Main Page | Class Hierarchy | Class List | Class Members

kddml.Operators.Preprocessing.SamplingAlgorithms.SIMPLE_SAMPLING_RESOLVER Class Reference

Inheritance diagram for kddml.Operators.Preprocessing.SamplingAlgorithms.SIMPLE_SAMPLING_RESOLVER:

kddml.Operators.Preprocessing.SamplingAlgorithms.SamplingAlgorithmResolverTask kddml.Operators.Preprocessing.PPAlgorithmResolverTask kddml.Operators.AlgorithmResolverTask List of all members.

Public Member Functions

void readParameters (Hashtable< String, KDDMLScalarManager > parameters) throws ResolverException, KDDMLCoreException
void readStatistics (DataStatisticsManager statistic) throws ResolverException, KDDMLCoreException
String getHistoryDescription ()
int[] campionate (Instances instances) throws ResolverException

Detailed Description

Settings class for the Simple Sampling algorithm.
The simple sampling method returns a random subset of fixed cardinality from the input preprocessing table. According to the parameter with_replacement, simple sampling can use two distinct techniques: the with replacement method and the without replacement method.
More precisely, suppose that a data set contains N tuples. The Simple Random Sampling WithOut Replacement method (SRSWOR) selects n tuples from the input database, where the probability of drawing any tuple is 1/N, that is, all tuples are equally likely.
The Simple Random Sample With Replacement method (SRSWR) is similar to SRSWOR, except that each time a tuple is drawn from the dataset, it is recorded and then replaced. That is, after a tuple is drawn, it is placed back id the dataset, so that it may be drawn again.
The number of output instances, n, can be given either in absolute form (using the parameter number of instances) or as percentage (using the parameter percentage) with respect to the total number of input instances.

Title: KDDML

Description: Knowledge Discovery in Database Environment

Copyright: Copyright (c) 2003-2005

Company: Universita' di Pisa - Dipartimento di Informatica

Author:
Andrea Romei (romei@di.unipi.it)

Sandra Zimei

Version:
2.0.16


Member Function Documentation

void kddml.Operators.Preprocessing.SamplingAlgorithms.SIMPLE_SAMPLING_RESOLVER.readParameters Hashtable< String, KDDMLScalarManager parameters  )  throws ResolverException, KDDMLCoreException
 

Reads the XML parameters related to a generic algorithm stored in the ALGORITHM entity. An algorithm settings object captures the parameters associated with a particular algorithm. It allows a knowledgeable user to fine tune algorithm parameters. Generally, not all parameters must be specified, however, those specified are taken into account by the KDDML.
Parameters are given as hashtable, where the key is the name of the parameter related to the algorithm and the value is a KDDMLScalar object containing the parameter value. Parameter value is checked by the interpreter layer and its type is correct.

Parameters:
parameters Hashtable the parameters related to the algorithm. The key of the hashtable is the name of the parameter. The value of the hashtable is a KDDMLScalar representing the value of the parameter.
Exceptions:
ResolverException if a resolving error occurs.
KDDMLCoreException if a level core error occurs.

Implements kddml.Operators.AlgorithmResolverTask.

void kddml.Operators.Preprocessing.SamplingAlgorithms.SIMPLE_SAMPLING_RESOLVER.readStatistics DataStatisticsManager  statistic  )  throws ResolverException, KDDMLCoreException
 

Reads the data statistics related to the preprocessing table.

Parameters:
statistic DataStatisticsManager
Exceptions:
ResolverException 
KDDMLCoreException 

Implements kddml.Operators.Preprocessing.SamplingAlgorithms.SamplingAlgorithmResolverTask.

String kddml.Operators.Preprocessing.SamplingAlgorithms.SIMPLE_SAMPLING_RESOLVER.getHistoryDescription  )  [virtual]
 

Returns a description of the actions performed by this preprocessing algorithm. This description will be reported in the history related to the preprocessing data source.

Returns:
String
Exceptions:
KDDMLCoreException 

Implements kddml.Operators.Preprocessing.PPAlgorithmResolverTask.

int [] kddml.Operators.Preprocessing.SamplingAlgorithms.SIMPLE_SAMPLING_RESOLVER.campionate Instances  instances  )  throws ResolverException
 

Main method that campionates the input set of instances given as weka.core.Instances. The method returns an array of indexes that refere to the input campioned instances.

Parameters:
instances Instances the input instances to be campioned.
Returns:
int[] the indexes of campioned instances.
Exceptions:
ResolverException if an error occurs.

Implements kddml.Operators.Preprocessing.SamplingAlgorithms.SamplingAlgorithmResolverTask.


Generated on Thu Feb 23 13:04:55 2006 for kddml by  doxygen 1.4.3