
KDDML Language: Reference Guide

ANDREA ROMEI

University of Pisa
Department of Computer Science

http://kdd.di.unipi.it/kddml

October 5, 2005
KDDML System Version: 2.0.15 beta

Abstract

Knowledge discovery in databases (KDD) covers a wide range of application domains (retail,
marketing, finance, e-commerce, biology, privacy, only to cite a few ones), several models of rep-
resenting extracted patterns and rules (including classification models, association rules, sequential
patterns, clusters) and a large number of algorithms for data preprocessing, model extraction and
model reasoning.
KDDML is a middleware XML-based language (and system) needed to support the development
of final applications or higher level systems which need a mixture of database access, data pre-
processing, mining extraction and deployment.
As the name suggests, KDDML is heavily based on XML as a representation language for data,
models and queries. The language is primarily intended as a middleware language on the basis
of which higher abstraction levels can be built, such as vertical applications or more declarative
languages. Also, the language tries to be as much as possible independent from lower level imple-
mentations of data mining algorithms, with the aim of confining the technicalities at the level of
the implementation of the KDDML system.
This document describes in detail KDDML as KDD language whose design principles are moti-
vated by requirements derived from recurring patterns in the KDD process.

Background
Data Mining, Knowledge Discovery in Databases, XML, Document Type Definition (DTD).

Licence
The KDDML system and this guide are published and distribuited under the GNU general public
licence.

Copyright
KDDLab group
University of Pisa
Department of Computer Science
Largo Bruno Pontecorvo, 3
56127, Pisa, ITALY

CONTENTS

1 Getting started 7
1.1 Motivations . 7
1.2 KDDML language overview. 9

1.2.1 A simple sample. 9
1.2.2 KDDML as typed language. 10

1.3 Organization of this guide. .11

2 KDDML Objects 12
2.1 Objects Hierarchy. .12
2.2 Data representation. .13

2.2.1 Logical data. .14
2.2.2 Taxonomies. .16
2.2.3 Physical data: relational tables, transactional tables and timestamp tables. 18
2.2.4 Preprocessing tables. .21

2.3 Knowledge representation. .23
2.3.1 Association model. .24
2.3.2 Sequence model. .26
2.3.3 Tree model. .26
2.3.4 Clustering model. .28
2.3.5 Hierarchy model. .30

2.4 KDDML Scalar .30
2.5 Queries representation. .30

3 KDDML operators 39
3.1 Classification of operators. .40

3.1.1 I/O operators. .40
3.1.2 Preprocessing operators. 40
3.1.3 Mining operators. .42

1

CONTENTS 2

3.1.4 Postprocessing operators. 42
3.1.5 Control flow operators. .44
3.1.6 Unclassified operators. .44

3.2 Operators specification. .44
3.2.1 ARFFLOADER .44
3.2.2 ARFFWRITER .45
3.2.3 CALL QUERY .47
3.2.4 CLUSTERCENTROID . 48
3.2.5 CLUSTERLOADER .48
3.2.6 CLUSTERMINER .49
3.2.7 CLUSTERNUMBER .50
3.2.8 CLUSTERPARTITION . 51
3.2.9 CLUSTERPARTITION SPARROW . 51
3.2.10 DATABASELOADER .52
3.2.11 DATABASEWRITER .54
3.2.12 EXTCALL .55
3.2.13 HIERARCHYLOADER . 56
3.2.14 IF .56
3.2.15 MISCLASSIFIED .57
3.2.16 PARQUERY .58
3.2.17 PMMLCLUSTERLOADER . 59
3.2.18 PMMLRDA LOADER . 60
3.2.19 PMMLSEQUENCELOADER . 61
3.2.20 PMMLTREE LOADER . 61
3.2.21 PPADD HIERARCHY . 62
3.2.22 PPCHANGE TYPE .63
3.2.23 PPDIVIDING ATTRIBUTE . 64
3.2.24 PPFILTER ATTRIBUTES . 65
3.2.25 PPFOLDING .66
3.2.26 PPHIERARCHICAL DISCRETIZATION 66
3.2.27 PPMARKING .67
3.2.28 PPMARK DUPLICATES . 69
3.2.29 PPMERGE DUPLICATES . 70
3.2.30 PPNEW ATTRIBUTE . 71
3.2.31 PPNORMALIZATION . 72
3.2.32 PPNUMERIC DISCRETIZATION . 73
3.2.33 PPNUMERIC LABELING . 73
3.2.34 PPREMOVE ROWS .74
3.2.35 PPRENAME ATTRIBUTES . 75
3.2.36 PPREWRITING .76
3.2.37 PPSAMPLING .79
3.2.38 PPSORTINGATTRIBUTE . 79
3.2.39 PPTABLE 2 TABLE .80
3.2.40 PPTABLE LOADER .81

CONTENTS 3

3.2.41 RDAEXCEPTION. .81
3.2.42 RDAFILTER .82
3.2.43 RDALOADER .83
3.2.44 RDAMINER .84
3.2.45 RDAPRESERVED .85
3.2.46 RDASATISFY .86
3.2.47 SCALAR .87
3.2.48 SEQUENCEAGGREGATEFILTER . 87
3.2.49 SEQUENCEEXCEPTION . 90
3.2.50 SEQUENCEFILTER .90
3.2.51 SEQUENCELOADER . 92
3.2.52 SEQUENCEMAXIMAL FILTER . 93
3.2.53 SEQUENCEMINER .93
3.2.54 SEQUENCERULE .94
3.2.55 SEQUENCESATISFY . 96
3.2.56 SEQUENCETIMESTAMP FILTER . 97
3.2.57 SEQQUERY .99
3.2.58 TABLE2 HIERARCHY . 99
3.2.59 TABLE2 PPTABLE .100
3.2.60 TABLELOADER .101
3.2.61 TREECLASSIFY .102
3.2.62 TREELOADER .102
3.2.63 TREEMETA CLASSIFIER .103
3.2.64 TREEMINER .104

4 KDDML algorithms 106
4.1 Classification of algorithms. .107

4.1.1 Discretization algorithms. .107
4.1.2 Normalization algorithms. .107
4.1.3 Rewriting algorithms. .107
4.1.4 Sampling algorithms. .108
4.1.5 RdA miner algorithms. .109
4.1.6 Tree miner algorithms. .109
4.1.7 Cluster miner algorithms. .109
4.1.8 Sequence miner algorithms. .110

4.2 Algorithms specification. .110
4.2.1 By cluster sampling .110
4.2.2 CAGE (CellulAr GEneting programming tool).111
4.2.3 DCI (Direct Count & Intersect) .113
4.2.4 EM (Expectation Maximization). .114
4.2.5 Equal frequency discretization. .115
4.2.6 KMeans. .116
4.2.7 Min-max normalization .118
4.2.8 Natural binning discretization. .118

CONTENTS 4

4.2.9 Prefix Span. .120
4.2.10 Rule M .121
4.2.11 Rule S. .122
4.2.12 Rule T .124
4.2.13 Simple sampling. .125
4.2.14 Stratified sampling. .127
4.2.15 YaDT (Yet Another Decision Tree builder).128
4.2.16 Z-score normalization. .129

Appendices .132

A Extending the KDDML language 132
A.1 Adding a new algorithm .132
A.2 Adding a new operator. .132
A.3 Adding a new model .134
A.4 Example: adding a naive bayes model. .135

A.4.1 Physical model. .135
A.4.2 Model entity .136
A.4.3 Operators. .136
A.4.4 Operator one: model loader. .136
A.4.5 Operator two: model miner. .136
A.4.6 Operator three: classifier. .137

LIST OF TABLES

2.1 The weather dataset. .17
2.2 A sample transactional table. .20
2.3 A sample timestamp table. .21
2.4 Condition specification for the element IFTERM of expressions. 37
2.5 Correspondence between XML entities and KDDML types. 38

3.1 I/O operators .40
3.2 Preprocessing operators. .42
3.3 Mining operators .42
3.4 Postprocessing operators. .43
3.5 Control flow operators. .44
3.6 Unclassified operators. .44
3.7 Element BASECOND for IF operator. 58
3.8 Element BASECOND for PPMARKING operator 69
3.9 Element BASECOND for the PPREMOVE ROWS operator 76
3.10 Element BASECOND for the PPREWRITING operator. 78
3.11 Element BASECOND for the RDAFILTER operator 84
3.12 An example of market sequence dataset. 88
3.13 Element BASECOND for the SEQUENCEAGGREGATEFILTER operator. . . 89
3.14 Element BASECOND for the SEQUENCEFILTER operator 92
3.15 An example of item hierarchy as relational table.100

4.1 Discretization algorithms. .107
4.2 Normalization algorithms. .107
4.3 Rewriting algorithms. .108
4.4 Data sampling algorithms. .108
4.5 RdA miner algorithms .109
4.6 Tree miner algorithms. .109

5

LIST OF TABLES 6

4.7 Cluster miner algorithms. .109
4.8 Sequence miner algorithms. .110
4.9 by cluster sampling parameters. .111
4.10 CAGE parameters. .112
4.11 DCI parameters. .114
4.12 EM parameters. .115
4.13 equal frequency discretization parameters..116
4.14 KMeans parameters. .117
4.15 min max normalization parameters.. .118
4.16 natural binning discretization parameters..120
4.17 prefixspan parameters. .121
4.18 rule mrewriting parameters.. .122
4.19 rule s rewriting parameters.. .124
4.20 rule t rewriting parameters.. .125
4.21 simple sampling parameters. .126
4.22 stratified sampling parameters.. .128
4.23 YaDT parameters. .129

CHAPTER 1

Getting started

With the rapid computerization of businesses and organizations, a huge amount of data has been
collected and stored in databases, and the rate at which data are stored is growing at a phenomenal
rate. As a result, traditional ad hoc mixtures of statistical techniques and data management tools are
no longer adequate for analyzing this vast collection of data. Knowledge Discovery in Databases
(or KDD in short) has emerged as a growing field of multidisciplinary research for discovering
interesting/useful knowledge from large databases. KDD covers a wide range of application do-
mains (retail, marketing, finance, e-commerce, biology, privacy, only to cite a few ones), several
models of representing extracted patterns and rules (including classification models, association
rules, sequential patterns, clusters) and a large number of algorithms for data preprocessing, model
extraction and model reasoning.

1.1 Motivations

KDD [1] is the process of finding “nuggets” of knowledge. It is a complex task, heavily dependent
on the problem and on the data at hand. As described in the CRISP-DM process model [2], it may
consist of several repeated phases including business problem understanding, data comprehension,
data preparation, modelling (or data mining), evaluation and deployment. The development of
KDD solutions requires then to specify the tasks at each phase and the interactions/dependencies
among them. Most of the times, this results is a complex process, requiring to combine different
sources of data and knowledge, and with many tasks iterated in order to reach a (unfortunately,
local) optimum. Figure1.1shows an example of KDD process.

KDD technology has reached a maturity state as far as the design of efficient knowledge extrac-
tion algorithms is concerned. This is witnessed by the large number of commercial tools (including
all major RDBMS) offering KDD algorithms. On the contrary, the design of final applications is
still an “art”, obtained by composing algorithm libraries, proprietary API’s, SQL queries and stored
procedure calls to RDBMS, andmuch muchcode.

7

CHAPTER 1. GETTING STARTED 8

Figure 1.1: The KDD process

At present, there is a fervent activity of standardization in the area of mining model representa-
tion and access and of mining algorithms API’s [3], [4]. We think that a middleware language and
system is needed to support the development of final applications or higher level systems which
need a mixture of database access, data preprocessing, mining extraction and deployment. XML
appears as a bridge between database technology and data mining tools. However, its use seems
limited to the exchange of mining models between applications. We would like to go further and
conceive a language (and system) where XML is used for processing data and mining models as
well. XML is largely used as a machine-processable language, e.g. in the web technology. It
seems then natural to express KDD operations as XML elements.

In the rest of the document, we concentrate on the description of KDDML as KDD language
whose design principles are motivated by requirements derived from recurring patterns in the KDD
process.

CHAPTER 1. GETTING STARTED 9

1.2 KDDML language overview

KDDML (Knowledge Discovery in Database Mark-up Language) is a middleware language (and
system) needed to support the development of final applications or higher level systems which
demand a KDD integrated environment.

The KDDML language is XML-based both for query syntax and data/model representation,
in order to favormachine-processability. However, the semantics is purely “functional”, which
ensurescompositionality of operators. Compositionality is granted by aclosure principle.

The semantics of a KDDML language expression is either a model or a data table. Therefore,
we call a KDDML language expression aKDDML query, in order to emphasize that a result
is expected. We will survey operators on data access and preprocessing, model extraction and
deployment, and control flow operators. Concerning data and model representation, an XML-
based approach is adopted here as well. In particular, models are represented using an extension
of the Predictive Markup Modelling Language standard (PMML) [3]. About relational tables, we
use a proprietary representation that is a mixture between XML and text.

The KDDML language assumes adata repository, containing relational and preprocessing ta-
bles, amodel repository, containing mining models, and aquery repository, containing queries.
Tables, models and queries can be referenced by an identifier1. KDDML queries are XML-
documents, where XML tags correspond to operations on data and/or models, XML attributes
correspond to parameters of those operations and XML sub-elements define arguments passed to
the operators.

1.2.1 A simple sample

As an example, the query of figure1.2specifies the construction and application of a decision tree.
The root tag is<KDDQUERY>, with the query name as an attribute.

<TREECLASSIFY> is the operator that applies a decision tree to predict the class of tuples in
a test set. The attributexml dest="results.xml" states that the results of the classification
are stored in the data repository for further processing or analysis.

The tree to be applied is provided by the first sub-element (with tag<TREEMINER>) which
specifies the construction of a classification tree.

The test set is provided by the second element (with tag<TABLE LOADER>), which specifies
a relational table namedtestSet.xml gathered from the local data repository.

In turn, the construction of a decision tree (tag<TREEMINER>) takes place on a training
set trainingSet.arff in ARFF format2 by applying a decision tree induction algorithm
(here, YADT from [5]) with parameters concerning the pruning strategy of the algorithm (tag
<ALGORITHM>). The name of the class attribute is provided as attribute of the<TREEMINER>
element. As it will be shown later on, the KDDML language embeds a library of (pre-processing
or mining) algorithms and basic mechanisms for adding new ones.

Before applying the algorithm on the training set, a preprocessing step is performed. The
<PP REMOVEROWS>operator allow us to remove all instances having a missing value for the

1In the actual implementation, the identifier coincides with the name of the file where they are stored.
2The ARFF format is a text file consisting of a list of instances with the attribute value for each instance being

separated by a comma.

CHAPTER 1. GETTING STARTED 10

<KDD_QUERY name="sample">
<TREE_CLASSIFY xml_dest="results.xml">

<TREE_MINER xml_dest="tree.xml" target_attribute="class">
<PP_TABLE_2_TABLE>

<PP_REMOVE_ROWS>
<TABLE_2_PP_TABLE>

<ARFF_LOADER arff_file_name="trainingSet.arff" />
</TABLE_2_PP_TABLE>
<CONDITION>

<BASE_COND op_type="is_missing" term1="@temperature"/>
</CONDITION>

</PP_REMOVE_ROWS>
</PP_TABLE_2_TABLE>
<ALGORITHM algorithm_name="YADT">

<PARAM name="confidence_for_pruning" value="0.4"/>
<PARAM name="num_instances_for_leaf" value="2"/>

</ALGORITHM>
</TREE_MINER>

<TABLE_LOADER xml_source="testSet.xml"/>
</TREE_CLASSIFY>

</KDD_QUERY>

Figure 1.2: A sample KDDML query.

attributetemperature (tag <CONDITION>). Finally, the operators<TABLE 2 PP TABLE>
and<PP TABLE 2 TABLE>allow us, respectively, to start and to finalize the preprocessing step
on trainingSet.arff .

1.2.2 KDDML as typed language

As one could expect, arguments of an operator must be of an appropriate type and sequence, i.e.
an operatorsignaturemust be specified. We denote the signature of an operatorf : t1× . . . tn → t
returning typet by defining a DTD for KDDML queries that constraints sub-elements to be of
type t1, . . . , tn. Thus, KDDML queries corresponds to terms in the algebra of operators, though
syntactically represented as XML documents.

Intuitively, there is one type for data sources, one type for preprocessing tables, one type for
each mining model (classification tree, association rules, sequential patterns, clusters) and one type
for hierarchies. Other proprietary objects denote special arguments such as algorithms definition
or conditions on table attributes. As shown in the next chapter, we call the root tag of language
objects asKDDMLObject .

Under this interpretation, the semantics of a KDDML query amounts to a strict functional
execution of the corresponding term. The evaluation of an XML-fragment:

<OPERATOR_NAME xml_dest="results.xml" att1="v1" ... attM="vM">
<ARG1_NAME> </ARG1_NAME>

CHAPTER 1. GETTING STARTED 11

...
<ARGn_NAME> </ARGn_NAME>

</OPERATOR_NAME>

consists of:

1. evaluation of attributesatt1 ... attM returning a set of scalar values;

2. recursive evaluation of fragments from<ARG1NAME> ... </ARG1 NAME>to <ARGn-
NAME> </ARGn NAME>; this evaluation returns a set ofKDDMLObject .

3. a call to an operatorfOPERATOR NAME, accepting results from (1) and (2) and yielding the final
result of the fragment; also the final result is aKDDMLObject .

Moreover, a copy of the final result (which may be an intermediate result of a possibly larger
query) is stored in the (model or data) repository if the attributexml dest is specified. Notice
that repositories are persistent, so to favor the reuse of extracted knowledge and preprocessed data.

As a by-product, the language satisfies aclosure principle, namely that any operator returning
typet can be used wherever an argument of typet is required. Also, validation of queries as XML
documents against the DTD corresponds to static type-checking of operators in the query. As an
example, this fragment of the DTD:

<!ELEMENT TREE_CLASSIFY ((%kdd_query_trees;),(%kdd_query_table;))>
<!ATTLIST TREE_CLASSIFY xml_dest CDATA #IMPLIED>

requires that the first sub-element of<TREECLASSIFY> be one of those in the entitykdd-
query trees (i.e. all operators returning a tree model) and the second one is in the entity

kdd query table (i.e. all operators returning a table). In other terms, theTREECLASSIFY
operator is a functionf<TREE CLASSIFY> : tree×table→ table. The DTD is then another (simple
and general) way of specifying an algebra of types and operators.

1.3 Organization of this guide

This document focuses on the language KDDML: concepts, DTD specifications and algorithms
definitions. Background knowledge concerns XML and the related Document Type Definition [6].

In section2 we provide a complete description of the objects (i.e. types) composing the KDDML
language: as previously reported, a DTD specification has been provided in order to define
regular KDDML objects;

in sections3 and 4 we report, respectively, the operators (such asTREECLASSIFY) and algo-
rithms (such asYaDT) language specification;

finally, in appendixA we explain how the DTD’s of the language have to be extended in order to
introduce new algorithms, operators or models.

CHAPTER 2

KDDML Objects

KDDML is a middleware mark-up language that allows one to represent models, tables and
KDD queries in a uniform way. The aim is to develop an environment in which several kinds of
knowledge extraction operations can be combined, in order to describe and solve complex knowl-
edge extraction problems. As shown in the previous section, KDDML adopts the emerging XML
standard as a glue for query definition and data/model representation. In this section, we concen-
trate on the description of the KDDML objects that represent the core of the KDDML language.

2.1 Objects Hierarchy

When addressing the problem of defining a common representation for knowledge extraction
problems and their results, we followed the viewpoint of Imielinsky and Mannila [7], who define
two classes of fundamental objects: theKDD object (hereKDDMLObject) that is a result of a
KDD step such as a table or a set of association rules, and theKDD query that is a predicate which
returns a result that is a KDD object.

The overall hierarchy ofKDDMLObject is reported in figure2.1. Note that there is a subtype
of KDDMLObject for each possible result returned by an operator.

The set of types of KDDML operators consists of:

• PMMLrepresents a PMML model, i.e, a pattern returned by a DM algorithms or a post-
processing operator. In the actual implementation, we have considered association rules
(rda), clusters (cluster), classification trees (tree), sequential patterns (sequences)
and item hierarchies (hierarchy).

• KDDMLTABLE represents both a relational table (table), such as the records of a data-
base relation or text file, and a preprocessing table (PPtable), obtained by applying a
preprocessing operator, such as a sampling or a normalization operator. Both relational and
preprocessing tables are in a proprietary format described later.

12

CHAPTER 2. KDDML OBJECTS 13

Figure 2.1: Object hierarchy in the KDDML language

• KDDML Scalar represents a generic scalar value (scalar), such as a number or a string.

• KDDQuery represents a KDD query, i.e. a composition of invocations to DM and pre-
processing algorithms by means of appropriate operators. Queries can use a conditional or
sequence operator, and they can be nested.

Other special types (not shown in figure) are used to define algorithm settings (algorithm),
and condition specifications (condition) on constant and/or table attribute values. Finally, a
typeexpression is defined to support the use of mathematical operations.

Notice that the use of KDDML makes it possible to represent not only models or KDD queries,
bus also objects such as tables or algorithms, in order to allow the construction of complex KDD
queries that may cross the border between tuples and models several times possibly by using mul-
tiple layers of nesting. In the next sections, we describe KDDML objects more in detail.

2.2 Data representation

The KDDML language refers to two data repositories, containing relational tables and preprocess-
ing tables in different spacenames.

A relational table is represented as an XML file, containing aschemaand a reference to the
actual data, which are stored in CSV (Comma Separated Values) format. In principle, however,

CHAPTER 2. KDDML OBJECTS 14

the coding of actual data can have any format: CSV has been chosen here as a trade-off between
readability (vs binary files) and space occupancy (vs XML).

A preprocessing table (PP table in short) is used in the preprocessing step of the KDD process.
With respect to the relational table, a PP table is composed by the data schema, the actual data
and, in addition, by preprocessing information such as marks associated to the physical instance
values. In the actual implementation, also the preprocessing information is stored in CSV format,
but other kind of representations can be available in future.

The KDDMLTABLE element represents both relational tables and PP tables and his DTD is
reported in figure2.2:

<!ELEMENT KDDML_OBJECT (KDDML_TABLE)>
<!ELEMENT KDDML_TABLE(SCHEMA,(PPSCHEMA)?)>
<!ATTLIST KDDML_TABLE data_file CDATA #REQUIRED>
<!ATTLIST KDDML_TABLE pp_data_file CDATA #IMPLIED>

Figure 2.2: TheKDDMLTABLEelement.

Summarizing, aKDDMLTABLE is always composed by:

1. a logical schema (elementSCHEMA) that includes attribute types and some simple statistic
on attributes values;

2. the physical instances referred by using the attributedata file containing the name of
the CSV file that is stored in the data repository.

A preprocessing table is similar to a relational table, but, in addition, it uses the element
PPSCHEMAand the attributepp data file in order to localize preprocessing description of
data (see later). Notice that both the elementPPSCHEMAand the attributepp data file are not
required; this distinguishes relational tables from preprocessing tables.

2.2.1 Logical data

Data connectivity standards offer APIs for connecting to a data source, for issuing SQL queries,
for navigating returned record sets, and for accessing database and record set meta-data. However,
this level of APIs can be considered as a physical level. A higher abstraction level concerns logical
data, i.e. domains of data to be used as input to data mining operations in order to specify the type
of usage of attributes in building and applying a mining model.

The elementSCHEMAspecifies metadata information, that is necessary to obtain some kind of
information about each attribute, which cannot be automatically derived from the attribute values.
The statistics for a table are made of the collection of the statistics for the single fields.

The figure 2.3 shows the DTD related to the elementSCHEMA. This element is composed
by one or more elementsATTRIBUTE, each of which specifies the name, the type and the sta-
tistics about a particular field of the table. The name of a data field must be unique in the data
schema, and the order the attributes corresponds to the column position in the data section of the
physical CSV file. For example, if an attribute is declared as the third one, then KDDML expects

CHAPTER 2. KDDML OBJECTS 15

<!ELEMENT SCHEMA (ATTRIBUTE+)>
<!ATTLIST SCHEMA logical_name CDATA #REQUIRED>
<!ATTLIST SCHEMA number_of_attributes CDATA #REQUIRED>
<!ATTLIST SCHEMA number_of_instances CDATA #REQUIRED>
<!ELEMENT ATTRIBUTE (STRING_DESCRIPTION |

NOMINAL_DESCRIPTION |
NUMERIC_DESCRIPTION), TAXONOMY?>

<!ATTLIST ATTRIBUTE name CDATA #REQUIRED>
<!ATTLIST ATTRIBUTE type (numeric|nominal|string) #REQUIRED>
<!ATTLIST ATTRIBUTE number_of_missed_values CDATA #REQUIRED>
<!ATTLIST ATTRIBUTE number_of_missed_values_perc CDATA #REQUIRED>

Figure 2.3: TheSCHEMAelement.

that all values of that attribute will be found in the third comma delimited column. The attribute
logical name contains the logical name of the table. Other attributes contain the number of
columns (number of attributes) and the number of instances (number of instances)
belonging to the table.

The name (resp. type) of the attribute is expressed by using the attributename (resp. type)
in the ATTRIBUTE element. The datatype can be any of the three types currently supported by
KDDML:

• numeric (both integer and real),

• discrete (binary, nominal or categorical),

• string.

Statistics on attribute values depend on the type of the attribute, as expressed by means the el-
ementsNUMERICDESCRIPTION, NOMINALDESCRIPTIONand STRING DESCRIPTION.
Thenumber of missed values (resp.number of missed values perc) attribute con-
tains the absolute (resp. percentage) number of values that are missing for that attribute with re-
spect to the total number of instances.

Finally, the elementTAXONOMYdefines a new logical level, and it allows us to assign an item
hierarchy to a table column as meta-data information (see section2.2.2).

Discrete attributes

Discrete values are defined by providing a nominal specification listing the possible values belong-
ing to a set of one or more elements, as reported in the DTD of figure2.4. As shown in the figure,
the element NOMINALDESCRIPTION is composed by one or more elements VALUE, each
of them representing the category of the nominal attribute. Thenumber of values attribute
counts the number of distinct categories belonging to the attribute. For each category, thevalue
attribute contains the name of the category, while thecardinality (resp.cardinality perc)
attribute provides the absolute (resp. percentage) number of instances with value equals to the cat-
egory name, with respect to the total number of instances without missing values for that attribute.

CHAPTER 2. KDDML OBJECTS 16

<!ELEMENT NOMINAL_DESCRIPTION (VALUE)+>
<!ATTLIST NOMINAL_DESCRIPTION number_of_values CDATA #REQUIRED>
<!ELEMENT VALUE EMPTY>
<!ATTLIST VALUE value CDATA #REQUIRED>
<!ATTLIST VALUE cardinality CDATA #REQUIRED>
<!ATTLIST VALUE cardinality_perc CDATA #REQUIRED>

Figure 2.4: TheNOMINALDESCRIPTIONelement.

Numeric attributes

As to numeric attributes (see figure2.5), the element contains the mean, the standard deviation,
the sum, the squared sum, the min and the max values defined as usual.

<!ELEMENT NUMERIC_DESCRIPTION EMPTY>
<!ATTLIST NUMERIC_DESCRIPTION mean CDATA #REQUIRED>
<!ATTLIST NUMERIC_DESCRIPTION std_dev CDATA #REQUIRED>
<!ATTLIST NUMERIC_DESCRIPTION sum CDATA #REQUIRED>
<!ATTLIST NUMERIC_DESCRIPTION sumSq CDATA #REQUIRED>
<!ATTLIST NUMERIC_DESCRIPTION min CDATA #REQUIRED>
<!ATTLIST NUMERIC_DESCRIPTION max CDATA #REQUIRED>

Figure 2.5: TheNUMERICDESCRIPTIONelement.

String attributes

String attributes (see figure2.6) do not contain further features.

<!ELEMENT STRING_DESCRIPTION EMPTY>

Figure 2.6: TheSTRING DESCRIPTIONelement.

As an example, in figure2.7 the XML document describing theweather data set of table
2.1 is reported.

2.2.2 Taxonomies

A taxonomy represents hierarchical relationships between categories. Generally, the topmost
categories are most general, and the leaves are most specific or referring to specific item categories.

In KDDML taxonomies can exist both as explicit relationships between categories represented
as a mining model (see figure2.1), and as logical data element related to a non-numeric attribute.
The elementTAXONOMYof figure 2.8models the last one case.

CHAPTER 2. KDDML OBJECTS 17

<KDDML_TABLE data_file="weather.csv">
<SCHEMA logical_name="weather" number_of_attributes="4"

number_of_instances="12">
<ATTRIBUTE name="outlook" number_of_missed_values="2"

number_of_missed_values_perc="17%" type="nominal">
<NOMINAL_DESCRIPTION number_of_values="3">

<VALUE value="rainy" cardinality="3" cardinality_perc="30%"/>
<VALUE value="overcast" cardinality="4" cardinality_perc="40%"/>
<VALUE value="sunny" cardinality="3" cardinality_perc="30%"/>

</NOMINAL_DESCRIPTION>
</ATTRIBUTE>
<ATTRIBUTE name="temperature" number_of_missed_values="0"

number_of_missed_values_perc="0%" type="numeric">
<NUMERIC_DESCRIPTION mean="75.08" variance="47.35" sum="901.0"

sumSq="68171.0" min="64.0" max="85.0"/>
</ATTRIBUTE>
<ATTRIBUTE name="humidity" number_of_missed_values="2"

number_of_missed_values_perc="17%" type="numeric">
<NUMERIC_DESCRIPTION mean="78.5" variance="80.5" sum="785.0"

sumSq="62347.0" min="65.0" max="90.0"/>
</ATTRIBUTE>
<ATTRIBUTE name="play" number_of_missed_values="0"

number_of_missed_values_perc="0%" type="nominal">
<NOMINAL_DESCRIPTION number_of_values="2">

<VALUE value="yes" cardinality="8" cardinality_perc="67%"/>
<VALUE value="no" cardinality="4" cardinality_perc="33%"/>

</NOMINAL_DESCRIPTION>
</ATTRIBUTE>

</SCHEMA>
</KDDML_TABLE>

Figure 2.7: The logical schema of the weather dataset.

outlook temperature humidity play
sunny 85 85 no
sunny 80 90 no

overcast 83 86 yes
NULL 65 70 no
overcast 64 65 yes
sunny 72 95 no
sunny 69 NULL yes
rainy 75 80 yes
sunny 75 70 yes

overcast 72 90 yes
overcast 81 75 yes

rainy 71 NULL no
NULL 80 74 yes

Table 2.1: The weather dataset

The name of the hierarchy is expressed by using the attributename in theTAXONOMYelement.
As shown, a taxonomy is created from a sequence of one or more parent/child tables (element
CHILD PARENT) with associated some attributes:

CHAPTER 2. KDDML OBJECTS 18

<!ELEMENT TAXONOMY (CHILD_PARENT+) >
<!ATTLIST TAXONOMY name CDATA #REQUIRED >
<!ELEMENT CHILD_PARENT (INLINE_TABLE)>
<!ATTLIST CHILD_PARENT child_field CDATA #REQUIRED

parent_field CDATA #REQUIRED
parent_level_field CDATA #IMPLIED
is_recursive (no | yes) "no"
root_name CDATA #REQUIRED>

<!ELEMENT INLINE_TABLE (ROW*) >
<!ELEMENT ROW EMPTY>
<!ATTLIST ROW member CDATA #REQUIRED>
<!ATTLIST ROW group CDATA #REQUIRED>

Figure 2.8: TheTAXONOMYelement.

• child field defines the name of the field which contains the child value for each record
in theINLINE TABLEelement.

• parent field defines the name of the field which contains the parent value for each
record in theINLINE TABLEelement.

• root name contains the root hierarchy name.

• is recursive is “yes” if a value in the parent field can also be used in a child field.

The tabular data is part of the XML document itself by using the elementINLINE TABLE that
includes one or more rows (elementROW), each of which defines the parent/child relationship by
means of the attributesgroup andmember respectively.

As an example, the XML fragment of figure2.9describes how to assign the hierarchycities-
states-countriesof figure 2.10to the string attributecity as metadata information (see also the
PP ADDHIERARCHYoperator in sect.3.2.21).

2.2.3 Physical data: relational tables, transactional tables and timestamp
tables

Physical data are represented in KDDML as text files in Comma Separated Value (CSV), as it is
used in Microsoft Excel. In a CSV file, each record takes one line, and each field is separated by a
comma. Leading and trailing space-characters adjacent to comma field separators are ignored. By
convention, missing or null values are represented with the symbol‘‘?’’ . As an example, the
figure 2.11illustrates the weather dataset of table2.1 in a CSV format.

Concerning data format, in KDDML, physical data can occur in three different forms:

1. relational table,

2. transactional table,

CHAPTER 2. KDDML OBJECTS 19

...
<ATTRIBUTE name="city" number_of_missed_values="0"

number_of_missed_values_perc="0%" type="string">
<STRING_DESCRIPTION/>
<TAXONOMY name="cities-states-countries">

<CHILD_PARENT child_field="member" parent_field="group"
is_recursive="yes" root_name="USA">

<INLINE_TABLE>
<ROW member="California" group="USA"/>
<ROW member="Illinois" group="USA"/>
<ROW member="Chicago" group="Illinois"/>
<ROW member="Long Beach" group="California"/>
<ROW member="San Jose" group="California"/>

</INLINE_TABLE>
</CHILD_PARENT>

</TAXONOMY>
</ATTRIBUTE>

Figure 2.9: The hierarchy cities-states-countries as metadata information.

Figure 2.10: The hierarchy cities-states-countries.

3. andtimestamp table.

The format of KDDML tables is automatically recognized by the system when loaded from the
data repository or from an external resource.

Relational format

In therelational format, each column of the data corresponds to a logical attribute, e.g.,tempe-
rature, play . Each row of the data corresponds to an individual case (transaction) to be
considered during mining. This data format is also known assingle-record case table. Figure 2.11

CHAPTER 2. KDDML OBJECTS 20

sunny,85,85,no
sunny,80,90,no
overcast,83,86,yes
rainy,70,?,yes
?,65,70,no
overcast,64,65,yes
rainy,75,80,yes
sunny,75,70,yes
overcast,72,90,yes
overcast,81,75,yes
rainy,71,?,no
?,80,74,yes

Figure 2.11: weather.csv

illustrates a typical example of relational table.

Transactional format

Sparse data is more effectively stored in atransactional format. Here, data that have a variable
number of entries (or items) out of many possible ones can be stored more compactly, since only
the actually present items are stored in the table. A transactional table (also known asmulti-record
case table) has an attributetransaction identifying the transaction and an attributeevent
containing the single item. Transactions are ordered with respect to the attributetransaction .
Other columns are allowed in the table (e.g., the price or quantity of items for each transaction), but
they can be ignored by the operator, depending on the context. Missing values are not allowed in
transaction field andevent field. This representation is typically used for association rules.
Table 2.2 illustrates a typical example in the market basket analysis field. The order, in which
attributestransaction andevent occur, does not matter; attributesquantity andprice
are optional.

Transaction Event Quantity Price
id 1 milk 2 0.75
id 1 water 10 3.20
id 1 bread 2 0.60
id 2 water 5 2.10
id 2 wine 1 5.50
id 3 potatoes 4 6.60
id 3 milk 2 0.75
id 4 bread 4 1.20

Table 2.2: A sample transactional table

CHAPTER 2. KDDML OBJECTS 21

Timestamp format

The timestamp format is similar to a transactional table, but with an extra attributetime-
stamp , that does not admit missing values. Typically, this format is used for sequential pattern
analysis, since the attributetimestamp defines a partial time order between transactions and
items. The semantics of attributes depend on the context. As instance, in the web log analysis
(resp. medical record analysis), thetransaction attribute can coincide with the user identifier
(resp. name of the patient), thetimestamp attribute coincides with the time of the visit (resp. day
of control) and, finally, theevent attribute coincides with the web page visited (resp. symptom).
Table 2.3shows the same data of table2.2, but with thetimestamp attribute in addition. As for
transactional tables, the ordering in which attributestransaction , timestamp andevent
occur does not matter; attributesquantity andprice are optional.

Transaction Timestamp Event Quantity Price
id 1 monday milk 2 0.75
id 1 saturday water 10 3.20
id 1 saturday bread 2 0.60
id 2 monday water 5 2.10
id 2 monday wine 1 5.50
id 3 tuesday potatoes 4 6.60
id 3 wednesday milk 2 0.75
id 4 saturday bread 4 1.20

Table 2.3: A sample timestamp table

2.2.4 Preprocessing tables

This object is used to represent tables as used in the preprocessing step of the KDD process. A
PPtable is composed by:

• thedata schema, that includes attribute types and some simple statistics on attribute values;

• thephysical data sectionas a text file in a CSV format;

• the preprocessing data section, including preprocessing information such asmarksassoci-
ated to a physical instance value belonging to the data section. Also the preprocessing section
is in a CSV format, with the number of columns and rows coinciding with the number of
attributes and rows of the data section. By convention, all instances values of preprocessing
section are set to a missing value when the preprocessing phase starts;

• the preprocessing historyused to list the set of preprocessing operations performed on the
table.

CHAPTER 2. KDDML OBJECTS 22

As a consequence, a preprocessing table defines both theSCHEMAelement of figure2.3and the
PPSCHEMAelement of figure2.12. The last one contains the logical description of preprocessing
attributes1 and the preprocessing history (elementHISTORY) related to the table.

<!ELEMENT PPSCHEMA ((ATTRIBUTE+), HISTORY)>
<!ATTLIST PPSCHEMA logical_name CDATA #REQUIRED>
<!ATTLIST PPSCHEMA number_of_attributes CDATA #REQUIRED>
<!ATTLIST PPSCHEMA number_of_instances CDATA #REQUIRED>

Figure 2.12: ThePPSCHEMAelement.

Preprocessing section

Preprocessing information concernmarksandexceptions.
Markscontains some information related to physical instance values. This information is added

in the preprocessing section of a PPtable, in correspondence to the related attribute value of a
physical record. As an instance consider theweather dataset of table2.1. We can decide to
mark all instances in which the attributetemperature is not in the interval[70, 80]. The result
obtained is shown in figure2.13, in which the preprocessing section of the weather dataset is
reported. This information can be processed later, for example, in order to filter the instances out of
range, or to rewrite their values with a new temperature value, according to a specific mathematical
function. KDDML supports more than one mark for each instance value. Each mark is separated
by a semicolon symbol. Marks are always explicitly added by the user by using a well-defined
operator.

?,out_of_range;,?,?
?,?,?,?
?,out_of_range;,?,?
?,?,?,?
?,?,?,?
?,out_of_range;,?,?
?,?,?,?
?,?,?,?
?,?,?,?
?,out_of_range;,?,?
?,?,?,?
?,?,?,?

Figure 2.13: weathermetadata.csv

1The number of preprocessing attributes coincides with the number of attributes belonging to the data sec-
tion. The preprocessing attribute name coincides with the attribute name of the data section followed by the string
“ metadata ”; its type is string.

CHAPTER 2. KDDML OBJECTS 23

Exceptionare similar to marks, but they are automatically added by the system when a partic-
ular event occurs. A typical exception can be generated when we try to match an attribute value
against a pattern using a regular expression, but the patterns matching is not satisfied. If this is
the case, then the error can be raised and its description can be added in the preprocessing section
of the PPtable as an exception, in correspondence to the instance in which the error occurs. With
respect to marks, an exception starts with the tag“Exception”.

Preprocessing history

As shown in figure2.14, the elementHISTORYis composed by one or morePREPROCESSING-
TASKelements, each of them containing information on preprocessing operations performed on

the PPtable. More precisely, the attributeoperator name contains the name of preprocess-
ing operator used, while thedescription attribute contains the list of parameter used by the
operator. An example of preprocessing history is reported in figure2.15.

<!ELEMENT HISTORY (PREPROCESSING_TASK+)>
<!ELEMENT PREPROCESSING_TASK EMPTY>
<!ATTLIST PREPROCESSING_TASK operation_name CDATA #REQUIRED>
<!ATTLIST PREPROCESSING_TASK description CDATA #REQUIRED>

Figure 2.14: TheHISTORYelement.

<HISTORY>
<PREPROCESSING_TASK operation_name="TABLE_2_PPTABLE"

description="Start pre-processing"/>
<PREPROCESSING_TASK operation_name="PP_MARKING"

description="Marked attribute temperature if temperature is not
in [70, 80] with label out_of_range"/> </HISTORY>

Figure 2.15: A sampleHISTORYelement.

2.3 Knowledge representation

As for data, the KDDML language uses amodel repository, containing extracted data mining
models, which can be referenced by an identifier (in a different namespace for each model). Model
entities are defined to represent DM models such as association rules, clusters, classification trees,
sequential patterns and item hierarchies. KDDML represents models as an extension ofPMML
(Predictive Model Markup Language)and currently it uses the PMML 2.0 version [3].

PMML is an industry standard for representating models as XML documents. It consists of
DTDs for a wide spectrum of models, and it is used for describing the structure and intents of
the data mining models. PMML helps in defining semantically expressive data mining models

CHAPTER 2. KDDML OBJECTS 24

from which different predictive models can be built. While PMML is becoming a primary stan-
dard, adopted by major commercial suites, it is worth noting that it does not cover the process of
extracting models, but rather the exchange of the extracted knowledge.

Each PMML model is always composed by three basic elements2:

• a data dictionarycontaining the definitions for the fields that are used in the mining model,
such as the type and the value range. These definitions are assumed to be independent from
specific data sets, used for training or scoring a specific model;

• a mining schemathat lists fields used by the model (i.e., it lists the fields which a user
must provide in order to apply the model). These fields are a subset of the fields in the
data dictionary. In other terms, the mining schema contains information that is specific to a
certain model, while the data dictionary contains data definitions that do not vary with the
model. For instance, the mining schema specifies the usage type of an attribute (i.e. active,
predicted or supplementary). Data dictionary and mining schema define the logical level of
a model;

• amodel descriptioncontaining the physical model and varying from a model to another.

An example of PMML model containing a set of association rules is reported in figure2.16.
The PMML DTD contains a mechanism for extending the contents of a model. Extension

elements are included in the contents definition of many element types. These extension elements
have ANY as the contents model to allow considerable freedom in the nature of the extensions. As
mentioned later, KDDML uses the extension mechanism in some cases.

2.3.1 Association model

Description

Association rule mining finds interesting associations or correlation relationships among a large
set of data items. A typical example of association rule mining is market basket analysis, that
analyzes customer buying habits by finding associations among the different items that customers
place in their shopping baskets.

KDDML association model deals with two types of association rules:

1. inter-attribute association rulesthan have the form“outlook=sunny AND windy=false→
play=yes“. It is the association among a set of attributes in a flat relation.

2. intra-attribute association rulessuch as“spaghetti AND tomato→ parmesan“; also known
asboolean association rules.

The model reported in figure2.16contains inter-attribute association rules. As we can notice, the
attributevalue of the elementItem allows us to distinguish the two types of association rules.

2PMML v. 2.0 uses the elementTransformationDictionary in order to map user data to values that
are easier to use in the specific model. TheTransformationDictionary element is a bridge between the
MiningSchema and theDataDictionary elements. In the current version, KDDML do not support the trans-
formation dictionary of PMML.

CHAPTER 2. KDDML OBJECTS 25

<?xml version="1.0" encoding="UTF-8"?> <PMML version="2.1">
<Header copyright="Copyright (c) 2004 - Universita di Pisa, Dipartimento di Informatica.">

<Application name="KDDML (Knowledge Discovery in Databases Markup Language)" version="2.0"/>
</Header>
<DataDictionary numberOfFields="5">

<DataField name="outlook" optype="categorical">
<Value value="rainy"/>
<Value value="overcast"/>
<Value value="sunny"/>

</DataField>
<DataField name="temperature" optype="continuous"/>
<DataField name="humidity" optype="continuous"/>
<DataField name="windy" optype="categorical">

<Value value="TRUE"/>
<Value value="FALSE"/>

</DataField>
<DataField name="play" optype="categorical">

<Value value="yes"/>
<Value value="no"/>

</DataField>
</DataDictionary>
<AssociationModel functionName="associationRules" algorithmName="DCI - ISTI-CNR, Pisa, Italy"

modelName="weather_rda" minimumSupport="0.3" minimumConfidence="0.3"
numberOfTransactions="20" numberOfItems="4" numberOfItemsets="5"
numberOfRules="2" maxNumberOfItemsPerTA="3" avgNumberOfItemsPerTA="2.6">

<MiningSchema>
<MiningField name="outlook" usageType="active"/>
<MiningField name="temperature" usageType="supplementary"/>
<MiningField name="humidity" usageType="supplementary"/>
<MiningField name="windy" usageType="active"/>
<MiningField name="play" usageType="active"/>

</MiningSchema>
<Item id="1" value="outlook=sunny"/>
<Item id="2" value="play=no"/>
<Item id="3" value="play=yes"/>
<Item id="4" value="windy=FALSE"/>
<Itemset id="1" numberOfItems="1" support="0.6">

<ItemRef itemRef="3"/>
</Itemset>
<Itemset id="2" numberOfItems="1" support="0.5">

<ItemRef itemRef="4"/>
</Itemset>
<Itemset id="3" numberOfItems="1" support="0.4">

<ItemRef itemRef="1"/>
</Itemset>
<Itemset id="4" numberOfItems="1" support="0.4">

<ItemRef itemRef="2"/>
</Itemset>
<Itemset id="5" numberOfItems="2" support="0.4">

<ItemRef itemRef="3"/>
<ItemRef itemRef="4"/>

</Itemset>
<AssociationRule support="0.4" confidence="0.8" antecedent="2" consequent="1"/>
<AssociationRule support="0.4" confidence="0.666667" antecedent="1" consequent="2"/>

</AssociationModel>
</PMML>

Figure 2.16: A sample of PMML document

Compatibility with PMML v. 2.0

KDDML offers a full compatibility towards PMML v. 2.0 association model.

CHAPTER 2. KDDML OBJECTS 26

Extension mechanism

Not used.

2.3.2 Sequence model

Description

The problem of discovering sequential patterns is to find inter-transaction patterns such that the
presence of a set of items is followed by another item in the time-stamp ordered transaction set.
For instance, in a web server transaction logs, a visit by a customer is recorded over a period of
time. The time stamp associated with a transaction in this case will be a time interval which is
determined and attached to the transaction during the data cleaning or transaction identification
processes.

Compatibility with PMML v. 2.0

In its current version, the sequence model supported by KDDML is a subset of the PMML se-
quence model. The PMML elements that KDDML do not support are:

• SetPredicate that is a set of predicates made up of simple boolean expressions;

• Delimiter (partially) that is the separation between two sets in aSequence , or between
two sequences in aSequenceRule . In this case, KDDML supports only the element with
attributesdelimiter equal toacrossTimeWindow andgap equal tounknown .

Extension mechanism

Not used.

2.3.3 Tree model

Description

A tree model in data mining is used to predict the class of an observation with unknown categorical
label. A classification tree is a flow-chart-like structure, where each internal node denotes a test on
an attribute, each branch represents an outcome of the test, and the leaf nodes represent classes or
class distributions. The top-most node in a tree is the root node.

In order to classify an unknown sample, the attribute values of the sample are tested against
the decision tree. A path is traced from the root to a leaf node that holds the class prediction for
that sample. Given a pre-determined set of classes in the target attribute, classification analyzes the
build data to determine to which class a given observation belongs.

A decision tree is a classification tree in which the target attribute is binary. A tree model
consists of a reference to theNode root. Each node holds a logical predicate expression that
defines the rule for choosing the node or any of the branching nodes.

CHAPTER 2. KDDML OBJECTS 27

Compatibility with PMML v. 2.0

KDDML offers a full compatibility towards PMML v. 2.0 tree model.

Extension mechanism

Extension mechanism has been used in two cases.
In the first one, it has been used in order to add the notion of confusion matrix to a decision

tree model. A confusion matrix is a two-dimensional table that reports the number of times a case
with actual classc is predicted by the classification model as having classp, wherec andp range
over all class values. As described by the DTD of figure2.17, a confusion matrix can be related
both to thetraining set(elementX-ConfusionMatrixTraining), used to build the model,
and to thetest set(elementX-ConfusionMatrixTest), used to test the model. The definition
is similar in both cases.

<!ELEMENT X-ConfusionMatrixTraining (Array, Matrix)>
<!ATTLIST X-ConfusionMatrixTraining x-incorrectlyInst CDATA #REQUIRED>
<!ATTLIST X-ConfusionMatrixTraining x-incorrectlyInstPerc CDATA #IMPLIED>
<!ATTLIST X-ConfusionMatrixTraining x-totalInst CDATA #REQUIRED>
<!ELEMENT X-ConfusionMatrixTest (Array, Matrix)>
<!ATTLIST X-ConfusionMatrixTest x-incorrectlyInst CDATA #REQUIRED>
<!ATTLIST X-ConfusionMatrixTest x-incorrectlyInstPerc CDATA #IMPLIED>
<!ATTLIST X-ConfusionMatrixTest x-totalInst CDATA #REQUIRED>

Figure 2.17: The DTD representing a confusion matrix.

A confusion matrix is composed by anArray element containing the list of class values and a
Matrix element containing the number of correct and incorrect predictions in which the row and
column indexes refer to the classes of the target attribute3. The required attributex-totalInst
counts the total number of cases in the training or test set. Thex-incorrectlyInst (resp
x-incorrectlyInstPerc) attribute counts the absolute (resp. percentage) number of incor-
rectly classified cases with respect to the total number of cases.

In the example reported in figure2.18, a confusion matrix for a class with valuesyes andno
is reported. As we can notice, the accuracy of the model in the training set is 50%.

The second extension concerns meta-classifiers. We allow for classification models that exploit
predictions of two or more decision trees. A classic example concerns voting trees, which are
intended to overcome the bias due to the random selection of the training set or due to the choice
of specific algorithms and parameters. For instance, givenn distinct classifierc1, . . . , cn, avoting
classifierassigns to a tuple the class mostly assigned byc1, . . . , cn.

To represent a voting classifier, we augment PMML with theX-VotingTree tag, as reported
in figure 2.19. Thecombination type attribute contains the combination procedure that has
been used. In the current implementation, KDDML supports three voting strategies:committe,
and, or. We refer to theTREEMETACLASSIFIER operator in section3.2.63for details. The
attributespositive class and negative class contains, respectively, the positive (e.g.

3For the definition of the elementsArray andMatrix see PMML.

CHAPTER 2. KDDML OBJECTS 28

...
<TreeModel ...>

<MiningSchema>
...
</MiningSchema>
<Node>
...
</Node>
<Extension>

<X-ConfusionMatrixTraining x-incorrectlyInst="200"
x-incorrectlyInstPerc="50%"
x-totalInst="400">

<Array n="2" type="string">"yes" "no"</Array>
<Matrix>

<Array n="2" type="real">100 150</Array>
<Array n="2" type="real">50 100</Array>

</Matrix>
</X-ConfusionMatrixTraining>

</Extension>
</TreeModel>

Figure 2.18: A sample of confusion matrix.

<!ELEMENT X-VotingTree EMPTY>
<!ATTLIST X-VotingTree combination_type (and|or|committee) #REQUIRED>
<!ATTLIST X-VotingTree number_of_trees CDATA #REQUIRED>
<!ATTLIST X-VotingTree positive_class CDATA #IMPLIED>
<!ATTLIST X-VotingTree negative_class CDATA #IMPLIED>

Figure 2.19: The DTD representing a voting tree.

false, no) and negative classes (e.g.true, yes) required if the combination type is and/or. Finally,
the attributenumber of trees counts the number of models that have been used for the voting.

The example reported in figure2.20represents a boolean AND classifier among two decision
trees.

2.3.4 Clustering model

Description

The process of grouping a set of physical objects into classes of similar objects is called clustering.
A cluster is a collection of data objects that are similar within the same cluster and are different
from the objects in other cluster.

Clustering methods may be classified into three groups: distance-based, distribution-based (or
model-based), density-based methods.

CHAPTER 2. KDDML OBJECTS 29

...
<TreeModel ...>

<MiningSchema>
...
</MiningSchema>
<Node>

<Extension>
<X-VotingTree combination_type="and" number_of_trees="2"

positive_class="yes" negative_class="no"/>
</Extension>
<True/>
<Node score="will play">

...
</Node>
<Node score="no play">

...
</Node>

...
</Node>

</TreeModel>

Figure 2.20: A sample of voting tree.

Distance-based clusteringneeds a distance or dissimilarity measurement based on which they
try to group those most similar objects into one cluster. K-Means [8] is distance-based partitioning
method.

Model-basedor distribution-based clusteringmethods assume that the data of each cluster
respect a specific statistical distribution (e.g. the Gaussian distribution) and the whole dataset is
a mixture of several distribution models. EM [9] is an example of distribution-based partitioning
clustering that does not require the specification of distance measures.

Density-basedapproaches consider a cluster as a dense region of data objects.
The current version of PMML manages both center-based clustering and distribution-based

clustering. As a consequence, KDDML offers a full support to the two types of clustering.

Compatibility with PMML v. 2.0

KDDML offers a full compatibility towards PMML v. 2.0 clustering model except for the element
Covariances belonging to theCluster element. The covariances matrix is used to store
coordinate-by-coordinate variances and covariances of the cluster points.

Extension mechanism

The extension mechanism has been used to define a proprietary distance measure for the EM [9]
clustering algorithm, as reported in the DTD of figure2.21(see sect.4.2.4).

CHAPTER 2. KDDML OBJECTS 30

<!ELEMENT X-EMDistance (%NUM-ARRAY;)>

Figure 2.21: Algorithm EM extension.

TheX-EMDistance element takes an array of doubles4 as input, containing the prior proba-
bilities for each cluster in a distribution-based clustering.

2.3.5 Hierarchy model

Description

The values of a categorical field can be organized into a hierarchy. The representation of hier-
archies in PMML is based on parent/child relationships. A tabular format is used to provide the
data for these relationships. A taxonomy is then constructed from a sequence of one or more
parent/child tables.

In KDDML, the actual values are stored in the hierarchy object. So, the tabular data is part of
the PMML document itself. The table is recursive, in the sense that a value in the parent column
can also appear in the child column.

Compatibility with PMML v. 2.0

In the current version, KDDML supports the PMML elementInlineTable that stores data
inside the XML document. A further extension of the system can be provided in order to support
also theTableLocator strategy.

Extension mechanism

The PMML elementsTableLocator andInlineTable are not yet completely defined be-
cause other standardization groups are working on these issues. As a consequence, a proprietary
definition of the elementInlineTable has been adapted to the model (see sect.2.2.2). The
figure 2.22describes the hierarchycities-states-countriesof figure 2.9as physical PMML model.

The figure 2.23shows the needed DTD extension.

2.4 KDDML Scalar

A KDDML scalar is a basic object that contains a number or a string constant. The figure2.24
describes his DTD.

2.5 Queries representation

Recall the KDDML language operator structure:

4For the definition of the entityNUM-ARRAYsee PMML.

CHAPTER 2. KDDML OBJECTS 31

<PMML version="2.0">
<Header copyright="Copyright (c) 2004 - Universita’ di Pisa, Dipartimento di Informatica">

<Application name="KDDML (Knowledge Discovery in Databases Markup Language)" version="2.0"/>
</Header>
<DataDictionary numberOfFields="2">

<DataField name="child" optype="ordinal"/>
<DataField name="parent" optype="ordinal"/>
<Taxonomy name="cities-states-countries">

<ChildParent childField="member" parentField="group" isRecursive="yes" x-RootName="USA">
<InlineTable>

<Extension>
<Row member="California" group="USA"/>
<Row member="Illinois" group="USA"/>
<Row member="Chicago" group="Illinois"/>
<Row member="Long Beach" group="California"/>
<Row member="San Jose" group="California"/>

</Extension>
</InlineTable>

</ChildParent>
</Taxonomy>

</DataDictionary>
</PMML>

Figure 2.22: The hierarchycities-states-countriesas PMML model.

<!ELEMENT row EMPTY>
<!ATTLIST row member CDATA #REQUIRED>
<!ATTLIST row group CDATA #REQUIRED>
<!ATTLIST ChildParent x-RootName CDATA #REQUIRED>

Figure 2.23: Taxonomy model extension.

<!ELEMENT KDDML_OBJECT (KDDML_SCALAR)>
<!ELEMENT KDDML_SCALAR EMPTY>
<!ATTLIST KDDML_SCALAR value CDATA #REQUIRED>
<!ATTLIST KDDML_SCALAR type (numeric | string) "string">

Figure 2.24: TheKDDMLSCALARelement.

<OPERATOR_NAME xml_dest="results.xml" att1="v1" ... attM="vM">
<ARG1_NAME> </ARG1_NAME>
...
<ARGn_NAME> </ARGn_NAME>

</OPERATOR_NAME>

XML tags correspond to operations on data and models; thexml dest attribute is the name of
the object to be saved in the system data/model repository. The attribute is optional; if it is omitted,
no results will be stored in the repository. Other XML attributes correspond to parameters of the
operator (e.g. the target attribute name for a tree miner operator). Finally, XML sub-elements
define the arguments passed to the operator.

Under this interpretation, arguments of an operator must be of an appropriate type and each
operator returns a well-defined object. The elementKDDQUERY(see figure 2.25) is used to

CHAPTER 2. KDDML OBJECTS 32

represent a generic query. The attributename in the KDDQUERYelement contains the name of
the query. The optional attributepar list lists the set of formal parameters to be replaced by
the actual parameters when the query is invoked by means the operatorCALL QUERY(see section
3.2.3).

<!ELEMENT KDDML_OBJECT (KDD_QUERY)>
<!ELEMENT KDD_QUERY (%kdd_operator;)>
<!ATTLIST KDD_QUERY name %string; #REQUIRED>
<!ATTLIST KDD_QUERY par_list %string_list; #IMPLIED>

<!ENTITY % kdd_operator
"(%kdd_query_clusters;|%kdd_query_rules;|%kdd_query_sequence;|

%kdd_query_table;|%kdd_query_trees;|%kdd_query_hierarchy;|
%kdd_query_scalar;|%kdd_query_PPtable;|%kdd_query_object;)">

Figure 2.25: TheKDDQUERYelement

As mentioned above, the result of a KDD query must be a set of either models, or tables, or
scalars. Furthermore the query language must allow the reuse of previous knowledge, and, above
all, it must support aclosure principlein order to combine and refine the extracted knowledge. To
do that, a query must have a nested structure, in which it should be possible to combine an arbitrary
number of sub-queries containing invocations to DM algorithms or other operators. Moreover, it is
necessary to check that sub-queries are properly nested, in order to avoid that a sub-query returns
a result that doesn’t meet the requirements of the operators combining them.

In order to control the nesting of sub-queries, we group the invocations of operators that returns
the same kind of knowledge in the same class, defined by means of a XML entities, as described
below. The entitykdd operator reported in figure2.25contains an enumeration of all KDDML
operators classified according to the entity they belong.

Relational tables entity

The entitykdd query table (see figure 2.26) contains all operators returning a relational5

table as output.

<!ENTITY % kdd_query_table
"(ARFF_LOADER|CLUSTER_CENTROID|CLUSTER_NUMBER|CLUSTER_PARTITION|

DATABASE_LOADER|MISCLASSIFIED|PP_TABLE_2_TABLE|RDA_EXCEPTION|
RDA_SATISFY|SEQUENCE_EXCEPTION|SEQUENCE_SATISFY|TABLE_LOADER|
TREE_CLASSIFY|%kdd_query_object;)">

Figure 2.26: Thekdd query table entity.

5that includes also transactional tables and timestamp tables, as described in sect.2.2.3.

CHAPTER 2. KDDML OBJECTS 33

Preprocessing tables entity

The entitykdd query PPtable (see figure2.27) contains all operators returning a preprocess-
ing table.

<!ENTITY % kdd_query_PPtable
"(PP_ADD_HIERARCHY|PP_CHANGE_TYPE|PP_DIVIDING_ATTRIBUTE|

PP_FILTER_ATTRIBUTES|PP_FOLDING|PP_HIERARCHICAL_DISCRETIZAION|
PP_MARKING|PP_MARK_DUPLICATES|PP_MERGE_DUPLICATES|
PP_NEW_ATTRIBUTE|PP_NORMALIZATION|PP_NUMERIC_DISCRETIZATION|
PP_NUMERIC_LABELING|PP_REMOVE_ROWS|PP_RENAME_ATTRIBUTES|
PP_REWRITING|PP_SAMPLING|PP_SORTING_ATTRIBUTE|PP_TABLE_LOADER|
TABLE_2_PP_TABLE|%kdd_query_object;)">

Figure 2.27: Thekdd query PPtable entity.

Association rules entity

The entitykdd query rules (see figure2.28) contains all operators returning an association
model.

<!ENTITY % kdd_query_rules
"(RDA_FILTER|JDM_CONNECTION|RDA_LOADER|PMML_RDA_LOADER|RDA_MINER|

RDA_PRESERVED|%kdd_query_object;)">

Figure 2.28: Thekdd query rules entity.

Tree model entity

The entitykdd query trees (see figure2.29) contains all operators returning a classification
tree.

<!ENTITY % kdd_query_trees
"(JDM_CONNECTION|PMML_TREE_LOADER|TREE_LOADER|

TREE_META_CLASSIFIER|TREE_MINER|%kdd_query_object;)">

Figure 2.29: Thekdd query trees entity.

Clustering model entity

The entitykdd query cluster (see figure2.30) contains all operators returning a clustering
model.

CHAPTER 2. KDDML OBJECTS 34

<!ENTITY % kdd_query_clusters
"(CLUSTER_LOADER|CLUSTER_MINER|JDM_CONNECTION|PMML_CLUSTER_LOADER|

%kdd_query_object;)">

Figure 2.30: Thekdd query clusters entity.

Items hierarchy entity

The entitykdd query hierarchy (see figure2.31) contains all operators returning an item
hierarchy.

<!ENTITY % kdd_query_hierarchy
"(HIERARCHY_LOADER|JDM_CONNECTION|TABLE_2_HIERARCHY|

%kdd_query_object;)">

Figure 2.31: Thekdd query hierarchy entity.

Sequences entity

The entitykdd query sequence (see figure2.32) contains all the operators returning sequen-
tial patterns.

<!ENTITY % kdd_query_sequence
"(PMML_SEQUENCE_LOADER|SEQUENCE_AGGREGATE_FILTER|SEQUENCE_FILTER|

SEQUENCE_LOADER|SEQUENCE_MAXIMAL_FILTER|SEQUENCE_MINER|
SEQUENCE_RULE|SEQUENCE_TIMESTAMP_CONSTRAINT|%kdd_query_object;)">

Figure 2.32: Thekdd query sequence entity.

Scalar entity

The entitykdd query scalar (see figure2.33) contains all operators returning a number or a
string.

<!ENTITY % kdd_query_scalar
"(ARFF_WRITER|DATABASE_WRITER|EXT_CALL|SCALAR|%kdd_query_object;)">

Figure 2.33: Thekdd query scalar entity.

CHAPTER 2. KDDML OBJECTS 35

kdd object entity

Some KDDML operators do not have a precise signature. In other terms, the output type of the
operator can be unknown at compile-time, and it can be derived only at run-time by the KDDML
interpreter, when the query is executed. For instance, consider theIF operator (sect.3.2.14) that
evaluates a condition on an input object and, on the basis of the boolean result, it evaluates aTHEN
branch or anELSEbranch. Therefore, a further entity (see figure2.34) is needed in order to group
all operators returning a generic KDDML object whose type is unknown at compile-time.

<!ENTITY % kdd_query_object
"(CALL_QUERY|SEQ_QUERY|PAR_QUERY|IF)">

Figure 2.34: Thekdd query scalar entity.

Other special objects are used to define algorithm settings, condition and expression specifica-
tions and generic XML elements, as reported below. They are defined by means XML elements
(and not by entities) since they are only input types for operators (never output types).

Algorithm settings

An algorithm settings object captures the parameters associated with a particular algorithm. It
allows a knowledgeable user to fine tune algorithm parameters. Generally, not all parameters must
be specified, however, those specified are taken into account by the KDDML executor.

This entity is used to specify a data mining or preprocessing algorithm; it is composed by the
algorithm nameidentifying the algorithm, and by a list ofparameter specificationswith parameter
name and parameter value (e.g., the minimum support for a rda miner algorithm). Its definition is
reported in the DTD of figure2.35.

<!ELEMENT ALGORITHM (PARAM)* >
<!ATTLIST ALGORITHM algorithm_name %string; #REQUIRED>
<!ELEMENT PARAM EMPTY>
<!ATTLIST PARAM name %string; #REQUIRED>
<!ATTLIST PARAM value %any_type; #REQUIRED>

Figure 2.35: The element ALGORITHM.

The attributealgorithm name is the name of the algorithm (e.g.apriori, em, etc.). The ele-
ment root can be composed by a list ofPARAMelements, representing a single algorithm parame-
ter. We can specify the parameter name and the parameter value by using the respective required
attributes. In the definition of DTD, we prefer to maintain a non-strict semantic for algorithm
specification in order to preserve an high language extendibility: adding a new pre-processing or
mining algorithm in future do not require any DTD modification. Therefore, the parameter value
can assume any generic type (number, or string).

CHAPTER 2. KDDML OBJECTS 36

Conditions

This entity is defined to represent a condition specification. The condition can be used to evaluate
boolean operators (such as “≤”) on table attributes and/or constants. Here, table attributes stand
for both relational (or preprocessing) table columns and model properties (e.g. the support of an
association rule).

As shown in figure2.36, the elementCONDITIONis composed by anAND, OR, NOTcom-
bination between primitive cases (elementBASECOND). Each base condition can be expressed
using the attributeop type , representing the name of the boolean operator. The arguments to the
operator can be given using theterm XML attributes. As shown, operators can be unary, binary
or ternary. By convention, it is possible to denote an input table column instead of a constant using
the special symbol “@” before the attribute name in theterm XML attribute.

An example of condition application has been reported in the query of figure1.2.

<!ELEMENT CONDITION (TRUE|FALSE|OR_COND|NOT_COND|AND_COND|BASE_COND)>
<!ELEMENT TRUE EMPTY>
<!ELEMENT FALSE EMPTY>
<!ELEMENT OR_COND ((OR_COND|NOT_COND|AND_COND|BASE_COND),

(OR_COND|NOT_COND|AND_COND|BASE_COND)+)>
<!ELEMENT AND_COND ((OR_COND|NOT_COND|AND_COND|BASE_COND),

(OR_COND|NOT_COND|AND_COND|BASE_COND)+)>
<!ELEMENT NOT_COND ((OR_COND|NOT_COND|AND_COND|BASE_COND))>
<!ELEMENT BASE_COND EMPTY>
<!ATTLIST BASE_COND op_type %string; #REQUIRED

term1 %any_type; #REQUIRED
term2 %any_type; #IMPLIED
term3 %any_type; #IMPLIED>

Figure 2.36: The element CONDITION.

Expressions

This object is used to represent language expressions. Expressions are similar to conditions, but
they return a scalar (i.e., a number or a string) instead of a boolean value.

As shown in figure2.37, theEXPRESSIONelement admits a sequential statement (element
SEQTERM), including basic operations (addition, multiplication, subtraction, divisionof numbers
andconcatenationof strings) on primitive terms. Also a conditional statement (elementIF TERM)
is admitted. It is used to evaluate athenstatement or an (optional)elsestatement according to
a condition whose specification is reported in figure2.36 and table 2.4. Finally, the element
BASETERMis used to provide numeric/string constants or table attribute names6.

6As for conditions, with the special symbol “@” in thevalue attribute of theBASETERMelement we denote an
input table column.

CHAPTER 2. KDDML OBJECTS 37

<!ELEMENT EXPRESSION (BASE_TERM|SEQ_TERM|IF_TERM)>
<!ELEMENT SEQ_TERM ((BASE_TERM|SEQ_TERM|IF_TERM),

(BASE_TERM|SEQ_TERM|IF_TERM)+)>
<!ATTLIST SEQ_TERM op_type

(concat|equal|sum|multiply|subtract|divide) #REQUIRED>
<!ELEMENT BASE_TERM EMPTY>
<!ATTLIST BASE_TERM value %any_type; #REQUIRED>
<!ELEMENT IF_TERM (CONDITION, (BASE_TERM|SEQ_TERM|IF_TERM),

(BASE_TERM|SEQ_TERM|IF_TERM)?)>

Figure 2.37: The element EXPRESSION.

OpType Term 1 type Term 2 type Term 3 type
equal, not equal @attribute @attribute -

numeric or string constant
greater, greater or equal @numericattribute @numericattribute -

less, lessor equal numeric constant
is missing @attribute - -

Table 2.4: Condition specification for the element IFTERM of expressions

Generic XML

The XML type denotes arguments that are generic XML elements to be evaluated directly by
the operator. Its semantics is to model XML tags that are not interpreted directly by KDDML, but
simply passed to the operator as arguments. So, as shown in figure2.38, its DTD is totally generic.

<!ELEMENT GENERIC_ELEMENT ANY>

Figure 2.38: The element GENERIC ELEMENT.

In summary, the set of types of a KDDML operator is reported in table2.5.

CHAPTER 2. KDDML OBJECTS 38

KDDML Type DTD Entity / XML element Description
table kdd query table all operators returning a relational table

PPtable kdd query PPtable all operators returning a preprocessing table
rda kdd query rules all operators returning an association model
tree kdd query trees all operators returning a classification model

cluster kdd query cluster all operators returning a cluster model
hierarchy kdd query hierarchy all operators returning an item hierarchy
sequence kdd query sequence all operators returning a sequence model

scalar kdd query scalar all operators returning a scalar
any kdd query object all operators returning any type
alg ALGORITHM an algorithm specification

condition CONDITION a condition specification
expression EXPRESSION an expression specification

xml GENERIC ELEMENT a generic XML element

Table 2.5: Correspondence between XML entities and KDDML types

CHAPTER 3

KDDML operators

This chapter contains all the KDDML language operators specification. For each operator it
reports:

1. the operator name represented by an XML root tag;

2. the XML Document Type Definition;

3. the usage description of the operator;

4. the KDD phase supported by the operator;

5. the operator signature;

6. a list of required XML attributes with usage description;

7. a list of optional XML attributes with usage description.

Language operators will be presented according to a lexicographic ordering.

39

CHAPTER 3. KDDML OPERATORS 40

3.1 Classification of operators

In chapter two we have seen that operators can be classified on the basis of the type they re-
turn. Before introducing the KDDML language specification, we give a different classification of
operators, according to the KDD phase supported.

3.1.1 I/O operators

I/O class includes operators that populate the KDDML data/models repository from external re-
sources or that export a table/model in the repository to external format. The table3.1shows the
I/O operators currently implemented in KDDML.

Operator Name Description Sect.

ARFF LOADER It loads an ARFF source 3.2.1
ARFF WRITER It accesses to a table in the repository 3.2.2

and transforms it into an ARFF file
CLUSTER LOADER It loads a cluster model from the repository 3.2.5

DATABASE LOADER It loads a relational table from a database 3.2.10
DATABASE WRITER It accesses to a table in the repository 3.2.11

and transforms it into a SQL table
HIERARCHY LOADER It loads an item hierarchy from the repository 3.2.13

PMML CLUSTER LOADER It loads an external PMML cluster model 3.2.17
PMML RDA LOADER It loads an external PMML association model 3.2.18

PMML SEQUENCE LOADER It loads an external PMML sequence model 3.2.19
PMML TREE LOADER It loads an external PMML tree model 3.2.20

PP TABLE LOADER It loads a preprocessing table from the repository3.2.40
RDA LOADER It loads an association model from the repository3.2.43

SEQUENCE LOADER It loads a sequence model from the repository3.2.51
TABLE 2 HIERACHY It loads an item hierarchy from a table 3.2.58

TREE LOADER It loads a classification tree from the repository3.2.62
Table 3.1: I/O operators

3.1.2 Preprocessing operators

Preprocessing is a time-consuming phase of the KDD process, including tasks such as:

• data cleaning;

• data reduction;

• data discretization;

CHAPTER 3. KDDML OPERATORS 41

• data transformation.

The table 3.2 reports the preprocessing operators implemented in KDDML divided in respect of
the preprocessing step supported; however, some operators are multi-task. Every preprocessing
operator takes aPPtable object as first argument and returns aPPtable object, as shown by
the following signature:

f<PP ...> : PPtable× ... → PPtable.

Operator Name Description Sect. Prepr.
Step

PP MARKING It marks the preprocessing values of an3.2.27
attribute according to a condition

PP MARK DUPLICATES It marks duplicated instances 3.2.28 Data
cleaning

PP MERGE DUPLICATES It finds and unifies instances that 3.2.29
are duplicates

PP FILTER ATTRIBUTES It select (or remove) a list of attributes 3.2.24

PP REMOVE ROWS It deletes rows according to a condition3.2.34 Data
reduction

PP SAMPLING It performs a sampling on input table 3.2.37

PP ADD HIERARCHY It assigns an hierarchy object to a table3.2.21
column as meta-data information

PP HIERARCHICAL It performs a categoric discretization 3.2.26 Data
DISCRETIZATION of a nominal attribute discretiz.

PP NUMERIC It discretizes a numeric attribute 3.2.32
DISCRETIZATION
PP CHANGE TYPE It changes the logical type of one 3.2.22

or more attributes
PP DIVIDING ATTRIBUTE It partitions the values of an input 3.2.23

attribute into two new attributes
PP FOLDING It removes a specified attribute copying3.2.25

its values into a destination attribute
PP NEW ATTRIBUTE It adds a new attribute to the input table3.2.30 Data

transform.
PP NORMALIZATION It performs a normalization of a 3.2.31

numeric attribute
PP NUMERIC LABELING It converts a nominal attribute into a 3.2.33

numeric attribute
PP RENAME ATTRIBUTES It renames a list of attributes 3.2.35

CHAPTER 3. KDDML OPERATORS 42

PP REWRITING It rewrites the values of an attribute 3.2.36
according to a regular expression

PP SORTING ATTRIBUTE It sorts the values of a given attribute 3.2.38

PP TABLE 2 TABLE It finalizes the preprocessing phase 3.2.39 -
TABLE 2 PP TABLE It starts the preprocessing phase 3.2.59

Table 3.2: Preprocessing operators

3.1.3 Mining operators

KDDML enables users to build model in the functional areas: classification, association rules,
clustering, etc. To build models, users define tasks, which minimally require the input parameters
model name and mining settings expressed by using the XML elementALGORITHM(see figure
2.35). Mining data can be given as first argument of the operator. The result is a mining model.

Summarizing, there is an operator for each mining model supported by the language (see table
3.3) and the signature of operators is fixed apriori for each operator:

f<KNOWLEDGE MINER> : table× alg→ model.

Operator Name Description Sect.

CLUSTER MINER It extracts a clustering model by using 3.2.6
a mining algorithm

RDA MINER It extracts a set of association rules by using3.2.44
a mining algorithm

SEQUENCE MINER It extracts a sequence model by using 3.2.53
a mining algorithm

TREE MINER It extracts a classification tree by using 3.2.64
a mining algorithm

Table 3.3: Mining operators

3.1.4 Postprocessing operators

Extracted models can be applied on (new) data to predict features or to select data accordingly to
the knowledge stored in the model. The table3.4shows the postprocessing operators that include:

• model application including operators to apply extracted model;

CHAPTER 3. KDDML OPERATORS 43

• model testing that gives an estimate of the accuracy a model has in predicting the target of a
supervised model;

• model meta-reasoning including operators to combine two or more models;

• model filtering including operators to filter extracted models according to some feature.

Operator Name Description Sect. Model(s)
involved

CLUSTER CENTROID Given a cluster model it returns 3.2.4
tuples describing the centroids

CLUSTER NUMBER Returns the tuples of a dataset 3.2.7
belonging to a given cluster

CLUSTER PARTITION Partitions the tuple of a dataset 3.2.8 clusters
according to a clustering model

CLUSTER PARTITION Partitions the tuple of a dataset by 3.2.9
SPARROW using the SPARROW algorithm

RDA EXCEPTION Selects the transaction that are exception3.2.41
to a set of association rules

RDA SATISFY Selects the transaction satisfying 3.2.46 rda
a set of association rules

RDA PRESERVED Selects the rules preserving 3.2.45 rda,
over an item hierarchy hierarchy

SEQUENCE AGGREGATE It returns the sequential patterns 3.2.48
FILTER satisfying an aggregate constraint

SEQUENCE EXCEPTION It selects the transaction that are exceptions3.2.49
to a set of sequential patterns

SEQUENCE FILTER It returns the sequential patterns 3.2.50
satisfying a condition sequence

SEQUENCE RULE It computes sequence rules from a set 3.2.54
of sequential patterns

SEQUENCE SATISFY It selects the transaction satisfying 3.2.55
a set of sequential patterns

SEQUENCE TIMESTAMP It returns the sequential patterns satisfying3.2.56
FILTER a time-stamp constraint

MISCLASSIFIED It selects the misclassified instances 3.2.15
of an input table

TREE CLASSIFY If classifies an input table on 3.2.61 tree
a classification tree

TREE META CLASSIFIER It combines two or more tree classifier 3.2.63
using a committee strategy

Table 3.4: Postprocessing operators

CHAPTER 3. KDDML OPERATORS 44

3.1.5 Control flow operators

The semantic of the KDDML language can be augmented with operators that allow for better
control of flow of data and model in queries. Table3.5shows that operators.

Operator Name Description Sect.

CALL QUERY It retrieves and evaluates queries in the query repository3.2.3
IF Definition of the decision statement 3.2.14

PAR QUERY Definition of potential parallelism 3.2.16
SEQ QUERY Definition of sequential statement 3.2.57

Table 3.5: Control flow operators

3.1.6 Unclassified operators

The table3.6shows all the other KDDML language operators.

Operator Name Description Sect.

EXT CALL It calls an external program 3.2.12
SCALAR It returns the value of an XML attribute as scalar3.2.47

Table 3.6: Unclassified operators

3.2 Operators specification

3.2.1 ARFF LOADER

DTD

<!ELEMENT ARFF_LOADER EMPTY>
<!ATTLIST ARFF_LOADER xml_dest %string; #IMPLIED>
<!ATTLIST ARFF_LOADER arff_file_name %string; #REQUIRED>
<!ATTLIST ARFF_LOADER arff_file_path %string; #IMPLIED>

CHAPTER 3. KDDML OPERATORS 45

Description

ARFF (Attribute-Relation File Format) file is a text file that consists of a list of instances with
the attribute value for each instance being separated by commas. The name of the dataset is in-
troduced by a@relation tag, and the names, types and values of each attribute are defined by
@attribute tags. The data section of the ARFF file begin with the@data tag. By convec-
tion, missing values are represented by a single question mark. Values that contain spaces must be
quoted. Each attribute in the data set has its own@attribute statement which uniquely defines
the name of that attribute and it is data type. The order the attributes are declared indicates the
column position in the data section of the file. The format for the@attribute statement is:

@attribute< attribute name> < datatype>

The datatype can be numeric (integer or real), string or nominal. Nominal values are defined
by providing a nominal specification listing the possible values:{<nominal-name1>, <nominal-
name2>, <nominal-name3>, etc}. As an example, the weather dataset in ARFF format is reported
in figure 3.1. The operator loads an ARFF source gathered via local file system or via ftp, http
protocols. Mapping from ARFF types to the logical types of the output table is automatic.

KDD phase

Resource loading.

Signature

fARFF LOADER : empty → table

Required attributes

• arff file name: the name of the input ARFF file.

Optional Attributes

• xml dest ;

• arff file path : is the external path identifying the ARFF file. ARFF file can be ob-
tained via a local file system (e.g.D:/MyRepository/) or via an internet repository (e.g.
ftp://www.foo.edu/ARFF/). If the attribute is omitted, the ARFF source is read directly from
the data system repository.

3.2.2 ARFF WRITER

DTD

<!ELEMENT ARFF_WRITER (%kdd_query_table;)>
<!ATTLIST ARFF_WRITER xml_dest %string; #IMPLIED>
<!ATTLIST ARFF_WRITER arff_dest %string; #REQUIRED>

CHAPTER 3. KDDML OPERATORS 46

@relation weather

@attribute outlook {sunny, overcast, rainy}
@attribute temperature numeric
@attribute humidity numeric
@attribute windy {TRUE, FALSE}
@attribute play {yes, no}

@data
sunny,85,85,?,no
sunny,80,90,TRUE,no
overcast,83,86,FALSE,yes
rainy,70,?,FALSE,yes
rainy,68,80,FALSE,yes
?,65,70,?,no
...

Figure 3.1: The weather dataset in ARFF format.

Description

The operator accesses a relational table contained in the data repository, and it transforms the table
into an ARFF file (see sect.3.2.1). The mapping from the data source to the logical types of the
output ARFF format is automatic.
The operator returns an integer, containing the total number of table rows involved.

KDD phase

None.

Signature

fARFF WRITER : table→ scalar

Required attributes

• arff dest : it is the complete path containing the destination ARFF file (e.g.D:/MyRepo-
sitory/weather.arff).

Optional Attributes

• xml dest .

CHAPTER 3. KDDML OPERATORS 47

3.2.3 CALL QUERY

DTD

<!ELEMENT CALL_QUERY EMPTY>
<!ATTLIST CALL_QUERY query_name %string; #REQUIRED>
<!ATTLIST CALL_QUERY query_path %string; #IMPLIED>
<!ATTLIST CALL_QUERY formal_parameters_list %string; #IMPLIED>
<!ATTLIST CALL_QUERY actual_parameters_list %string; #IMPLIED>

Description

TheCALL QUERYstatement retrieves and evaluates queries in the repository and it replaces for-
mal parameters with actual parameters at run-time. Query admits parameters, whose list is spec-
ified by means XML attributes; the operator performs a position mapping between formal para-
meters and actual parameters. The syntax for using a formal parameter inside a query (the called
query) requires to write it between $ sign (e.g.: $perc$).

The operator returns the same kind of result of the called query. Since the type may not be
known at compile time (e.g., when the query name itself is provided by a parameter), the type of
the result is checked at run-time.

KDD phase

Control flow.

Signature

fCALL QUERY : empty → any

Required attributes

• query name: the name of the xml file referring the query.

Optional Attributes

• query path : is the external path identifying the query. If the attribute is omitted, the query
source is read directly from the queries system repository.

• formal parameters list the list of formal parameters that is in a comma separated
format (e.g.perc, source, dest).

• actual parameters list the list of actual parameters. The list is given in a comma
separated format (e.g.0.6, weather, result) and a position mapping with the values of
formal parameters list is performed.

CHAPTER 3. KDDML OPERATORS 48

3.2.4 CLUSTER CENTROID

DTD

<!ELEMENT CLUSTER_CENTROID (%kdd_query_clusters;)>
<!ATTLIST CLUSTER_CENTROID xml_dest %string; #IMPLIED>

Description

Given a cluster model, it returns tuples describing the cluster centroids. The centroid is dependent
on the type of clustering.
For centroid-based clustering, there is an instance identifying the cluster. This instance will be
reported by the operator as centroid.
For distribution-based clustering, the centroid is defined by statistics and depends on the type
of attributes. In particular, for numeric attributes, the centroid contains the mean of instances
belonging to the cluster. For nominal attributes, the most probable category (i.e. the category with
the largest frequency) is reported as value for that attribute.

KDD phase

Model application.

Signature

fCLUSTER CENTROID : cluster→ table

Required attributes

None.

Optional Attributes

• xml dest .

3.2.5 CLUSTER LOADER

DTD

<!ELEMENT CLUSTER_LOADER EMPTY>
<!ATTLIST CLUSTER_LOADER xml_source %string; #REQUIRED>

Description

It loads a cluster model from the system repository.

KDD phase

Resource loading.

CHAPTER 3. KDDML OPERATORS 49

Signature

f<CLUSTER LOADER> : empty → tree.

Required attributes

• xml source : the XML file source contained in the models repository.

Optional attributes

None.

3.2.6 CLUSTER MINER

DTD

<!ELEMENT CLUSTER_MINER((%kdd_query_table;), ALGORITHM)>
<!ATTLIST CLUSTER_MINER xml_dest %string; #IMPLIED>

Description

The operator extracts a cluster model by using a mining algorithm. The operator takes a table
representing the training set and a cluster miner algorithm, and it returns a set of clusters as output.
The algorithm specification (i.e. the algorithm name and the list of expected parameters) is ex-
pressed by using the XML elementALGORITHM(see figure2.35). In section 4.1.7, the list of
supported clustering algorithms is reported.
The data schema of the input data source depends on the algorithm specification. In other words,
some attributes can be ignored during mining if their types are not supported by the algorithm.
For example, some clustering algorithms cannot work on string attributes. However, preprocessing
operators can be used to adapt the input table to specific data mining algorithms.

KDD phase

Data mining.

Signature

f<CLUSTER MINER> : table× alg→ cluster.

Required attributes

None.

Optional attributes

• xml dest .

CHAPTER 3. KDDML OPERATORS 50

3.2.7 CLUSTER NUMBER

DTD

<!ELEMENT CLUSTER_NUMBER ((%kdd_query_clusters;),
(%kdd_query_table;))>

<!ATTLIST CLUSTER_NUMBER xml_dest %string; #IMPLIED
cluster_number %integer; #IMPLIED>

Description

Given a cluster model and a dataset, this operator returns only the tuples of the dataset belonging
to a specified cluster.
The mapping between attributes used in the clustering and attributes in the input table is by name.
Therefore, the clustering model and the data source must be compatible. In particular, a table is
compatible with a model if for each active mining field1 belonging to the model, there is an at-
tribute in the table with the same name and type.
The prediction of which cluster contains the instance is performed by comparing the instance and
the cluster centroid. When two records are compared then either the distance or the similarity is of
interest. In both cases the measures can be computed by a combination of aninner functionand
anouter function. Theinner functioncompares two single fields (e.g. absolute difference between
continuous attributes) values and theouter function(e.g. euclidean distance) computes an aggre-
gation over all fields.Inner functionandouter functionare stored in the clustering model when the
clusters are built.
The operator can be also used to predict the tuples belonging to the cluster with maximal cardinal-
ity.

KDD phase

Model application.

Signature

f<CLUSTER NUMBER> : cluster× table→ table.

Required attributes

None.

Optional Attributes

• xml dest .
1An active mining field is a field used as input to the model. In other terms, the user must supply all the active

mining fields in order to apply the model.

CHAPTER 3. KDDML OPERATORS 51

• cluster number : a non-negative integer representing the index of the cluster. If the at-
tribute is omitted, the operator returns all the instances belonging to the cluster with maximal
cardinality.

3.2.8 CLUSTER PARTITION

DTD

<!ELEMENT CLUSTER_PARTITION ((%kdd_query_clusters;),
(%kdd_query_table;))>

<!ATTLIST CLUSTER_PARTITION xml_dest %string; #IMPLIED>

Description

Given a cluster model and a dataset, this operator adds to the tuples a new numeric attribute
cluster number containing the index of the cluster that includes the record. In order to under-
stand how the mapping between instances and clusters is performed, see the CLUSTERNUMBER
operator (sect.3.2.7).

KDD phase

Model application.

Signature

f<CLUSTER PARTITION> : cluster× table→ table.

Required attributes

None.

Optional Attributes

• xml dest .

3.2.9 CLUSTER PARTITION SPARROW

DTD

<!ELEMENT CLUSTER_PARTITION_SPARROW ((%kdd_query_table;))>
<!ATTLIST CLUSTER_PARTITION_SPARROW xml_dest %string; #IMPLIED>
<!ATTLIST CLUSTER_PARTITION_SPARROW num_agents %integer; "100">
<!ATTLIST CLUSTER_PARTITION_SPARROW num_iterations %integer; "200">
<!ATTLIST CLUSTER_PARTITION_SPARROW density_threshold %integer; "19">
<!ATTLIST CLUSTER_PARTITION_SPARROW visibility_radius %integer; "9">

CHAPTER 3. KDDML OPERATORS 52

Description

Given a dataset, this operator computes a clustering partition of input instances and it adds to the
tuples a new numeric attributecluster number containing the index of the cluster that includes
the record. The operator uses the Sparrows [10] algorithm in order to extract the set of clusters.

Sparrow is a new parallel algorithm that uses the new swarm intelligence based techniques to
investigate clustering in spatial data. The algorithm combines a smart exploratory strategy based
on a flock of birds that move around a cellular landscape that contains the data set with a density-
based cluster algorithm to discover clusters of arbitrary shape and size in spatial data. Agents
use modified rules of the standard flock algorithm to transform an agent into a hunter foraging
for clusters in spatial data. Clusters are discovered applying the heuristic principles of the spatial
clustering algorithm DBSCAN.

Input table admits two numerical attributes only. The first one represents the spacial x-coordinate;
the second one represents the spacial y-coordinate. Other columns are not admitted in the input
table and no missing values are allowed.

KDD phase

Model application.

Signature

f<CLUSTER PARTITION SPARROW> : table→ table.

Required attributes

None.

Optional Attributes

• xml dest .

• num agents : a positive integer representing the number of agents to use. Default: 100.

• num iterations : a positive integer representing the maximum number of iterations be-
fore the algorithm converges. Default: 200.

• density threshold : a positive integer representing the density threshold used by Spar-
row during mining. Default: 19.

• visibility radius : a positive integer representing the visibility radius. Default: 9.

3.2.10 DATABASE LOADER

DTD

<!ELEMENT DATABASE_LOADER EMPTY>

CHAPTER 3. KDDML OPERATORS 53

<!ATTLIST DATABASE_LOADER xml_dest %string; #IMPLIED
sql_query %string; #REQUIRED
database_name %string; #REQUIRED
user %string; #IMPLIED
password %string; #IMPLIED
logical_relation_name %string; #IMPLIED>

Description

The operator allows a transparent access to relational tables belonging to local or remote RDBMS
sources via simple SQL SELECT queries.
The mapping from SQL types to the logical types of the output table is automatic. Numeric SQL
types (assmall intor real) are mapped into numeric attributes, while non-numeric SQL types (as
varchar) are mapped into string attributes. However, preprocessing operators allows for specifying
different logical types of attributes for loaded tables.
The operator uses the JDBC (Java Database Connectivity) relational database connectivity stan-
dard as a DBMS bridge. The URL for the connection with the DBMS and the SQL query can
be specified directly as input XML attributes. User and password are not required in the operator
definition; if they are omitted, a pop-up frame will be automatically opened in order to initialize
the DBMS connection.

KDD phase

Resource loading.

Signature

fDATABASE LOADER : empty → table

Required attributes

• sql query : the sql query as string. If the SQL query does not return a table as output (for
example, when using anUPDATEstatement), the operator will return an error message.

• database name: the database URL identifying the RDBMS to be used during connection.
At present, KDDML accepts connectivity via Oracle or SQL Server databases. Below, the
URL connection strings currently available are reported2:

– SQL Server via JTDS driver:
jdbc:jtds:sqlserver://<host>:<port>/<database> ;

2Notice that JDBC drivers, in general, are pure Java classes, independent from operating system, that are packed
as Java archive (.jar) files. Other JDBC drivers can be easily added to the system (language). In order to make a JDBC
driver available for KDDML, you should obtain the driver from your database (or 3rd party JDBC driver) developer,
and then put its .jar file into the KDDML installation directory.

CHAPTER 3. KDDML OPERATORS 54

– SQL Server via Microsoft driver:
jdbc:microsoft:sqlserver://<server name>:<port>;
DatabaseName=<database name>;

– Oracle JDBC driver:
jdbc:oracle:thin:[<user>/<password>]@//<host>[:<port>]/<service> ;

– PostgreSQL:
jdbc:postgresql://<host>:<port>/<database> ;

Optional Attributes

• xml dest .

• user : the user name to be used during connection.

• password : the password to be used during connection.

• logical relational name: the logical relation name to be assigned to output table.

3.2.11 DATABASE WRITER

DTD

<!ELEMENT DATABASE_WRITER (%kdd_query_table;)>
<!ATTLIST DATABASE_WRITER xml_dest %string; #IMPLIED>
<!ATTLIST DATABASE_WRITER database_name %string; #REQUIRED>
<!ATTLIST DATABASE_WRITER table_name %string; #REQUIRED>
<!ATTLIST DATABASE_WRITER user %string; #IMPLIED>
<!ATTLIST DATABASE_WRITER password %string; #IMPLIED>

Description

The operator accesses a relational table contained in the data repository and it transform the table
into a SQL table. The mapping from the data source to the logical types of the database format
is not automatic. A requirement of the operator is that in the destination database an empty SQL
table must exist; this is the target relational table. No type control is performed by the operator
between the logical proprietary types of the attributes and the SQL types of columns belonging to
the target SQL table. The operator returns an integer, containing the total number of table rows
involved.

KDD phase

None.

Signature

fDATABASE WRITER : table→ scalar

CHAPTER 3. KDDML OPERATORS 55

Required attributes

• database name: it is the database URL identifying the RDBMS to use during connection
(see the DATABASELOADER operator in section3.2.10for more details).

Optional Attributes

• xml dest .

• user : it is the user name used during connection.

• password : it is the password used during connection.

• table name: it is the empty target SQL table created in the specified database.

3.2.12 EXT CALL

DTD

<!ELEMENT EXT_CALL (%kdd_query_scalar;) * >
<!ATTLIST EXT_CALL xml_dest %string; #IMPLIED>
<!ATTLIST EXT_CALL path %string; #REQUIRED>

Description

The operator allows for calling external programs, including e.g., calls to RDBMS stored proce-
dures.
It takes a set of scalars used as a command line argument to the called program, and it returns a
new scalar containing a boolean value representing the success or the failure of the external call.

KDD phase

None.

Signature

f<SCALAR> : scalar× · · · × scalar→ scalar.

Required attributes

• path : the complete path containing the external program (e.g.D:/usr/bin/MyProgram.exe).

Optional Attributes

• xml dest .

CHAPTER 3. KDDML OPERATORS 56

3.2.13 HIERARCHY LOADER

DTD

<!ELEMENT HIERARCHY_LOADER EMPTY>
<!ATTLIST HIERARCHY_LOADER xml_source %string; #REQUIRED>

Description

It loads an item hierarchy from the system model repository.

KDD phase

Resource loading.

Signature

f<HIERARCHY LOADER> : empty → hierarchy.

Required attributes

• xml source : the XML file source contained in the models repository.

Optional attributes

None.

3.2.14 IF

DTD

<!ELEMENT IF (%kdd_operator;, CONDITION, THEN, ELSE)>
<!ATTLIST IF xml_dest %string; #IMPLIED>
<!ELEMENT THEN (%kdd_operator;)>
<!ELEMENT ELSE (%kdd_operator;)>

Description

The operator evaluates a condition on an input object and, on the basis of the boolean result, it
evaluates (in non-strict semantic) aTHENbranch or anELSE branch. The condition regards a
Xquery [11] expression evaluated on the physical XML document representing the input object
(see later).

More precisely, the operator take as input four objects:

1. a query fragment that is evaluated as first and returning aKDDML object ;

2. a boolean condition evaluated on theKDDML object above;

CHAPTER 3. KDDML OPERATORS 57

3. a query fragment representing theTHENbranch evaluated only if the condition returns true;

4. a query fragment representing theELSEbranch evaluated only if the condition returns false.

The operator returns the same kind of result of theTHENbranch or theELSEbranch (i.e. any
type returned by the operators belonging to the entitykdd operator). Since the type may not
be known at compile time, the type of the result is checked at run-time.

KDD phase

Control flow.

Signature

f<IF> : any× condition× any× any→ any.

Required attributes

None.

Optional attributes

• xml dest .

Condition specification

In reference to the figure2.36, legal values for the XML attributeop type are reported below:

• equal, not equal, greater, greater or equal, less, lessor equal: used for relational op-
erators on a XQuery expression and a constant. More precisely, the first term is a Xquery
expression whose evaluation must return a constant value that is then compared with the sec-
ond term of the relational operator. The Xquery expression is evaluated on the input XML
physical object that can be referred by using the notation $input (e.g. return $input//X-
ConfusionMatrixTraining/@x-incorrectlyInst). Current version of KDDML adopts the Qizx
[12] implementation of XQuery.

The table3.7contains the types of primitive terms (XML attributesterm1, term2, term3)
to be used for eachop type legal value.

3.2.15 MISCLASSIFIED

DTD

<!ELEMENT MISCLASSIFIED (%kdd_query_table;)>
<!ATTLIST MISCLASSIFIED xml_dest %string; #IMPLIED>

CHAPTER 3. KDDML OPERATORS 58

OpType Term 1 type Term 2 type Term 3 type
equal, not equal x-query expression constant -

constant
greater, greater or equal x-query expression numeric constant -

less, lessor equal numeric constant

Table 3.7: Element BASECOND for IF operator

Description

The operator takes a table whose instances have been previously classified via a classification tree
(see sect.3.2.61), and it returns a new table with the misclassified records3 only.
The input table must contain at least two attributes:

1. the real target attribute containing the observed values;

2. the predicted target attribute whose values have been predicted by the classification tree; its
name coincides with the name of the real attribute, but with extensionpredicted .

KDD phase

Preprocessing.

Signature

fMISCLASSIFIED : table→ table

Required attributes

None.

Optional Attributes

• xml dest .

3.2.16 PARQUERY

DTD

<!ELEMENT PAR_QUERY (%kdd_operator;,(%kdd_operator;)+)>

3In a misclassified instance, the value of the classification attribute and the value of the predicted attribute differ.

CHAPTER 3. KDDML OPERATORS 59

Description

The PARQUERY element models potential parallelism between KDDML operators. The return
value of the PARQUERY is assumed to be the last operator in the sequence of their arguments.
Note that with this assumption, PARQUERY is functionally equivalent to SEQQUERY (see sect.
3.2.57), and then it can be implemented as a sequential operator when physical parallelism is not
available. Currently KDDML version do not support explicit parallelism.

KDD phase

Control flow.

Signature

f<PAR QUERY> : any× · · · × any→ any.

Required attributes

None.

Optional attributes

None.

3.2.17 PMML CLUSTER LOADER

DTD

<!ELEMENT PMML_CLUSTER_LOADER EMPTY>
<!ATTLIST PMML_CLUSTER_LOADER xml_dest %string; #IMPLIED>
<!ATTLIST PMML_CLUSTER_LOADER pmml_source %string; #REQUIRED>

Description

It loads an external PMML model containing a cluster model. At the present, KDDML supports
the PMML 2.0 version for a cluster model.

KDD phase

Resource loading.

Signature

f<PMML CLUSTER LOADER> : empty → cluster.

CHAPTER 3. KDDML OPERATORS 60

Required attributes

• pmml source : the external PMML source. PMML file can be gathered from the local file
system (e.g.D:/MyRepository/weather.xml) or from web, using the ftp, http protocols (e.g.
ftp://www.foo.edu/PMML/weather.xml).

Optional attributes

• xml dest .

3.2.18 PMML RDA LOADER

DTD

<!ELEMENT PMML_RDA_LOADER EMPTY>
<!ATTLIST PMML_RDA_LOADER xml_dest %string; #IMPLIED>
<!ATTLIST PMML_RDA_LOADER pmml_source %string; #REQUIRED>

Description

It loads an external PMML model containing a set of association rules. At the present, KDDML
supports the PMML 2.0 version for association rules.

KDD phase

Resource loading.

Signature

f<PMML RDA LOADER> : empty → rda.

Required attributes

• pmml source : the external PMML source. PMML file can be gathered from the local file
system (e.g.D:/MyRepository/weather.xml) or from web, using the ftp, http protocols (e.g.
ftp://www.foo.edu/PMML/weather.xml).

Optional attributes

• xml dest .

CHAPTER 3. KDDML OPERATORS 61

3.2.19 PMML SEQUENCE LOADER

DTD

<!ELEMENT PMML_SEQUENCE_LOADER EMPTY>
<!ATTLIST PMML_SEQUENCE_LOADER xml_dest %string; #IMPLIED>
<!ATTLIST PMML_SEQUENCE_LOADER pmml_source %string; #REQUIRED>

Description

It loads an external PMML model containing a sequence model. At present, KDDML supports
the PMML 2.0 version for sequential patterns.

KDD phase

Resource loading.

Signature

f<PMML SEQUENCE LOADER> : empty → sequence.

Required attributes

• pmml source : the external PMML source. The PMML file can be gathered either from
the local file system (e.g.D:/MyRepository/weather.xml) or from the web, by using the ftp,
http protocols (e.g.ftp://www.foo.edu/PMML/weather.xml).

Optional attributes

• xml dest .

3.2.20 PMML TREE LOADER

DTD

<!ELEMENT PMML_TREE_LOADER EMPTY>
<!ATTLIST PMML_TREE_LOADER xml_dest %string; #IMPLIED>
<!ATTLIST PMML_TREE_LOADER pmml_source %string; #REQUIRED>

Description

It loads an external PMML model containing a tree model. At present, KDDML supports the
PMML 2.0 version for a tree model.

KDD phase

Resource loading.

CHAPTER 3. KDDML OPERATORS 62

Signature

f<PMML TREE LOADER> : empty → tree.

Required attributes

• pmml source : the external PMML source. PMML file can be gathered from the local file
system (e.g.D:/MyRepository/weather.xml) or from web, using the ftp, http protocols (e.g.
ftp://www.foo.edu/PMML/weather.xml).

Optional attributes

• xml dest .

3.2.21 PPADD HIERARCHY

DTD

<!ELEMENT PP_ADD_HIERARCHY ((%kdd_query_PPtable;),
(%kdd_query_hierarchy;))>

<!ATTLIST PP_ADD_HIERARCHY xml_dest %string; #IMPLIED>
<!ATTLIST PP_ADD_HIERARCHY attribute_name %string; #REQUIRED>

Description

The operator assigns an hierarchy object to a table column as meta-data information. This oper-
ator works only on data schemata: neither the physical records, nor the preprocessing section are
affected.

KDD phase

Preprocessing.

Signature

f<PP ADD HIERARCHY> : PPtable× hierarchy→ PPtable.

Required attributes

• attribute name: the name of the input table attribute. The logical type of the attribute
must be nominal or string.

Optional Attributes

• xml dest .

CHAPTER 3. KDDML OPERATORS 63

3.2.22 PPCHANGE TYPE

DTD

<!ELEMENT PP_CHANGE_TYPE ((%kdd_query_PPtable;))>
<!ATTLIST PP_CHANGE_TYPE xml_dest %string; #IMPLIED>
<!ATTLIST PP_CHANGE_TYPE attributes_list %string; #REQUIRED>
<!ATTLIST PP_CHANGE_TYPE new_type (numeric|string|nominal) #REQUIRED>

Description

The operator changes the logical type of one or more attributes. The following conversions are
allowed:

• from numeric attributes to nominal or string attributes;

• from nominal attributes to numeric or string attributes;

• from string attributes to numeric or nominal attributes.

Notice that the conversion from nominal or string to a numeric type succeeds only if the input at-
tribute values are effectively numbers (see also the PPNUMERIC LABELING in section 3.2.33).
This operator works only on data schemata: neither the physical records, nor the preprocessing
section are affected.

KDD phase

Preprocessing.

Signature

f<PP CHANGE TYPE> : PPtable→ PPtable.

Required attributes

• attributes list : the list of attributes of the input table whose type must be changed.
The list is given in a comma separated format (e.g. outlook, play).

• new type : the conversion type. Can benumeric, stringor nominal.

Optional Attributes

• xml dest .

CHAPTER 3. KDDML OPERATORS 64

3.2.23 PPDIVIDING ATTRIBUTE

DTD

<!ELEMENT PP_DIVIDING_ATTRIBUTE (%kdd_query_PPtable;)>
<!ATTLIST PP_DIVIDING_ATTRIBUTE xml_dest %string; #IMPLIED>
<!ATTLIST PP_DIVIDING_ATTRIBUTE source_attribute_name %string; #REQUIRED>
<!ATTLIST PP_DIVIDING_ATTRIBUTE

destination_attribute_name_1 %string; #REQUIRED>
<!ATTLIST PP_DIVIDING_ATTRIBUTE

destination_attribute_name_2 %string; #REQUIRED>
<!ATTLIST PP_DIVIDING_ATTRIBUTE regular_expression %string; #REQUIRED>
<!ATTLIST PP_DIVIDING_ATTRIBUTE remove_source_attribute (true|false) "false">
<!ATTLIST PP_DIVIDING_ATTRIBUTE mark_exception %string; #FIXED "no_RE_match">

Description

Given a preprocessing table, the operator partitions the values of an input attribute into two new
string attributes. The splitting point is computed on the basis of a regular expression. A regular
expression is a set of characters that determines a pattern or a template used to match a string.
For each instance, the operator attempts to match the entire attribute value against the pattern.
If the pattern matching succeeds, then the first occurrence matching the pattern is the sub-string to
be assigned to the first output attribute. The rest of the input value becomes the sub-string to be
assigned to the second output attribute.
If the attribute value is missing for an instance, or if the pattern matching fails, the correspondent
preprocessing value for that instance is marked with the exception stringno RE match . In this
case, output destination attributes will be assigned to a missing value for that instance.
Destination attributes are added by the operator at the end of the data schema with a string type.

KDD phase

Preprocessing.

Signature

f<PP DIVIDING ATTRIBUTE> : PPtable→ PPtable.

Required attributes

• source attribute name: the source attribute name.

• destination attribute name 1: the first destination attribute name.

• destination attribute name 2: the second destination attribute name.

• regular expression : the regular expression to be used to find the splitting point.

CHAPTER 3. KDDML OPERATORS 65

Optional Attributes

• xml dest .

• remove source attribute : can betrue or false. If the first case, the input source
attribute will be removed from the output table. By default, the attribute value isfalse.

3.2.24 PPFILTER ATTRIBUTES

DTD

<!ELEMENT PP_FILTER_ATTRIBUTES ((%kdd_query_PPtable;))>
<!ATTLIST PP_FILTER_ATTRIBUTES attributes_list %string_list; #REQUIRED>
<!ATTLIST PP_FILTER_ATTRIBUTES take_or_remove (take|remove) "take">
<!ATTLIST PP_FILTER_ATTRIBUTES xml_dest %string; #IMPLIED>

Description

Select (or remove) a list of attributes from the input preprocessing table.

KDD phase

Preprocessing.

Signature

f<PP FILTER ATTRIBUTE> : PPtable→ PPtable.

Required attributes

• attributes list : the set of attributes to be selected (or removed). The list of attributes
is given in a comma separated format (e.g.outlook, play, windy).

Optional Attributes

• xml dest .

• take or remove : can betake or remove. In the first case, the resultant table will be
composed only by the list of provided attributes. Otherwise, the specified attributes will be
removed from the input data source. By default, the attribute assumes atakevalue.

CHAPTER 3. KDDML OPERATORS 66

3.2.25 PPFOLDING

DTD

<!ELEMENT PP_FOLDING ((%kdd_query_PPtable;))>
<!ATTLIST PP_FOLDING xml_dest %string; #IMPLIED>
<!ATTLIST PP_FOLDING source_attribute_name %string; #REQUIRED>
<!ATTLIST PP_FOLDING destination_attribute_name %string; #REQUIRED>

Description

The operator removes from the input preprocessing source the column of a specified attribute,
and it copies its values into a destination attribute. Every instance is replicated and every pair of
instances can be distinguished only for the destination attribute values. As a consequence, if the
input data source is anN x M table, the operator returns a new preprocessing table with size2N X
M-1. Also the preprocessing section is replicated.
The input source attribute and the destination attribute must share the same type in the input table.

KDD phase

Preprocessing.

Signature

f<PP FOLDING> : PPtable→ PPtable.

Required attributes

• source attribute name: the source attribute name of the input table.

• destination attribute name: the destination attribute name of the input table con-
taining the folding.

Optional Attributes

• xml dest .

3.2.26 PPHIERARCHICAL DISCRETIZATION

DTD

<!ELEMENT PP_HIERARCHICAL_DISCRETIZATION ((%kdd_query_PPtable;),
(%kdd_query_hierarchy;))>

<!ATTLIST PP_HIERARCHICAL_DISCRETIZATION xml_dest %string; #IMPLIED>
<!ATTLIST PP_HIERARCHICAL_DISCRETIZATION attribute_name %string; #REQUIRED>
<!ATTLIST PP_HIERARCHICAL_DISCRETIZATION level %integer; #REQUIRED>
<!ATTLIST PP_HIERARCHICAL_DISCRETIZATION mark_exception %string;

#FIXED "no_hierarchy_generalization">

CHAPTER 3. KDDML OPERATORS 67

Description

A categoric discretization of an attribute with respect to a hierarchy is performed. Given a non-
numeric attribute of the input preprocessing table, a concept hierarchy related to the attribute val-
ues, and an integer representing the hierarchy level, the operator returns a new table containing
generalized values for that attribute.
The mapping between attribute values and leaf values of the hierarchy is by name.
If the attribute value is found in a leaf of the hierarchy, then the generalized node value is computed
at the specified level. In this case, the old attribute value is replaced with the generalized item that
has been found.
If some value cannot be found in the hierarchy leaves or if the generalization cannot be computed,
then the attribute is set with a missing value for that instance. Also the correspondent preprocess-
ing information is marked with the exceptionno hierarchy generalization .
Obviously, the level of the hierarchy must be compatible with the depth of the hierarchy in order
to compute the generalization.

KDD phase

Preprocessing.

Signature

f<PP HIERARCHICAL DISCRETIZATION> : PPtable× hierarchy→ PPtable.

Required attributes

• attribute name: the attribute to which the categoric discretization is applied. The at-
tribute must be string or nominal.

• level : a positive integer representing the level of generalization. The level must be less
than the depth of the hierarchy. We assume that the leaves of the hierarchy have a level 0,
while the root has a level equal to the depth of the hierarchy.

Optional Attributes

• xml dest .

3.2.27 PPMARKING

DTD

<!ELEMENT PP_MARKING ((%kdd_query_PPtable;), CONDITION)>
<!ATTLIST PP_MARKING xml_dest %string; #IMPLIED>
<!ATTLIST PP_MARKING attribute_name %string; #REQUIRED>
<!ATTLIST PP_MARKING mark %string; #REQUIRED>

CHAPTER 3. KDDML OPERATORS 68

Description

The operator marks the preprocessing values of an attribute according to a condition expressed on
table attributes and/or constants.
For each instance of the input table, the condition is evaluated.
If the condition is satisfied, then the input attribute of that instance is marked (i.e. a value is added
to preprocessing information) with a specified value.
If the condition evaluation returns false, no operation is performed.
This operator works only on the preprocessing section of the input table. In other terms, the
physical data will not be changed.

KDD phase

Preprocessing

Signature

f<PP MARKING> : PPtable× condition→ PPtable.

Required attributes

• attribute name: the name of marking attribute.

• mark : the string value to be added to preprocessing section of the attribute.

Optional attributes

• xml dest .

Condition specification

In reference to the figure2.36, legal values for the XML attributeop type are reported below:

• equal, not equal, greater, greater or equal, less, lessor equal: used for relational ex-
pressions on attribute values and/or constants (e.g.“to mark all instances with the attribute
temperature less than 80”).

• is missing: unary boolean expression evaluated on a single table attribute. Its evaluation is
satisfied only if the attribute value for an instance is missing (e.g.“to mark all instances
where the attributeoutlook is missing”).

The table3.8contains the types of primitive terms (XML attributesterm1, term2, term3)
to be used for eachop type legal value.

CHAPTER 3. KDDML OPERATORS 69

OpType Term 1 type Term 2 type Term 3 type
equal, not equal @attribute @attribute -

numeric or string constant
greater, greater or equal @numericattribute @numericattribute -

less, lessor equal numeric constant
is missing @attribute - -

Table 3.8: Element BASECOND for PPMARKING operator

3.2.28 PPMARK DUPLICATES

DTD

<!ELEMENT PP_MARK_DUPLICATES ((%kdd_query_PPtable;))>
<!ATTLIST PP_MARK_DUPLICATES attributes_list %string_list; #IMPLIED>
<!ATTLIST PP_MARK_DUPLICATES xml_dest %string; #IMPLIED>
<!ATTLIST PP_MARK_DUPLICATES mark %string; "duplicate">

Description

The operator marks duplicated instances. Two instances are considered duplicates on the basis of
a key composed by a list of attributes. As an example, consider the attributestemperature and
outlook as keys. In this case, two instances are duplicates if they have the same values for those
attributes.
When two instances are selected as duplicates, all key attributes are marked (i.e. a string is added
to the preprocessing information) with a specified value.
Notice that the operator only marks duplicates and the value of the mark is inserted as preprocess-
ing information of the output table. In other words, no physical data are affected by the operator.
Duplicated instances can be joined using the PPMERGE DUPLICATES operator (see sect.3.2.29).

KDD phase

Preprocessing.

Signature

f<PP MARK DUPLICATES> : PPtable→ PPtable.

Required attributes

None.

Optional Attributes

• xml dest .

CHAPTER 3. KDDML OPERATORS 70

• attributes list : the list of attributes of the input table representing the key. The list
of attributes is given in a comma separated format (e.g.outlook, temperature). The attribute
is optional. If it is omitted, then all the columns of the input preprocessing table will be
considered as composing the key.

• mark : the mark that must be added to the preprocessing section of key attributes when two
instances are duplicates. By default, it assumes the valueduplicate .

3.2.29 PPMERGE DUPLICATES

DTD

<!ELEMENT PP_MERGE_DUPLICATES ((%kdd_query_PPtable;))>
<!ATTLIST PP_MERGE_DUPLICATES attributes_list %string_list; #IMPLIED>
<!ATTLIST PP_MERGE_DUPLICATES xml_dest %string; #IMPLIED>
<!ATTLIST PP_MERGE_DUPLICATES mark %string; "merged_duplicates">

Description

The operator finds and unifies instances that are duplicates. Two instances are duplicates on the ba-
sis of a key composed by a list of attributes. As an example, consider the attributestemperature
andoutlook as the key. In this case, two instances are duplicates if they have the same values
for those attributes.
When two or more instances have been selected as duplicates, the operator chooses4 only one in-
stance as the representant. All the other instances are removed from the input preprocessing table.
Finally, all key attributes of this instance are marked (i.e. a string is added to preprocessing infor-
mation) with a specified value.

KDD phase

Preprocessing.

Signature

f<PP MERGE DUPLICATES> : PPtable→ PPtable.

Required attributes

None.
4In the current version, the operator uses a random policy to choose the representant of a set of duplicates.

CHAPTER 3. KDDML OPERATORS 71

Optional Attributes

• xml dest .

• attributes list : the list of attributes of the input table representing the key. The list
of attributes is given in a comma separated format (e.g.outlook, temperature). The attribute
is optional. If it is omitted, then all the columns of the input preprocessing table will be
considered as forming the key.

• mark : the mark that must be added to the preprocessing section of key attributes when an
instance is selected as representant. By default, it assumes the valuemerged duplicate .

3.2.30 PPNEW ATTRIBUTE

DTD

<!ELEMENT PP_NEW_ATTRIBUTE ((%kdd_query_PPtable;),(EXPRESSION)?)>
<!ATTLIST PP_NEW_ATTRIBUTE xml_dest %string; #IMPLIED>
<!ATTLIST PP_NEW_ATTRIBUTE attribute_name %string; #REQUIRED>
<!ATTLIST PP_NEW_ATTRIBUTE position %integer; #IMPLIED>
<!ATTLIST PP_NEW_ATTRIBUTE attribute_type (string|numeric)
#REQUIRED>

Description

The operator adds a new attribute to the input preprocessing table. The attribute values can be
derived from existing ones by means of a simple expression language, as reported in figure2.37.
Also the type of the derived attribute and his position in the data schema can be specified.
The sub-elementEXPRESSIONis optional. If no expression is provided, all the values become
missing for the new attribute.

KDD phase

Preprocessing.

Signature

f<PP NEW ATTRIBUTE> : PPtable× expr→ PPtable.

Required attributes

• attribute name the attribute to be added to the preprocessing table.

• attribute type the type of derived attribute. The type can benumeric or string .

CHAPTER 3. KDDML OPERATORS 72

Optional Attributes

• xml dest .

• position : a non-negative integer representing the position of the new attribute in the
resulting table. If it is omitted, the column will be added to the end of the schema. The first
attribute starts from 0 in the schema section.

3.2.31 PPNORMALIZATION

DTD

<!ELEMENT PP_NORMALIZATION ((%kdd_query_PPtable;),ALGORITHM)>
<!ATTLIST PP_NORMALIZATION xml_dest %string; #IMPLIED>
<!ATTLIST PP_NORMALIZATION attributes_list %string_list; #REQUIRED>

Description

Normalization is the process of scaling data values of a numeric attribute to fit in a range such as
[-1, 1] or [0,1]. Normalization is particularly useful for classification algorithms and clustering.
The operator takes a preprocessing table, a list of numeric attributes, and a normalization method
and returns a new preprocessing table with normalized values for each specified attribute. There
are many methods for data normalization, each of them expressed by using the XML element
ALGORITHM(see figure2.35). In section4.1.2, the list of supported normalization algorithms is
reported.

KDD phase

Preprocessing.

Signature

f<PP NORMALIZATION> : PPtable× alg→ PPtable.

Required attributes

• attributes list : the list of attributes of the input table to normalize. The list of at-
tributes is given in a comma separated format (e.g.humidity, temperature). Normalization
methods are allowed only on numeric attributes.

Optional attributes

• xml dest .

CHAPTER 3. KDDML OPERATORS 73

3.2.32 PPNUMERIC DISCRETIZATION

DTD

<!ELEMENT PP_NUMERIC_DISCRETIZATION ((%kdd_query_PPtable;),ALGORITHM)>
<!ATTLIST PP_NUMERIC_DISCRETIZATION xml_dest %string; #IMPLIED>
<!ATTLIST PP_NUMERIC_DISCRETIZATION attribute_name %string; #REQUIRED>

Description

Discretization techniques can be used to reduce the number of values for a given continuous at-
tribute, by dividing the range of the attribute into intervals.
The operator takes a preprocessing table, a numeric attribute and a discretization method and re-
turns a new preprocessing table with discretized values for the specified attribute. There are many
methods for data discretization, each of them expressed by using the XML elementALGORITHM
(see figure2.35). In section4.1.1, the list of supported discretization algorithms is reported.

KDD phase

Preprocessing.

Signature

f<PP NUMERIC DISCRETIZATION> : PPtable× alg→ PPtable.

Required attributes

• attribute name: the name of the attribute to discretize. Numeric discretization can be
applied only on continuous attributes.

Optional Attributes

• xml dest .

3.2.33 PPNUMERIC LABELING

DTD

<!ELEMENT PP_NUMERIC_LABELING ((%kdd_query_PPtable;))>
<!ATTLIST PP_NUMERIC_LABELING xml_dest %string; #IMPLIED>
<!ATTLIST PP_NUMERIC_LABELING attribute_name %string; #REQUIRED>
<!ATTLIST PP_NUMERIC_LABELING numeric_values_list %real_list; #IMPLIED>

CHAPTER 3. KDDML OPERATORS 74

Description

The operator is used to convert a nominal attribute into a numeric attribute by using its natural
rank, as implied by the header specification, or by using the list of numeric labels provided as XML
attribute.
The natural rank is given by the position in which the single categories occur in the nominal defini-
tion contained in the data schema. In this case, the labeling technique assigns 0 to the first category,
1 to the second category and so on. As an example, consider the nominal attributeoutlook de-
fined as:

@attribute outlook{sunny, overcast, rainy}.

When asunnyvalue is found in an instance, it is replaced with the number 0. Analogously, num-
bers 1 and 2 are used forovercastandrainy values respectively.
As an alternative to the natural rank, a list of continuous values can be specified as XML attribute.
This operator is usually applied to discretize nominal attributes, converting they into numeric at-
tributes and applying then the PPNUMERIC DISCRETIZATION operator (see sect.3.2.32).

KDD phase

Preprocessing.

Signature

f<PP NUMERIC LABELING> : PPtable→ PPtable.

Required attributes

• attribute name: the nominal attribute of the input preprocessing table.

Optional Attributes

• xml dest .

• numeric value list : the list of numbers used to map the categories of the nominal
attribute. The list is given in a comma separated format and the number of values must be
equal to the number of categories for that attribute. The order of labeling is given by the
order in which the categories appears in the nominal definition. If the attribute is omitted,
the operator will assign 0 to the first category, 1 to the second category, and so on.

3.2.34 PPREMOVE ROWS

DTD

<!ELEMENT PP_REMOVE_ROWS ((%kdd_query_PPtable;), CONDITION)>
<!ATTLIST PP_REMOVE_ROWS xml_dest %string; #IMPLIED>

CHAPTER 3. KDDML OPERATORS 75

Description

The operator deletes rows (physical records and preprocessing information) from an input pre-
processing table according to a specific condition.

KDD phase

Preprocessing.

Signature

f<PP REMOVE ROWS> : PPtable× cond→ PPtable.

Required attributes

None.

Optional Attributes

• xml dest .

Condition specification

In reference to the figure2.36, legal values for the XML attributeop type are reported below:

• equal, not equal, greater, greater or equal, less, lessor equal: used for relational expres-
sions on attributes values and/or constants (e.g.“to remove all instances with the attribute
temperature less than 80”).

• is missing: unary boolean expression evaluated on a single table attribute. Its evaluation is
satisfied only if the attribute value for an instance is missing (e.g.“to remove all instances
where the attributeoutlook is missing”).

• has exception, has mark : binary expressions evaluated on preprocessing section of input
table. In particular, they test if an attribute has a mark (exception) equal to a specified value
(e.g.“to remove rows if the attributetemperature contains the mark outof range”).

The table3.9contains the types of primitive terms (XML attributesterm1, term2, term3)
to be used for eachop type legal value.

3.2.35 PPRENAME ATTRIBUTES

DTD

<!ELEMENT PP_RENAME_ATTRIBUTES ((%kdd_query_PPtable;))>
<!ATTLIST PP_RENAME_ATTRIBUTES xml_dest %string; #IMPLIED>
<!ATTLIST PP_RENAME_ATTRIBUTES old_attributes_list %string_list; #REQUIRED>
<!ATTLIST PP_RENAME_ATTRIBUTES new_attributes_list %string_list; #REQUIRED>

CHAPTER 3. KDDML OPERATORS 76

OpType Term 1 type Term 2 type Term 3 type
equal, not equal @attribute @attribute -

numeric or string constant
greater, greater or equal @numericattribute @numericattribute -

less, lessor equal numeric constant
is missing @attribute - -

has mark , has exception @attribute constant -

Table 3.9: Element BASECOND for the PPREMOVE ROWS operator

Description

The operator renames a list of attributes of the input data source. The list of old attributes and the
list of new attributes can be given via XML attributes; the operator performs a position mapping
between values. This operator works only on data schema: neither the physical records, nor the
preprocessing section are affected.

KDD phase

Preprocessing.

Signature

f<PP RENAME ATTRIBUTES> : PPtable→ PPtable.

Required attributes

• old attributes list the list of attributes of the input table to change. The list of
attributes is in a comma separated format (e.g.outlook, temperature, play).

• new attributes list the list of strings containing the new attributes names. The list
is given in a comma separated format (e.g.newoutlook, newtemperature, newplay) and a
position mapping with the values ofold attributes list is performed.

Optional Attributes

• xml dest .

3.2.36 PPREWRITING

DTD

<!ELEMENT PP_REWRITING ((%kdd_query_PPtable;),(ALGORITHM, CONDITION)+)>
<!ATTLIST PP_REWRITING xml_dest %string; #IMPLIED>
<!ATTLIST PP_REWRITING attribute_name %string; #REQUIRED>

CHAPTER 3. KDDML OPERATORS 77

Description

The operator rewrites the values of an input table attribute. It is a construct based on regular ex-
pressions that are a powerful way to specify string matching and the substitution of some pattern
with new values.
The operator takes a preprocessing table, a table attribute and a set of pairs containing a con-
dition (elementCONDITION) and a rewriting method (elementALGORITHM). It returns a new
preprocessing table with rewritten values for the specified attribute.
There are many methods for data rewriting, each of them expressed by using the XML element
ALGORITHM(see figure2.35). In section4.1.3, the list of supported rewriting algorithms will be
reported.
The condition regards restrictions on the rows to be rewritten. In other words, the corresponding
rewriting rule is applied only on instances on which the condition is satisfied. By using this strat-
egy, more rewriting algorithm can be used on a single record. Each condition provides a constraint
on these algorithms.
In general, every rewriting algorithm is characterized by three features:

1. the regular expression used to match the input value;

2. the replacement policy to apply when the matching succeeds (for example, it is possible to
replace all string value or only some occurrences satisfying the pattern matching);

3. the policy to apply when the matching procedure fails (typically, a preprocessing marking
procedure is applied in this case).

The core procedure of the operator is reported in Alg.1.

Algorithm 1 The core procedure of thePP REWRITINGoperator
Require: Instances: instances, a list of couples (Algorithm: algorithm, Condition: condition)

for all inst in instancesdo
for all (alg, cond) in (algorithm, condition)do

if (cond.evaluateCond(inst))then
if alg.match(inst.getValue(attributename), alg.regularexpression))then

inst.setValue(attributename, alg.applyReplacementPolicy())
else

alg.applyMarkingPolicy(inst, attributename)
end if

end if
end for

end for

The type of the rewriting attribute is preserved. Run-time checking is needed on new values for
numeric or nominal attributes. In particular, nominal categories for an enumerated attribute must
be preserved after rewriting.

KDD phase

Preprocessing.

CHAPTER 3. KDDML OPERATORS 78

Signature

f<PP REWRITING> : PPtable× (alg× cond)+ → PPtable.

Required attributes

• attribute name: the rewriting attribute of the input preprocessing table.

Optional Attributes

• xml dest .

Condition specification

In reference to the figure2.36, legal values for the XML attributeop type are reported below:

• equal, not equal, greater, greater or equal, less, lessor equal: used for relational ex-
pressions on attribute values and/or constants (e.g.“to mark all instances with the attribute
temperature less than 80”).

• is missing: unary boolean expression evaluated on a single table attribute. Its evaluation is
satisfied only if the attribute value for an instance is missing (e.g.“to mark all instances
where the attributeoutlook is missing”).

• group: given an attribute value previously matched with a regular expression, a positive
integer N representing the index of a sub-sequence (group) related to pattern matching, and
a string constant, it checks if the group N of the attribute value is equal to the input string. As
a matter of notation, sub-sequences can be identified in the regular expression by grouping
them within round parentheses.

The table3.10contains the types of primitive terms (XML attributesterm1, term2, term3)
to be used for eachop type legal value.

OpType Term 1 type Term 2 type Term 3 type
equal, not equal @attribute @attribute -

numeric or string constant
greater, greater or equal @numericattribute @numericattribute -

less, lessor equal numeric constant
is missing @attribute - -

group positive integer string constant -

Table 3.10: Element BASECOND for the PPREWRITING operator

CHAPTER 3. KDDML OPERATORS 79

3.2.37 PPSAMPLING

DTD

<!ELEMENT PP_SAMPLING ((%kdd_query_PPtable;), ALGORITHM)>
<!ATTLIST PP_SAMPLING xml_dest %string; #IMPLIED>

Description

Data sampling techniques can be used to obtain a reduced representation of the data set, such that
it is a much smaller random sample, yet closely maintaining the integrity of the original data.
The operator takes a preprocessing table and a sampling method, and returns a new preprocessing
table whose instances have been selected according to the specified procedure. There are many
methods for data sampling, each of them expressed using the XML elementALGORITHM(see
figure 2.35). In section4.1.4, the list of supported sampling algorithms is reported.

KDD phase

Preprocessing.

Signature

f<PP SAMPLING> : PPtable× alg→ PPtable.

Required attributes

None.

Optional Attributes

• xml dest .

3.2.38 PPSORTING ATTRIBUTE

DTD

<!ELEMENT PP_SORTING_ATTRIBUTE ((%kdd_query_PPtable;))>
<!ATTLIST PP_SORTING_ATTRIBUTE xml_dest %string; #IMPLIED>
<!ATTLIST PP_SORTING_ATTRIBUTE attribute_name %string; #REQUIRED>
<!ATTLIST PP_SORTING_ATTRIBUTE sorting_type

(by_frequency|ascending|descending) "by_frequency">

Description

The operator sorts the values of a given attribute according to a sorting method, as reported below:

• ascending(descending) ordering of a numeric, string or nominal attribute;

CHAPTER 3. KDDML OPERATORS 80

• by frequencyordering used on nominal attributes only. By using this strategy, the attribute is
ordered with respect to the frequency of the categories (i.e. the number of elements for that
category occurring in the input table). In this case, the operator adds a new numeric attribute
with the name of the input attribute followed byfrequency at the end of the data schema.
This new attribute will contain the frequency values for each nominal category.

KDD phase

Preprocessing.

Signature

f<PP SORTING ATTRIBUTE> : PPtable→ PPtable.

Required attributes

• attribute name: the name of the sorting attribute. If the sorting method isby frequency,
then the attribute must be nominal.

Optional Attributes

• xml dest .

• sorting type : the sorting procedure to be used. Possible values areascending, descend-
ing or by frequency. By default, the operator uses theby frequencyordering.

3.2.39 PPTABLE 2 TABLE

DTD

<!ELEMENT PP_TABLE_2_TABLE (%kdd_query_PPtable;)>
<!ATTLIST PP_TABLE_2_TABLE xml_dest %string; #IMPLIED>

Description

The operator finalizes the preprocessing KDD phase by mapping the input preprocessing table
into a relational table. Input and output tables share the same data schema and the same physical
instances.

KDD phase

Preprocessing.

Signature

fPP TABLE TO TABLE : PPtable→ table

CHAPTER 3. KDDML OPERATORS 81

Required attributes

None.

Optional Attributes

• xml dest .

3.2.40 PPTABLE LOADER

DTD

<!ELEMENT PP_TABLE_LOADER EMPTY>
<!ATTLIST PP_TABLE_LOADER xml_source %string; #REQUIRED>

Description

It loads a preprocessing table from the system repository.

KDD phase

Resource loading.

Signature

f<PP TABLE LOADER> : empty → PPtable.

Required attributes

• xml source : the XML file source contained in the data repository.

Optional attributes

None.

3.2.41 RDAEXCEPTION

DTD

<!ELEMENT RDA_EXCEPTION ((%kdd_query_rules;),
(%kdd_query_table;))>

<!ATTLIST RDA_EXCEPTION xml_dest %string; #IMPLIED>
<!ATTLIST RDA_EXCEPTION itemsets_or_rules (itemsets|rules) "rules">

CHAPTER 3. KDDML OPERATORS 82

Description

Given a set of association rules and a table, the operator extracts the transactions in the table that
are exceptions to all the association rules.
A transaction is an exception to an association ruleI1, . . . , In → In+1, . . . , Im if some itemIi for
i ∈ [1, m] does not occur in the transaction. For example, the transactionT = {bread, milk, wine}
satisfies the rulebread→ wine, but it is an exception to the rulebread, milk→ water.
The operator can be restricted to itemsets only. In this case, we say that a transaction is an excep-
tion to an itemsetI1, . . . , In if some itemIi for i ∈ [1, n] does not occur in the transaction.
In both cases, the input relational table must be compatible with the association rules. In particular,
a table is compatible with a model if for each active mining field, belonging to the model, there is
an attribute in the table with the same name and type.

KDD phase

Model application.

Signature

f<RDA EXCEPTION> : rda× table→ table.

Required attributes

None.

Optional Attributes

• xml dest .

• itemsets or rules : can beitemsetsor rules. In the first case, the operator uses the
itemsets to evaluate the transaction exceptions. In the second case, the operator uses the
association rules for the same purpose. By default, the value isrules.

3.2.42 RDAFILTER

DTD

<!ELEMENT RDA_FILTER ((%kdd_query_rules;), CONDITION)>
<!ATTLIST RDA_FILTER xml_dest %string; #IMPLIED>

Description

Given a set of association rules, the operator returns the rules satisfying a specified condition. The
condition is expressed by using anAND/OR/NOTcombination between a set of primitive filters,
concerning:

CHAPTER 3. KDDML OPERATORS 83

• the support or the cardinality of the itemsets;

• the support, the confidence or the cardinality of body/head of the association rules;

• the single items contained in the itemset, body or head elements.

KDD phase

Model filtering.

Signature

f<RDA FILTER> : rda× condition→ rda.

Required attributes

None.

Optional attributes

• xml dest .

Condition specification

In reference to the figure2.36, legal values for the XML attributeop type are reported below:

• equal, not equal, greater, greater or equal, less, lessor equal: used for relational ex-
pressions on support/confidence of the rules or itemsets (e.g.“to filter association rules with
a confidence less than 1”) or on cardinality (i.e. the number of items) of itemsets, body or
head elements (e.g.“to filter rules with exactly 2 items in the body”).

• is in: it checks if an item belongs to an itemset, or to either the body or the head elements of
an association rule (e.g.“filter rules with the item ’milk’ in the body”).

• is not in: it checks if an item does not belong to itemset or to either the body or the head
elements of an association rule.

The table3.11contains the types of primitive terms (XML attributesterm1, term2, term3)
to be used for eachop type legal value.

3.2.43 RDALOADER

DTD

<!ELEMENT RDA_LOADER EMPTY>
<!ATTLIST RDA_LOADER xml_source %string; #REQUIRED>

CHAPTER 3. KDDML OPERATORS 84

OpType Term 1 type Term 2 type Term 3 type
equal, not equal @itemsetsupport real in [0,1] -

greater, greater or equal @rdasupport
less, lessor equal @rdaconfidence

@itemsetcardinality positive integer -
@bodycardinality
@headcardinality

is in, is not in @itemset string -
@body
@head

Table 3.11: Element BASECOND for the RDAFILTER operator

Description

It loads a set of association rules from the system repository.

KDD phase

Resource loading.

Signature

f<RDA LOADER> : empty → rda.

Required attributes

• xml source : the XML file source contained in the models repository.

Optional attributes

None.

3.2.44 RDAMINER

DTD

<!ELEMENT RDA_MINER ((%kdd_query_table;), ALGORITHM)>
<!ATTLIST RDA_MINER xml_dest %string; #IMPLIED>

Description

It extracts a set of association rules by using a mining algorithm. The operator takes a data source
and an association rules miner algorithm, and it returns an association model as output.

CHAPTER 3. KDDML OPERATORS 85

The algorithm specification (i.e. the algorithm name and the list of expected parameters) is ex-
pressed by using the XML elementALGORITHM(see figure2.35). In section 4.1.5, the list of
supported association rules algorithms is reported.

KDD phase

Data mining.

Signature

f<RDA MINER> : table× alg→ rda.

Required attributes

None.

Optional attributes

• xml dest .

3.2.45 RDAPRESERVED

DTD

<!ELEMENT RDA_PRESERVED ((%kdd_query_hierarchy;),
(%kdd_query_rules;),
(%kdd_query_rules;)+)>

<!ATTLIST RDA_PRESERVED xml_dest %string; #IMPLIED>

Description

Given a hierarchy of items and two sets of association rulesR1,R2 over items in the hierarchy,
this operator selects those rules inR1 such that, by generalizing the items in the rule to the parent
level, yields a rule that belongs toR2. For example, the two association rules reported below,

R1 =“LongBeach AND SanJose→ Chicago“,
R2 =“California → Illinois“

are preserved over thecities-stateshierarchy.
The first set of rules (R1) must have been extracted at the bottom level of the hierarchy (i.e. the
leaves level). The second set of rules (R1) is a generalization at parent levels. Obviously, the two
sets of association rules must share the same signature, i.e. the same mining schema.

KDD phase

Model meta-reasoning.

CHAPTER 3. KDDML OPERATORS 86

Signature

f<RDA PRESERVED> : hierarchy× rda× rda→ rda.

Required attributes

None.

Optional attributes

• xml dest .

3.2.46 RDASATISFY

DTD

<!ELEMENT RDA_SATISFY ((%kdd_query_rules;),
(%kdd_query_table;))>

<!ATTLIST RDA_SATISFY xml_dest %string; #IMPLIED>
<!ATTLIST RDA_SATISFY itemsets_or_rules (itemsets|rules) "rules">

Description

Given a set of association rules and a table, the operator extracts the transactions in the table
that satisfy at least one association rule. A transaction satisfies an association ruleI1, . . . , In →
In+1, . . . , Im if every itemIi for i ∈ [1, m] occurs in the transaction.
As for RDA EXCEPTION, the input relational table must be compatible with the association
model (see sect.3.2.41).

KDD phase

Model application.

Signature

f<RDA SATISFY> : rda× table→ table.

Required attributes

None.

Optional Attributes

• xml dest .

• itemsets or rules : can beitemsetsor rules. In the first case, the operator uses itemsets
to evaluate the transaction exceptions. In the second case, the operator uses the association
rules. By default, the value isrules.

CHAPTER 3. KDDML OPERATORS 87

3.2.47 SCALAR

DTD

<!ELEMENT SCALAR EMPTY>
<!ATTLIST SCALAR value %any_type; #REQUIRED>
<!ATTLIST SCALAR xml_dest %string; #IMPLIED>

Description

The operator returns a scalar value expressed through an XML attribute.

KDD phase

None.

Signature

fSCALAR : empty → scalar

Required attributes

• value : the scalar value to return.

Optional Attributes

• xml dest .

3.2.48 SEQUENCEAGGREGATE FILTER

DTD

<!ELEMENT SEQUENCE_AGGREGATE_FILTER ((%kdd_query_sequence;),
(%kdd_query_table;), CONDITION)>

<!ATTLIST SEQUENCE_AGGREGATE_FILTER xml_dest %string; #IMPLIED>

Description

Given a set of sequential patterns and a time-stamp table, the operator returns the patterns satisfy-
ing a specific condition.
The condition concerns anaggregate constraint, that is a constraint on an aggregate of items in
a pattern, where the aggregate function can besum, average, max, min, standard deviation(e.g.,
“return all sequences in which the average price of all items is over 100$”). The values of the
items of the sequence (e.g., the price of item in the example above) are contained in the input
time-stamp table.
This operator issupport-related, i.e. given a condition it is applied to check whether a sequence
matches a transaction. To find whether a sequential pattern satisfies these constraints, one needs

CHAPTER 3. KDDML OPERATORS 88

to examine the sequence database. In other terms, a pattern keeps being frequent only if the num-
ber of data sequences (transactions) supporting it (see the SEQUENCESATISFY operator in sect.
3.2.55) and satisfying the condition is greater than the minimum support. The support threshold is
commonly expressed in the model and it can be specified in terms of absolute count or percentage.
The core procedure of the operator is reported in alg.2.

Algorithm 2 The core procedure of theSEQUENCEAGGREGATEFILTER operator
Require: Sequences: sequences, Transactions: transactions, Condition: condition

int absolutesupp = Transactions.numtrans * Sequences.minsupp;
for all seq in sequencesdo

seq.absolutesupp = 0;
for all trans in transactionsdo

if ((trans.satisfied(seq)) and (condition.evalCond(trans)))then
seq.absolutesupp = seq.absolutesupp + 1;

end if
end for
if seq.absolutesupp< absolutesuppthen

sequences.remove(seq);
end if

end for
return sequences;

As an example, consider the basket database reported in table3.12with three transactions. Item
properties as theprice and thequantity of purchased products are expressed as additional
columns. Moreover, consider the sequential pattern{spaghetti} → {spaghetti, wine} and sup-

transaction timestamp event price quantity
id 1 10 spaghetti 3 5
id 1 15 tomato 2 2
id 1 15 wine 4 1
id 1 21 spaghetti 6 4
id 1 21 tomato 3 2
id 1 21 wine 7 1
id 2 12 mais 6 10
id 2 15 wine 8 1
id 3 15 spaghetti 4 3
id 3 15 milk 2 1
id 3 18 spaghetti 4 3
id 3 18 wine 2 1

Table 3.12: An example of market sequence dataset

pose we are interested only in the patterns in which the sum of prices of all items is greater or equal

CHAPTER 3. KDDML OPERATORS 89

than 11$. Transactionsid 1 andid 3 satisfy the input sequence, while the transactionid 2 does
not. With respect to satisfied transactions, the conditionsum(@price) > 11 is true only for trans-
actionid 1 (sum(3, 6, 7) > 11 but sum(4, 4, 2) � 11). So, if the minimum support of the input
sequence model is less than0.33, then the sequence is returned; otherwise, the sequence is filtered
out from the model.

KDD phase

Model Filtering.

Signature

f<SEQUENCE AGGREGATE FILTER> : sequence× table× condition→ sequence.

Required attributes

None.

Optional attributes

• xml dest .

Condition specification

In reference to the figure2.36, legal values for the XML attributeop type are reported below:

• equal, not equal, greater, greater or equal, less, lessor equal: they are used for rela-
tional expressions on aggregates of items in the patterns (e.g.,“return all the sequences in
which the sum of quantities of all items is equal to 10”). Values for aggregates of items of the
sequence are contained in the columns of the input time-stamp table. They can be referred
to by using theterm2 XML attribute.

The table3.13contains the types of primitive terms (XML attributesterm1, term2, term3)
to be used for eachop type legal value.

OpType Term 1 type Term 2 type Term 3 type
< sum >

equal, not equal < avg >
greater, greater or equal < stddev > @numericattributename numeric constant

less, lessor equal < max >
< min >

Table 3.13: Element BASECOND for the SEQUENCEAGGREGATEFILTER operator

CHAPTER 3. KDDML OPERATORS 90

3.2.49 SEQUENCEEXCEPTION

DTD

<!ELEMENT SEQUENCE_EXCEPTION ((%kdd_query_sequence;),
(%kdd_query_table;))>

<!ATTLIST SEQUENCE_EXCEPTION xml_dest %string; #IMPLIED>

Description

Given a set of sequences and a table, the operator extracts the transactions in the table that are
exceptions to all sequences. A transaction is an exception to a sequence if it does not satisfy it (see
the section3.2.49to see when a transaction satisfy a sequence).
The input relational table must be in a time-stamp format, as illustrated in section2.2.3.

KDD phase

Model application.

Signature

f<SEQUENCE EXCEPTION> : sequence× table→ table.

Required attributes

None.

Optional Attributes

• xml dest .

3.2.50 SEQUENCEFILTER

DTD

<!ELEMENT SEQUENCE_FILTER ((%kdd_query_sequence;), CONDITION)>
<!ATTLIST SEQUENCE_FILTER xml_dest %string; #IMPLIED>

Description

Given a set of sequential patterns, it returns the patterns satisfying a specified condition. The
condition is expressed using anAND/OR/NOTcombination between a set of primitive filters, con-
cerningsupport constraint, item constraint, length constraintor super-pattern constraint.
The first one specifies a requirement on the support of the sequence (e.g.“to filter sequences with
a support less than 1”).
The item constraintspecifies what are the particular individual or groups of items that should or

CHAPTER 3. KDDML OPERATORS 91

should not be present in the pattern (e.g.“to filter sequences with the item “milk” in the se-
quence”).
The length constraintspecifies requirements on the length of the patterns, where the length can be
either the number of distinct items, or the number of sets, or the maximal number of items per set
(e.g.“to filter sequences with exactly 3 distinct items”).
Finally, the super-pattern constraintfinds patterns that contain a particular list of sets as sub-
patterns (e.g.“to filter sequences that contain the item spaghetti first and then the item milk”).

KDD phase

Model filtering.

Signature

f<SEQUENCE FILTER> : sequence× condition→ sequence.

Required attributes

None.

Optional attributes

• xml dest .

Condition specification

In reference to the figure2.36, legal values for the XML attributeop type are reported below:

• equal, not equal, greater, greater or equal, less, lessor equal: they are used for rela-
tional expressions concerning

– the support of the sequence (term1=@sequence support);

– the number of sets of the sequence (term1=@sequence cardinality);

– the number of distinct items in the sequence (term1=@sequence distinct -
items cardinality);

– the maximum number of items per set (term1=@max number of items per set).

• is in: it checks if an item belongs to the pattern;

• is in all: it checks if an item belongs to all sets of the pattern;

• is not in: it checks if an item does not belong to the pattern;

• is not in all: it checks if an item does not belong to all sets of the pattern;

CHAPTER 3. KDDML OPERATORS 92

• sub sequence: it checks if a given input pattern is contained in the pattern related to the
condition. The input pattern is given as a string in theterm2 attribute; the sets belonging to
the pattern are separated using the symbol “;”; each set is expressed using a comma separated
format (e.g.“milk, spaghetti; water; milk” represents the sequence{milk, spaghetti} →
{water} → {milk}).

The table3.14contains the types of primitive terms (XML attributesterm1, term2, term3)
to be used for eachop type legal value.

OpType Term 1 Term 2 Term 3
type type type

equal, not equal @sequencesupport real in (0,1] -
greater, @sequencecardinality

greater or equal @sequencedistinct itemscardinality positive integer -
less, @maxnumberof itemsper set

lessor equal
is in, is in all @sequence string -

is not in, is not in all
sub sequence @sequence list of sets in -

dot-comma
separated format

Table 3.14: Element BASECOND for the SEQUENCEFILTER operator

3.2.51 SEQUENCELOADER

DTD

<!ELEMENT SEQUENCE_LOADER EMPTY>
<!ATTLIST SEQUENCE_LOADER xml_source %string; #REQUIRED>

Description

It loads a sequence model from the system repository.

KDD phase

Resource loading.

Signature

f<SEQUENCE LOADER> : empty → sequence.

CHAPTER 3. KDDML OPERATORS 93

Required attributes

• xml source : the XML file source contained in the models repository.

Optional attributes

None.

3.2.52 SEQUENCEMAXIMAL FILTER

DTD

<!ELEMENT SEQUENCE_MAXIMAL_FILTER ((%kdd_query_sequence;))>
<!ATTLIST SEQUENCE_MAXIMAL_FILTER xml_dest %string; #IMPLIED>

Description

Given a set of sequential patterns it returns only the patterns that are maximal, i.e. that are not
contained in any other pattern.

KDD phase

Model Filtering.

Signature

f<SEQUENCE MAXIMAL FILTER> : sequence→ sequence.

Required attributes

None.

Optional attributes

• xml dest .

3.2.53 SEQUENCEMINER

DTD

<!ELEMENT SEQUENCE_MINER ((%kdd_query_table;), ALGORITHM)>
<!ATTLIST SEQUENCE_MINER xml_dest %string; #IMPLIED>

CHAPTER 3. KDDML OPERATORS 94

Description

It extracts a set of sequential patterns by using a mining algorithm. The operator takes a data
source and a sequence miner algorithm and it returns a sequence model as output.
The algorithm specification (i.e. the algorithm name and the list of expected parameters) is ex-
pressed by using the XML elementALGORITHM(see figure2.35). In section 4.1.8, the list of
supported sequence algorithms is reported.

KDD phase

Data mining.

Signature

f<SEQUENCE MINER> : table× alg→ sequence.

Required attributes

None.

Optional attributes

• xml dest .

3.2.54 SEQUENCERULE

DTD

<!ELEMENT SEQUENCE_RULE ((%kdd_query_sequence;))>
<!ATTLIST SEQUENCE_RULE xml_dest %string; #IMPLIED>
<!ATTLIST SEQUENCE_RULE min_confidence %prob_number; #REQUIRED>
<!ATTLIST SEQUENCE_RULE max_number_of_rules %integer; #IMPLIED>

Description

Given a set of sequential patterns, it returns all the corresponding sequential rules that satisfy a
minimum confidence.
A sequence rule describes the relationship between two sequences and it consists of an antecedent
and a consequent, separated by a delimiter. More in detail, a sequence rule is an implication of the
form X → Y , whereX, Y andZ = X(Y) are sequential patterns. The support and the confidence
of the sequence rule are computed as reported in3.1and 3.2respectively:

support(X → Y) = support(Z) (3.1)

confidence(X → Y) =
support(Z)

support(X)
(3.2)

CHAPTER 3. KDDML OPERATORS 95

The core procedure of the operator is shown in alg.3, whereseq.sub sequence(i, j)
returns the sub-sequence composed by sets fromi to j of the sequenceseq .

Algorithm 3 The core procedure of theSEQUENCERULEoperator
Require: Sequences: sequences,real: min confidence

Rules rules = new Rules(minconfidence);
for all seq in sequencesdo

for i=1 to seq.lenght-1do
Rule rule = new Rule();
rule.antecedent = seq.subsequence(0, i);
rule.consequent = seq.subsequence(i+1, seq.length);
rule.support = seq.support;
rule.confidence = seq.support / rule.antecedent.support;
i = i + 1;
if rule.confidence≥ min confidencethen

rules.add(rule);
end if

end for
end for
return rules;

Notice that this operator needs the entire set of sequential patterns in order to compute all sequential
rules, because the support cannot be computed for some sub-sequences (for example, applying
the SEQUENCERULEoperator on sequences returned by theSEQUENCEMAXIMALFILTER
operator).

KDD phase

Model meta-reasoning.

Signature

f<SEQUENCE RULE> : sequence→ sequence.

Required attributes

• min confidence : a real valuec ∈ (0, 1] representing the minimum confidence of the
sequential rules.

Optional attributes

• xml dest .

CHAPTER 3. KDDML OPERATORS 96

• max number of rules : a positive integer representing the maximum number of rules
to extract. Sequential rules in the model are ordered with respect to the confidence value.
If the number of sequential rules is greater than the parameter value, then rules with a low
confidence are filtered out from the model. If this parameter is omitted, all computed rules
are returned.

3.2.55 SEQUENCESATISFY

DTD

<!ELEMENT SEQUENCE_SATISFY ((%kdd_query_sequence;),
(%kdd_query_table;))>

<!ATTLIST SEQUENCE_SATISFY xml_dest %string; #IMPLIED>

Description

Given a set of sequences and a table, the operator extracts the transactions in the table that satisfy
at least one sequence.
Informally, a transaction T is a list of pairsT = [(t1, I1); . . . ; (tm, Im)] whereti is an identifier
representing thetime-stampandIi is a set of items. Pairs are ordered bytime-stamp: ∀i, j ∈ [1, m]
if i < j thenti < tj. A transaction T satisfies a sequenceS1 → S2 → . . . → Sn, whereSi are sets
of items, if∀i, j ∈ [1, n] with i < j, ∃h, k ∈ [1, m] such thatth < tk andSi ⊆ Ih andSj ⊆ Ik.
For example, given the transaction

T = [(1, {bread, milk, mais}); (2, {milk, bread, wine}); (3, {mais})]

the sequence{milk, bread} → {mais} is satisfied by the transaction, but the sequence{milk,
bread} → {wine} → {milk} is not.
The input relational table must be in a time-stamp format, as illustrated in section2.2.3.

KDD phase

Model application.

Signature

f<SEQUENCE EXCEPTION> : sequence× table→ table.

Required attributes

None.

Optional Attributes

• xml dest .

CHAPTER 3. KDDML OPERATORS 97

3.2.56 SEQUENCETIMESTAMP FILTER

DTD

<!ELEMENT SEQUENCE_TIMESTAMP_FILTER ((%kdd_query_sequence;),
(%kdd_query_table;))>

<!ATTLIST SEQUENCE_TIMESTAMP_FILTER xml_dest %string; #IMPLIED>
<!ATTLIST SEQUENCE_TIMESTAMP_FILTER constr_type (gap|duration)
#REQUIRED> <!ATTLIST SEQUENCE_TIMESTAMP_FILTER interval_closure

(open_closed|closed_closed|open_open|closed_open) #REQUIRED>
<!ATTLIST SEQUENCE_TIMESTAMP_FILTER lower_bound %integer; #IMPLIED>
<!ATTLIST SEQUENCE_TIMESTAMP_FILTER upper_bound %integer; #IMPLIED>

Description

Given a set of sequential patterns and a time-stamp table, the operator returns the patterns satisfy-
ing a specific condition.
Condition concerns atime-stamp constraintthat is defined only in sequence databases, where each
transaction in every sequence has a continuous time-stamp, i.e., thetimestamp column of the
input data source must be numeric. The constraint can be aduration constraintor agap constraint.
The first one requires that the pattern appears frequently in the sequence database in such a way
that the time-stamp difference between the first and last transactions in the pattern are either longer
or shorter than a given period (e.g.,“only patterns in which every event occurred within a month
from the first one”).
Thegap constraintrequires that the pattern occurs frequently in the sequence database such that
the time-stamp difference between every two adjacent transactions must be either longer or shorter
than a given gap (e.g.,“only patterns in which the time gap between adjacent events occurred
within one day). In both cases, the period is given as interval expressed via XML attributes.
This operator issupport-related, i.e. the given condition is applied to check whether a sequence
matches a transaction. In order to find whether a sequential pattern satisfies these constraints, one
needs to examine the sequence database. In other terms, a pattern keeps being frequent only if the
number of data sequences (transactions) supporting it (see the SEQUENCESATISFY operator
in sect. 3.2.55) and satisfying the condition is greater than the minimum support. The support
threshold is commonly expressed in the model and it can be specified in terms of absolute count or
percentage.
The core procedure of the operator is reported in alg.4 and alg. 5, 6 for duration and gap filter
respectively, wheretrans.getTimestamp(i) returns the timestamp value of the ith set of
items belonging to the transactiontrans .

KDD phase

Model Filtering.

Signature

f<SEQUENCE TIMESTAMP FILTER> : sequence× table→ sequence.

CHAPTER 3. KDDML OPERATORS 98

Algorithm 4 The core procedure of theSEQUENCETIMESTAMPFILTER operator
Require: Sequences: sequences, Transactions: transactions, Interval: int
Ensure: Sequences

int absolutesupp = Transactions.numtrans * Sequences.minsupp;
for all seqin sequencesdo

seq.absolutesupport = 0;
for all transin transactionsdo

if trans.satisfied(seq)and evalConstraint(trans, int)then
seq.absolutesupp = seq.absolutesupp + 1;

end if
end for
if seq.absolutesupp< absolutesuppthen

sequences.remove(seq);
end if

end for
return sequences;

Algorithm 5 The procedureevalConstraint(trans, int) for the duration filter
Require: Transactions: trans, Interval: int
Ensure: boolean

int value = trans.getTimestamp(trans.lenght - 1) - trans.getTimestamp(0);
return int.contains(value);

Algorithm 6 The procedureevalConstraint(trans, int) for the gap filter
Require: Transactions: trans, Interval: int
Ensure: boolean

for i=1 to trans.lenghtdo
int value = trans.getTimestamp(i) - trans.getTimestamp(i-1);
if not int.contains(value)then

return false;
end if

end for
return true ;

Required attributes

• constr type : the filter constraint to be used. Possible values aregapor duration;

• interval closure : it defines a range of numeric values. Possible values areopenclosed,
closedclosed, openopen, andclosedopen. lower bound andupper bound attributes
define the bound values.

CHAPTER 3. KDDML OPERATORS 99

Optional attributes

• xml dest .

• lower bound : an integer representing the lower bound of the interval. The attribute is
optional. If it is omitted, then - infinity is assumed.

• upper bound : an integer representing the upper bound of the interval. The attribute is op-
tional. If it is omitted, then + infinity is assumed. The system guarantees thatlower bound
≤ upper bound .

3.2.57 SEQQUERY

DTD

<!ELEMENT SEQ_QUERY (%kdd_operator;,(%kdd_operator;)+)>

Description

The SEQQUERY element models sequentialization between KDDML operators. The return
value of the SEQQUERY is assumed to be the last operator in the sequence of their arguments.

KDD phase

Control flow.

Signature

f<SEQ QUERY> : any× · · · × any→ any.

Required attributes

None.

Optional attributes

None.

3.2.58 TABLE 2 HIERARCHY

DTD

<!ELEMENT TABLE_2_HIERARCHY (%kdd_query_table;)>
<!ATTLIST TABLE_2_HIERARCHY xml_dest %string; #IMPLIED>

CHAPTER 3. KDDML OPERATORS 100

Description

The operator loads an item hierarchy from a data source. The input data source is a table with
exactly two string columns:

• the first one namedchild is the attribute identifying the children of an item;

• the second one namedparent is the father.

In the table3.15, the three-level hierarchycities-states-countriesof figure 2.10is reported.

Child Parent
Long Beach California

San Jose California

Chicago Illinois

California USA

Illinois USA

Table 3.15: An example of item hierarchy as relational table

Notice that hierarchies are not yet related to a table column as meta-data but they can be built from
any table. Assigning the hierarchy to a table column as meta-data information can be achieved by
the preprocessing operator<PP ADDHIERARCHY>(see section3.2.21).

KDD phase

Resources loading.

Signature

f<TABLE 2 HIERARCHY> : table→ hierarchy.

Required attributes

None.

Optional attributes

• xml dest .

3.2.59 TABLE 2 PP TABLE

DTD

<!ELEMENT TABLE_2_PP_TABLE (%kdd_query_table;)>
<!ATTLIST TABLE_2_PP_TABLE xml_dest %string; #IMPLIED>

CHAPTER 3. KDDML OPERATORS 101

Description

The operator starts the preprocessing phase by mapping the input relation table into a preprocess-
ing table. An empty preprocessing section is added to the output table, while the data schema and
the physical instances do not change.

KDD phase

Preprocessing.

Signature

fTABLE 2 PP TABLE : table→ PPtable

Required attributes

None.

Optional Attributes

• xml dest .

3.2.60 TABLE LOADER

DTD

<!ELEMENT TABLE_LOADER EMPTY>
<!ATTLIST TABLE_LOADER xml_source %string; #REQUIRED>

Description

The operator loads a relational table from the system repository.

KDD phase

Resource loading.

Signature

f<TABLE LOADER> : empty → table.

Required attributes

• xml source : the XML file source contained in the data repository.

Optional attributes

None.

CHAPTER 3. KDDML OPERATORS 102

3.2.61 TREECLASSIFY

DTD

<!ELEMENT TREE_CLASSIFY ((%kdd_query_trees;),
(%kdd_query_table;))>

<!ATTLIST TREE_CLASSIFY xml_dest %string; #IMPLIED>

Description

Given a classification tree and a table, the operator yields a new table with an additional column
at the end of the schema consisting of the class predicted by the decision tree. The name of
the new column is the name of the classification attribute of the tree followed by the extension
predicted . For example, if the target attribute is“play tennis”, then the output column is

named as“play tennispredicted”. The type of the predicted attribute become nominal.
The procedure used to determine the class predicted is the one adopted in the C4.5 algorithm. The
mapping between attributes used in the classification tree and attributes in the dataset is by name.
Therefore, the input relational table must be compatible with the classification tree. In particular,
a table is compatible with a model if for each active mining field belonging to the model, there is
an attribute in the table with the same name and type.

KDD phase

Model application.

Signature

f<TREE CLASSIFY> : tree× table→ table.

Required attributes

None.

Optional Attributes

• xml dest .

3.2.62 TREELOADER

DTD

<!ELEMENT TREE_LOADER EMPTY>
<!ATTLIST TREE_LOADER xml_source %string; #REQUIRED>

Description

It loads a classification tree from the system repository.

CHAPTER 3. KDDML OPERATORS 103

KDD phase

Resource loading.

Signature

f<TREE LOADER> : empty → tree.

Required attributes

• xml source : the XML file source contained in the models repository.

Optional attributes

None.

3.2.63 TREEMETA CLASSIFIER

DTD

<!ELEMENT TREE_META_CLASSIFIER ((%kdd_query_trees;),
(%kdd_query_trees;)+)>

<!ATTLIST TREE_META_CLASSIFIER xml_dest %string; #IMPLIED>
<!ATTLIST TREE_META_CLASSIFIER combination_type (and|or|committee) #REQUIRED>
<!ATTLIST TREE_META_CLASSIFIER positive_class %string; #IMPLIED>

Description

Models extracted by data mining algorithms very often need to be further processed, e.g., com-
bined with other models. The operator takes a set of classification trees and returns a voting
meta-classifier among the input trees.
The output meta-classifier is built according to a combination method, as reported below:

• committee: constructs avoting classifieron input trees. More precisely, givenn distinct
classifiersC1, . . . , Cn, a voting classifierassigns to a tuple the class mostly assigned by
C1, . . . , Cn.

• and (or): builds a booleanAND tree (OR tree)on a set of decision trees5. More precisely,
givenn distinct decision treesD1, . . . , Dn, theAND tree(OR tree) assigns to a tuple the pos-
itive class (negative class) if all the treesD1, . . . , Dn classify the instance with the positive
class (negative class); otherwise, the negative class (positive class) is returned.

The operator performs a run-time checking that the three classifiers have been extracted from the
same meta-data. In particular, input trees must share the same mining schema and data dictionary.

5In a decision tree, the target attribute is binary with a positive class (e.g.true, yes) and a negative class (e.g.false,
no) as values.

CHAPTER 3. KDDML OPERATORS 104

KDD phase

Model meta-reasoning.

Signature

f<TREE META CLASSIFIER> : tree× · · · × tree→ tree.

Required attributes

• combination type : the combination procedure to be used for trees. Possible values are
committeeorand, or for boolean classifiers. In the last case, the XML attributepositive class
identifies the positive class to be used.

Optional Attributes

• xml dest .

• positive class : is the positive class used when the target attribute is binary. The XML
attribute is required if a boolean combination strategy is used.

3.2.64 TREEMINER

DTD

<!ELEMENT TREE_MINER ((%kdd_query_table;), ALGORITHM)>
<!ATTLIST TREE_MINER xml_dest %string; #IMPLIED>
<!ATTLIST TREE_MINER target_attribute %string; #REQUIRED>

Description

It extracts a classification tree by using a mining algorithm. The operator takes a table representing
the training set, the name of the target attribute and a tree miner algorithm and returns a tree model
as output.
The algorithm specification (i.e. the algorithm name and the list of expected parameters) is ex-
pressed by using the XML elementALGORITHM(see figure2.35). In section 4.1.6, the list of
supported classification algorithms is reported. The classification attribute is given as XML at-
tribute.
The data schema of the input data source depends on the algorithm specification. In other words,
some attributes can be ignored during the mining if their types are not supported by the algorithm.
For example, ID3 cannot work on continuous attributes. However, preprocessing operators can be
used to adapt the input table to specific data mining algorithms.

KDD phase

Data mining.

CHAPTER 3. KDDML OPERATORS 105

Signature

f<TREE MINER> : table× alg→ tree.

Required attributes

• target attribute : the attribute to be used for classification. Target attribute must be
nominal.

Optional attributes

• xml dest .

CHAPTER 4

KDDML algorithms

This chapter contains all the KDDML supported algorithms for the preprocessing and mining
phases. With reference to figure 2.35, for each algorithm it reports:

1. the algorithm name to be used in the algorithm name XML attribute with a description
of the algorithm;

2. the format of input data source required by the algorithm

3. the list of supported parameters with an explicative usage description;

4. a table with a row for each parameter containing the parameter type and the parameter usage.
More in detail, the table contains:

• the parameter nameto be used in the attribute name of the XML element PARAM;

• the parameter typecontaining the expected type to be used in the XML attribute value
of the element PARAM.

• the usage of the parameter: it can be optional, requiredor fixed.

• the default value to be used when the parameter is omitted (for optional parameters
only) in the XML definition.

Language algorithms will be presented according to a lexicographic ordering.

106

CHAPTER 4. KDDML ALGORITHMS 107

4.1 Classification of algorithms

KDDML algorithms can be classified according to the type of knowledge they extract.

4.1.1 Discretization algorithms

Discretization techniques can be used to reduce the number of values for a given continuous
attribute, by dividing the range of the attribute into intervals. Discretization algorithms are used by
thePP NUMERICDISCRETIZATION operator that takes a preprocessing table as first argument.
Currently, KDDML supports the discretization algorithms shown on table4.1.

Algorithm Name Description Sect.
equal frequency discretization It divides the range of an attribute into k intervals4.2.5

of equal cardinality
natural binning discretization It divides the range of an attribute into k intervals4.2.8

of equal width

Table 4.1: Discretization algorithms

4.1.2 Normalization algorithms

Normalization is the process of scaling data values of a numeric attribute into a range such as [-1,
1] or [0,1]. Normalization algorithms reported in table4.2are used by thePP NORMALIZATION
operator (see sect.3.2.31) that takes a preprocessing table as first argument.

Algorithm Name Description Sect.
min max normalization It implements a linear transformation 4.2.7

based on the min-max method
z score normalization The values of an attribute are normalized on the4.2.16

basis of his mean and standard deviation

Table 4.2: Normalization algorithms

4.1.3 Rewriting algorithms

Rewrite algorithms match the input attribute value against a pattern, and if a match is found, they
rewrite the value with a new format by using the rules defined in a transformation rule. Each
rewriting algorithm is defined by three features:

1. a regular expression (regex) is used to perform the pattern matching. Basically, aregexis
a string that describes or matches against a set of strings, according to certain syntax rules.

CHAPTER 4. KDDML ALGORITHMS 108

As an instance,(a|b)* denotes the set of all strings consisting ofa and b, including the
empty string. KDDML uses the basicjava.util.regex Java package [13] for regular
expressions.

2. the transformation rule to be applied on attribute values when the pattern matching is satis-
fied;

3. the policy to be applied when the pattern matching fails for a given instance value.

In general, the last two items distinguish the rewrite algorithms. Rewriting methods are used by the
PP REWRITINGoperator (see section3.2.36) that takes a preprocessing table as first argument.
The table4.3 lists the KDDML rewriting algorithms.

Algorithm Name Description Sect.
rule m As rule-S, but it works only on preprocessing section4.2.10

marking meta-data that match a regular expression
rule s It replaces the entire attribute value that matches 4.2.11

a regular expression
rule t It replaces every sub-sequence of the attribute 4.2.12

value that matches a regular expression

Table 4.3: Rewriting algorithms

4.1.4 Sampling algorithms

Sampling can be used as a data reduction technique, since it allows a large data set to be repre-
sented by a much smaller random sample (or subset) of the data. The sampling algorithms reported
in table 4.4are used by thePP SAMPLINGoperator (see sect.3.2.37) that takes a preprocessing
table as first argument.

Algorithm Name Description Sect.
by cluster sampling It selects a random set of “stratum” of a nominal 4.2.1

attribute belonging to the input table

simple sampling It returns a random subset of fixed cardinality from 4.2.13
the input preprocessing table

stratified sampling It performs a simple sampling at each “stratum” of a nominal4.2.14
attribute belonging to the input table

Table 4.4: Data sampling algorithms

CHAPTER 4. KDDML ALGORITHMS 109

4.1.5 RdA miner algorithms

Mining models are extracted from a data source by using a data mining algorithm. Each miner
operator expects a sub-element with input data and a second sub-element with the algorithm name
and parameters (name and value). In table4.7 all the supported association rules algorithms are
reported; they are used by the RDAMINER operator (see sect.3.2.44).

Algorithm Name Description Sect.
DCI It finds frequent itemsets and can be considered an enhancement4.2.3

of the well known Apriori. It is implemented in C.

Table 4.5: RdA miner algorithms

4.1.6 Tree miner algorithms

In table 4.6all the supported classification algorithms are reported; they are used by the TREEMINER
operator (see sect.3.2.64).

Algorithm Name Description Sect.
It is a tool for parallel genetic programming that realizes

CAGE a parallel implementation on distribuited-memory computers.4.2.2
It is implemented on linux platform using the MPI libraries

YaDT C++ implementation of the C4.5 algorithm 4.2.15

Table 4.6: Tree miner algorithms

4.1.7 Cluster miner algorithms

KDDML supports two types of clustering: thedistribution-basedclustering and thecentroid-
basedclustering; as reported in table4.7 all KDDML clustering algorithms used by the CLUS-
TER MINER operator (see sect.3.2.6) belong to one or to other class.

Algorithm Name Description Sect. Clustering Type
EM Implementation of the EM algorithm. 4.2.4 Distribution

It uses the WEKA system library. based
KMeans Implementation of the KMeans algorithm4.2.6 Centroid

It uses the WEKA system library. based

Table 4.7: Cluster miner algorithms

CHAPTER 4. KDDML ALGORITHMS 110

4.1.8 Sequence miner algorithms

In table 4.8all the supported sequence algorithms are reported; they are used by the SEQUENCEMINER
operator (see sect.3.2.53).

Algorithm Name Description Sect.
prefix span Java proprietary implementation of the PrefixSpan algorithm4.2.9

Table 4.8: Sequence miner algorithms

4.2 Algorithms specification

4.2.1 By cluster sampling

Algorithm Name

by cluster sampling

Description

Suppose that the tuples of the input database are grouped intoM mutually disjointclusters(ac-
cording to the values of a nominal attribute), then a simple random sampling ofm clusters can be
obtained, wherem ≤ M . The clusters are selected according to aSRSWRpolicy or to aSRSWOR
policy (see sect.4.2.13).
The number of output clusters can be given either in absolute form (using the parameternumber-
of categories) or as percentage (using the parameterpercentage) with respect to the

number of clusters,M . It is important to notice that the schema of the data does not change when
applying the algorithm, and that the categories are not removed from the by-cluster sampling at-
tribute.
Currently, the algorithm uses a proprietary Java implementation.

Input data format

The algorithm takes as input a preprocessing table containing at least a nominal field, representing
the clustering attribute.

Parameters description

• attribute name: it is the name of the by-cluster sampling attribute. By-cluster sampling
can be applied only to nominal attributes.

• percentage : it is the percentage of output clusters (i.e., categories) with respect to the
total number of clusters,M . The parameterpercentage and the parameternumber-
of clusters are mutually exclusive; i.e. if this parameter is specified by the user, the

other one must be omitted;

CHAPTER 4. KDDML ALGORITHMS 111

• number of categories : it is the absolute number of output clusters (i.e., categories),
m. If m > M and theSRSWORtechnique is selected, then all instances belonging to the
input table will be returned by the algorithm: no tuple replication is performed. Otherwise, if
m > M and theSRSWRmethod is selected, then the output table will contain more instances
that the input table and some instances (belonging to the same cluster) will be replicated. If
this parameter is specified by the user, the parameterpercentage must be omitted.

• with replacement : it selects the replacement strategy to be applied to theM clusters.
The parameter can betrue or false. In the first case, theSRSWRmethod is selected and the
instances belonging to the same cluster can be replicated. Otherwise, the algorithm uses the
SRSWORmethod for simple sampling.

Parameters specification

Table 4.9 contains the parameters specification for the by-cluster sampling technique to be used
in thePARAMXML element of figure2.35.

Parameter Parameter Usage Default
Name Value Value
attribute name string required -
percentage real in(0, 1] optional -
number of categories positive integer optional -
with replacement < true > optional < false >

< false >

Table 4.9:by cluster sampling parameters.

4.2.2 CAGE (CellulAr GEneting programming tool)

Algorithm Name

CAGE

Description

CAGE(CellulAr GEneting programming tool) [14] is a tool for parallel genetic programming ap-
plications, that realizes a fine-grained parallel implementation of genetic programming on distributed-
memory parallel computers. Experimental results on some classical test problems shows that the
cellular model outperforms both the sequential canonical implementation of GP and the parallel
island model. Furthermore parallel cellular GP has a nearly linear speed-up and a good scale-up
behavior. CAGE implements the cellular GP model using a one-dimensional domain decomposi-
tion (in the x direction) of the grid and an explicit message passing to exchange information among
the domains. All the communications are performed using the MPI (Message Passing Interface)

CHAPTER 4. KDDML ALGORITHMS 112

portable message passing system so that CAGE can be executed across different hardware plat-
forms. Since the processes are connected according to a ring architecture and each process has a
limited buffer for storing boundary data, asynchronous communication are used in order to avoid
processors to idle. CAGE uses the standard tool for genetic programming sgpc1.1, a simple GP in
the C language to apply the GP algorithm to each grid point.
Important note : the CAGE algorithm works on linux platform only and needed of the MPI li-
braries installed on operative system.

Input data format

In currently implementation, the CAGE algorithm supports nominal attributes only: no string or
numeric attributes are allowed in the input table.

Parameters description

• num processors : a positive integer representing the number of processors used. Default:
1.

• num iterations : a positive integer representing the maximum number of iterations
needed. Default: 100.

• parameter file : the path of a configuration file used by the algorithm.

• classification type : it specifies if the algorithm uses the boosting classification or
not.

• perc data : a double in (0,1] containing the percentage of input instances used by CAGE
as training set. This parameter is used only with boosting classification technique.

Parameters specification

Table 4.10contains the parameters specification for the CAGE algorithm to be used in thePARAM
XML element of figure2.35.

Parameter Name Parameter Value Usage Default Value
num processors positive integer optional 1
num iterations positive integer optional 100
parameter file string optional -
classification type < boost > optional < no boost >

< no boost >
perc data real in(0, 1] optional -

Table 4.10: CAGE parameters

CHAPTER 4. KDDML ALGORITHMS 113

4.2.3 DCI (Direct Count & Intersect)

Algorithm Name

DCI

Description

DCI (Direct Count & Intersect) [15] is an algorithm for finding frequent sets of items from a trans-
actional database. It can be considered an enhancement of the well known Apriori, because they
both share the same level-wise approach and use the same candidate generation technique. Nev-
ertheless, DCI improves considerably the performance of Apriori by introducing a new pruning
technique and the automatic switching to a vertical database representation, during execution. DCI
adopts a direct counting based approach for the first iterations and an intersection based approach
for the vertical dataset iterations. Moreover DCI adopts a new counting inference strategy based
on the notion of key-patterns.
DCI is used by KDDML to generate frequent itemsets and it has been extended through a propri-
etary Java implementation, in order to extract association rules also. Both the number of requested
output itemsets and the number of output association rules are (optional) input parameters of the
algorithm. In order to use it, the user must specify the minimum support and the minimum confi-
dence of the rules.

Input data format

According to section2.2.3, the input data source can be in arelational format, i.e. a row for each
single transaction and an attribute for every item. This format allows for deriving inter-attribute
association rules such as“carType=racing AND homeInsurance=false→ married=false“. In a
relational table, numeric attributes are ignored by the DCI algorithm.
Also the transactional formatis recognized. The last one is used to deriving intra-attribute as-
sociation rules such as“spaghetti AND tomato→ parmesan“. In a transaction format, the DCI
algorithm uses only the attributesitem andtransaction during the extraction process. Other
attributes are allowed in the table, but they are ignored by the mining algorithm.

Parameters description

• min support : the minimum support of a rule or itemset;

• min confidence : the minimum confidence of a rule;

• max number of itemsets : the maximum number of itemsets to extract;

• max number of rules : the maximum number of rules to extract.

Parameters specification

Table 4.11contains the parameters specification for the DCI algorithm to be used in thePARAM
XML element of figure2.35.

CHAPTER 4. KDDML ALGORITHMS 114

Parameter Name Parameter Value Usage Default Value
min support real value in (0,1] required -
min confidence real value in (0,1] required -
max number of itemsets positive integer optional -
max number of rules positive integer optional -

Table 4.11: DCI parameters

4.2.4 EM (Expectation Maximization)

Algorithm Name

EM

Description

The EM (Expectation Maximization) [9] algorithm is an effective, popular technique for estimat-
ing mixture model parameters (cluster parameters and their mixture weights). The EM algorithm
iteratively refines initial mixture model parameter estimates to better fit the data and it terminates
at a locally optimal solution. EM is a distribution-based technique.
In the current version, the EM algorithm is implemented using the WEKA [16] library1.

Input data format

The EM algorithm supports nominal or continuous attributes only: no string attributes are allowed
in the input table.

Parameters description

• number of clusters : it specifies the number of clusters to generate. If it is omitted,
EM will use cross validation to select the optimal number of clusters.

• max iterations : terminate after this many iterations if EM has not converged.

• min std dev : set the minimum allowable standard deviation for normal density calcula-
tion.

Parameters specification

Table 4.12contains the parameters specification for the EM algorithm to be used in thePARAM
XML element of figure2.35.

1Notice that the algorithm is based on a main-memory Java implementation.

CHAPTER 4. KDDML ALGORITHMS 115

Parameter Name Parameter Value Usage Default Value
number of clusters positive integer optional -
max iterations positive integer optional 100
min std dev real in(0, 1] optional 1

Table 4.12: EM parameters

4.2.5 Equal frequency discretization

Algorithm Name

equal frequency discretization

Description

TheEqual Frequency Discretizationmethod (EFD) divides the range of a numeric attributeA into
k intervals containing the same number of samples.
Suppose there aren training instances for which the values ofA are known (missing values will
be ignored). More in details, the algorithm sorts the observed values and then divides the sorted
values intok intervals so that each interval contains (approximately2) the same number of training
instances. Thus each interval containsn/k (possibly duplicated) adjacent values. The number of
output intervalsk and the number of required samples for each interval are mutually exclusive
parameters.
When the intervals have been computed, the algorithm replaces each training instance value ofA
with an interval label. As previously reported, the system allows a numeric or nominal labeling
(see section4.2.8).
At present, the algorithm uses a proprietary Java implementation.

Input data format

The algorithm takes as input a preprocessing table containing at least a numeric field, representing
the discretization attribute.

Parameters description

• number of intervals : it is the number of output intervalsk. This parameter and the
parametercardinality of intervals are mutually exclusive.

• cardinality of intervals : it is the number of cases assigned to each interval. This
parameter and the parameternumber of intervals are mutually exclusive.

• labeling : the labeling strategy to be used. Possible values are:

2The number of instances can vary for the last computed interval.

CHAPTER 4. KDDML ALGORITHMS 116

– mean: it is used to compute the mean of the values belonging to the interval;

– median: it is used to compute the median of the values belonging to the interval;

– inf (sup): it is used to compute the inferior (superior) bound of the interval;

– enumeration: it is used for a nominal interval labeling. In this case, the list of nominal
labels can be (optionally) provided using the parameterenumerated label list .

• enumerated label list : the list of nominal labels to use when thelabeling para-
meter isenumerationand the parameternumber of intervals is specified. In this case,
the system guarantees that the number of required intervals is equal to the number of nom-
inal labels provided by the user. If the parameter is omitted, each attribute value is labeled
with a string representing the interval (e.g.,(45, 50]). The list of labels is given in a comma
separated format (e.g.,young, adult, elder).

Parameters specification

Table 4.13contains the parameters specification for the equal frequency normalization method to
be used in thePARAMXML element of figure2.35.

Parameter Parameter Usage Default
Name Value Value

required if
number of intervals positive integer cardinality of -

intervals
is omitted
required if

cardinality of intervals positive integer number of -
intervals
is omitted

< mean > -
< median >

labeling < inf > required -
< sup >

< enumeration >
enumerated label list list of strings optional -

comma separated

Table 4.13:equal frequency discretization parameters.

4.2.6 KMeans

Algorithm Name

KMeans

CHAPTER 4. KDDML ALGORITHMS 117

Description

The KMeans procedure [8] follows a simple and easy way to classify a given data set through a
certain number of clusters (assume k clusters) fixed a priori. The main idea is to define k centroids,
one for each cluster. These centroids should be placed in a cunning way because a different location
causes different result. So, the better choice is to place them as much as possible far away from
each other. The next step is to take each point belonging to a given data set and associate it to the
nearest centroid. When no point is pending, the first step is completed and an early groupage is
done. At this point we need to re-calculate k new centroids as centers of the clusters resulting from
the previous step. After we have these k new centroids, a new binding has to be done between the
same data set points and the nearest new centroid. A loop has been generated. As a result of this
loop we may notice that the k centroids change their location step by step until no more changes
are done. In other words centroids do not move any more.
KMeans is a centroid-based technique and it uses theeuclidean distanceto compare two cluster
objects, theabsolute differenceto compare two continuous fields and thedelta function3 to compare
two nominal fields. In the current version, the KMeans algorithm is implemented by using the
WEKA [16] library4.
The KMeans algorithm supports nominal or continuous attributes only: no string attributes are
allowed in the input table.

Input data format

The KMeans algorithm supports nominal or continuous attributes only: no string attributes are
allowed in the input table.

Parameters description

• number of clusters : specify the number of clusters,k, to generate.

Parameters specification

Table 4.14 contains the parameters specification for the KMeans algorithm to be used in the
PARAMXML element of figure2.35.

Parameter Name Parameter Value Usage Default Value
number of clusters positive integer optional 2

Table 4.14: KMeans parameters

3c(x, y) = 0 if x = y, 1 otherwise, where x and y are two fields values.
4Notice that the algorithm is based on a main-memory Java implementation.

CHAPTER 4. KDDML ALGORITHMS 118

4.2.7 Min-max normalization

Algorithm Name

min max normalization

Description

It performs a linear transformation on the original data. Suppose thatminA andmaxA are the
minimum and maximum values of an attributeA. Min-max normalization maps a valuev of A to
v′ in the range[new minA, new maxA] by computing

v′ =
v −minA

maxA −minA

(new maxA − new minA) + new minA (4.1)

wherenew minA andnew maxA are parameters of the algorithm. The system guarantees that
new minA 6 new maxA.

Input data format

The algorithm takes as input a preprocessing table containing at least a numeric field, representing
the discretization attribute.

Parameters description

• inf : it is the new minimum value,new minA, for the attributeA.

• sup : it is the new maximum value,new maxA, for the attributeA.

Parameters specification

Table 4.15 contains the parameters specification for the min-max normalization method to be
used in thePARAMXML element of figure2.35.

Parameter Name Parameter Value Usage Default Value
inf real optional −1
sup real optional 1

Table 4.15:min max normalization parameters.

4.2.8 Natural binning discretization

Algorithm Name

natural binning discretization

CHAPTER 4. KDDML ALGORITHMS 119

Description

Thenatural binning discretizationmethod divides the range of a numeric attributeA into k inter-
vals of equal width. The method is also known asEqual Width Discretization (EWD).
Suppose that there aren training instances for which the values ofA are known (missing values
will be ignored) and suppose that the minimum and maximum value arevmin andvmax respec-
tively. The algorithm sorts the observed values and then divides the number of values between
vmin andvmax into k intervals of (approximately5) equal width. Thus the intervals have width

w =
vmax − vmin

k
(4.2)

and the cut points are atvmin +w, vmin +2w, . . . , vmin +(k−1)w. The number of output intervals
k and the width of the intervalw are mutually exclusive parameters.
When the intervals have been computed, the algorithm replaces each training instance value ofA
with an interval label. Numericor nominallabeling are allowed.
A Numeric interval labelincludes the mean, the median, the minimum or maximum calculated on
the values belonging to the interval.
A Nominal interval labelincludes a list of strings, each containing the labels used to replace each
training instance value belonging to the interval. The system guarantees that the number of nominal
labels is equal to the number of output intervalsk. The mapping between intervals computed by the
algorithm and nominal labels starts from the interval containing the lowest values6. As an instance,
suppose that the algorithm computes the intervalsI1 = [6, 35), I2 = [35, 65) andI3 = [65, 95).
Moreover suppose that the nominal labels provided are“young” , “adult” and“elder” in that order.
For each training input instance, a valuev of the discretization attribute is replaced with“young” ,
“adult” and “elder” if v ∈ I1, v ∈ I2 andv ∈ I3 respectively. By using the nominal interval
labeling, the type of the discretization attribute become enumerated.
At present, the algorithm is implemented using (in part) the WEKA system library.

Input data format

The algorithm takes as input a preprocessing table containing at least a numeric field, representing
the discretization attribute.

Parameters description

• number of intervals : it is the number of output intervalsk. This parameter and the
parameterwidth of intervals are mutually exclusive.

• width of intervals : it is the size of each intervalw. This parameter and the parameter
number of intervals are mutually exclusive.

• labeling : the labeling strategy to be used. Possible values are:

5The width of intervals can variate for the last interval computed.
6Remember that values are ordered by the algorithm.

CHAPTER 4. KDDML ALGORITHMS 120

– mean: it is used to compute the mean of the values belonging to the interval;

– median: it is used to compute the median of the values belonging to the interval;

– inf (sup): it is used to compute the inferior (superior) bound of the interval;

– enumeration: it is used for a nominal interval labeling. In this case, the list of nominal
labels can be (optionally) provided by using the parameterenumerated label list .

• enumerated label list : the list of nominal labels to be used when thelabeling
parameter isenumerationand the parameternumber of intervals is specified. In this
case, The system guarantees that the number of required intervals is equal to the number
of nominal labels provided by the user. If the parameter is omitted, each attribute value is
labeled with a string representing the interval (e.g.,(45, 50]). The list of labels is given in a
comma separated format (e.g.,young, adult, elder).

Parameters specification

Table 4.16contains the parameters specification for the natural binning discretization method to
be used in thePARAMXML element of figure2.35.

Parameter Parameter Usage Default
Name Value Value

required if
number of intervals positive integer width of intervals -

is omitted
required if

width of intervals positive integer number of intervals -
is omitted

< mean > -
< median >

labeling < inf > required -
< sup >

< enumeration >
enumerated label list list of strings optional -

comma separated

Table 4.16:natural binning discretization parameters.

4.2.9 Prefix Span

Algorithm Name

prefix span

CHAPTER 4. KDDML ALGORITHMS 121

Description

PrefixSpan(Prefix-projected Sequential pattern mining) [17] mines the complete set of patterns
but greatly reduces the efforts of candidate subsequence generation. Moreover, prefix-projection
substantially reduces the size of projected databases and leads to efficient processing.
KDDML uses a proprietary main-memory Java implementation of the Prefix Span algorithm. In
order to use the algorithm, the user must specify the minimum support of the sequences; otherwise,
the number of output sequences is an optional parameter.

Input data format

Prefix Span takes as input a time-stamp table, as described in section2.2.3. In this format, the
Prefix Span algorithm uses only the attributesitem , transaction and timestamp during
the extraction process. Other attributes are allowed in the table, but they are ignored by the mining
algorithm.

Parameters description

• min support : it is the minimum support of a sequence;

• max number of sequences : it is the maximum number of sequences to extract.

Parameters specification

Table 4.17contains the parameters specification for the Prefix Span algorithm to be used in the
PARAMXML element of figure2.35.

Parameter Name Parameter Value Usage Default Value
min support real value in (0,1] required -

max number of sequences positive integer optional -

Table 4.17: prefixspan parameters

4.2.10 Rule M

Algorithm Name

rule mrewriting

Description

The rule-M method works only on the preprocessing section of the input table and it does not
execute any transformation to the data section.
In particular, the algorithm marks (i.e., a string is added to preprocessing information) the instance

CHAPTER 4. KDDML ALGORITHMS 122

values of the rewriting attribute if the pattern matches the entire attribute value. Notice that the
matching procedure is performed on the entire input string value, i.e., the algorithm attempts to
match the entire input sequence against the pattern. For example, the regular expression“dog”
matches a sub-sequence of the pattern“dogcatdog”, but not the entire string. In this example, the
matching procedure will return failure.

Input data format

The rule-m algorithm takes a preprocessing table as input.

Parameters description

• regular expression : the regular expression. If the attribute is equal to“?” , then the
algorithm applies the substitution to all missing instances.

• mark : the string value to be added to the preprocessing section of the rewriting attribute.

Parameters specification

Table 4.18contains the parameters specification for the rule-M rewriting method to be used in the
PARAMXML element of figure2.35.

Parameter Parameter Usage Default
Name Value Value
regular expression string required -
mark string required -

Table 4.18:rule mrewriting parameters.

4.2.11 Rule S

Algorithm Name

rule s rewriting

Description

The rule-S method replaces the entire input string value that matches the pattern with a given
replacement string that may contain references to captured sub-sequences (see later). Notice that,
the matching procedure is performed on the entire input string value, i.e., the algorithm tries to
match the entire input sequence against the pattern. For example, the regular expression“dog”
match a sub-sequence of the pattern“dogcatdog”, but not the entire string. In this example, the
matching procedure returns failure.

CHAPTER 4. KDDML ALGORITHMS 123

The user must specify two replacement strings by using two different algorithm parameters. The
first one, calledsubstitution then , is applied to the entire string value if the pattern matches
that string; the second one, calledsubstitution else , is applied to the string value only if the
pattern does not match. Thesubstitution else parameter is optional. For example, given
the regular expression“a*b” , the “then” replacement string“ok” and the “else” replacement string
“ko” , an invocation of this method on the instance value“aaaaab” would yield the string“ok” .
Otherwise, an invocation on the instance value“aaaaabb” would yield the string“ko” .
If no substitution is performed, then the instance value is marked (i.e. a string is added to pre-
processing information) with an exception for the rewriting attribute. Anyhow, the marking policy
is optional.

Input data format

The rule-s algorithm takes a preprocessing table as input.

Parameters description

• regular expression : the regular expression. The user can refer to missing instances
using the symbol “?” in the XML attributevalue of the regular expression parameter. This
is useful when the user wants to rewrite all missing instances by a known value. Regular ex-
pressions can contain references to captured sub-sequences. Capturing groups are numbered
by counting their opening parentheses from left to right. In the expression ((A)(B(C))), for
example, there are four such groups:

1. ((A)(B(C))),

2. (A),

3. (B(C)),

4. (C).

Group zero always stands for the entire expression. Capturing groups are so named because,
during a match, each subsequence of the input sequence that matches such a group is saved.
The captured sub-sequence may be used later in the expression, via a back reference, and it
may also be retrieved from the matcher once the match operation is complete. The notation
$n returns the nth sub-sequence captured by the given group during the previous match
operation. For example, in the example above, the expression$1 refers to the sub-sequence
A.

• substitution then : the substitution string to be used if the pattern matching. The re-
placement string may contain references to sub-sequences captured during the pattern match-
ing. In particular, the dollar sign$ in front of the number of sub-sequencen, can be used to
specify the nth captured sub-sequence.

• substitution else : the substitution string to be used if the pattern does not match the
entire input string value. Also forsubstitution then , the notation$n can be used to
return the nth captured sub-sequence.

CHAPTER 4. KDDML ALGORITHMS 124

• mark metadata with exception : can betrueor false. In the first case, the algorithm
marks the preprocessing information with an exception if no substitution is performed. Oth-
erwise, no mark is applied.

Parameters specification

Table 4.19contains the parameters specification for the rule-S rewriting method to be used in the
PARAMXML element of figure2.35.

Parameter Parameter Usage Default
Name Value Value
regular expression string required -
substitution then string required -
substitution else string optional -
mark metadata with exception < true > optional < true >

< false >
mark exception string fixed < no rule s matching >

Table 4.19:rule s rewriting parameters.

4.2.12 Rule T

Algorithm Name

rule t rewriting

Description

The rule-T method replaces every sub-sequence of the input string value that matches the pattern
with a given replacement string. It scans the input sequence looking for a match of the pattern.
Then, each match is replaced in the result by the replacement string that may contain references to
captured subsequences (see section4.2.11). For example, given the regular expression“dog” , the
input instance value“dogcatdog”, and the replacement string“cat” , an invocation of this method
on a matcher for that expression would yield the string“catcatcat” .
If no substitution is performed, then the instance value is marked (i.e. a string is added to pre-
processing information) with an exception for the rewriting attribute. However, the marking policy
is optional.

Input data format

The rule-t algorithm takes a preprocessing table as input.

CHAPTER 4. KDDML ALGORITHMS 125

Parameters description

• regular expression : the regular expression.

• substitution then : the substitution string to be used if the pattern matches. The re-
placement string may contain references to subsequences captured during pattern matching.
In particular, the dollar sign$ before the number of sub-sequencen, can be used to specify
the nth captured sub-sequence.

• mark metadata with exception : can betrueor false. In the first case, the algorithm
marks the preprocessing information with an exception if no substitution is performed. Oth-
erwise, no mark is applied.

Parameters specification

Table 4.20contains the parameters specification for the rule-T rewriting method to be used in the
PARAMXML element of figure2.35.

Parameter Parameter Usage Default
Name Value Value
regular expression string required -
substitution then string required -
mark metadata with exception < true > optional < true >

< false >
mark exception string fixed < no rule t matching >

Table 4.20:rule t rewriting parameters.

4.2.13 Simple sampling

Algorithm Name

simple sampling

Description

It returns a random subset of fixed cardinality from the input preprocessing table. According to
the parameterwith replacement , simple sampling can use two distinct techniques: thewith
replacementmethod and thewithout replacementmethod.
More precisely, suppose that a data set containsN tuples. TheSimple Random Sampling WithOut
Replacementmethod (SRSWOR) selectsn tuples from the input database, where the probability of
drawing any tuple is1/N , that is, all tuples are equally likely.
The Simple Random Sample With Replacementmethod (SRSWR) is similar to SRSWOR, except
that each time a tuple is drawn from the dataset, it is recorded and then replaced. That is, after a

CHAPTER 4. KDDML ALGORITHMS 126

tuple is drawn, it is placed back id the dataset, so that it may be drawn again.
The number of output instances,n, can be given either in absolute form (using the parameternum-
ber of instances) or as percentage (using the parameterpercentage) with respect to the
total number of input instances.
By now, the algorithm uses a proprietary Java implementation.

Input data format

The simple sampling algorithm takes a preprocessing table as input.

Parameters description

• percentage : it is the percentage of output instances with respect to the total number of
instances of the input table. The parameterpercentage and the parameternumber of-
instances are mutually exclusive; i.e. if this last parameter is specified by the user, the

other must be omitted;

• number of instances : it is the absolute number,n, of output instances. Since the total
number of input instances is known only at run-time, it can happen thatn > N . In this
case, if theSRSWORtechnique is selected, then all input instances will be returned by the
algorithm: no tuple replication is performed. Otherwise, if theSRSWRmethod is selected,
then the output table will contain more instances that the input table and some instances will
be replicated. If this parameter is specified by the user, the parameterpercentage must
be omitted.

• with replacement : it selects the replacement strategy. It can betrueor false. In the first
case, theSRDWRmethod is selected. Otherwise, the algorithm uses theSRSWORmethod
for sampling.

Parameters specification

Table 4.21contains the parameters specification for the simple sampling technique to be used in
thePARAMXML element of figure2.35.

Parameter Parameter Usage Default
Name Value Value
percentage real in(0, 1] optional -
number of instances positive integer optional -
with replacement < true > optional < false >

< false >

Table 4.21:simple sampling parameters.

CHAPTER 4. KDDML ALGORITHMS 127

4.2.14 Stratified sampling

Algorithm Name

stratified sampling

Description

Given a dataset withn instances and a nominal attributeA, containingM distinct values, that
divides the dataset intoM mutually disjoint parts calledstrata, thestratified samplingapplies a
simple random sampling at each stratum using awith replacementor awithout replacementpolicy
(see sect.4.2.13), according to the parameterwith replacement . This helps to ensure a
representative sample, especially when the data are skewed.
The number of output instances for each nominal category can be given either in absolute form
(using the parameternumber of instances per category) or as a percentage (using the
parameterpercentage) with respect to the number of instances for that category.
Currently the algorithm uses a proprietary Java implementation.

Input data format

The algorithm takes as input a preprocessing table containing at least a nominal field, representing
the clustering attribute.

Parameters description

• attribute name: it is the name of the stratified sampling attribute. Stratified sampling
can be applied only to nominal attributes.

• percentage : it is the percentage of output instances for each category with respect to the
total number of instances of that category. The parameterpercentage and the parameter
number of instances per category are mutually exclusive; i.e. if this parameter
is specified by the user, the other one must be omitted;

• number of instances per category : it is the absolute number of output instances
for each category. Since the total number of input instances is known only at run-time, it
may happen that, for a categoryCA, kCA

> KCA
, wherekCA

andKCA
are, respectively, the

total number of requested instances and the total number of input instances for that category.
In this case, if theSRSWORtechnique is selected, then all instances belonging toCA will
be returned by the algorithm: no tuple replication is performed. Otherwise, if theSRSWR
method is selected, then the output table will contain more instances that the input table
for CA and some instances will be replicated. If this parameter is specified by the user, the
parameterpercentage must be omitted.

• with replacement : it selects the replacement strategy to be applied at each stratum. The
parameter can betrueor false. In the first case, theSRSWRmethod is selected and instances
can be replicated for a stratum. Otherwise, the algorithm uses theSRSWORmethod for
simple sampling.

CHAPTER 4. KDDML ALGORITHMS 128

Parameters specification

Table 4.22contains the parameters specification for the stratified sampling technique to be used
in thePARAMXML element of figure2.35.

Parameter Parameter Usage Default
Name Value Value
attribute name string required -
percentage real in(0, 1] optional -
number of instances per category positive integer optional -
with replacement < true > optional < false >

< false >

Table 4.22:stratified sampling parameters.

4.2.15 YaDT (Yet Another Decision Tree builder)

Algorithm Name

YaDT

Description

YadT(Yet Another Decision Tree builder) [5] is an efficient implementation of the entropy-based
decision tree construction algorithm which vastly improves the computational performance over
the well-known C4.5.
It has been designed and implemented in C++ with strong emphasis on efficiency (time and space)
and portability (Windows/Linux).

Input data format

YaDT algorithm supports nominal or continuous attributes only: no string attributes are allowed
in the input table.

Parameters description

• num instances for leaf : the minimum cases to split a node.

• confidence for pruning : a real in the range (0,1] representing the pruning confidence
level.

• percentage split : it randomly splits training data in an actual training data and an
additional test data. Default: no test data set.

CHAPTER 4. KDDML ALGORITHMS 129

Parameters specification

Table 4.23contains the parameters specification for the YaDT algorithm to be used in thePARAM
XML element of figure2.35.

Parameter Name Parameter Value Usage Default Value
num instances for leaf integer greater than 1optional 2
confidence for pruning real in(0, 1] optional 0.25
percentage split real in(0, 1] optional 1

Table 4.23: YaDT parameters

4.2.16 Z-score normalization

Algorithm Name

z score normalization

Description

The values of an attributeA are normalized on the basis of the mean and standard deviation ofA.
A valuev of A is normalized tov′ by computing

v′ =
v − E(A)

V ar(A)
(4.3)

whereE(A) andV ar(A) are the mean and the standard deviation, respectively, of the attributeA.

Input data format

The algorithm takes as input a preprocessing table containing at least a numeric field, representing
the discretization attribute.

Parameters description

None.

Parameters specification

None.

BIBLIOGRAPHY

[1] J. Han and M. Kamber,Data Mining: Concepts and Techniques. San Mateo, CA: Morgan
Kaufmann, 2000.

[2] SPSS, “CRISP-DM step by step data mining guide,” Version 1.0, 2000,
http://www.crisp-dm.org .

[3] The Data Mining Group, “Predictive Model Markup Language (PMML),” Version 2.1, 2003,
http://www.dmg.org .

[4] JSR-73 Expert Group, “Java Data Mining API,” 2004, java Specification Request No. 73,
http://www.jcp.org/en/jsr/detail?id=73 .

[5] S. Ruggieri, “Efficient C4.5,”IEEE Trans. on Knowledge and Data Eng., vol. 14(2), pp.
438–444, 2002.

[6] W3C World Wide Web Consortium, “Extensible Markup Language (XML) 1.0 (second edi-
tion),” W3C Recommendation, 2000,http://www.w3.org/TR/REC-xml .

[7] T. Imielinski and H. Mannila, “A database perspective on knowledge discovery.”Commun.
ACM, vol. 39, no. 11, pp. 58–64, 1996.

[8] MacQueen, “Some methods for classification and analysis of multivariate observation,” in
Proceedings of the fifth Berkeley symposium on mathematical statistics and probability,
vol. 1. University of California Press, Berkeley, 1967, pp. 281–297.

[9] S.L.Lauritzen, “The em algorithm for grafical association models with missing data,”Com-
putational Statics and Data Analysis, vol. 19, pp. 191–201, 1995.

[10] G. Folino and G. Spezzano, “SPARROW: A spatial clustering algorithm using swarm intelli-
gence,” inAIA’2003, Innsbruck, 2003.

130

BIBLIOGRAPHY 131

[11] W3C World Wide Web Consortium, “XQuery: XML Query Language,” On-line documenta-
tion, 2004,http://www.w3.org/XML/Query .

[12] Quiz/Open, “XQuery open-source Java implementation,”
http://www.xfra.net/qizxopen/ .

[13] J. Regex,http://java.sun.com/j2se/1.4.2/docs/api/java/util/regex .

[14] G. Folino, C. Pizzuti, and G. Spezzano, “CAGE: A tool for parallel genetic programming ap-
plications,” inGenetic Programming, Proceedings of EuroGP’2001, ser. LNCS, J. F. Miller,
M. Tomassini, P. L. Lanzi, C. Ryan, A. G. B. Tettamanzi, and W. B. Langdon, Eds., vol. 2038.
Springer-Verlag, 2001, pp. 64–73.

[15] S. Orlando, P. Palmerini, R. Perego, and F. Silvestri, “Adaptive and resources-aware mining
of frequent sets,” inIEEE ICDM Int. Conf. on Data Mining. IEEE Computer Society, 2002,
http://hpc.isti.cnr.it/ ∼palmeri/datam/DCI .

[16] I. Witten and E. Frank,Data Mining: Practical Machine Learning Tools and Tech-
niques with Java Implementations. Morgan & Kaufmann, 2000, version 3.4.3 from
http://www.cs.waikato.ac.nz/ml/weka .

[17] J. Pei, J. Han, B. Mortazavi-Asl, J. Wang, H. Pinto, Q. Chen, U. Dayal, and M. Hsu, “Mining
sequential patterns by pattern-growth: The prefixspan approach,”IEEE Trans. on Knowledge
and Data Eng., vol. 16, no. 11, pp. 1424–1440, 2004.

APPENDIX A

Extending the KDDML language

In this appendix, we show how to extend the KDDML language in order to add new algorithms,
new operators, or new models.

A.1 Adding a new algorithm

A data mining (resp. preprocessing) algorithm is a technique or procedure that, when applied to
data, yields a model (resp. a preprocessing table). The set of algorithms is large and growing.
As it is now, KDDML does not include a large set of algorithms, but it specifies a framework
for including new ones. This enables users to provide additional algorithms and functionalities in
advance of their inclusion in the standard version.

To this purpose, adding a new preprocessing, tree induction, clustering, association rules or
sequential pattern mining algorithm should be as simple as possible. The tag<ALGORITHM>(see
sect. 2.5) has been added to the KDDML language in order to represent algorithm settings used
both for DM operators (such asRDAMINER, TREE MINER) and pre-processing operators (such
asPP NUMERICDISCRETIZATION). Notice that the algorithm name and parameters are not
part of the language syntax: non-strict semantics for algorithm settings help us to preserve an high
language extendibility. Correctness checking of parameters is not part of the parsing of the XML
document representing the query, but it is demanded directly to the KDDML system.

In summary, adding a new pre-processing or mining algorithm in the future will not require
any DTD modification to the KDDML language.

A.2 Adding a new operator

The extension of a new I/O, preprocessing, postprocessing or mining operator to the language
syntax can be achieved through four steps, as shown below.

132

APPENDIX A. EXTENDING THE KDDML LANGUAGE 133

Step 1: definition of the operator signature

The first step to do when adding a new operator is to define an operator signature. An operator
signature is a function

f : t1 × . . . tn → t

that takesn KDDML objects as input and returns a KDDML object as output; the set of types of
the KDDML language has been listed in the first column of the table2.5. As one can expect, the
signature depends on the kind of operator.

As shown in sect. 3.1.2, preprocessing operators take a preprocessing table as their first ar-
gument and return a preprocessing table as output. Other input arguments are not required, and
they can be optionally specified by the user in order to use KDDML objects such as conditions or
expressions defined on the input preprocessing table. Their signature is reported below:

f<NEW PP OPERATOR> : PPtable× · · · → PPtable.

By looking at the sect.3.1.3, we can notice that a mining operator has a fixed signature. It
takes a relational table as its first argument, and an algorithm setting as its second argument, and it
produces a model as output. Its final signature is reported below:

f<NEW MODEL MINER> : table× alg→ model.

On the contrary, I/O and postprocessing operators have a generic specification.

Step 2: definition of a set of attributes

In an XML document, attributes often are not part of the data but they provide additional infor-
mation about the elements. In KDDML, while XML tags correspond to arguments of an operator,
XML attributes correspond to the parameters of the operator. Attribute-list declarations specify the
name, data type, and default value (if any) of each attribute associated with a given element type
(i.e. operator):

• Name: used to define the set of attributes pertaining to a given operator.

• Usage: can be required, fixed, implied; moreover, a default value can be specified. Possible
values are:

– #REQUIRED: means that the attribute must have a value every time this operator is
listed;

– #FIXED : the attribute is not required, but if it occurs, it must have the specified default
value;

– #IMPLIED : the attribute value is not required, and no default value is provided.

The notation"DEFAULT VALUE" can be used in order to specify a default value for the
attribute. In fact, an attribute can be given any legal value as a default. The attribute value
is not required on each element in the document, but if it is not present, it will appear to be
the specified default. If the attribute is not included in the element, the processing program
assumes that this is the attribute value.

APPENDIX A. EXTENDING THE KDDML LANGUAGE 134

• Type: KDDML supports two types for operator attributes:

– %string; : it may take any literal string as a value that includes also numbers or
complex types such as lists or records (i.e. string attributes are strings where any text
is allowed)1.

– {V1| . . . |Vn}: this represents the enumeration type in which attributes are defined by a
list of acceptable pipe delimited values, from which the document author must choose.
In this case, each of the values is explicitly enumerated in the declaration and the check-
ing is performed directly by the XML parser.

Step 3: putting all together by defining a DTD

Steps one and two permit to define a Document Type Definition for the element representing the
operator (take a look at the general operator structure of section2.5).

The element root name corresponds to the function name.
The children definition have a one-to-one correspondence to the input types of the signature

defined at step one (take again a look at the table2.5that shows the correspondence between types
and XML entities). Every input type of the signature can be then replaced with the related entity
in the DTD.

Finally, attributes are defined as in step two.

Step 4: declation of the new operator to KDDML

The last thing you have to do is to declare your operator to KDDML. This is performed by adding
the operator to the right entity according to the kind of object it returns. In other terms, as soon
as the referred entity has been detected, you must declare the new operator by adding a new entry
(referring the operator tag name) to this entity.

A.3 Adding a new model

Adding a new mining model to the language means adding a new type to the operators signature,
which amounts to non-destructive changes in the DTD of the operators.

Step 1: definition of the physical model

The first step is to define the physical format of the model. This target can be easily achieved by
using the PMML v. 2.0. Extension mechanism of PMML is optional. It can be used in order to
define proprietary features of a model, that are not supported by the PMML standard.

1As for algorithm parameters, correctness checking about string attributes is not part of the parsing of the XML
document representing the query, but it is passed directly to the KDDML system.

APPENDIX A. EXTENDING THE KDDML LANGUAGE 135

Step 2: definition and inclusion of an XML entity in the KDDML language

Take again a look at the table2.5and to the figure2.25. The entitykdd operator contains an
enumeration of all KDDML operators classified according to the output type they return. Adding
a new mining modelM in KDDML means adding a new entity (i.e. a new type) whose scope
is to group all operators returningM as output. This entity can be then used where an operator
returning the typeM is required, according to the closure principle.

In order to declare the new object to KDDML, you must define an empty2 entity, named, as
instance,new model entity :

<!ENTITY % new_model_entity "(%kdd_query_object;)">

After this, you can add the entity to the language by adding a new entry in thekdd operator
entity, as reported below:

<!ENTITY % kdd_operator "(...|%new_model_entity;)">

Step 3: to define a set of operators

In order to manage the new model, you must provide a set of basic operators that, in general,
permit to:

• read the physical model from the system repository or from an external PMML source;

• extract the model from a data source by using a mining algorithm;

• filter the new model;

• apply the model on a new data source in order to predict features or to select data;

• combine the model with other models.

New operators can be added to the KDDML language as described in the previous section of this
appendix. Remember that, for each operator provided, you must add it to the required entity,
according to the output type the operator returns, as specified at step 4 of the previous section.

A.4 Example: adding a naive bayes model

The naive bayes classifier technique is based on the so-called bayesian theorem and it is par-
ticularly suited when the dimensionality of the inputs is high. It is based on an assumption of
conditional independence, to predict the value of a target (output) independence, from evidence
given by one or more predictor (input) fields.

A.4.1 Physical model

PMML 2.0 naive bayes model. No extension mechanism used.

2The entity contains only operators returning a generic KDDML object.

APPENDIX A. EXTENDING THE KDDML LANGUAGE 136

A.4.2 Model entity

<!ENTITY % kdd_query_naive_bayes "(%kdd_query_object;)">

<!ENTITY % kdd_operator
"(%kdd_query_clusters;|%kdd_query_rules;|%kdd_query_sequence;|

%kdd_query_table;|%kdd_query_trees;|%kdd_query_hierarchy;|
%kdd_query_scalar;|%kdd_query_PPtable;|%kdd_query_naive_bayes;)">

A.4.3 Operators

A.4.4 Operator one: model loader

It loads a naive bayes model from the system repository.

Signature

f<NAIVE BAYES LOADER> : empty → naive bayes.

Attributes

• xml source.

– type: string;

– usage: required.

DTD

<!ELEMENT NAIVE_BAYES_LOADER EMPTY>
<!ATTLIST NAIVE_BAYES_LOADER xml_source %string; #REQUIRED>

Target entity entry

kdd query naive bayes .

A.4.5 Operator two: model miner

It extracts a naive Bayes model from a data source by using an algorithm setting and a target
attribute.

Signature

f<NAIVE BAYES MINER> : table× alg→ naive bayes.

APPENDIX A. EXTENDING THE KDDML LANGUAGE 137

Attributes

• xml dest.

– type: string;

– usage: implied.

• target attribute.

– type: string;

– usage: required.

DTD

<!ELEMENT NAIVE_BAYES_MINER ((%kdd_query_table;), ALGORITHM)>
<!ATTLIST NAIVE_BAYES_MINER xml_dest %string; #IMPLIED>
<!ATTLIST NAIVE_BAYES_MINER target_attribute %string; #REQUIRED>

Target entity entry

kdd query naive bayes .

A.4.6 Operator three: classifier

It classifies an input data source using a naive bayes model.

Signature

f<NAIVE BAYES CLASSIFY> : naive bayes× table→ naive bayes.

Attributes

• xml dest.

– type: string;

– usage: implied.

DTD

<!ELEMENT NAIVE_BAYES_CLASSIFY ((%kdd_query_naive_bayes;),
(%kdd_query_table;))>

<!ATTLIST NAIVE_BAYES_CLASSIFY xml_dest %string; #IMPLIED>

Target entity entry

kdd query table .

	Table of contents
	Getting started
	Motivations
	KDDML language overview
	A simple sample
	KDDML as typed language

	Organization of this guide
	KDDML Objects
	Objects Hierarchy
	Data representation
	Logical data
	Taxonomies
	Physical data: relational tables, transactional tables and timestamp tables
	Preprocessing tables

	Knowledge representation
	Association model
	Sequence model
	Tree model
	Clustering model
	Hierarchy model

	KDDML Scalar
	Queries representation

	KDDML operators
	Classification of operators
	I/O operators
	Preprocessing operators
	Mining operators
	Postprocessing operators
	Control flow operators
	Unclassified operators

	Operators specification
	ARFF_LOADER
	ARFF_WRITER
	CALL_QUERY
	CLUSTER_CENTROID
	CLUSTER_LOADER
	CLUSTER_MINER
	CLUSTER_NUMBER
	CLUSTER_PARTITION
	CLUSTER_PARTITION_SPARROW
	DATABASE_LOADER
	DATABASE_WRITER
	EXT_CALL
	HIERARCHY_LOADER
	IF
	MISCLASSIFIED
	PAR_QUERY
	PMML_CLUSTER_LOADER
	PMML_RDA_LOADER
	PMML_SEQUENCE_LOADER
	PMML_TREE_LOADER
	PP_ADD_HIERARCHY
	PP_CHANGE_TYPE
	PP_DIVIDING_ATTRIBUTE
	PP_FILTER_ATTRIBUTES
	PP_FOLDING
	PP_HIERARCHICAL_DISCRETIZATION
	PP_MARKING
	PP_MARK_DUPLICATES
	PP_MERGE_DUPLICATES
	PP_NEW_ATTRIBUTE
	PP_NORMALIZATION
	PP_NUMERIC_DISCRETIZATION
	PP_NUMERIC_LABELING
	PP_REMOVE_ROWS
	PP_RENAME_ATTRIBUTES
	PP_REWRITING
	PP_SAMPLING
	PP_SORTING_ATTRIBUTE
	PP_TABLE_2_TABLE
	PP_TABLE_LOADER
	RDA_EXCEPTION
	RDA_FILTER
	RDA_LOADER
	RDA_MINER
	RDA_PRESERVED
	RDA_SATISFY
	SCALAR
	SEQUENCE_AGGREGATE_FILTER
	SEQUENCE_EXCEPTION
	SEQUENCE_FILTER
	SEQUENCE_LOADER
	SEQUENCE_MAXIMAL_FILTER
	SEQUENCE_MINER
	SEQUENCE_RULE
	SEQUENCE_SATISFY
	SEQUENCE_TIMESTAMP_FILTER
	SEQ_QUERY
	TABLE_2_HIERARCHY
	TABLE_2_PP_TABLE
	TABLE_LOADER
	TREE_CLASSIFY
	TREE_LOADER
	TREE_META_CLASSIFIER
	TREE_MINER

	KDDML algorithms
	Classification of algorithms
	Discretization algorithms
	Normalization algorithms
	Rewriting algorithms
	Sampling algorithms
	RdA miner algorithms
	Tree miner algorithms
	Cluster miner algorithms
	Sequence miner algorithms

	Algorithms specification
	By cluster sampling
	CAGE (CellulAr GEneting programming tool)
	DCI (Direct Count & Intersect)
	EM (Expectation Maximization)
	Equal frequency discretization
	KMeans
	Min-max normalization
	Natural binning discretization
	Prefix Span
	Rule M
	Rule S
	Rule T
	Simple sampling
	Stratified sampling
	YaDT (Yet Another Decision Tree builder)
	Z-score normalization

	Appendices

	Extending the KDDML language
	Adding a new algorithm
	Adding a new operator
	Adding a new model
	Example: adding a naive bayes model
	Physical model
	Model entity
	Operators
	Operator one: model loader
	Operator two: model miner
	Operator three: classifier

