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Abstract

In this paper, we explore the computational complexity of the conjunctive fragment of the first-
order theory of linear arithmetic. Quantified propositional formulas of linear inequalities with
(k − 1) quantifier alternations are log-space complete in ΣP

k or ΠP
k depending on the initial quan-

tifier. We show that when we restrict ourselves to quantified conjunctions of linear inequali-
ties, i.e., quantified linear systems, the complexity classes collapse to polynomial time. In other
words, the presence of universal quantifiers does not alter the complexity of the linear program-
ming problem, which is known to be in P. Our result reinforces the importance of sentence
formats from the perspective of computational complexity.
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1. Introduction

In the first-order theory of linear arithmetic, the sentences are arbitrary propositional combi-
nations of linear inequalities. The theory of linear arithmetic is itself a sub-theory of the theory
of real closed fields. Both these theories have been widely studied in the literature [1, 2, 3], since
they find applications in a number of domains including but not limited to constraint databases
[4] and model checking [5]. This paper examines the computational complexity of the conjunc-
tive fragment of the first-order theory of linear arithmetic. Consider the sub-class of formulas in
the theory of reals with addition and order starting with an existential quantifier and with (k − 1)
quantifier alternations:

∃x1 ∀x2 . . . Qxk F(x1, . . . , xk)

where Q is ∃ for k odd and ∀ for k even, and F(x1, . . . , xk) is a propositional combination of linear
inequalities over variable sets x1, . . . , xk. This sub-class has been shown to be log-space complete
in ΣP

k [6]. It is legitimate to ask ourselves whether this complexity result is attributable to the fact
that F is a propositional combination or, rather, to an intrinsic complexity of quantification over
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linear inequalities. We answer this very question in this paper. We show that when F is a
conjunction of linear inequalities, i.e., a linear system, then the complexity of deciding whether
the formula above holds is in P. It is well-known that linear programming is decidable in P
[7, 8, 9]. Our results in this paper, extend the work in [7] to the case of quantified linear systems.
All the proofs provided in this paper are constructive, with algorithms based on solving a number
of linear programming problems.

The rest of the paper is organized as follows. We first recall background notation in Sec-
tion 1.1, and related work from the literature in Section 1.2. Section 2 provides a formal descrip-
tion of the problem under consideration. Section 3 discusses the principal complexity result in
this paper. We conclude in Section 4, by summarizing our contribution and describing avenues
for future work.

1.1. Background

We adhere to standard notation of linear algebra [10]. R is the set of real numbers. Small bold
letters (a, b, . . . ) denote column vectors, while capital bold letters (A, B, . . . ) denote matrices.
0 is a column vector with all elements equal to 0. The transposed vector of a is denoted by aT .
The inner product is denoted by aT · b. We write A · x ≤ b for a system of linear inequalities
over the variables in x, also called a linear system. We assume that the dimensions of vectors and
matrices in inner products and linear systems are of the appropriate size. A polyhedron is the set
of solution points of a linear system: S ol(A · x ≤ b) = {x0 ∈ R|x| | A · x0 ≤ b}. Polyhedra are
convex sets. A linear system A ·x ≤ b is satisfiable if its polyhedron S ol(A ·x ≤ b) is non-empty.
A linear program:

max cT · x
A · x ≤ b

is the problem of finding max {cT · x0 | x0 ∈ S ol(A · x ≤ b)}. If the polyhedron S ol(A · x ≤ b) is
empty, the problem is said to be infeasible. If the linear function cT · x has no upper bound, the
problem is said to be unbounded.

1.2. Related Work

Since Tarski [1] established a decision procedure for the full elementary theory of real closed
fields with addition (+), multiplication (·) and order (<, =), a number of quantifier elimination
methods have been proposed [11, 12] together with approaches efficient-in-practice, including
partial cylindrical algebraic decomposition [2] provided in the QEPCAD/QEPCAD-B systems
[13], virtual substitution of test terms [14] provided in the REDLOG system [15], and the RSolver
algorithm [16], whose implementation is publicly available [17]. Although it has been improved
several times [3, 18], the complexity of quantifier elimination is, in the worst case, doubly ex-
ponential in the number of quantifier alternations and exponential in the number of variables
[12, 19].

It is important to note that the real numbers themselves cannot be fully axiomatized by a
first-order theory. This can be seen in Tarski’s axiomatization of the reals, which requires a non-
first-order axiom to express the Dedekind completeness of the real numbers. Briefly, Dedekind
completeness is the property that all bounded subsets of real numbers must have a real least upper
bound and real greatest lower bound. The axiom in question involves universal quantification
over subsets of the real numbers, which cannot be done with first-order logic.
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Any field which satisfies the same first-order properties as the real numbers is called a real
closed field. One example of a real closed field is the set of real algebraic numbers, i.e., the set of
all real numbers that are the roots of non-zero polynomials with rational coefficients. While the
real algebraic numbers are a real closed field, they are not Dedekind complete, since it is possible
to construct a set of rational numbers, which are all algebraic, that have a supremum of π which
is not. It is also easy to see that the rationals do not form a real closed field; for instance, the
solution of the algebraic equation x2 − 2 = 0 is not a rational number.

The complexity of sub-classes of the full elementary theory of the reals has been considered.
The existential theory of the reals is obtained by restricting to existentially quantified formula

∃x F(x) where F(x) is a quantifier-free formula. The computational complexity of the decision
problem is singly exponential in the number of quantified variables x [20].

The theory of reals with addition and order is obtained by restricting to the function symbol
+ and predicate symbols < and =. In [21], a quantifier elimination procedure is provided for
sentences in this theory that is singly exponential in space and doubly exponential in time. The
procedure replaces unbounded quantified variables with variables that are quantified over a finite
set of rational numbers. An exponential time lower bound is shown in [22], where Berman
studies Pressburger arithmetic (which is the first-order theory of natural numbers with addition)
and determines the time and space complexity of both theories at various levels of quantifier
alternation. Consider a formula in the theory of reals with addition and order in prenex normal
form with (k − 1) quantifier alternations

∃x1 ∀x2 . . .Qxk F(x1, . . . , xk)

where Q is ∃ for k odd and ∀ for k even, while F(x1, . . . , xk) is a quantifier-free formula. Sontag
[6] shows that this class of formulas is log-space complete in ΣP

k . He does so by converting any
such formula into a disjunction of conjunctions of equalities and strict inequalities, and using the
fact that the extreme points of polyhedra are polynomial in the size of the input.

In this paper, we deal with a sub-theory of the reals with addition and order, where the
F(x1, . . . , xk) above consists of conjunctions of linear inequalities, namely a linear system. For
k = 1, the decision problem for such a formula boils down to to satisfiability of linear systems,
which is known to be in P.

2. Problem Statement

A quantified linear system (QLS) is a first-order formula of the form:

∃x1 ∀y1 . . .∃xn ∀yn A · x ≤ b (1)

where n ≥ 0, and x1 . . . xn, y1 . . . yn is a partition of the vector of variables x, and where x1 and/or
yn may be empty. A QLS holds if it is true as a first-order formula over the domain of the reals.
The theory of QLSes is the set of QLSes that hold, and it is a subset of the theory of reals with
addition and order. The decision problem for a QLS consists of checking whether it holds or not.

3. The Decision Problem for QLSes is in P

The decision problem for QLSes with only existential quantification, namely for ∃x A·x ≤ b,
boils down to the satisfiability problem for the linear system A · x ≤ b, which is in P [7]. In this
section, we will show that the same holds for the generic class of QLSes.
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Our first result illustrates that universal quantifiers at the end of a quantifier string are super-
fluous, in the sense that we only need to examine cases where these quantifiers correspond to
variables not occurring in the linear system; otherwise, the formula trivially does not hold.

Lemma 3.1. Let Qx be a sequence of quantifiers over x. A formula Qx ∀y A ·x + B ·y ≤ c holds
if and only if B = 0 and Qx A · x ≤ c holds.

Proof. If part. Immediate, since B = 0 implies that Qx ∀y A ·x+B ·y ≤ c reduces to Qx A ·x ≤ c.
Only-if part. Assume that Qx ∀y A · x + B · y ≤ c holds. By instantiating y = 0, we obtain

that Qx A · x ≤ c holds. We will show now that B , 0 is impossible. Let x0 be any instance of x
such that ∀y A · x0 + B · y ≤ c holds (note that such an x0 exists, since Qx ∀y A · x + B · y ≤ c,
and thus ∃x ∀y A · x + B · y ≤ c holds by assumption). If B , 0, there must exist some inequality
aT · x0 + bT · y ≤ c with bT , 0 such that ∀y aT · x0 + bT · y ≤ c holds. Since bT , 0,
there exists at least one element of bT (say bi, i.e., the ith element of b) for which bi , 0. Now
consider an instance y0 of y such that y0 contains 0s in every row except row i, which is set to
(c + 1 − aT · x0)/bi. However, this means that aT · x0 + bT · y0 = c + 1 > c, which contradicts the
fact that ∀y aT · x0 + bT · y ≤ c holds. 2

An immediate consequence of this lemma is that universal quantifiers at the end of a quanti-
fier string do not affect the class of complexity of QLSes. Hence, we obtain our first complexity
result on QLSes.

Corollary 3.1. Deciding whether ∀y B · y ≤ c holds, or whether ∃x ∀y A · x + B · y ≤ c holds
are problems in P.

Proof. By Lemma 3.1, ∀y B · y ≤ c holds if and only if B = 0 and 0 ≤ c. Both conditions can be
readily checked in polynomial (linear) time. Analogously, ∃x ∀y A · x + B · y ≤ c holds if and
only if B = 0 and ∃x A · x ≤ c. Since checking ∃x A · x ≤ c is a problem in P [7], the conclusion
follows. 2

Next, we examine the class of ∀∃ quantified linear systems. First, let us recall the Fourier-
Motzkin variable elimination method (e.g., see [10]). For a linear system with n variables
x1, . . . , xn, the method eliminates these variables by yielding an equivalent system, where any
variable xi (where i = 1, . . . , n) is bounded by (zero or more) linear functions over variables
xi+1, . . . , xn. Example 3.1 illustrates the application of the Fourier-Motzkin elimination method.

Example 3.1. Consider the linear system P = x + y ≤ z,w ≤ y, z ≤ x − y. Using the Fourier-
Motzkin method, we eliminate the variable y first, followed by x, w, and finally z.

y ≤ x − z

y ≤ z − x

w ≤ y

(a)

y ≤ x − z

y ≤ z − x

w ≤ y

z + w ≤ x

x ≤ z − w

(b)

y ≤ x − z

y ≤ z − x

w ≤ y

z + w ≤ x

x ≤ z − w

w ≤ 0
(c)

First, we isolate y as shown in system (a). Then we add inequalities cT
1 · x ≤ cT

2 · x for every pair
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cT
1 · x ≤ y and y ≤ cT

2 · x of bounds on y. This leads to the equivalent system (b), where x has also
been isolated. Finally, we add inequalities derived from the bounds on x, thus obtaining the final
system (c), where w has also been isolated. Notice that the single bound on w does not yield any
inequality. Thus z is free to assume any value.

The form of the final system after variable elimination is useful in establishing the correctness
of a decision procedure for checking ∀∃ quantified linear systems.

Theorem 3.1. Deciding whether ∀y ∃x A · x + B · y ≤ c holds is a problem in P.

Proof. Let P denote the linear system A · x + B · y ≤ c. If S ol(P) = ∅ (which we can check in
polynomial time [7]), then it readily follows that ∀y ∃x P does not hold. Otherwise (i.e, P is
satisfiable), we distinguish two cases with respect to the size of y = (y1, . . . , yn):
(n = 0). Then ∀y ∃x P boils down to ∃x A · x ≤ c, which holds since P is satisfiable.
(n > 0). Consider the linear programming problems:

M = max {yn | P} m = min {yn | P}. (2)

If one or both are bounded, then for an instance y0 = (y0
1, . . . , y

0
n) of y such that y0

n > M (or,
respectively, y0

n < m), we obtain S ol(A · x + B · y0 ≤ c) = ∅; hence, ∀y ∃x A · x + B · y ≤ c
does not hold. We will now assume that the two problems in (2) are unbounded. Let B′ · y′ be
obtained from B · y by replacing yn with 0, i.e., removing every occurrence of yn in P. We claim
that ∀y ∃x A · x + B · y ≤ c holds if and only if ∀y′ ∃x A · x + B′ · y′ ≤ c holds; in such case, a
decision procedure consists of a recursive call3 on ∀y′ ∃x A · x + B′ · y′ ≤ c. Next, we prove our
claim.

Only-if part. We will prove this by showing the contrapositive. Hence, consider the case
where ∀y′ ∃x A · x + B′ · y′ ≤ c does not hold and let y′0 be an instance of y′ such that S ol(A ·
x + B′ · y′0 ≤ c) = ∅. By defining y0 = (y′0, 0), it is readily checked that B · y0 = B′ · y′0. Thus,
S ol(A · x + B · y0 ≤ c) = ∅. Therefore, ∀y ∃x A · x + B · y ≤ c also does not hold.

If part. Consider a Fourier-Motzkin elimination procedure for P in which variables in x are
eliminated first, followed by variables in y = (y1, . . . , yn). Let P′ be the resulting system. In
particular, for any i = 1, . . . , n − 1, the variable yi may be bounded in P′ by (zero or more)
inequalities of the form f (yi+1, . . . , yn) ≤ yi or of the form yi ≤ g(yi+1, . . . , yn) (where f , g denote
linear functions). Note that yn does not have any such bounds, since the problems in (2) are
both unbounded. We prove the if-part by showing the contrapositive. Consider the case where
∀y ∃x A·x+B·y ≤ c does not hold and let y0 = (y0

1, . . . , y
0
n) be such that S ol(A·x+B·y0 ≤ c) = ∅.

We will now show that we can set y0
n = 0 and make it easy to eliminate. Note that since P and

P′ are equivalent (i.e., S ol(P) = S ol(P′)), there will exist at least one i ∈ {1, . . . , n − 1} such that
y0

i < f (y0
i+1, . . . , y

0
n) or y0

i > g(y0
i+1, . . . , y

0
n); that is, y0

i does not satisfy at least one inequality in
P′ of the form f (yi+1, . . . , yn) ≤ yi or of the form yi ≤ g(yi+1, . . . , yn). Now let us consider the
maximum index k for which y0

k is bounded by at least one inequality in P′; then, for j > k, there
is no bound on y j in P′. Note that k < n, since yn is unbounded, hence k ∈ {1, . . . , n − 1} and
there exists at least one unbounded y j with j > k in P′. Since for each j > k, y j is free in P′, we

3Since the problems in (2) are unbounded, there exists a > 0 and b < 0 such that S ol((P, yn = a)) , ∅ and S ol((P, yn =

b)) , ∅. Since S ol(P) is a convex set, we can conclude S ol((P, yn = 0)) = S ol(A · x + B′ · y′ ≤ c) , ∅. Hence, the
recursive call may skip the initial check on satisfiability of the linear system. This observation is used in coding the
decision procedure of Algorithm 1 that will be shown later on.
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can arbitrarily fix its value to 0 (i.e., y j = 0 for all j > k). Moreover, by assigning yk any value
v such that v < f (0, . . . , 0) or v > g(0, . . . , 0), we obtain y1 = (y0

1, . . . , y
0
k−1, v, 0, . . . , 0) such that

S ol(A·x+B·y1 ≤ c) = ∅. Since y1 sets yn = 0, we also have that S ol(A·x+B′ ·y′1 ≤ c) = ∅, where
y′1 is obtained by removing the last 0 from y1 (i.e., y1 = (y′1, 0)). Therefore, ∀y′ ∃x A·x+B′·y′ ≤ c
also does not hold.

Finally, note that the decision procedure described above runs in polynomial time, since it
consists of solving at most 2n + 1 linear programming problems, each one having polynomial
time complexity [7]. 2

It is worth noting that the Fourier-Motzkin elimination method is used within the proof to
establish the correctness of the decision procedure, but it is not used by the procedure itself. This
is important, since the Fourier-Motzkin elimination procedure runs in exponential time in the
worst case [10]. Algorithm 1 codes in a pseudo-programming language the decision procedure
QLS forall exists() devised in the proof of the theorem. Algorithm 1 takes as input a QLS of the
form ∀y ∃x P, where P = A · x + B · y ≤ c, and returns true if and only if ∀y ∃x P holds. First,
it checks whether P is satisfiable (line 1). If this is the case, it proceeds with checking whether
each variable in y is bounded (line 6) and, if it is not, with setting its value to 0 (line 9). In the
special case that the input is ∃x A · x ≤ c, i.e., for an instance with no y variables, the procedure
QLS forall exists() boils down to checking satisfiability of P. In the special case ∀y B · y ≤ c,
i.e., for an instance with no x variables, the syntactic checking “B = 0 and 0 ≤ c” from the proof
of Corollary 3.1 will be more efficient in an actual implementation. We have refrained from
including such a sub-procedure within Algorithm 1 for simplicity of exposition.

Example 3.2. Consider the system P of Example 3.1. Let us apply the QLS forall exists() pro-
cedure on ∀x z ∃y w P. Clearly, P is satisfiable, i.e., S ol(P) , ∅. We have that max {z | P} is
unbounded and min {z | P} is unbounded. This can be readily checked from the equivalent system
(c) of Example 3.1. After replacing z by 0, we obtain the system P′ = x + y ≤ 0,w ≤ y, 0 ≤ x − y.
The variable x is unbounded in P′: for every x = x0, we can set y = w = x0 if x0 ≤ 0 and
y = w = −x0 if x0 > 0 to obtain a solution of P′. The QLS forall exists() procedure then returns
that ∀z x ∃y w P holds. Notice that after replacing x by 0 in P′, we obtain P′′ = y ≤ 0,w ≤ y,
where both y and w are clearly bounded. Hence, if either y or w were universally quantified over,
the corresponding QLS would not hold; e.g., ∀z x y ∃w P does not hold.

Example 3.3. In a bi-level linear programming problem [23], a planner at level one of a hier-
archy has its objective function and decision space determined by a planner at level two of the
hierarchy:

P1


max cT

1,1 · x1 + cT
1,2 · x2

where x2 solves

P2

{
max cT

2,1 · x1 + cT
2,2 · x2

A · x1 + B · x2 ≤ c

The planner at level one maximizes its objective function by controlling only vector x1. For
any fixed choice of x1, the planner at level two chooses a value of x2 to maximize its objective
function. In this context, the QLS formula ∀x1 ∃x2 A · x1 + B · x2 ≤ c holds if and only if any
choice x1 at level one admits a possible choice x2 at level two. Checking whether this condition
holds is in P by Theorem 3.1. In general, bi-level linear programming is NP-hard [24, 25, 26].
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Algorithm 1 Decision procedure QLS forall exists(∀y ∃x P).
1: if S ol(P) = ∅ then
2: return false;
3: end if
4: let (y1, . . . , yn) = y;
5: while n > 0 do
6: if max {yn | P} is bounded or min {yn | P} is bounded then
7: return false;
8: end if
9: replace yn with 0 in P;

10: n← n − 1;
11: end while
12: return true;

By the decomposition theorem of polyhedra, a non-empty polyhedron S ol(A · x + B · y ≤ c)
can be expressed as the Minkowski sum of its characteristic cone S ol(A · x + B · y ≤ 0) and a
polytope (a bounded polyhedron) [10]. Hence, the characteristic cone represents the “infinite”
part of the polyhedron. As a consequence, a linear function is bounded over a polyhedron if
and only if it is bounded over its characteristic cone. By looking through the decision procedure
QLS forall exists(), we notice that it relies on checking upper and lower bounds over S ol(A ·
x + B · y ≤ c) , ∅, which, as observed, is equivalent to checking upper and lower bounds over
S ol(A · x + B · y ≤ 0). Hence, the constant terms c play no role, as we now formally state.

Corollary 3.2. Let S ol(A · x + B · y ≤ c) be non-empty. Then ∀y ∃x A · x + B · y ≤ c holds if and
only if ∀y ∃x A · x + B · y ≤ 0 holds.

Proof. Let P be A · x + B · y ≤ c, and P′ be its homogeneous version A · x + B · y ≤ 0. Since
S ol(P) , ∅, we have that max {yn | P} is upper bounded if and only if max {yn | P′} is upper
bounded – see e.g., [27, Corollary 3.1] for a proof. Similarly, min {yn | P} is lower bounded if and
only if min {yn | P′} is lower bounded. Therefore, the decision procedure QLS forall exists() for
∀y ∃x P is equivalent to the decision procedure for ∀y ∃x P′. The result follows. 2

This result is useful in proving the following crucial decomposition property of a general
QLS problem into a ∀∃ problem and a QLS problem with fewer quantifier alternations.

Lemma 3.2. Let Qz be a sequence of quantifiers over z. Then Qz ∀y ∃x A · x + B · y + C · z ≤ d
holds if and only if both ∀y ∃x A · x + B · y ≤ 0 and Qz ∃y ∃x A · x + B · y + C · z ≤ d hold.

Proof. If part. Let z0 be such that ∃y ∃x A · x + B · y + C · z0 ≤ d holds. Notice that this implies
S ol(A·x+B·y ≤ d−C·z0) , ∅. By Corollary 3.2 (if part) and the hypothesis ∀y ∃x A·x+B·y ≤ 0,
we then have that ∀y ∃x A · x + B · y ≤ d−C · z0 holds. Since Qz ∃y ∃x A · x + B · y + C · z ≤ d
holds, the instances z0 of z for which the previous reasoning applies satisfy the Qz quantification.
We can then reintroduce quantifications over z to conclude that Qz ∀y ∃x A · x + B · y + C · z ≤ d
holds.

Only-if part. Qz ∀y ∃x A ·x+B ·y+C ·z ≤ d clearly implies Qz ∃y ∃x A ·x+B ·y+C ·z ≤ d.
Let z0 be such that ∀y ∃x A · x + B · y + C · z0 ≤ d holds (at least one such z0 exists since
Qz ∀y ∃x A · x + B · y + C · z ≤ d holds). We can rewrite such a formula as ∀y ∃x A · x + B · y ≤

7



Algorithm 2 Decision procedure QLS decision(Φ).
1: if Φ = Qx ∀y A · x + B · y ≤ c then
2: if B , 0 then
3: return false;
4: end if
5: Φ← Qx A · x ≤ c;
6: end if
7: while Φ contains ∀ quantifiers do
8: let Φ = Qz ∀y ∃x A · x + B · y + C · z ≤ d;
9: if not QLS forall exists(∀y ∃x A · x + B · y ≤ 0) then

10: return false;
11: end if
12: Φ← Qz ∃y ∃x A · x + B · y + C · z ≤ d;
13: end while
14: let Φ = ∃x A · x ≤ b;
15: return S ol(A · x ≤ b) , ∅;

d − C · z0. Notice that this implies S ol(A · x + B · y ≤ d − C · z0) , ∅. Hence, by Corollary 3.2
(only-if part), ∀y ∃x A · x + B · y ≤ 0 also holds. 2

We are now in the position to state our main result.

Theorem 3.2. The decision problem for the class of QLSes is in P.

Proof. Consider a QLS formula and let Q be the sequence of quantifiers in it. If Q ends with
∀, we can apply Lemma 3.1. This would either lead to the conclusion that the formula does not
hold (if any variable in the last universal quantifier actually appears in the linear system) or that
the universal quantifier can be removed. In the latter case, we proceed as when Q ends with ∃.

Assume now that Q ends with ∃. Then, the QLS is of the form

∃x0 ∀y1 ∃x1 . . .∀yn−1 ∃xn−1 ∀yn ∃xn A0 · x0 + B1 · y1 + A1 · x1 + . . . + Bn · yn + An · xn ≤ c (3)

where n ≥ 0 and x0 may be empty. We will prove our claim by induction on the number n of
universal quantifiers in Q. If n = 0 (i.e., if Q contains no universal quantifiers), then formula (3)
reduces to ∃x0 A0 · x0 ≤ c, hence solvable in polynomial time [7]. Otherwise, if n > 0, Q is of
the form Q′∀∃ and the corresponding QLS is of the form (3). By Lemma 3.2, such a decision
problem can be reduced to a decision problem for a ∀∃ formula:

∀yn ∃xn An · xn + Bn · yn ≤ 0

which is in P by Theorem 3.1, and to a decision problem for a formula whose prefix Q′∃ has
(n − 1) universal quantifiers:

∃x0 ∀y1 ∃x1 . . .∀yn−1 ∃xn−1 ∃yn ∃xn A0 · x0 + B1 · y1 + A1 · x1 + . . . + Bn · yn + An · xn ≤ c

which is in P by the inductive hypothesis. 2

Algorithm 2 illustrates the pseudo-code for the decision procedure QLS decision() devised
in the proof of Theorem 3.2. Lines 1-6 implement the base case (Lemma 3.1). Lines 7-13
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implement the recursive elimination of all universal quantifiers (Theorem 3.2). Finally, lines 14-
15 check whether the resulting existentially quantified formula holds by checking satisfiability
of the corresponding linear system.

4. Conclusion

We have investigated the computational complexity of the conjunctive fragment of the theory
of linear arithmetic, called quantified linear systems. This class extends the satisfiability problem
of linear systems, which is known to be in P, and is included in the theory of real numbers with
addition and order, which is PSPACE-hard. We have shown that the decision problem for QLSes
is in P. Our proofs are constructive, in that we Turing-reduce the QLS decision problem to linear
programming. This result demonstrates that the complexity of the theory of real numbers with
addition and order is attributable to the presence of propositional connectives and of quantifiers,
rather than only to quantifiers. Hence, it reinforces the importance of sentence formats from the
perspective of computational complexity.

In quantified linear systems, variables are unbounded on both sides, i.e., there is no upper or
lower bound imposed on their values. A question that arises naturally is whether the presented
complexity results change, when bounds are placed on the variables. The case where each uni-
versally quantified variable has an upper and a lower bound has been studied in [28]. The class
of ∀∃ formulas for this problem is coNP-complete and the problem itself is in PSPACE; estab-
lishing its hardness however remains open. We are particularly interested in the computational
complexity of Quantified Linear Systems, in which each universally quantified variable has an
upper bound or a lower bound (but not both).
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