

e source _attribute  _name: the source attribute name of the input table.

e destination _attribute _name: the destination attribute name of the input table con-
taining the folding.

Optional Attributes

e Xml _dest .

3.2.26 PPHIERARCHICAL _DISCRETIZATION

DTD

<I[ELEMENT PP_HIERARCHICAL_DISCRETIZATION ((%kdd_query_PPtable;),
(%kdd_query_hierarchy;))>
<IATTLIST PP_HIERARCHICAL_DISCRETIZATION xml_dest %string; #IMPLIED>
<IATTLIST PP_HIERARCHICAL_DISCRETIZATION attribute_name %string; #REQUIRED>
<IATTLIST PP_HIERARCHICAL_DISCRETIZATION level %integer; #REQUIRED>
<IATTLIST PP_HIERARCHICAL_DISCRETIZATION mark_exception %string;
#FIXED "no_hierarchy_generalization">
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Description

A categoric discretization of an attribute with respect to a hierarchy is performed. Given a non-
numeric attribute of the input preprocessing table, a concept hierarchy related to the attribute val-
ues, and an integer representing the hierarchy level, the operator returns a new table containing
generalized values for that attribute.

The mapping between attribute values and leaf values of the hierarchy is by name.

If the attribute value is found in a leaf of the hierarchy, then the generalized node value is computed
at the specified level. In this case, the old attribute value is replaced with the generalized item that
has been found.

If some value cannot be found in the hierarchy leaves or if the generalization cannot be computed,
then the attribute is set with a missing value for that instance. Also the correspondent preprocess-
ing information is marked with the exceptio _hierarchy  _generalization

Obviously, the level of the hierarchy must be compatible with the depth of the hierarchy in order
to compute the generalization.

KDD phase

Preprocessing.

Signature

J<pp_HIERARCHICAL DISCRETIZATION> : PPtable X hierarchy — PPtable.
Required attributes

e attribute _name: the attribute to which the categoric discretization is applied. The at-
tribute must be string or nominal.

e level : a positive integer representing the level of generalization. The level must be less
than the depth of the hierarchy. We assume that the leaves of the hierarchy have a level 0,
while the root has a level equal to the depth of the hierarchy.

Optional Attributes

e Xml _dest .

3.2.27 PPMARKING
DTD

<IELEMENT PP_MARKING ((%kdd_query_PPtable;), CONDITION)>
<IATTLIST PP_MARKING xml_dest %string; #IMPLIED>
<IATTLIST PP_MARKING attribute_name %string; #REQUIRED>
<IATTLIST PP_MARKING mark %string; #REQUIRED>
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Description

The operator marks the preprocessing values of an attribute according to a condition expressed on
table attributes and/or constants.

For each instance of the input table, the condition is evaluated.

If the condition is satisfied, then the input attribute of that instance is marked (i.e. a value is added
to preprocessing information) with a specified value.

If the condition evaluation returns false, no operation is performed.

This operator works only on the preprocessing section of the input table. In other terms, the
physical data will not be changed.

KDD phase

Preprocessing

Signature

f<ppiarkmne> : PPtable X condition — PPtable.
Required attributes

e attribute _name: the name of marking attribute.

e mark: the string value to be added to preprocessing section of the attribute.

Optional attributes

e xml _dest .

Condition specification

In reference to the figur.36 legal values for the XML attributep _type are reported below:

e equal, not_equal, greater, greater_or_equal, less lessor_equal: used for relational ex-
pressions on attribute values and/or constants (&gnark all instances with the attribute
temperature  less than 80).

e is_missing unary boolean expression evaluated on a single table attribute. Its evaluation is
satisfied only if the attribute value for an instance is missing (&@.mark all instances
where the attribut@utlook is missing’).

The table 3.8 contains the types of primitive terms (XML attributiesm1, term2, term3 )
to be used for eachp _type legal value.
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I OpType | Term 1 type | Term 2 type | Term 3 type |

equal, not_equal @attribute @attribute -
numeric or string constant
greater, greater_or_equal | @numericattribute | @numericattribute -
less lessor_equal numeric constant
IS_missing @attribute - -

Table 3.8: Element BASEEOND for PPMARKING operator

3.2.28 PPMARK _DUPLICATES
DTD

<IELEMENT PP_MARK_DUPLICATES ((%kdd_query_PPtable;))>
<IATTLIST PP_MARK_DUPLICATES attributes_list %string_list; #IMPLIED>
<IATTLIST PP_MARK_DUPLICATES xml_dest %string; #IMPLIED>
<IATTLIST PP_MARK_DUPLICATES mark %string; "duplicate">

Description

The operator marks duplicated instances. Two instances are considered duplicates on the basis of
a key composed by a list of attributes. As an example, consider the attribotpsrature  and

outlook as keys. In this case, two instances are duplicates if they have the same values for those
attributes.

When two instances are selected as duplicates, all key attributes are marked (i.e. a string is added
to the preprocessing information) with a specified value.

Notice that the operator only marks duplicates and the value of the mark is inserted as preprocess-
ing information of the output table. In other words, no physical data are affected by the operator.
Duplicated instances can be joined using theNPERGE DUPLICATES operator (see secs.2.29.

KDD phase

Preprocessing.

Signature

f<pp mark DUPLICATES> : PPtable — PPtable.

Required attributes

None.

Optional Attributes

e xml _dest .
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e attributes Jlist : the list of attributes of the input table representing the key. The list
of attributes is given in a comma separated format (@ugjook, temperatuie The attribute
is optional. If it is omitted, then all the columns of the input preprocessing table will be
considered as composing the key.

e mark: the mark that must be added to the preprocessing section of key attributes when two
instances are duplicates. By default, it assumes the daipkcate

3.2.29 PPMERGE DUPLICATES
DTD

<IELEMENT PP_MERGE_DUPLICATES ((%kdd_query PPtable;))>
<IATTLIST PP_MERGE_DUPLICATES attributes_list %string_list; #IMPLIED>
<IATTLIST PP_MERGE_DUPLICATES xml_dest %string; #IMPLIED>
<IATTLIST PP_MERGE_DUPLICATES mark %string; "merged_duplicates">

Description

The operator finds and unifies instances that are duplicates. Two instances are duplicates on the ba-
sis of a key composed by a list of attributes. As an example, consider the atttéaf@srature

andoutlook as the key. In this case, two instances are duplicates if they have the same values
for those attributes.

When two or more instances have been selected as duplicates, the operator*chlysase in-

stance as the representant. All the other instances are removed from the input preprocessing table.
Finally, all key attributes of this instance are marked (i.e. a string is added to preprocessing infor-
mation) with a specified value.

KDD phase

Preprocessing.

Signature

f<pp MERGE DUPLICATES> : PPtable — PPtable.

Required attributes

None.

“4In the current version, the operator uses a random policy to choose the representant of a set of duplicates.
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Optional Attributes

e xml _dest .

e attributes _list : the list of attributes of the input table representing the key. The list
of attributes is given in a comma separated format (@ugook, temperatuie The attribute
is optional. If it is omitted, then all the columns of the input preprocessing table will be
considered as forming the key.

e mark: the mark that must be added to the preprocessing section of key attributes when an
instance is selected as representant. By default, it assumes thenalyed _duplicate

3.2.30 PPNEW_ATTRIBUTE
DTD

<IELEMENT PP_NEW_ATTRIBUTE ((%kdd_query_PPtable;),(EXPRESSION)?)>
<IATTLIST PP_NEW_ATTRIBUTE xml_dest %string; #IMPLIED>

<IATTLIST PP_NEW_ATTRIBUTE attribute_name %string; #REQUIRED>
<IATTLIST PP_NEW_ATTRIBUTE position %integer; #IMPLIED>

<IATTLIST PP_NEW_ATTRIBUTE attribute_type (string|numeric)
#REQUIRED>

Description

The operator adds a new attribute to the input preprocessing table. The attribute values can be
derived from existing ones by means of a simple expression language, as reported ir2figjure

Also the type of the derived attribute and his position in the data schema can be specified.

The sub-elemenEXPRESSIONS optional. If no expression is provided, all the values become
missing for the new attribute.

KDD phase

Preprocessing.

Signature

f<ppxewaTTRIBUTE> : PPtable X expr — PPtable.

Required attributes

e attribute  _namethe attribute to be added to the preprocessing table.

e attribute _type the type of derived attribute. The type canrhemeric or string
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Optional Attributes

e xml _dest .

e position : a non-negative integer representing the position of the new attribute in the
resulting table. If it is omitted, the column will be added to the end of the schema. The first
attribute starts from O in the schema section.

3.2.31 PPNORMALIZATION
DTD

<IELEMENT PP_NORMALIZATION ((%kdd_query_PPtable;),ALGORITHM)>
<IATTLIST PP_NORMALIZATION xml_dest %string; #IMPLIED>
<IATTLIST PP_NORMALIZATION attributes_list %string_list; #REQUIRED>
Description

Normalization is the process of scaling data values of a numeric attribute to fit in a range such as
[-1, 1] or [0,1]. Normalization is particularly useful for classification algorithms and clustering.

The operator takes a preprocessing table, a list of numeric attributes, and a normalization method
and returns a new preprocessing table with normalized values for each specified attribute. There
are many methods for data normalization, each of them expressed by using the XML element
ALGORITHMsee figure2.395. In section4.1.2, the list of supported normalization algorithms is
reported.

KDD phase

Preprocessing.

Signature

f<ppnommaLIzaTIONS : PPtable X alg — PPtable.
Required attributes

e attributes _list : the list of attributes of the input table to normalize. The list of at-
tributes is given in a comma separated format (éugmidity, temperatuje Normalization
methods are allowed only on numeric attributes.

Optional attributes

e Xml _dest .
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3.2.32 PPNUMERIC DISCRETIZATION
DTD

<IELEMENT PP_NUMERIC_DISCRETIZATION ((%kdd_query_PPtable;),ALGORITHM)>
<IATTLIST PP_NUMERIC_DISCRETIZATION xml_dest %string; #IMPLIED>
<IATTLIST PP_NUMERIC_DISCRETIZATION attribute_name %string; #REQUIRED>
Description

Discretization techniques can be used to reduce the number of values for a given continuous at-
tribute, by dividing the range of the attribute into intervals.
The operator takes a preprocessing table, a numeric attribute and a discretization method and re-
turns a new preprocessing table with discretized values for the specified attribute. There are many
methods for data discretization, each of them expressed by using the XML elahx@QRITHM

(see figure2.35. In section 4.1.], the list of supported discretization algorithms is reported.

KDD phase

Preprocessing.

Signature

f<pp NuMERTC DISCRETIZATIONS : PPtable x alg — PPtable.
Required attributes

e attribute _name: the name of the attribute to discretize. Numeric discretization can be
applied only on continuous attributes.

Optional Attributes

e xml _dest .

3.2.33 PPNUMERIC _LABELING
DTD

<IELEMENT PP_NUMERIC_LABELING ((%kdd_query_PPtable;))>

<IATTLIST PP_NUMERIC_LABELING xml_dest %string; #/MPLIED>

<IATTLIST PP_NUMERIC LABELING attribute_name %string; #REQUIRED>
<IATTLIST PP_NUMERIC_LABELING numeric_values_list %real_list; #IMPLIED>
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Description

The operator is used to convert a nominal attribute into a numeric attribute by using its natural
rank, as implied by the header specification, or by using the list of numeric labels provided as XML
attribute.

The natural rank is given by the position in which the single categories occur in the nominal defini-
tion contained in the data schema. In this case, the labeling technique assigns 0 to the first category,

1 to the second category and so on. As an example, consider the nominal ativitbotd  de-
fined as:

@attribute outlook sunny, overcast, rairfy

When asunnyvalue is found in an instance, it is replaced with the number 0. Analogously, num-
bers 1 and 2 are used fovercastandrainy values respectively.

As an alternative to the natural rank, a list of continuous values can be specified as XML attribute.
This operator is usually applied to discretize nominal attributes, converting they into numeric at-
tributes and applying then the NRUMERIC_DISCRETIZATION operator (see secB.2.32.

KDD phase

Preprocessing.

Signature

Jf<pp vumErIC LABELING> | PPtable — PPtable.
Required attributes
e attribute  _name: the nominal attribute of the input preprocessing table.

Optional Attributes

e Xml _dest .

e numeric _value ist : the list of numbers used to map the categories of the nominal
attribute. The list is given in a comma separated format and the number of values must be
equal to the number of categories for that attribute. The order of labeling is given by the
order in which the categories appears in the nominal definition. If the attribute is omitted,
the operator will assign O to the first category, 1 to the second category, and so on.

3.2.34 PPREMOVE ROWS
DTD

<IELEMENT PP_REMOVE_ROWS ((%kdd_query_ PPtable;), CONDITION)>
<IATTLIST PP_REMOVE_ROWS xml_dest %string; #IMPLIED>
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Description

The operator deletes rows (physical records and preprocessing information) from an input pre-
processing table according to a specific condition.

KDD phase

Preprocessing.

Signature

f<pijM0VEfggws> : PPtable X cond — PPtable.

Required attributes

None.

Optional Attributes

e Xml _dest .

Condition specification

In reference to the figur.36 legal values for the XML attributep _type are reported below:

e equal, not_equal, greater, greater_or_equal, less lessor_equal: used for relational expres-
sions on attributes values and/or constants (¢gremove all instances with the attribute
temperature  less than 80).

e is_missing unary boolean expression evaluated on a single table attribute. Its evaluation is
satisfied only if the attribute value for an instance is missing (&gremove all instances
where the attributeutlook is missing’).

e hasexception hasmark: binary expressions evaluated on preprocessing section of input
table. In particular, they test if an attribute has a mark (exception) equal to a specified value
(e.g."“to remove rows if the attributéemperature  contains the mark oudf_range”).

The table 3.9 contains the types of primitive terms (XML attributiesm1, term2, term3 )
to be used for eachp _type legal value.

3.2.35 PPRENAME ATTRIBUTES

DTD

<IELEMENT PP_RENAME_ATTRIBUTES ((%kdd_query_PPtable;))>

<IATTLIST PP_RENAME_ATTRIBUTES xml_dest %string; #IMPLIED>

<IATTLIST PP_RENAME_ATTRIBUTES old_attributes_list %string_list; #REQUIRED>
<IATTLIST PP_RENAME_ATTRIBUTES new_attributes_list %string_list; #REQUIRED>
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I OpType | Term 1 type | Term 2 type | Term 3 type |
equal, not_equal @attribute @attribute -
numeric or string constant
greater, greater_or_equal | @numericattribute | @numericattribute -

less lessor_equal numeric constant
is_missing @attribute - -
has mark, has exception | @attribute constant -

Table 3.9: Element BASEEOND for the PPREMOVE_ROWS operator

Description

The operator renames a list of attributes of the input data source. The list of old attributes and the
list of new attributes can be given via XML attributes; the operator performs a position mapping
between values. This operator works only on data schema: neither the physical records, nor the
preprocessing section are affected.

KDD phase

Preprocessing.

Signature

J<pp_rENAME ATTRIBUTES> : PPtable — PPtable.
Required attributes
e old _attributes _list  the list of attributes of the input table to change. The list of

attributes is in a comma separated format (ewglook, temperature, play

e new._attributes list  the list of strings containing the new attributes names. The list
is given in a comma separated format (engw.outlook, newtemperature, neyplay) and a
position mapping with the values ofd _attributes list is performed.
Optional Attributes

e Xml _dest .

3.2.36 PPREWRITING
DTD

<IELEMENT PP_REWRITING ((%kdd_query_PPtable;),(ALGORITHM, CONDITION)+)>
<IATTLIST PP_REWRITING xml_dest %string; #/MPLIED>
<IATTLIST PP_REWRITING attribute_name %string; #REQUIRED>



CHAPTER 3. KDDML OPERATORS 77

Description

The operator rewrites the values of an input table attribute. It is a construct based on regular ex-
pressions that are a powerful way to specify string matching and the substitution of some pattern
with new values.

The operator takes a preprocessing table, a table attribute and a set of pairs containing a con-
dition (elementCONDITION and a rewriting method (elemeALGORITHN! It returns a new
preprocessing table with rewritten values for the specified attribute.

There are many methods for data rewriting, each of them expressed by using the XML element
ALGORITHMsee figure2.35. In section4.1.3 the list of supported rewriting algorithms will be
reported.

The condition regards restrictions on the rows to be rewritten. In other words, the corresponding
rewriting rule is applied only on instances on which the condition is satisfied. By using this strat-
egy, more rewriting algorithm can be used on a single record. Each condition provides a constraint
on these algorithms.

In general, every rewriting algorithm is characterized by three features:

1. the regular expression used to match the input value;

2. the replacement policy to apply when the matching succeeds (for example, it is possible to
replace all string value or only some occurrences satisfying the pattern matching);

3. the policy to apply when the matching procedure fails (typically, a preprocessing marking
procedure is applied in this case).

The core procedure of the operator is reported in Alg.

Algorithm 1 The core procedure of tHeP_REWRITINGoperator
Require: Instances: instances, a list of couples (Algorithm: algorithm, Condition: condition)
for all instin instanceslo
for all (alg, cond) in (algorithm, conditiorgo
if (cond.evaluateCond(instien
if alg.match(inst.getValue(attributeame), alg.regulaexpression)jhen
inst.setValue(attributeame, alg.applyReplacementPolicy())
else
alg.applyMarkingPolicy(inst, attributeame)
end if
end if
end for
end for

The type of the rewriting attribute is preserved. Run-time checking is needed on new values for
numeric or nominal attributes. In particular, nominal categories for an enumerated attribute must
be preserved after rewriting.

KDD phase

Preprocessing.



CHAPTER 3. KDDML OPERATORS 78

Signature

f<pp.rEwRITING> : PPtable X (alg X cond)+ — PPtable.
Required attributes
e attribute _name: the rewriting attribute of the input preprocessing table.

Optional Attributes

e Xml _dest .

Condition specification

In reference to the figur.36 legal values for the XML attributep type are reported below:

e equal, not_equal, greater, greater_or_equal, less lessor_equal: used for relational ex-
pressions on attribute values and/or constants (&gnark all instances with the attribute
temperature  less than 80).

e is_missing unary boolean expression evaluated on a single table attribute. Its evaluation is
satisfied only if the attribute value for an instance is missing (&g.mark all instances
where the attribut@utlook is missing’).

e group: given an attribute value previously matched with a regular expression, a positive
integer N representing the index of a sub-sequence (group) related to pattern matching, and
a string constant, it checks if the group N of the attribute value is equal to the input string. As
a matter of notation, sub-sequences can be identified in the regular expression by grouping
them within round parentheses.

The table3.10contains the types of primitive terms (XML attributiesm1, term2, term3 )
to be used for eachp _type legal value.

| OpType | Term 1 type | Term 2 type | Term 3 type |
equal, not_equal @attribute @attribute -
numeric or string constant
greater, greater_or_equal | @numericattribute| @numericattribute -

less lessor_equal numeric constant
is_missing @attribute - -
group positive integer string constant -

Table 3.10: Element BASEEOND for the PPREWRITING operator
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3.2.37 PPSAMPLING

DTD

<IELEMENT PP_SAMPLING ((%kdd_query_PPtable;), ALGORITHM)>
<IATTLIST PP_SAMPLING xml_dest %string; #IMPLIED>
Description

Data sampling techniques can be used to obtain a reduced representation of the data set, such that
it is a much smaller random sample, yet closely maintaining the integrity of the original data.

The operator takes a preprocessing table and a sampling method, and returns a new preprocessing
table whose instances have been selected according to the specified procedure. There are many
methods for data sampling, each of them expressed using the XML el&h&@®RITHMsee

figure 2.35. In section4.1.4 the list of supported sampling algorithms is reported.

KDD phase

Preprocessing.

Signature

f<pp.sawpLing> : PPtable x alg — PPtable.

Required attributes

None.

Optional Attributes

e Xml _dest .

3.2.38 PPSORTING_ATTRIBUTE

DTD

<IELEMENT PP_SORTING_ATTRIBUTE ((%kdd_query PPtable;))>
<IATTLIST PP_SORTING_ATTRIBUTE xml_dest %string; #IMPLIED>
<IATTLIST PP_SORTING_ATTRIBUTE attribute_name %string; #REQUIRED>
<IATTLIST PP_SORTING_ATTRIBUTE sorting_type
(by_frequency|ascending|descending) "by_frequency">

Description

The operator sorts the values of a given attribute according to a sorting method, as reported below:

e ascendingdescendingordering of a numeric, string or nominal attribute;
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¢ by frequencyrdering used on nominal attributes only. By using this strategy, the attribute is
ordered with respect to the frequency of the categories (i.e. the number of elements for that
category occurring in the input table). In this case, the operator adds a new numeric attribute
with the name of the input attribute followed biyequency at the end of the data schema.
This new attribute will contain the frequency values for each nominal category.
KDD phase

Preprocessing.

Signature

f<pp_sorTInG ATTRIBUTE> : PPtable — PPtable.
Required attributes

e attribute _name: the name of the sorting attribute. If the sorting methdayisrequency
then the attribute must be nominal.
Optional Attributes

e Xml _dest .

e sorting _type : the sorting procedure to be used. Possible valueassrendingdescend-
ing or by frequency By default, the operator uses thg frequencyordering.

3.2.39 PPTABLE 2. TABLE

DTD

<IELEMENT PP_TABLE_2 TABLE (%kdd_query_ PPtable;)>
<IATTLIST PP_TABLE_2 TABLE xml_dest %string; #IMPLIED>
Description

The operator finalizes the preprocessing KDD phase by mapping the input preprocessing table
into a relational table. Input and output tables share the same data schema and the same physical
instances.

KDD phase

Preprocessing.

Signature

fep.TaBLE o TABLE : PPtable — table
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Required attributes

None.

Optional Attributes

e xml _dest .

3.2.40 PPTABLE LOADER
DTD

<I[ELEMENT PP_TABLE_LOADER EMPTY>
<IATTLIST PP_TABLE_LOADER xml_source %string; #REQUIRED>

Description

It loads a preprocessing table from the system repository.

KDD phase

Resource loading.

Signature

f<pp TaBLE LOADER> : €mpty — PPtable.

Required attributes
e xml _source : the XML file source contained in the data repository.

Optional attributes

None.

3.2.41 RDAEXCEPTION
DTD

<IELEMENT RDA_EXCEPTION ((%kdd_query_rules;),
(%kdd_query_table;))>

<IATTLIST RDA_EXCEPTION xml_dest %string; #IMPLIED>

<IATTLIST RDA_EXCEPTION itemsets_or_rules (itemsets|rules) "rules">
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Description

Given a set of association rules and a table, the operator extracts the transactions in the table that
are exceptions to all the association rules.

A transaction is an exception to an association fyle.. I, — I,.1,..., I, if some itemI; for

i € [1,m] does not occur in the transaction. For example, the transattofbread, milk, winé

satisfies the rulbread— wine but it is an exception to the ruleead, milk— water.

The operator can be restricted to itemsets only. In this case, we say that a transaction is an excep-
tion to an itemsef;, ..., I,, if some iteml; for i € [1,n] does not occur in the transaction.

In both cases, the input relational table must be compatible with the association rules. In particular,
a table is compatible with a model if for each active mining field, belonging to the model, there is
an attribute in the table with the same name and type.

KDD phase

Model application.

Signature

f<RDA,EXCEPTION> :rda X table — table.

Required attributes

None.

Optional Attributes

e Xml _dest .

e itemsets _or _rules : can beitemsetsor rules In the first case, the operator uses the
itemsets to evaluate the transaction exceptions. In the second case, the operator uses the
association rules for the same purpose. By default, the valudeis

3.2.42 RDAFILTER

DTD

<IELEMENT RDA_FILTER ((%kdd_query rules;), CONDITION)>
<IATTLIST RDA_FILTER xml_dest %string; #IMPLIED>
Description

Given a set of association rules, the operator returns the rules satisfying a specified condition. The
condition is expressed by using AND/OR/NOTcombination between a set of primitive filters,
concerning:



CHAPTER 3. KDDML OPERATORS 83

e the support or the cardinality of the itemsets;
e the support, the confidence or the cardinality of body/head of the association rules;

¢ the single items contained in the itemset, body or head elements.

KDD phase
Model filtering.

Signature

f<RDA,FILTER> :rda X condition — rda.

Required attributes

None.

Optional attributes

e xml _dest .

Condition specification

In reference to the figur.36 legal values for the XML attributep _type are reported below:

e equal, not_equal, greater, greater_or_equal, less lessor_equal: used for relational ex-
pressions on support/confidence of the rules or itemsets*{e fijter association rules with
a confidence less than Lor on cardinality (i.e. the number of items) of itemsets, body or
head elements (e.¢to filter rules with exactly 2 items in the body”

e is_in: it checks if an item belongs to an itemset, or to either the body or the head elements of
an association rule (e.ffilter rules with the item 'milk’ in the body}).

e is_not_in: it checks if an item does not belong to itemset or to either the body or the head
elements of an association rule.

The table3.11contains the types of primitive terms (XML attributiesm1, term2, term3 )
to be used for eachp _type legal value.

3.2.43 RDALOADER
DTD

<IELEMENT RDA_LOADER EMPTY>
<IATTLIST RDA_LOADER xml_source %string; #REQUIRED>
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I OpType | Term 1 type | Term 2type | Term 3 type |
equal, not_equal @itemsetsupport real in [0,1] -
greater, greater_or_equal | @rdasupport
less lessor_equal @rdaconfidence

@itemsetcardinality | positive integer| -
@body cardinality
@headcardinality
is_in, is_not_in @itemset string -
@body
@head

Table 3.11: Element BASEEOND for the RDAFILTER operator

Description

It loads a set of association rules from the system repository.

KDD phase

Resource loading.

Signature

f<rpaLoapER> @ empty — rda.

Required attributes
e xml _source : the XML file source contained in the models repository.

Optional attributes

None.

3.2.44 RDAMINER

DTD

<IELEMENT RDA_MINER ((%kdd_query_table;), ALGORITHM)>
<IATTLIST RDA_MINER xml_dest %string; #IMPLIED>
Description

It extracts a set of association rules by using a mining algorithm. The operator takes a data source
and an association rules miner algorithm, and it returns an association model as output.
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The algorithm specification (i.e. the algorithm name and the list of expected parameters) is ex-
pressed by using the XML elemeAt GORITHMSsee figure 2.35. In section 4.1.5 the list of
supported association rules algorithms is reported.

KDD phase

Data mining.

Signature

f<RDAJVIINER> :table X alg — rda.

Required attributes

None.

Optional attributes

e Xml _dest .

3.2.45 RDAPRESERVED
DTD

<IELEMENT RDA_PRESERVED ((%kdd_query_hierarchy;),
(%kdd_query_rules;),
(9%kdd_query_rules;)+)>

<IATTLIST RDA_PRESERVED xml_dest %string; #IMPLIED>

Description

Given a hierarchy of items and two sets of association rilgsk, over items in the hierarchy,
this operator selects those rulesiRn such that, by generalizing the items in the rule to the parent
level, yields a rule that belongs 1,. For example, the two association rules reported below,

R, ="LongBeach AND SanJose- Chicago®,
R, ="California — lllinois"

are preserved over tloties-statesierarchy.

The first set of rulesR® ;) must have been extracted at the bottom level of the hierarchy (i.e. the
leaves level). The second set of rulég ] is a generalization at parent levels. Obviously, the two
sets of association rules must share the same signature, i.e. the same mining schema.

KDD phase

Model meta-reasoning.
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Signature

f<roA_PRESERVED> : hierarchy X rda X rda — rda.

Required attributes

None.

Optional attributes

e Xml _dest .

3.2.46 RDASATISFY
DTD

<IELEMENT RDA_SATISFY ((%kdd_query_rules;),
(%kdd_query_table;))>

<IATTLIST RDA_SATISFY xml_dest %string; #IMPLIED>

<IATTLIST RDA_SATISFY itemsets_or_rules (itemsets|rules) "rules">

Description

Given a set of association rules and a table, the operator extracts the transactions in the table
that satisfy at least one association rule. A transaction satisfies an association rule/,, —

Iy, ..., I, ifevery itemI; for i € [1,m] occurs in the transaction.

As for RDA_EXCEPTION, the input relational table must be compatible with the association
model (see sect3.2.4)).

KDD phase

Model application.

Signature

f<ronsatisry> : rda X table — table.

Required attributes

None.

Optional Attributes
e xml _dest .

e itemsets _or _rules : canbdatemset®orrules Inthe first case, the operator uses itemsets
to evaluate the transaction exceptions. In the second case, the operator uses the association
rules. By default, the value rsiles



CHAPTER 3. KDDML OPERATORS 87

3.2.47 SCALAR
DTD

<I[ELEMENT SCALAR EMPTY>

<IATTLIST SCALAR value %any_type; #REQUIRED>
<IATTLIST SCALAR xml_dest %string; #IMPLIED>
Description

The operator returns a scalar value expressed through an XML attribute.

KDD phase

None.

Signature

fscaLar : empty — scalar

Required attributes

e value : the scalar value to return.

Optional Attributes

e Xml _dest .

3.2.48 SEQUENCEAGGREGATE _FILTER
DTD

<IELEMENT SEQUENCE_AGGREGATE_FILTER ((%kdd_query_sequence;),
(%kdd_query_table;), CONDITION)>
<IATTLIST SEQUENCE_AGGREGATE_FILTER xml_dest %string; #IMPLIED>

Description

Given a set of sequential patterns and a time-stamp table, the operator returns the patterns satisfy-
ing a specific condition.

The condition concerns aaggregate constraintthat is a constraint on an aggregate of items in

a pattern, where the aggregate function camsura, average, max, min, standard deviatfery.,

“return all sequences in which the average price of all items is over$1P0The values of the

items of the sequence (e.g., the price of item in the example above) are contained in the input
time-stamp table.

This operator isupport-relatedi.e. given a condition it is applied to check whether a sequence
matches a transaction. To find whether a sequential pattern satisfies these constraints, one needs
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to examine the sequence database. In other terms, a pattern keeps being frequent only if the num-
ber of data sequences (transactions) supporting it (see the SEQUEKNUOEFY operator in sect.

3.2.55 and satisfying the condition is greater than the minimum support. The support threshold is
commonly expressed in the model and it can be specified in terms of absolute count or percentage.
The core procedure of the operator is reported in 2lg.

Algorithm 2 The core procedure of tffEQUENCRGGREGATEILTER operator
Require: Sequences: sequences, Transactions: transactions, Condition: condition
int absolutesupp = Transactions.nutnans * Sequences.misupp;
for all seq in sequence®
seq.absolutsupp = 0;
for all trans in transactiondo
if ((trans.satisfied(seq)) and (condition.evalCond(trarisgn
seq.absolutsupp = seq.absolutgupp + 1;
end if
end for
if seq.absolutsupp< absolutesuppthen
sequences.remove(seq);
end if
end for
return sequences;

As an example, consider the basket database reported in 3abPavith three transactions. Item
properties as therice and thequantity  of purchased products are expressed as additional
columns. Moreover, consider the sequential pat{epughetti} — {spaghetti, wine} and sup-

| transaction | timestamp | event | price | quantity |
id_1 10 spaghetti| 3 5
id_1 15 tomato | 2 2
id_1 15 wine 4 1
id_1 21 spaghetti| 6 4
id_1 21 tomato | 3 2
id_1 21 wine 7 1
id_2 12 mais 6 10
id_2 15 wine 8 1
id_3 15 spaghetti| 4 3
id_3 15 milk 2 1
id_3 18 spaghetti| 4 3
id_3 18 wine 2 1

Table 3.12: An example of market sequence dataset

pose we are interested only in the patterns in which the sum of prices of all items is greater or equal
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than 11$. Transactiond _1 andid _3 satisfy the input sequence, while the transaciibn? does

not. With respect to satisfied transactions, the condition(@Qprice) > 11 is true only for trans-
actionid _1 (sum(3,6,7) > 11 butsum(4,4,2) # 11). So, if the minimum support of the input
sequence model is less th&a3, then the sequence is returned; otherwise, the sequence is filtered
out from the model.

KDD phase
Model Filtering.

Signature

f<SEQUENCEAGGREGATE,FILTER> . sequence X table X condition — sequence.

Required attributes

None.

Optional attributes

e Xml _dest .

Condition specification

In reference to the figur.36 legal values for the XML attributep _type are reported below:

e equal, not_equal, greater, greater_or_equal, less lessor_equal they are used for rela-
tional expressions on aggregates of items in the patterns ‘(@iu;n all the sequences in
which the sum of quantities of all items is equal to L07alues for aggregates of items of the
sequence are contained in the columns of the input time-stamp table. They can be referred
to by using theerm2 XML attribute.

The table3.13contains the types of primitive terms (XML attributiesm1, term2, term3 )
to be used for eachp _type legal value.

| OpType | Term 1 type | Term 2 type | Term 3 type |
< sum >
equal, not_equal < avg >
greater, greater_or_equal | < stddev > | @numericattributename| numeric constang
less lessor_equal < maxr >
< min >

Table 3.13: Element BASEOND for the SEQUENCEAGGREGATEFILTER operator
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3.2.49 SEQUENCEEXCEPTION
DTD

<IELEMENT SEQUENCE_EXCEPTION ((%kdd_query_sequence;),

(%kdd_query_table;))>
<IATTLIST SEQUENCE_EXCEPTION xml_dest %string; #IMPLIED>
Description

Given a set of sequences and a table, the operator extracts the transactions in the table that are
exceptions to all sequences. A transaction is an exception to a sequence if it does not satisfy it (see
the section3.2.49to see when a transaction satisfy a sequence).

The input relational table must be in a time-stamp format, as illustrated in sez2tiba
KDD phase

Model application.

Signature

f<SEQUENCEEXCEPTIDN> . Sequence X table — table.

Required attributes

None.

Optional Attributes

e xml _dest .

3.2.50 SEQUENCEFILTER
DTD

<IELEMENT SEQUENCE_FILTER ((%0kdd_query _sequence;), CONDITION)>
<IATTLIST SEQUENCE_FILTER xml_dest %string; #IMPLIED>

Description

Given a set of sequential patterns, it returns the patterns satisfying a specified condition. The
condition is expressed using AND/OR/NOTcombination between a set of primitive filters, con-
cerningsupport constraintitem constraintlength constrainbr super-pattern constraint
The first one specifies a requirement on the support of the sequencéddilter sequences with
a support less than I’

Theitem constraintspecifies what are the particular individual or groups of items that should or
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should not be present in the pattern (e:go filter sequences with the item “milk” in the se-
guence)).

Thelength constrainspecifies requirements on the length of the patterns, where the length can be
either the number of distinct items, or the number of sets, or the maximal number of items per set
(e.g."to filter sequences with exactly 3 distinct items”

Finally, the super-pattern constraintinds patterns that contain a particular list of sets as sub-
patterns (e.g'to filter sequences that contain the item spaghetti first and then the item)milk”

KDD phase
Model filtering.

Signature

f<sEquence FILTER> : Sequence X condition — sequence.

Required attributes

None.

Optional attributes

e Xml _dest .

Condition specification

In reference to the figur.36 legal values for the XML attributep _type are reported below:

e equal, not_equal, greater, greater_or_equal, less lessor_equal they are used for rela-
tional expressions concerning
— the support of the sequenderml=@sequence _support );
— the number of sets of the sequent®fil=@sequence _cardinality )i

— the number of distinct items in the sequenterril=@sequence _distinct -
items _cardinality );

— the maximum number of items per serfm1l=@max_number _of _items _per _set ).

is_in: it checks if an item belongs to the pattern;

is_in_all: it checks if an item belongs to all sets of the pattern;

is_not_in: it checks if an item does not belong to the pattern;

is_not_in_all: it checks if an item does not belong to all sets of the pattern;



CHAPTER 3. KDDML OPERATORS 92

e sub_sequence it checks if a given input pattern is contained in the pattern related to the
condition. The input pattern is given as a string intiien2 attribute; the sets belonging to
the pattern are separated using the symbol “;”; each set is expressed using a comma separated
format (e.g.“milk, spaghetti; water; milk” represents the sequengeilk, spaghetti} —
{water} — {milk}).

The table3.14contains the types of primitive terms (XML attributiesm1, term2, term3 )
to be used for eachp _type legal value.

OpType Term 1 Term 2 Term 3
type type type
equal, not_equal @sequencsupport real in (0,1] -
greater, @sequenceardinality
greater_or_equal @sequencelistinctitems cardinality | positive integer | -
less @maxnumberof_items per set
lessor_equal
is_in, is_in_all @sequence string -
is_not_in, is_not_in _all
sub_sequence @sequence list of sets in -
dot-comma
separated format

Table 3.14: Element BASEOND for the SEQUENCH-ILTER operator

3.2.51 SEQUENCELOADER
DTD

<IELEMENT SEQUENCE_LOADER EMPTY>
<IATTLIST SEQUENCE_LOADER xml_source %string; #REQUIRED>

Description

It loads a sequence model from the system repository.

KDD phase

Resource loading.

Signature

f<sEquence Loaper> : empty — sequence.
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Required attributes
e xml _source : the XML file source contained in the models repository.

Optional attributes

None.

3.2.52 SEQUENCEMAXIMAL _FILTER
DTD

<IELEMENT SEQUENCE_MAXIMAL_FILTER ((%kdd_guery_sequence;))>
<IATTLIST SEQUENCE_MAXIMAL_FILTER xml_dest %string; #IMPLIED>

Description

Given a set of sequential patterns it returns only the patterns that are maximal, i.e. that are not
contained in any other pattern.

KDD phase
Model Filtering.

Signature

J <SEQUENCE MAXIMAL FILTER> @ S€quence — sequence.

Required attributes

None.

Optional attributes

e Xml _dest .

3.2.53 SEQUENCEMINER
DTD

<IELEMENT SEQUENCE_MINER ((%kdd_query_table;), ALGORITHM)>
<IATTLIST SEQUENCE_MINER xml_dest %string; #IMPLIED>
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Description

It extracts a set of sequential patterns by using a mining algorithm. The operator takes a data
source and a sequence miner algorithm and it returns a sequence model as output.
The algorithm specification (i.e. the algorithm name and the list of expected parameters) is ex-
pressed by using the XML elemeAt. GORITHMSsee figure 2.35. In section 4.1.8 the list of
supported sequence algorithms is reported.

KDD phase

Data mining.

Signature

f<SEQUENCEJV[INER> :table X alg — sequence.

Required attributes

None.

Optional attributes

e Xml _dest .

3.2.54 SEQUENCERULE

DTD

<IELEMENT SEQUENCE_RULE ((%kdd_query_sequence;))>

<IATTLIST SEQUENCE_RULE xml_dest %string; #IMPLIED>

<IATTLIST SEQUENCE_RULE min_confidence %prob_number; #REQUIRED>
<IATTLIST SEQUENCE_RULE max_number_of _rules %integer; #IMPLIED>

Description

Given a set of sequential patterns, it returns all the corresponding sequential rules that satisfy a
minimum confidence.
A sequence rule describes the relationship between two sequences and it consists of an antecedent
and a consequent, separated by a delimiter. More in detail, a sequence rule is an implication of the
form X — Y, whereX, Y andZ = X(Y') are sequential patterns. The support and the confidence

of the sequence rule are computed as reporte8l irand 3.2respectively:

support(X — Y) = support(Z) (3.1)

11V4
confidence(X —Y) = support(Z) (3.2)

support(X)
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The core procedure of the operator is shown in &bg.whereseq.sub _sequence(i, j)
returns the sub-sequence composed by sets fitom of the sequencseq .

Algorithm 3 The core procedure of tfeEQUENCHRULEoperator
Require: Sequences: sequence=al: min_confidence
Rules rules = new Rules(miconfidence);
for all seq in sequence
for i=1 to seq.lenght-tlo
Rule rule = new Rule();
rule.antecedent = seq.ssbquence(0, i);
rule.consequent = seq.s8bquence(i+1, seq.length);
rule.support = seq.support;
rule.confidence = seq.support / rule.antecedent.support;
1 =1+1;
if rule.confidence> min_confidencehen
rules.add(rule);
end if
end for
end for
return rules;

Notice that this operator needs the entire set of sequential patterns in order to compute all sequential
rules, because the support cannot be computed for some sub-sequences (for example, applying
the SEQUENCHRULE operator on sequences returned by SE2QUENCBMAXIMALFILTER
operator).

KDD phase

Model meta-reasoning.

Signature

f<SEQUENCE3ULE> : sequence — sequence.

Required attributes

e min _confidence : areal valuec € (0, 1] representing the minimum confidence of the
sequential rules.

Optional attributes

e xml _dest .
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e max number _of rules : a positive integer representing the maximum number of rules
to extract. Sequential rules in the model are ordered with respect to the confidence value.
If the number of sequential rules is greater than the parameter value, then rules with a low
confidence are filtered out from the model. If this parameter is omitted, all computed rules
are returned.

3.2.55 SEQUENCESATISFY
DTD

<IELEMENT SEQUENCE_SATISFY ((%kdd_qguery_sequence;),

(%kdd_query_table;))>
<IATTLIST SEQUENCE_SATISFY xml_dest %string; #IMPLIED>
Description

Given a set of sequences and a table, the operator extracts the transactions in the table that satisfy
at least one sequence.

Informally, a transaction T is a list of paif6 = [(t1,[1);...; (tm, In)] Wheret; is an identifier
representing theme-stammand/; is a set of items. Pairs are orderedtlge-stampVi, j € [1, m]

if ¢ < jthent; < t;. Atransaction T satisfies a sequertte— S, — ... — S,,, wheresS; are sets

of items, ifVi, j € [1,n] withi < j, 3h, k € [1,m] such that,, < ¢, andS; C I, andS; C I.

For example, given the transaction

T =[(1,{bread, milk, mais}); (2,{milk, bread, wine}); (3, {mais})]
the sequencémilk, bread — {mais} is satisfied by the transaction, but the sequefrodk,

bread} — {wine} — {milk} is not.
The input relational table must be in a time-stamp format, as illustrated in se2tiba

KDD phase

Model application.

Signature

f<SEQUENCEJ-:XCEPTION> : sequence X table — table.

Required attributes

None.

Optional Attributes

e Xml _dest .
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3.2.56 SEQUENCETIMESTAMP _FILTER

DTD

<IELEMENT SEQUENCE_TIMESTAMP_FILTER ((%kdd_query_sequence;),
(%kdd_query_table;))>

<IATTLIST SEQUENCE_TIMESTAMP_FILTER xml_dest %string; #IMPLIED>

<IATTLIST SEQUENCE_TIMESTAMP_FILTER constr_type (gap|duration)

#REQUIRED> <!ATTLIST SEQUENCE_TIMESTAMP_FILTER interval_closure
(open_closed|closed_closed|open_open|closed_open) #REQUIRED>

<IATTLIST SEQUENCE_TIMESTAMP_FILTER lower_bound %integer; #IMPLIED>

<IATTLIST SEQUENCE_TIMESTAMP_FILTER upper_bound %integer; #IMPLIED>

Description

Given a set of sequential patterns and a time-stamp table, the operator returns the patterns satisfy-
ing a specific condition.

Condition concerns aime-stamp constrairthat is defined only in sequence databases, where each
transaction in every sequence has a continuous time-stamp, i.ém#samp column of the

input data source must be numeric. The constraint cardoeadion constrainbr agap constraint

The first one requires that the pattern appears frequently in the sequence database in such a way
that the time-stamp difference between the first and last transactions in the pattern are either longer
or shorter than a given period (e.tpnly patterns in which every event occurred within a month

from the first one).

The gap constraintrequires that the pattern occurs frequently in the sequence database such that
the time-stamp difference between every two adjacent transactions must be either longer or shorter
than a given gap (e.gonly patterns in which the time gap between adjacent events occurred
within one day. In both cases, the period is given as interval expressed via XML attributes.

This operator isupport-relatedi.e. the given condition is applied to check whether a sequence
matches a transaction. In order to find whether a sequential pattern satisfies these constraints, one
needs to examine the sequence database. In other terms, a pattern keeps being frequent only if the
number of data sequences (transactions) supporting it (see the SEQUENIIEFY operator

in sect. 3.2.55 and satisfying the condition is greater than the minimum support. The support
threshold is commonly expressed in the model and it can be specified in terms of absolute count or
percentage.

The core procedure of the operator is reported in @@nd alg. 5, 6 for duration and gap filter
respectively, wherérans.getTimestamp(i) returns the timestamp value of thé set of

items belonging to the transactitmans

KDD phase
Model Filtering.

Signature

f <SEQUENCE_TIMESTAMP_FILTER> . Sequence X table — sequence.
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Algorithm 4 The core procedure of tHREQUENCHIMESTAMPFILTER operator
Require: Sequences: sequences, Transactions: transactions, Interval: int
Ensure: Sequences
int absolutesupp = Transactions.nutnans * Sequences.misupp;
for all seqin sequencedo
seqg.absolutsupport = 0;
for all transin transactionslo
if trans.satisfied(se@nd evalConstraint(trans, inthen
seq.absolutsupp = seq.absoluteupp + 1;
end if
end for
if seq.absolutsupp< absolutesuppthen
sequences.remove(seq);
end if
end for
return sequences;

Algorithm 5 The procedurevalConstraint(trans, int) for the duration filter
Require: Transactions: trans, Interval: int
Ensure: boolean

int value = trans.getTimestamp(trans.lenght - 1) - trans.getTimestamp(0);

return int.contains(value);

Algorithm 6 The procedurevalConstraint(trans, int) for the gap filter
Require: Transactions: trans, Interval: int
Ensure: boolean
for i=1 to trans.lenghtio
int value = trans.getTimestamp(i) - trans.getTimestamp(i-1);
if not int.contains(valuejhen
return false;
end if
end for
return true ;

Required attributes

e constr _type : the filter constraint to be used. Possible valuesyageor duratior

e interval  _closure :itdefinesarange of numeric values. Possible values@erclosed
closedclosed openopen andclosedopen lower _bound andupper _bound attributes
define the bound values.
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Optional attributes

e xml _dest .

e lower _bound: an integer representing the lower bound of the interval. The attribute is
optional. If it is omitted, then - infinity is assumed.

e upper _bound : an integer representing the upper bound of the interval. The attribute is op-
tional. Ifitis omitted, then + infinity is assumed. The system guaranteelothat _bound
< upper _bound.

3.2.57 SEQQUERY
DTD
<IELEMENT SEQ_QUERY (%kdd_operator;,(%kdd_operator;)+)>

Description

The SEQQUERY element models sequentialization between KDDML operators. The return
value of the SEQQUERY is assumed to be the last operator in the sequence of their arguments.

KDD phase

Control flow.

Signature

J<seqquery> : @any X --- X any — any.

Required attributes

None.

Optional attributes

None.

3.2.58 TABLE 2 HIERARCHY
DTD

<IELEMENT TABLE_2 HIERARCHY (%kdd_query_table;)>
<IATTLIST TABLE_2 HIERARCHY xml_dest %string; #IMPLIED>
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Description

The operator loads an item hierarchy from a data source. The input data source is a table with
exactly two string columns:

¢ the first one namedhild is the attribute identifying the children of an item;
e the second one namedrent is the father.

In the table 3.15 the three-level hierarchsities-states-countriesf figure 2.10is reported.

| Chid | Parent |
| Long Beach| California |
| SanJose | California |
| Chicago | lllinois |
| California | USA |
| linois [ USA |

Table 3.15: An example of item hierarchy as relational table

Notice that hierarchies are not yet related to a table column as meta-data but they can be built from
any table. Assigning the hierarchy to a table column as meta-data information can be achieved by
the preprocessing operatoPP_ ADDHIERARCHY Xsee sectiors3.2.2)).

KDD phase

Resources loading.

Signature

f<TaBLE 2 HTERARCHY> : table — hierarchy.

Required attributes

None.

Optional attributes

e Xml _dest .

3.2.59 TABLE_ 2 PP_-TABLE
DTD

<IELEMENT TABLE_2 PP_TABLE (%kdd_query_table;)>
<IATTLIST TABLE_2 PP_TABLE xml_dest %string; #IMPLIED>



CHAPTER 3. KDDML OPERATORS 101

Description

The operator starts the preprocessing phase by mapping the input relation table into a preprocess-
ing table. An empty preprocessing section is added to the output table, while the data schema and
the physical instances do not change.

KDD phase

Preprocessing.

Signature

frapLe 2 pp.TaBLE : table — PPtable

Required attributes

None.

Optional Attributes

e Xml _dest .

3.2.60 TABLE_LOADER
DTD

<IELEMENT TABLE_LOADER EMPTY>
<IATTLIST TABLE_LOADER xml_source %string; #REQUIRED>

Description

The operator loads a relational table from the system repository.

KDD phase

Resource loading.

Signature

f<taBLE LOADER> © €Mpty — table.

Required attributes

e xml _source : the XML file source contained in the data repository.

Optional attributes

None.
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3.2.61 TREECLASSIFY
DTD

<IELEMENT TREE_CLASSIFY ((%kdd_query_trees;),

(%kdd_query_table;))>
<IATTLIST TREE_CLASSIFY xml_dest %string; #IMPLIED>
Description

Given a classification tree and a table, the operator yields a new table with an additional column
at the end of the schema consisting of the class predicted by the decision tree. The name of
the new column is the name of the classification attribute of the tree followed by the extension
_predicted . For example, if the target attribute ‘iplay _tennis”, then the output column is
named asplay _tennispredicted”. The type of the predicted attribute become nominal.

The procedure used to determine the class predicted is the one adopted in the C4.5 algorithm. The
mapping between attributes used in the classification tree and attributes in the dataset is by name.
Therefore, the input relational table must be compatible with the classification tree. In particular,

a table is compatible with a model if for each active mining field belonging to the model, there is
an attribute in the table with the same name and type.

KDD phase

Model application.

Signature

f<trEE cLASSTFY> : tTee X table — table.

Required attributes

None.

Optional Attributes

e xml _dest .

3.2.62 TREELOADER

DTD

<I[ELEMENT TREE_LOADER EMPTY>

<IATTLIST TREE_LOADER xml_source %string; #REQUIRED>
Description

It loads a classification tree from the system repository.
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KDD phase

Resource loading.

Signature

f<TrEE LoADER> © eMpPty — tree.

Required attributes
e xml _source : the XML file source contained in the models repository.

Optional attributes

None.

3.2.63 TREEMETA CLASSIFIER

DTD

<IELEMENT TREE_META_CLASSIFIER ((%kdd_query_trees;),
(%kdd_query_trees;)+)>
<IATTLIST TREE_META_CLASSIFIER xml_dest %string; #IMPLIED>
<IATTLIST TREE_META_CLASSIFIER combination_type (and|or|committee) #REQUIRED>
<IATTLIST TREE_META_CLASSIFIER positive_class %string; #MPLIED>

Description

Models extracted by data mining algorithms very often need to be further processed, e.g., com-
bined with other models. The operator takes a set of classification trees and returns a voting
meta-classifier among the input trees.

The output meta-classifier is built according to a combination method, as reported below:

e committee constructs avoting classifieron input trees. More precisely, givendistinct
classifiersCi, . .., C,, avoting classifierassigns to a tuple the class mostly assigned by
Cy,...,Cp.

e and (or): builds a boolearAND tree (OR treepn a set of decision treesMore precisely,
givenn distinct decision tree®), . .., D,,, theAND tree(OR treg assigns to a tuple the pos-
itive class (negative class) if all the tre®y, . .., D,, classify the instance with the positive
class (negative class); otherwise, the negative class (positive class) is returned.

The operator performs a run-time checking that the three classifiers have been extracted from the
same meta-data. In particular, input trees must share the same mining schema and data dictionary.

°In a decision tree, the target attribute is binary with a positive classttegy.ye3 and a negative class (efglse,
no) as values.



CHAPTER 3. KDDML OPERATORS 104

KDD phase

Model meta-reasoning.

Signature

f<TREEMETA cLASSTFIER> : tTee X --- X tree — tree.
Required attributes

e combination _type : the combination procedure to be used for trees. Possible values are
committeer and or for boolean classifiers. In the last case, the XML attrilpgsitive  _class
identifies the positive class to be used.

Optional Attributes

e Xml _dest .

e positive  _class : is the positive class used when the target attribute is binary. The XML
attribute is required if a boolean combination strategy is used.

3.2.64 TREEMINER
DTD

<IELEMENT TREE_MINER ((%kdd_query_table;), ALGORITHM)>
<IATTLIST TREE_MINER xml_dest %string; #IMPLIED>
<IATTLIST TREE_MINER target_attribute %string; #REQUIRED>

Description

It extracts a classification tree by using a mining algorithm. The operator takes a table representing
the training set, the name of the target attribute and a tree miner algorithm and returns a tree model
as output.

The algorithm specification (i.e. the algorithm name and the list of expected parameters) is ex-
pressed by using the XML elemeAt GORITHMSsee figure 2.35. In section 4.1.§ the list of
supported classification algorithms is reported. The classification attribute is given as XML at-
tribute.

The data schema of the input data source depends on the algorithm specification. In other words,
some attributes can be ignored during the mining if their types are not supported by the algorithm.

For example, ID3 cannot work on continuous attributes. However, preprocessing operators can be
used to adapt the input table to specific data mining algorithms.

KDD phase

Data mining.
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Signature

J<ree mmnEr> : table X alg — tree.
Required attributes

e target _attribute . the attribute to be used for classification. Target attribute must be
nominal.

Optional attributes

e xml _dest .



CHAPTER 4

KDDML algorithms

This chapter contains all the KDDML supported algorithms for the preprocessing and mining
phases. With reference to figure 2.35, for each algorithm it reports:

1. the algorithm name to be used in the algorithm _name XML attribute with a description
of the algorithm;

2. the format of input data source required by the algorithm
3. the list of supported parameters with an explicative usage description;

4. atable with a row for each parameter containing the parameter type and the parameter usage.
More in detail, the table contains:
e the parameter namm be used in the attribute name of the XML element PARAM

e the parameter typeontaining the expected type to be used in the XML attribute value
of the element PARAM

e the usage of the parameter: it can be optional requiredor fixed.

o the default value to be used when the parameter is omitted (for optional parameters
only) in the XML definition.

Language algorithms will be presented according to a lexicographic ordering.

106
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4.1 Classification of algorithms

KDDML algorithms can be classified according to the type of knowledge they extract.

4.1.1 Discretization algorithms

Discretization techniques can be used to reduce the number of values for a given continuous
attribute, by dividing the range of the attribute into intervals. Discretization algorithms are used by
thePP_.NUMERICDISCRETIZATION operator that takes a preprocessing table as first argument.
Currently, KDDML supports the discretization algorithms shown on tahle

Algorithm Name \ Description Sect.
equal_frequency_discretization | It divides the range of an attribute into k intervalst.2.5
of equal cardinality
natural_binning_discretization | It divides the range of an attribute into k intervalst.2.8
of equal width

Table 4.1: Discretization algorithms

4.1.2 Normalization algorithms

Normalization is the process of scaling data values of a numeric attribute into a range such as [-1,
1] or [0,1]. Normalization algorithms reported in table2 are used by theP_.NORMALIZATION
operator (see secf3.2.3]) that takes a preprocessing table as first argument.

Algorithm Name | Description | Sect.
min_max_normalization It implements a linear transformation 4.2.7
based on the min-max method
z_score_normalization | The values of an attribute are normalized on th4.2.16
basis of his mean and standard deviation

Table 4.2: Normalization algorithms

4.1.3 Rewriting algorithms

Rewrite algorithms match the input attribute value against a pattern, and if a match is found, they
rewrite the value with a new format by using the rules defined in a transformation rule. Each
rewriting algorithm is defined by three features:

1. a regular expressiondgex) is used to perform the pattern matching. Basicallyegexis
a string that describes or matches against a set of strings, according to certain syntax rules.
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As an instance(alb)* denotes the set of all strings consistingeo&nd b, including the

empty string. KDDML uses the basjava.util.regex Java packagelp] for regular
expressions.

2. the transformation rule to be applied on attribute values when the pattern matching is satis-
fied;

3. the policy to be applied when the pattern matching fails for a given instance value.

In general, the last two items distinguish the rewrite algorithms. Rewriting methods are used by the
PP_.REWRITINGoperator (see sectio3.2.39 that takes a preprocessing table as first argument.
The table4.3lists the KDDML rewriting algorithms.

Algorithm Name | Description | Sect.
rule_m As rule-S, but it works only on preprocessing sectjod.2.10
marking meta-data that match a regular expressjon
rule_s It replaces the entire attribute value that matches4.2.11
a regular expression
rule_t It replaces every sub-sequence of the attribute 4.2.12
value that matches a regular expression

Table 4.3: Rewriting algorithms

4.1.4 Sampling algorithms

Sampling can be used as a data reduction technique, since it allows a large data set to be repre-
sented by a much smaller random sample (or subset) of the data. The sampling algorithms reported

in table 4.4 are used by theP_.SAMPLINGoperator (see sec3.2.37 that takes a preprocessing
table as first argument.

Algorithm Name Description Sect.
by_cluster_sampling It selects a random set of “stratum” of a nominal 4.2.1
attribute belonging to the input table
simple_sampling It returns a random subset of fixed cardinality from | 4.2.13

the input preprocessing table
stratified_sampling | It performs a simple sampling at each “stratum” of a nomina.2.14
attribute belonging to the input table

Table 4.4: Data sampling algorithms
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4.1.5 RdA miner algorithms

Mining models are extracted from a data source by using a data mining algorithm. Each miner
operator expects a sub-element with input data and a second sub-element with the algorithm name
and parameters (name and value). In taBdl& all the supported association rules algorithms are
reported; they are used by the RDMINER operator (see secB.2.49.

Algorithm Name Description Sect.
DCI It finds frequent itemsets and can be considered an enhancendepi3
of the well known Apriori. It is implemented in C.

Table 4.5: RdA miner algorithms

4.1.6 Tree miner algorithms

Intable 4.6all the supported classification algorithms are reported; they are used by the MIREHR
operator (see secf3.2.69.

Algorithm Name Description Sect.
It is a tool for parallel genetic programming that realizes
CAGE a parallel implementation on distribuited-memory computerst.2.2
It is implemented on linux platform using the MPI libraries
YaDT C++ implementation of the C4.5 algorithm 4.2.15

Table 4.6: Tree miner algorithms

4.1.7 Cluster miner algorithms

KDDML supports two types of clustering: th#istribution-basedclustering and theentroid-
basedclustering; as reported in tablé.7 all KDDML clustering algorithms used by the CLUS-
TER_MINER operator (see secB.2.6 belong to one or to other class.

Algorithm Name Description Sect. | Clustering Type
EM Implementation of the EM algorithm. | 4.2.4 Distribution
It uses the WEKA system library. based
KMeans Implementation of the KMeans algorithm4.2.6 Centroid
It uses the WEKA system library. based

Table 4.7: Cluster miner algorithms
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4.1.8 Sequence miner algorithms

In table 4.8all the supported sequence algorithms are reported; they are used by the SEQWHENER
operator (see sec3.2.53.

Algorithm Name Description Sect.
prefix_span Java proprietary implementation of the PrefixSpan algorith#h2.9

Table 4.8: Sequence miner algorithms

4.2 Algorithms specification

4.2.1 By cluster sampling
Algorithm Name

by _cluster _sampling

Description

Suppose that the tuples of the input database are grouped/imwtually disjointclusters(ac-
cording to the values of a nominal attribute), then a simple random samplingchfsters can be
obtained, wheren < M. The clusters are selected according ®RSWHRolicy or to aSRSWOR
policy (see sect4.2.13.

The number of output clusters can be given either in absolute form (using the paraoretesr-

_of _categories ) or as percentage (using the paramegtercentage ) with respect to the
number of clusters)/. It is important to notice that the schema of the data does not change when
applying the algorithm, and that the categories are not removed from the by-cluster sampling at-
tribute.

Currently, the algorithm uses a proprietary Java implementation.

Input data format
The algorithm takes as input a preprocessing table containing at least a nominal field, representing
the clustering attribute.

Parameters description

e attribute _name: it is the name of the by-cluster sampling attribute. By-cluster sampling
can be applied only to nominal attributes.

e percentage : it is the percentage of output clusters (i.e., categories) with respect to the
total number of clusters)/. The parametepercentage and the parameterumber-
_of _clusters  are mutually exclusive; i.e. if this parameter is specified by the user, the
other one must be omitted;
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e number _of _categories : it is the absolute number of output clusters (i.e., categories),
m. If m > M and theSRSWORechnique is selected, then all instances belonging to the
input table will be returned by the algorithm: no tuple replication is performed. Otherwise, if
m > M and theSRSWHRnethod is selected, then the output table will contain more instances
that the input table and some instances (belonging to the same cluster) will be replicated. If
this parameter is specified by the user, the paranpeteentage  must be omitted.

e with _replacement : it selects the replacement strategy to be applied ta\thelusters.
The parameter can lirue or false In the first case, thERSWRnethod is selected and the
instances belonging to the same cluster can be replicated. Otherwise, the algorithm uses the
SRSWORnethod for simple sampling.

Parameters specification

Table 4.9 contains the parameters specification for the by-cluster sampling technique to be used
in the PARANMKML element of figure 2.35

Parameter Parameter Usage | Default

Name Value Value

attribute  _name string required -

percentage real in(0,1] | optional -

number _of _categories positive integer optional -

with _replacement < true > optional | < false >
< false >

Table 4.9:by _cluster _sampling parameters.

4.2.2 CAGE (CellulAr GEneting programming tool)
Algorithm Name

CAGE

Description

CAGE(CellulAr GEneting programming top[14] is a tool for parallel genetic programming ap-
plications, that realizes a fine-grained parallel implementation of genetic programming on distributed-
memory parallel computers. Experimental results on some classical test problems shows that the
cellular model outperforms both the sequential canonical implementation of GP and the parallel
island model. Furthermore parallel cellular GP has a nearly linear speed-up and a good scale-up
behavior. CAGE implements the cellular GP model using a one-dimensional domain decomposi-
tion (in the x direction) of the grid and an explicit message passing to exchange information among
the domains. All the communications are performed using the MPI (Message Passing Interface)
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portable message passing system so that CAGE can be executed across different hardware plat-
forms. Since the processes are connected according to a ring architecture and each process has a
limited buffer for storing boundary data, asynchronous communication are used in order to avoid
processors to idle. CAGE uses the standard tool for genetic programming sgpcl.1, a simple GP in
the C language to apply the GP algorithm to each grid point.

Important note: the CAGE algorithm works on linux platform only and needed of the MPI li-
braries installed on operative system.

Input data format

In currently implementation, the CAGE algorithm supports nominal attributes only: no string or
numeric attributes are allowed in the input table.

Parameters description

e NnumM.processors : apositive integer representing the number of processors used. Default:
1.

e num.iterations . a positive integer representing the maximum number of iterations
needed. Default: 100.

e parameter _file :the path of a configuration file used by the algorithm.

e classification _type : it specifies if the algorithm uses the boosting classification or
not.

e perc _data : a double in (0,1] containing the percentage of input instances used by CAGE
as training set. This parameter is used only with boosting classification technique.

Parameters specification

Table 4.10contains the parameters specification for the CAGE algorithm to be usedRARAM
XML element of figure2.35

| Parameter Name | Parameter Value | Usage | Default Value |
nuUM_processors positive integer | optional 1
num.iterations positive integer | optional 100
parameter file string optional -
classification _type < boost > optional | < no_boost >
< no_boost >
perc _data real in (0, 1] optional -

Table 4.10: CAGE parameters
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4.2.3 DCI (Direct Count & Intersect)
Algorithm Name

DCI

Description

DCI (Direct Count & Intersect)]5] is an algorithm for finding frequent sets of items from a trans-
actional database. It can be considered an enhancement of the well known Apriori, because they
both share the same level-wise approach and use the same candidate generation technique. Nev-
ertheless, DCI improves considerably the performance of Apriori by introducing a new pruning
technique and the automatic switching to a vertical database representation, during execution. DCI
adopts a direct counting based approach for the first iterations and an intersection based approach
for the vertical dataset iterations. Moreover DCI adopts a new counting inference strategy based
on the notion of key-patterns.

DCl is used by KDDML to generate frequent itemsets and it has been extended through a propri-
etary Java implementation, in order to extract association rules also. Both the number of requested
output itemsets and the number of output association rules are (optional) input parameters of the
algorithm. In order to use it, the user must specify the minimum support and the minimum confi-
dence of the rules.

Input data format

According to section2.2.3 the input data source can be inedational format i.e. a row for each
single transaction and an attribute for every item. This format allows for deriving inter-attribute
association rules such &sarType=racing AND homelnsurance=false- married=false“. In a
relational table, numeric attributes are ignored by the DCI algorithm.

Also thetransactional formais recognized. The last one is used to deriving intra-attribute as-
sociation rules such dspaghetti AND tomato— parmesan® In a transaction format, the DCI
algorithm uses only the attributdem andtransaction during the extraction process. Other
attributes are allowed in the table, but they are ignored by the mining algorithm.

Parameters description

e min _support : the minimum support of a rule or itemset;
e min _confidence : the minimum confidence of a rule;
e maxnumber _of _itemsets : the maximum number of itemsets to extract;

e max_.number _of _rules :the maximum number of rules to extract.

Parameters specification

Table 4.11contains the parameters specification for the DCI algorithm to be used PARAM
XML element of figure2.35
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| Parameter Name | Parameter Value | Usage | Default Value ||
min _support real value in (0,1]| required -
min _confidence real value in (0,1]| required -
max_number _of _itemsets positive integer | optional -
max_number _of _rules positive integer | optional -

Table 4.11: DCI parameters

4.2.4 EM (Expectation Maximization)
Algorithm Name

EM

Description

The EM (Expectation Maximization®] algorithm is an effective, popular technique for estimat-

ing mixture model parameters (cluster parameters and their mixture weights). The EM algorithm
iteratively refines initial mixture model parameter estimates to better fit the data and it terminates
at a locally optimal solution. EM is a distribution-based technique.

In the current version, the EM algorithm is implemented using the WEKa\Ijbrary?.

Input data format

The EM algorithm supports nominal or continuous attributes only: no string attributes are allowed
in the input table.

Parameters description

e number _of _clusters : it specifies the number of clusters to generate. If it is omitted,
EM will use cross validation to select the optimal number of clusters.

e max iterations . terminate after this many iterations if EM has not converged.

e min _std _dev: set the minimum allowable standard deviation for normal density calcula-
tion.

Parameters specification

Table 4.12contains the parameters specification for the EM algorithm to be used PARAM
XML element of figure2.35

INotice that the algorithm is based on a main-memory Java implementation.
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| Parameter Name | Parameter Value | Usage | Default Value |
number _of _clusters positive integer | optional -
max_iterations positive integer | optional 100
min _std _dev real in(0, 1] optional 1

Table 4.12: EM parameters

4.2.5 Equal frequency discretization
Algorithm Name

equal _frequency _discretization

Description

TheEqual Frequency Discretizatiomethod (EFD) divides the range of a numeric attribdtato

k intervals containing the same number of samples.

Suppose there aretraining instances for which the values dfare known (missing values will

be ignored). More in details, the algorithm sorts the observed values and then divides the sorted
values intok intervals so that each interval contains (approximajelye same number of training
instances. Thus each interval contain'g (possibly duplicated) adjacent values. The number of
output intervalsk and the number of required samples for each interval are mutually exclusive
parameters.

When the intervals have been computed, the algorithm replaces each training instance vialue of
with aninterval label As previously reported, the system allows a numeric or nominal labeling
(see sectiom.2.9.

At present, the algorithm uses a proprietary Java implementation.

Input data format

The algorithm takes as input a preprocessing table containing at least a numeric field, representing
the discretization attribute.

Parameters description

e number _of _intervals : it is the number of output intervals This parameter and the
parametecardinality _of _intervals are mutually exclusive.
e cardinality _of _intervals : itis the number of cases assigned to each interval. This

parameter and the parametemmber _of _intervals are mutually exclusive.

e labeling : the labeling strategy to be used. Possible values are:

2The number of instances can vary for the last computed interval.
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e enumerated

_label
meter issnumeratiorand the paramet&umber _of _intervals

list

. the list of nominal labels to use when tlabeling
is specified. In this case,

mean it is used to compute the mean of the values belonging to the interval,

inf (sup) itis used to compute the inferior (superior) bound of the interval;

116

median it is used to compute the median of the values belonging to the interval,

enumerationit is used for a nominal interval labeling. In this case, the list of nominal

labels can be (optionally) provided using the parameteimerated _label _list

para-

the system guarantees that the number of required intervals is equal to the number of nom-
inal labels provided by the user. If the parameter is omitted, each attribute value is labeled
with a string representing the interval (e @5, 50). The list of labels is given in a comma

separated format (e.g/oung, adult, elder

Parameters specification

Table 4.13contains the parameters specification for the equal frequency normalization method to
be used in th® ARAMKML element of figure 2.35

Parameter Parameter Usage Default
Name Value Value
required if
number _of _intervals positive integer | cardinality _of -
_intervals
is omitted
required if
cardinality _of _intervals positive integer number _of -
_intervals
is omitted
< mean > -
< 