
Characterisations of Termination
in Logic Programming

Dino Pedreschi1, Salvatore Ruggieri1, and Jan–Georg Smaus2

1 Dipartimento di Informatica, Università di Pisa, Via F. Buonarroti 2,
56125 Pisa, Italy, {pedre,ruggieri}@di.unipi.it

2 Institut für Informatik, Universität Freiburg, Georges-Köhler-Allee 52,
79110 Freiburg im Breisgau, Germany, smaus@informatik.uni-freiburg.de

Abstract. The procedural interpretation of logic programs and queries
is parametric to the selection rule, i.e. the rule that determines which
atom is selected in each resolution step. Termination of logic programs
and queries depends critically on the selection rule. In this survey, we
present a unified view and comparison of seven notions of universal ter-
mination considered in the literature, and the corresponding classes of
programs. For each class, we focus on a sufficient, and in most cases even
necessary, declarative characterisation for determining that a program is
in that class. By unifying different formalisms and making appropriate
assumptions, we are able to establish a formal hierarchy between the
different classes and their respective declarative characterisations.

1 Introduction

The paradigm of logic programming originates from the discovery that a frag-
ment of first-order logic can be given an elegant computational interpretation.
Kowalski [40] advocates the separation of the logic and control aspects of a logic
program and has coined the famous formula

Algorithm = Logic + Control.

The programmer should be responsible for the logic part, and hence a logic
program should be a (first-order logic) specification. The control should be taken
care of by the logic programming system. One aspect of control in logic programs
is the selection rule. This is a rule stating which atom in a query is selected in
each derivation step. It is well-known that soundness and completeness of SLD-
resolution is independent of the selection rule [2]. However, a stronger property
is usually required for a selection rule to be useful in programming, namely
termination.

Definition 1.1. A terminating control for a program P and a query Q is a
selection rule s such that every SLD-derivation of P and Q via s is finite.

In reality, logic programming is far from the ideal that the logic and con-
trol aspects are separated. Without the programmer being aware of the control

and writing programs accordingly, logic programs would usually be hopelessly
inefficient or even non-terminating.

The usual selection rule of early systems is the LD selection rule: in each
derivation step, the leftmost atom in a query is selected for resolution. This
selection rule is based on the assumption that programs are written in such a
way that the data flow within a query or clause body is from left to right. Under
this assumption, this selection rule is usually a terminating control. For most
applications, this selection rule is appropriate in that it allows for an efficient
implementation.

Second generation logic programming languages allow for dynamic schedul-
ing, i.e. they have primitives for addressing logic and control separately. Program
clauses have their usual logical reading. In addition, programs are augmented
by delay declarations or annotations that specify restrictions on the admissible
selection rules. These languages include NU-Prolog [74] and Gödel [38].

In this survey, we classify programs and queries according to the selection
rules for which they terminate, hence investigating the influence of the selection
rule on termination. Like most approaches to the termination problem, we are
interested in universal termination of logic programs and queries, that is, show-
ing that all derivations for a program and query (via a certain selection rule) are
finite. This is in contrast to existential termination [10, 23, 48]. Also, we consider
definite logic programs, as opposed to logic programs that also contain negated
literals in clause bodies.

Figure 1 gives an overview of the classes we consider. Arrows drawn with
solid lines stand for set inclusion (“→ corresponds to ⊆”). The numbers in the
figure correspond to statements and examples related to the pair of classes in
question.

A program P and query Q strongly terminate if they terminate for all se-
lection rules. This class of programs has been studied mainly by Bezem [11].
Naturally, this class is the smallest we consider. A program P and query Q left-
terminate if they terminate for the LD selection rule. The vast majority of the
literature is concerned with this class; see [23] for an overview. A program P and
query Q ∃-terminate if there exists a selection rule for which they terminate. This
notion of termination has been introduced by Ruggieri [62, 63]. Surprisingly, this
is still not the largest class we consider. Namely, there is the class of programs for
which there are only finitely many successful derivations (although there could
also be infinite derivations). We say that these programs have bounded nonde-
terminism, a notion studied by Pedreschi & Ruggieri [58]. Such programs can
be transformed into equivalent programs which strongly terminate, as indicated
in the figure and stated in Theorem 10.11.

The three remaining classes shown in the figure are related to dynamic
scheduling, i.e. selection rules where the selection of an atom depends on its
degree of instantiation at runtime. To explain these classes and their relation-
ship with left-terminating programs, we have to introduce the concept of modes.
A mode is a labelling of each argument position of a predicate as either input or
output. It indicates the intended data flow in a query or clause body.

6
(Strong termination)

Recurrent programs
A

A
A

A
A

A
A

A
A

A
A

A
A

A
AK

Ex. 6.1

6

10.1, Ex. 7.10

�
�

��
Exs. 4.1, 4.13

(Input termination)
Simply acceptable programs

�
�

��>
Exs. 5.1, 5.6

I

10.7, Ex. 6.3

K

10.5, Ex. 7.3

K

10.4, Ex. 8.3

(Input P-termination)

programs
Simply P-acceptable

y

10.9, Exs. 6.1, 6.10

(Local delay termination)
Delay-recurrent programs

*
10.3, Exs. 7.1, 7.4

�

10.2, Ex. 8.3
(Left-termination)

Acceptable programs

6
10.1, Ex. 8.1

(∃-Termination)
Fair-bounded programs

6
10.1, Ex. 9.1

(Bounded nondeterminism)
Bounded programs

10.11

Inference+transformation

Fig. 1. An overview of the classes

An input-consuming derivation is a derivation where an atom can be selected
only when its input arguments are instantiated to a sufficient degree, so that
unification with the head of the clause does not instantiate them further. A
program and a query input terminate if all input-consuming derivations for this
program and query are finite. This class of programs has been studied by Smaus
[67] and Bossi et al. [15–17].

Input-consuming derivations can be restricted by imposing some additional
instantiation property P that each selected atom must have. For example, P
might be the set of all atoms that are bounded w.r.t. a given level mapping. A
program and a query input P-terminate if all input-consuming derivations for
this program and query, restricted by P, are finite. This class of programs has
been studied by Smaus in very recent work [68].

A local selection rule is a selection rule specifying that an atom can only be
selected if there is no other atom which was introduced (by resolution) more
recently. Marchiori & Teusink [47] have studied termination for selection rules
that are both local and delay-safe, i.e. they respect the delay declarations. We
will call termination w.r.t. such selection rules local delay termination.

A priori, the LD selection rule, input-consuming selection rules (possibly re-
stricted by a property P) and local delay-safe selection rules are not formally
comparable. Under reasonable assumptions however, one can say that assuming
input-consuming selection rules is weaker than assuming local and delay-safe se-
lection rules, which is again weaker than assuming the LD selection rule. While
assuming input-consuming selection rules is trivially (though not necessarily
strictly) weaker than assuming input-consuming selection rules with an addi-
tional property P, there is little sense in making general comparisons between
selection rules restricted by some P and the other classes — it depends on the P.
However, we can choose P so that it exactly captures delay-safe selection rules,
and then it follows of course that assuming P-selection rules is weaker than as-
suming local and delay-safe selection rules. All these inclusions that depend on
additional assumptions are indicated in the figure by dashed lines. Again, the
numbers in the figure correspond to statements and examples.

In this survey, we present declarative characterisations of the classes of pro-
grams and queries that terminate with respect to each of the mentioned notions
of termination. The characterisations make use of level mappings and Herbrand
models in order to provide proof obligations on program clauses and queries. All
characterisations are sound. Except for the cases of local delay termination and
input P-termination, they are also complete (in the case of input termination,
this holds only under certain restrictions).

This survey is organised as follows. The next section introduces some basic
concepts and fixes the notation. Then we have seven sections corresponding to
the seven classes in Fig. 1, defined by increasingly strong assumptions about
the selection rule. In each section, we introduce a notion of termination and
provide a declarative characterisation for the corresponding class of terminating
programs and queries. In Sec. 10, we establish relations between the classes,
formally showing the implications of Fig. 1. Section 11 discusses the related
work, and Sec. 12 concludes.

2 Background and Notation

We use the notation of Apt [2], when not otherwise specified. In particular,
throughout this article we consider a fixed language L in which programs and
queries are written. All the results are parametric with respect to L, provided
that L is rich enough to contain the symbols of the programs and queries under
consideration.

We denote by UL (resp., BL) the Herbrand universe (resp., base) on L. We
denote by TermL (resp., AtomL) the set of terms (resp., atoms) on L. We use
typewriter font for logical variables, e.g. X, Ys, upper case letters for arbitrary

terms, e.g. Xs, and lower case letters for ground terms, e.g. t, x, xs. We denote by
instL(P) (groundL(P)) the set of (ground) instances of all clauses in P that are
in language L. The notation groundL(Q) for a query Q is defined analogously.
The domain (resp., set of variables in the range) of a substitution θ is denoted
as Dom(θ) (resp., Ran(θ)).

The set {1, . . . , n} is denoted by [1, n].

2.1 Modes

For a predicate p/n, a mode is an atom p(m1, . . . ,mn), where mi ∈ {I ,O} for
i ∈ [1, n]. Positions with I are called input positions, and positions with O are
called output positions of p. To simplify the notation, an atom written as p(s, t)
means: s is the vector of terms filling in the input positions, and t is the vector
of terms filling in the output positions. An atom p(s, t) is input-linear if s is
linear, i.e. each variable occurs at most once in s. The atom is output-linear if t
is linear. A mode for a program consists of a mode for each of its predicates.

In the literature, several correctness criteria concerning the modes have been
proposed, most importantly nicely-modedness and well-modedness [2]. In this
article, we need simply moded programs [4] and well moded programs. The
former are a special case of nicely moded programs. Note that the use of the
letters s and t is reversed for clause heads. We believe that this notation naturally
reflects the data flow within a clause.

Definition 2.1. A clause p(t0, sn+1)← p1(s1, t1), . . . , pn(sn, tn) is simply
moded if t1, . . . , tn is a linear vector of variables and for all i ∈ [1, n]

Var(ti) ∩Var(t0) = ∅ and Var(ti) ∩
i⋃

j=1

Var(sj) = ∅.

A query B is simply moded if the clause p←B is simply moded, where p/0
is a fresh predicate symbol. A program is simply moded if all of its clauses are.

A query (clause, program) is permutation simply moded if it is simply moded
modulo reordering of the atoms of the query (each clause body).

Thus, a clause is simply moded if the output positions of the body atoms are
filled in by distinct variables, and every variable occurring in an output position
of a body atom does not occur in an earlier input position. In particular, every
unit clause is simply moded.

Definition 2.2. A query Q = p1(s1, t1), . . . , pn(sn, tn) is well moded if for all
i ∈ [1, n] and K = 1

Vars(si) ⊆
i−1⋃
j=K

Vars(tj) (1)

The clause p(t0, sn+1) ← Q is well moded if (1) holds for all i ∈ [1, n + 1] and
K = 0. A program is well moded if all of its clauses are.

A query (clause, program) is permutation well moded if it is well moded
modulo reordering of the atoms of the query (each clause body).

Almost all programs we consider in this article are permutation well and
simply moded with respect to the same set of modes. The program in Fig. 9
is an exception due to the fact that our notion of modes cannot capture that
sub-arguments of a term can have different modes. We do not always give the
modes explicitly, but they are usually easy to guess.

Conceptually, we assume that whenever modes are used in this article, the
mode of a predicate is unique. To realise the use of one predicate in several modes,
one can introduce multiple (renamed) versions of the predicate [4, 5, 32, 55]. But
it is also possible to realise multiple modes without any actual code duplication.
Then, a mode should be associated with each occurrence of a predicate in a
program [66, 69].

2.2 Norms and Level Mappings

All the characterisations of terminating programs we propose make use of the
notions of norm and level mapping [20]. Depending on the approach, such notions
are defined on ground or arbitrary objects.

In the following definition, TermL/∼ denotes the set of equivalence classes
of terms modulo variance. Similarly, we define AtomL/∼.

Definition 2.3. A norm is a function |.| : UL→ IN. A level mapping is a func-
tion |.| : BL→ IN. For a ground atom A, |A| is called the level of A.

An atom A is bounded w.r.t. the level mapping |.| if there exists k ∈ IN such
that for every A′ ∈ groundL(A), we have k > |A′|.

A generalised norm is a function |.| : TermL/∼ → IN. A generalised level
mapping is a function |.| : AtomL/∼ → IN . Abusing notation, we write |T | (|A|)
to denote the value of |.| on the equivalence class of the term T (the atom A).

(Generalised) level mappings are used to measure the “size” of a query and
show that this size decreases along a derivation, hence showing termination.
They are usually defined based on (generalised) norms.

Of course, a generalised norm or level mapping can be interpreted as an
ordinary norm or level mapping by restricting its domain to ground objects.
Therefore, we now give some examples of generalised norms and level mappings.

One commonly used generalised norm is the term size norm, defined as

size(f(T1 , . . . , Tn)) = 1 + size(T1) + . . . + size(Tn) if n > 0
size(T) = 0 if T constant/variable.

Intuitively, the size of a term T is the number of function symbols occurring in
T , excluding constants. Another widely used norm is the list-length function,
defined as

length([T |Ts]) = 1 + length(Ts)
length(T) = 0 if T 6= [. . . | . . .].

In particular, for a nil-terminated list [T1, . . . , Tn], the list-length is n. We call
a term of the form [T1, . . . , Tn|Ts], where n ≥ 0, an open list. In particular, any
variable is an open list.

We will see later that usually, level mappings measure the input arguments of
a query, even though this is often just an intuitive understanding and not explicit.
Moreover, the choice of a particular selection rule often reflects a particular mode
of the program. In this sense, the choice of the level mapping must depend on
the selection rule, via the modes. This will be seen in our examples.

However, apart form the dependency just mentioned, the choice of level map-
ping is an aspect of termination which is rather independent from the choice of
the selection rule. In particular, one does not find any interesting relationship
between the underlying norms and the selection rule. This is why the detailed
study of various norms and level mappings is beyond the scope of this article,
although it is an important aspect of automated proofs of termination [14, 27].

We now define level mappings where the dependency on the modes is made
explicit [32].

Definition 2.4. A moded (generalised) level mapping |.| is a (generalised) level
mapping such that for any (not necessarily) ground s, t and u, |p(s, t)| =
|p(s,u)|.

The condition |p(s, t)| = |p(s,u)| states that the level of an atom is indepen-
dent from the terms in its output positions.

2.3 Selection Rules

Let INIT be the set of initial fragments of SLD-derivations in which the last
query is non-empty. The standard definition of selection rule is as follows: a
selection rule is a function that, when applied to an element in INIT , yields an
occurrence of an atom in its last query [2]. In this article, we assume an extended
definition: we also allow that a selection rule may select no atom (a situation
called deadlock), and we allow that it not only returns the selected atom, but
also specifies the set of program clauses that may be used to resolve the atom.
Whenever we want to emphasise that a selection rule always selects exactly one
atom together with the entire set of clauses for that atom’s predicate, we speak
of a standard selection rule. Note that for the extended definition, completeness
of SLD-resolution is lost in general. Selection rules are denoted by s.

In practice, selection rules should always be computable functions, but we
are not concerned with this issue here.

We now define the various notions of selection rules used in this article.
A P-selection rule is a selection rule where each selected atom is in some set

of atoms P, closed under instantiation. Note that this notion is very abstract,
but this does not mean that every selection rule can be defined as a P-selection
rule.

Definition 2.5. Input-consuming selection rules are defined w.r.t. a given mode.
A selection rule s is input-consuming for a program P if either

– s selects an atom p(s, t) and a non-empty set of clauses of P such that
p(s, t) and each head of a clause in the set are unifiable with an mgu σ, and
Dom(σ) ∩Vars(s) = ∅, or

– s selects an atom p(s, t) that unifies with no clause head from P , together
with all clauses in P (this models failure), or

– if the previous cases are impossible, s selects no atom (i.e. we have deadlock).

A selection rule is delay-safe w.r.t. a level mapping |.| if it specifies that an
atom A can be selected only when A is bounded w.r.t. |.|.3

Consider a query, containing atoms A and B, in an initial fragment ξ of a
derivation. Then A is introduced more recently than B if the derivation step
introducing A comes after the step introducing B, in ξ. A local selection rule is
a selection rule that specifies that an atom in a query can be selected only if
there is no more recently introduced atom in the query.

The usual LD selection rule (also called leftmost selection rule) always selects
the leftmost atom in the last query of an element in INIT . The RD selection
rule (also called rightmost) always selects the rightmost atom.

A standard selection rule s is fair if for every SLD-derivation ξ via s either
ξ is finite or for every atom A in ξ, (some further instantiated version of) A is
eventually selected.

2.4 Universal Termination

In general terms, the problem of universal termination of a program P and a
query Q w.r.t. a set of selection rules consists of showing that every rule in the
set is a terminating control for P and Q.

Definition 2.6. A program P and a query Q universally terminate w.r.t. a set
of selection rules S if every SLD-derivation of P and Q via any selection rule
from S is finite.

Note that, since SLD-trees are finitely branching, by König’s Lemma, “every
SLD-derivation for P and Q via a selection rule s is finite” is equivalent to stating
that the SLD-tree of P and Q via s is finite.

We say that a class of programs and queries is a sound characterisation of
universal termination w.r.t. S if every program and query in the class universally
terminate w.r.t. S. Conversely, it is complete if every program and query that
universally terminate w.r.t. S are in the class.

2.5 Models

Several of the criteria for termination we consider rely on information supplied
by a model of the program under consideration. We provide the definition of
Herbrand interpretations and models [2].

A Herbrand interpretation I is a set of ground atoms. A ground atom A
is true in I, written I |= A, if A ∈ I. This notation is extended to ground

3 The reader may be surprised that delay-safe selection rules make no reference to
delay declarations. This is a terminological shortcut.

queries in the obvious way. I is a Herbrand model of program P if for each
A←B1 , . . . , Bn ∈ groundL(P), we have that I |= B1, . . . , Bn implies I |= A.

When speaking of the least Herbrand model of P , we mean least w.r.t. set
inclusion. In termination analysis, it is usually not necessary to consider the least
Herbrand model, which may be difficult or impossible to determine. Instead, one
uses models that capture some argument size relationship between the arguments
of each predicate [23]. For example, a model for the usual append predicate is

{append(xs, ys, zs) | length(zs) = length(xs) + length(ys)}.

3 Strong Termination

3.1 Operational Definition

Early approaches to the termination problem treated universal termination
w.r.t. all selection rules, called strong termination. Generally speaking, strongly
terminating programs and queries are either very trivial or especially written for
theoretical considerations.

Definition 3.1. A program P and query Q strongly terminate if they univer-
sally terminate w.r.t. the set of all selection rules.

3.2 Declarative Characterisation

In the following, we recall the approach of Bezem [11], who defined the class of
recurrent programs and queries. Intuitively, a program is recurrent if for every
ground instance of a clause, the level of the body atoms is smaller than the level
of the head.

Definition 3.2. Let |.| be a level mapping.
A program P is recurrent by |.| if for every A←B1 , . . . , Bn ∈ groundL(P):

for i ∈ [1, n] |A| > |Bi|.

A query Q is recurrent by |.| if there exists k ∈ IN such that for every A1 , . . . , An

∈ groundL(Q):
for i ∈ [1, n] k > |Ai|.

In the above definition, the proof obligations for a query Q are derived from
those for the program {p←Q}, where p/0 is a fresh predicate symbol. Intuitively,
this is justified by the fact that the termination behaviour of the query Q and a
program P is the same as for the query p and the program P ∪ {p←Q}. So k
plays the role of the level of the atom p. In the original work [11], the query was
called bounded. Throughout the paper, we prefer to maintain a uniform naming
convention both for programs and queries.

Termination properties of recurrent programs are summarised in the follow-
ing theorem.

% sat(Formula) ←
% there is a true instance of Formula

sat(true).

sat(X ∧ Y) ←
sat(X), sat(Y).

sat(not X) ← inval(X).

inval(false).

inval(X ∧ Y) ← inval(X).

inval(X ∧ Y) ← inval(Y).

inval(not X) ← sat(X).

Fig. 2. SAT

Theorem 3.3 ([11]). Let P be a program and Q a query.
If P and Q are both recurrent by some |.|, then they strongly terminate.
Conversely, if P and every ground query strongly terminate, then P is recur-

rent by some level mapping |.|. If in addition P and Q strongly terminate, then
P and Q are both recurrent by some level mapping |.|.
Proof. The result is shown in [11] for standard selection rules. It easily extends to
our generalisation of selection rules by noting that P and Q strongly terminate iff
they universally terminate w.r.t. the set of standard selection rules. The only-if
part is immediate. The if-part follows by noting that a derivation via an arbitrary
selection rule is a (prefix of a) derivation via a standard selection rule.

3.3 Examples

Example 3.4. The program SAT in Fig. 2 decides propositional satisfiability. The
program is readily checked to be recurrent by |.|, where we define

|sat(t)| = |inval(t)| = size(t).

Note that Def. 3.2 imposes no proof obligations for unit clauses. The query
sat(X) is recurrent iff there exists a natural k such that for every ground
instance x of X, we have that size(x) is bounded by k. Obviously, this is the case
iff X is already a ground term. For instance, the query sat(not(true) ∧ false)
is recurrent, while the query sat(false ∧ X) is not.

Note that the choice of an appropriate level mapping depends on the intended
mode of the program and query. Even though this is usually not explicit, level
mappings measure the size of the input arguments of an atom [32].

Example 3.5. Figure 3 shows the APPEND program. It is easy to check that
APPEND is recurrent by the level mapping |append(xs, ys, zs)| = length(xs) and
also by |append(xs, ys, zs)| = length(zs). A query append(Xs,Ys,Zs) is recur-
rent by the first level mapping iff Xs is anything other than an open list, and by
the second iff Zs is anything other than an open list. The level mapping

|append(xs, ys, zs)| = min{length(xs), length(zs)}

combines the advantages of both level mappings. APPEND is easily seen to be
recurrent by it, and if Xs or Zs is anything other than an open list, then
append(Xs,Ys,Zs) is recurrent by it.

% reverse(Xs,Ys) ←
% Xs is the reverse of list Ys.

reverse([X|Xs],Ys) ←
append(Zs,[X],Ys),

reverse(Xs,Zs).

reverse([],[]).

% append(Xs,Ys,Zs) ←
% Zs is the result of concatenating
% lists Xs and Ys.

append([X|Xs],Ys,[X|Zs]) ←
append(Xs,Ys,Zs).

append([],Ys,Ys).

Fig. 3. APPEND and NAIVE REVERSE

% even(X) ←
% X is an even natural number.

even(s(s(X))) ← even(X).

even(0).

% lte(X,Y) ←
% X,Y are natural numbers
% s.t. X is smaller or equal than Y.

lte(s(X),s(Y)) ← lte(X,Y).

lte(0,Y).

Fig. 4. EVEN

3.4 On Completeness of the Characterisation

Note that completeness is not stated in full general terms, i.e. recurrence is not
a complete proof method for strong termination. Informally speaking, incom-
pleteness is due to the use of level mappings, which are functions that must
specify a value for every ground atom. Therefore, if P strongly terminates for a
certain ground query Q but not for all ground queries, we cannot conclude that
P is recurrent. We provide a general completeness result in Sec. 7 for a class of
programs containing recurrent programs.

4 Input Termination

In this section, we consider input-consuming selection rules [17].
We have said above that the class of strongly terminating programs and

queries is very limited. Even if a program is recurrent, it may not strongly
terminate for a query of interest since the query is not recurrent.

Example 4.1. The program EVEN in Fig. 4 is recurrent by defining

|even(x)| = size(x)
|lte(x, y)| = size(y).

Now consider the query Q = even(X), lte(X, s100 (0)), which is supposed to
compute the even numbers not exceeding 100. By always selecting the leftmost
atom, one can easily obtain an infinite derivation for EVEN and Q. As a conse-
quence of Theorem 3.3, Q is not recurrent.

4.1 Operational Definition

Definition 4.2. A program P and query Q input terminate if they universally
terminate w.r.t. the set consisting of the input-consuming selection rules.

The requirement of input-consuming derivations merely reflects the very
meaning of input : an atom must only consume its own input, not produce it.
In existing implementations, input-consuming derivations can be ensured using
control constructs such as delay declarations [38, 70, 73, 74].

In the above example, the obvious mode is even(I), lte(O , I). With this
mode, we will show that EVEN and Q input terminate. If we assume a selection
rule that is input-consuming while always selecting the leftmost atom if pos-
sible, then the above example is a contrived instance of the generate-and-test
paradigm. This paradigm involves two procedures, one which generates a set of
candidates, and another which tests whether these candidates are solutions to
the problem. The test occurs to the left of the generator so that tests take place
as soon as possible, i.e. as soon as sufficient input has been generated for the
derivation to be input-consuming.

Proofs of input termination differ from proofs of strong termination in an
important respect. For the latter, we require that the initial query is recurrent,
and as a consequence we have that all queries in any derivation from it are
recurrent (we say that recurrence is persistent under resolution). This means
that, at the time an atom is selected, the depth of its SLD-tree is bounded. In
contrast, input termination does not have such a strong requirement on each
selected atom.

Example 4.3. Consider the EVEN program in Fig. 4 and the following input-
consuming derivation, where we underline the selected atom in each step:

even(X), lte(X, s100 (0)) −→ even(s(X′)), lte(X′, s99 (0)) −→
even(s(s(X′′))), lte(X′′, s98 (0)) −→ even(X′′), lte(X′′, s98 (0)) . . .

At the time when even(s(s(X′′))) is selected, the depth of its SLD-tree is not
bounded. In fact, this depth depends on the eventual instantiation of X′′.

The method for showing input termination inherently relies on a notion of
level for atoms such as even(s(s(X′′))), although this level is not bounded. This
is the key to showing termination for derivations with coroutining (interleaving
subderivations). In contrast, most approaches to termination assume that the
level of the selected atom is bounded. We refer to Subsec. 11.7 and [66, Sec. 11.1].

4.2 Information on Data Flow: Simply-local Substitutions and
Models

Since the depth of the SLD-tree of the selected atom depends on further instan-
tiation of the atom, it is important that programs are well-behaved w.r.t. the
modes. This is illustrated in the following example.

Example 4.4. Consider the APPEND program (Fig. 3) in mode append(I , I ,O)
and the query

append([1|As], [], Bs), append(Bs, [], As).

Then we have the following infinite input-consuming derivation:

append([1|As], [], Bs), append(Bs, [], As) −→
append(As, [], Bs′), append([1|Bs′], [], As) −→
append([1|As′], [], Bs′), append(Bs′, [], As′) −→ . . .

This well-known termination problem of programs with coroutining has been
identified as circular modes by Naish [55].

To avoid the above situation, we require programs and queries to be simply
moded (see Subsec. 2.1).

We now define simply-local substitutions, which reflect the way simply moded
clauses become instantiated in input-consuming derivations. Given a clause c =
p(t0, sn+1)← p1(s1, t1), . . . , pn(sn, tn) used in an input-consuming derivation,
first t0 becomes instantiated, and the range of that substitution contains only
variables from outside of c. Then, by resolving p1(s1, t1), the vector t1 becomes
instantiated, and the range of that substitution contains variables from outside
of c in addition to variables from s1. Continuing in the same way, finally, by
resolving pn(sn, tn), the vector tn becomes instantiated, and the range of that
substitution contains variables from outside of c in addition to variables from
s1 . . . sn. A substitution is simply-local if it is composed from substitutions as
sketched above. We now give the formal definition [17].

Definition 4.5. A substitution θ is simply-local w.r.t. the clause c = p(t0, sn+1)
← p1(s1, t1), . . . , pn(sn, tn) if there exist substitutions σ0, σ1 . . . , σn and dis-
joint sets V0, V1, . . . , Vn consisting of of fresh (w.r.t. c) variables such that θ =
σ0σ1 · · ·σn where for i ∈ {0, . . . , n},

– Dom(σi) ⊆ Vars(ti),
– Ran(σi) ⊆ Vars(siσ0σ1 · · ·σi−1) ∪ Vi.4

θ is simply-local w.r.t. a query B if θ is simply-local w.r.t. the clause p←B
where p/0 is a fresh predicate symbol.

Note that in the case of a simply-local substitution w.r.t. a query, σ0 is the
empty substitution, since Dom(σ0) ⊆ Var(p) where p is a fresh predicate symbol.
Note also that if A, B,C −→ (A,B,C)θ is an input-consuming derivation step
using clause c = H ← B, then θ|H is simply-local w.r.t. the clause H ← and θ|B
is simply-local w.r.t. the atom B [17].

Example 4.6. Consider the PERMUTE BACK program in Fig. 5 (the name has been
chosen to distinguish it from PERMUTE to be introduced later). Assume mode
permute(O , I), insert(O ,O , I). We examine the recursive clause for insert.
4 Note that s0 is undefined. By abuse of notation, Vars(s0 . . .) = ∅.

% permute(Xs,Ys) ←
% Ys is a permutation of the list Xs.

permute([X|Xs],Ys) ←
insert(Zs,X,Ys),

permute(Xs,Zs).

permute([],[]).

% insert(Xs,X,Zs) ←
% Zs is obtained by inserting X into Xs.

insert(Xs,X,[X|Xs]).

insert([Y|Xs],X,[Y|Zs]) ←
insert(Xs,X,Zs).

Fig. 5. PERMUTE BACK

The substitution σ = {Y/V, Zs/[W], Xs/[], X/W} is simply-local w.r.t. it: let σ0 =
{Y/V, Zs/[W]}, σ1 = {X/W, Xs/[]}; then Dom(σ0) ⊆ {Y, Zs}, Ran(σ0) ⊆ V0 where
V0 = {V, W}, Dom(σ1) ⊆ {Xs, X}, and Ran(σ1) ⊆ Vars(Zsσ0).

Based on simply-local substitutions, we now define a restricted notion of
model.

Definition 4.7. Let I ⊆ AtomL. We say that I is a simply-local model of c =
H ← B1, . . . , Bn if for every substitution θ simply-local w.r.t. c,

if B1θ, . . . , Bnθ ∈ I then Hθ ∈ I. (2)

I is a simply-local model of a program P if it is a simply-local model of each
clause of it.

Note that a simply-local model is not necessarily a model in the classi-
cal sense, since I is not necessarily a set of ground atoms, and the substi-
tution in (2) is required to be simply-local. For example, given the program
{q(1), p(X)←q(X)} with mode q(I), p(O), a model must contain the atom p(1),
whereas a simply-local model does not necessarily contain p(1), since {X/1} is
not simply-local w.r.t. p(X)← q(X). The next subsection will further clarify the
role of simply-local models.

Let SMP be the set of all simply moded atoms5 in AtomL. It has been
shown that the least simply-local model of P containing SMP exists and can be
computed by a variant of the well-known TP -operator [17]. We denote the least
simply-local model of P containing SMP by PM SL

P , for partial model.

Example 4.8. Recall Ex. 4.6. SM P consists of all atoms insert(Us, U,Vs) where
Us, U /∈ Vars(Vs). To construct PM SL

P , we iterate TSL
P starting from any atom

in SMP (the resulting atoms are written on the l.h.s. below) and the fact clause
(r.h.s.). Each line below corresponds to one iteration of TSL

P . We have PM SL
P =

{ insert(Us, U,Vs),
insert([Y1|Us], U, [Y1|Vs]), insert(Xs1, X1, [X1|Xs1]),
insert([Y2, Y1|Us], U, [Y2, Y1|Vs]), insert([Y1|Xs1], X1, [Y1, X1|Xs1]),
.
| Vs,Xs1, X1, Y1, Y2, . . . arbitrary where Us, U /∈ Vars(Vs)}.

(3)

5 We sometimes say “atom” for “query containing only one atom”.

Observe the variable occurrences of U, Us in the atoms on the l.h.s. In Ex. 5.5,
we will see the importance of such variable occurrences.

4.3 Declarative Characterisation

Bossi et al. [17] define simply-acceptability, which is the notion of decrease used
for proving input termination.

We write p ' q if p and q are mutually recursive predicates [2]. Abusing
notation, we also use ' for atoms, where p(s, t) ' q(u,v) stands for p ' q.

Definition 4.9. Let P be a simply moded program, |.| a moded generalised6

level mapping and I a simply-local model of P containing SMP . A clause
A←B1 , . . . , Bn is simply acceptable by |.| and I if for every substitution θ
simply-local w.r.t. it,

for all i ∈ [1, n], (B1, . . . , Bi−1)θ ∈ I and A ' Bi imply |Aθ| > |Biθ|.

The program P is simply acceptable by |.| and I if each clause of P is simply
acceptable by |.| and I.

Admittedly, the proof obligations may be difficult to verify, especially in the
cases where a small (precise) simply-local model is required. However, as our
examples show, often it is not necessary at all to consider the model, as one can
show the decrease for arbitrary instantiations of the clause.

Simply-acceptability, and P-simply-acceptability to be introduced in the next
section, are not based on ground instances of clauses, but rather on instances
obtained by applying simply-local substitutions, which arise in input-consuming
derivations of simply moded programs. This is in contrast to all other character-
isations in this article, and explains why we use generalised level mappings and
a special kind of models.

Also note that in contrast to recurrence and other decreasing notions to be
defined later, simply-acceptability has no proof obligation on queries (apart from
the requirement that queries must be simply moded). Intuitively, such a proof
obligation is made redundant by the mode conditions (simply-acceptability and
moded level mapping) and the fact that derivations must be input-consuming.
We also refer to Subsec. 10.1.

Simply-acceptability characterises the class of input terminating programs.

Theorem 4.10 ([17]). Let P and Q be a simply moded program and query.
If P is simply acceptable by some |.| and I, then P and Q input terminate.
Conversely, if P and every simply moded query input terminate, then P is

simply acceptable by some moded generalised level mapping |.| and PM SL
P .

The formulation of the theorem differs slightly from the original for reasons
of consistency, but one can easily see that the formulations are equivalent.
6 In [17], the word “generalised” is dropped, but here we prefer to emphasise that

non-ground atoms are included in the domain.

permute([X|Xs],Ys) ←
permute(Xs,Zs),

insert(Zs,X,Ys).

permute([],[]).

insert(Xs,X,[X|Xs]).

insert([Y|Xs],X,[Y|Zs]) ←
insert(Xs,X,Zs).

Fig. 6. PERMUTE

Remark 4.11. The definition of input-consuming derivations is independent from
the textual order of atoms in a query, and so the textual order is irrelevant for
termination. Therefore, if we can prove input termination for a program and
query, we have also proven termination for a program obtained by permuting
the body atoms of each clause and the query in an arbitrary way.

It would have been possible to state this remark explicitly in the above theo-
rem, but that would have complicated the definition of simply-local substitution
and subsequent definitions. Generally, the question of when it is necessary to
make the permutations of body atoms explicit is discussed in [66, Sec. 5.3].

4.4 Examples

Example 4.12. The program EVEN in Fig. 4 is simply acceptable with mode
even(I), lte(O , I) by using the level mapping in Ex. 4.1, interpreted as moded
generalised level mapping in the obvious way, and using any simply-local model.
Moreover, the query even(X), lte(X, s100(0)) is permutation simply moded (see
Remark 4.11). Hence EVEN and this query input terminate.

Example 4.13. The program PERMUTE is shown in Fig. 6. Assume the mode
permute(I ,O), insert(I , I ,O). Note that compared to Fig. 5, two body atoms
have been reordered to make the program simply moded in this mode. Note also
that permute 6' insert. The program is readily checked to be simply acceptable,
using the moded generalised level mapping

|permute(Xs,Ys)| = |insert(Xs,Ys,Zs)| = size(Xs)

and any simply-local model. Thus the program and any simply moded query
input terminate. It can also easily be shown that the program is not recurrent.

Example 4.14. Figure 7 shows program 15.3 from [72]: QUICKSORT using a form
of difference lists (we permuted two body atoms for the sake of clarity). This
program is simply moded with mode quicksort(I ,O), quicksort dl(I ,O , I),
partition(I , I ,O ,O), =<(I , I), >(I , I).

We use the following moded generalised level mapping (positions with are
irrelevant)

|quicksort dl(Xs, ,)| = length(Xs),
|partition(Xs, , ,)| = length(Xs).

% quicksort(Xs, Ys) ← Ys is an ordered permutation of Xs.

quicksort(Xs,Ys) ← quicksort dl(Xs,Ys,[]).

quicksort dl([X|Xs],Ys,Zs) ←
partition(Xs,X,Littles,Bigs),

quicksort dl(Bigs,Ys1,Zs).

quicksort dl(Littles,Ys,[X|Ys1]),

quicksort dl([],Xs,Xs).

partition([X|Xs],Y,[X|Ls],Bs) ← X =< Y, partition(Xs,Y,Ls,Bs).

partition([X|Xs],Y,Ls,[X|Bs]) ← X > Y, partition(Xs,Y,Ls,Bs).

partition([],Y,[],[]).

Fig. 7. QUICKSORT

The level mapping of all other atoms can be set to 0. Concerning the model, the
simplest solution is to use the model that expresses the dependency between the
list lengths of the arguments of partition, i.e. I should contain all atoms of the
form partition(S1, X, S2, S3) where |S1| ≥ |S2| and |S1| ≥ |S3|. Note that this
includes all simply moded atoms using partitition, and that this model is a
fortiori simply-local since (2) in Def. 4.7 is true even for arbitrary θ.

The program is then simply acceptable by |.| and I and hence input termi-
nates for every simply moded query.

In essence, looking at the clause before any instantiation, there is a decrease
between the input of the clause head and the recursive body atoms ([X|Xs] is big-
ger than both Bigs and Littles). Moreover, by the model information about the
atom partition(Xs, X, Littles, Bigs) we know that this decrease is preserved
as the clause becomes instantiated.

5 Input P-Termination

In this section, we consider input-consuming selection rules that are additionally
parametrised by some instantiation property P that each selected atom must
have. In particular, delay-safe derivations can be modelled this way. This section
is based on very recent work [68].

We first give an example of a program that is not input terminating.

Example 5.1. Consider again the PERMUTE BACK program in Fig. 5. So the mode
is permute(O , I), insert(O ,O , I). It is immediate to check that the program
is not input terminating: by repeatedly selecting the rightmost atom that may
be selected, the query permute(Xs, [1]) generates an infinite input-consuming
derivation.

One can understand this by explaining why the program cannot be sim-
ply acceptable. Recall Ex. 4.8. PM SL

PERMUTE BACK contains every atom of the form
insert(Us, U,Vs), i.e. every simply moded atom whose predicate is insert.

Therefore in particular insert(Us, U, Vs) ∈ PM SL
PERMUTE BACK (note that Vs is a vari-

able). Consider the recursive clause for permute. The substitution θ = {Ys/Vs,
Zs/Us, X/U} is simply-local w.r.t. the clause. Therefore, for the clause to be sim-
ply acceptable, there would have to be a moded generalised level mapping such
that |permute([U|Xs], Vs)| > |permute(Xs, Us)|. This is a contradiction since a
moded generalised level mapping is necessarily defined as a generalised norm of
the second argument of permute, and Vs and Us are equivalent modulo variance.

However, all derivations for permute(Xs, [1]) are finite if we require input-
consuming derivations where each atom must be bounded w.r.t. an appropriate
level mapping.

The attentive reader may have noticed that PERMUTE BACK falls out of the
class of input terminating programs for a very simple reason: Due to the variable
Ys in the input position of the clause head, it follows that an atom using permute
can always be selected.

Now it is tempting to think that the program misses the property of input
termination “just narrowly”, and that there is a simple fix to obtain input termi-
nation: replace Ys by [Y|Ys] in the above clause. This is a fallacy. The resulting
program is still not input terminating. This is related to speculative output bind-
ings and has first been observed by Naish [55].

Programs that “just narrowly” miss the property of input termination may
also be analysed using the methods of this section. We refer to [68].

5.1 Operational Definition

We now define termination for input-consuming P-derivations, i.e. derivations
via an input-consuming P-selection rule.

Definition 5.2. A program P and query Q input P-terminate if they univer-
sally terminate w.r.t. the set consisting of the input-consuming P-selection rules.

Of course, input termination is just a special case of input P-termination for
a trivial P containing all atoms. However, in contrast to the previous section, it is
unknown if the characterisation given here is complete. This justifies having the
previous section on its own. Also, the previous section surveys well-established
work while the work reported here is very recent.

5.2 Declarative Characterisation

Definition 5.3. Let P be a simply moded program, |.| a moded generalised
level mapping and I a simply-local model of P containing SMP . A clause
A←B1 , . . . , Bn is simply P-acceptable by |.| and I if for every substitution
σ simply-local w.r.t. it, for all i ∈ [1, n],

B1σ, . . . , Bi−1σ ∈ I and A ' Bi and Biσ ∈ P imply |Aσ| > |Biσ|. (4)

The program P is simply P-acceptable by |.| and I if each clause of P is simply
P-acceptable by |.| and I.

The only difference to simply acceptable clauses is the condition Biσ ∈ P.
Simply-local models capture all input-consuming derivations of a simply moded
query, including the ones where we impose an additional condition P. Hence this
small modification gives us a sufficient criterion for input P-termination.

Theorem 5.4 ([68]). Let P and Q be a simply moded program and query. If
P is simply P-acceptable by some |.| and I, then P and Q input P-terminate.

5.3 Examples

We give two examples where P is used exactly to model delay-safe selection
rules. These programs need delay-safe selection rules to overcome the problem
of speculative output bindings [55].

Example 5.5. Consider PERMUTE BACK (Fig. 5) assuming mode permute(O , I),
insert(O ,O , I). Recall Ex. 4.8. We define the level mapping as

|permute(Xs,Ys)| = length(Ys)
|insert(Zs, X,Ys)| = length(Ys).

Now for all atoms insert(Zs, X,Ys) ∈ PM SL
P , we have |Ys| ≥ |Zs|; for the ones

on the r.h.s. in (3) even |Ys| > |Zs|. Let P be the set of bounded atoms w.r.t. |.|.
Now let us look at the recursive clause for permute. We verify that the second

body atom fulfils the requirement of Def. 5.3, where I is PM SL
P . So we have to

consider all simply-local substitutions σ such that insert(Zs, X, Ys)σ ∈ PM SL
P .

For the atoms on the l.h.s. in (3), this means that

σ ⊇ {Ys/[Yn, . . . , Y1|Vs], Zs/[Yn, . . . , Y1|Us], X/U} (n ≥ 0).

Clearly, permute(Xs, Zs)σ /∈ P, and hence no proof obligation arises. For the
atoms on the r.h.s. in (3), this means that

σ ⊇ {Ys/[Yn, . . . , Y1, X1|Xs1], Zs/[Yn, . . . , Y1|Xs1], X/X1} (n ≥ 0).

But then |permute([X|Xs], Ys)σ| > |permute(Xs, Zs)σ|.
The other clauses are trivial to check, and so PERMUTE BACK is simply P-

acceptable.

Example 5.6. The program NAIVE REVERSE (Fig. 3) in mode reverse(O , I),
append(O ,O , I) is not input terminating, but it is input P-terminating for P
chosen in perfect analogy to Ex. 5.5.

In our opinion, the difference between delay-safe selection rules and (just)
input-consuming selection rules is a fundamental one. Looking at the literature,
the termination problem for the latter has been considered a much harder prob-
lem than for the former [45, 47, 49, 55]. We also refer to Subsec. 11.7.

r(X) ← p(X,Y), r(Y).

r(0).

p(X,s(X))← fail.

p(s(X),X).

Fig. 8. A program for which locality is crucial

5.4 On Completeness of the Characterisation

Our investigations so far suggest that the criterion of simply P-acceptability is
not a necessary criterion, but that modifications are needed. More specifically,
it seems that the condition (4) in Def. 5.3 must be “weakened” to something like

B1σ, . . . , Bi−1σ ∈ I and A ' Bi and Biσ ∈ P and Aσ ∈ P imply |Aσ| > |Biσ|,

but it is not clear if this is strictly weaker. Therefore, we cannot provide a
counterexample showing that P-acceptability is not a necessary criterion.

So while the completeness issue is still work in progress, we hope that a
modified criterion will eventually be found. It should then probably be take over
the name simply P-acceptability, replacing our current definition.

Another interesting topic for future work would consist of investigating the
automatic inference of properties P for which termination of a given program
can be established.

6 Local Delay Termination

In this section, we consider selection rules that are both local and delay-safe. We
first give an example of a program that is not input P-terminating, for a P that
ensures delay-safe selection rules. We shall see that the program terminates for
all selection rules that are local in addition to being delay-safe (see Ex. 6.9).

Example 6.1. Let P be the program in Fig. 8 in mode r(I), p(I ,O). Setting
P = {p(x, Y) | x ground, Y arbitrary}∪{r(x) | x ground}, we have the following
infinite input-consuming P-derivation:

r(0) −→ p(0, Y1), r(Y1) −→ fail, r(s(0)) −→
fail, p(s(0), Y1), r(Y1) −→ fail, fail, r(s(s(0))) −→ . . .

We give an intuitive explanation why P cannot be P-simply acceptable. Since
fail is a simply moded atom, it turns out that for any X, we have p(X, s(X)) ∈
PM SL

P . So for the recursive clause to be P-simply acceptable, we would need
|X| > |s(X)| for all X, which is impossible since there are no infinite descending
chains in IN.

This example also demonstrates that the class of local delay terminating
programs strictly includes the class of strongly terminating programs.

The example is artificial. We will come back to this point in the conclusion.
In any case, the assumption of local selection rules is crucial for the method for
showing termination of this section.

6.1 Operational Definition

Marchiori and Teusink [47] have considered local selection rules controlled by
delay declarations. They define a safe delay declaration so that an atom can be
selected only when it is bounded w.r.t. a level mapping. In order to avoid even
having to define delay declarations, we took a shortcut by assuming delay-safe
selection rules. This seems legitimate given that Marchiori and Teusink do not
give the exact syntax of delay declarations either.

Definition 6.2. A program P and query Q local delay terminate (w.r.t. |.|) if
they universally terminate w.r.t. the set of selection rules that are both local
and delay-safe (w.r.t. |.|).

Unlike in the previous two sections, modes are not used explicitly in the
definition of delay-safe selection rules. Therefore it is possible to contrive an
example of a program and a query that input terminate (and hence a fortiori
input P-terminate) but do not local delay terminate. The example is obtained
by deliberately choosing a level mapping that does not reflect the mode of the
query at hand.

Example 6.3. The APPEND program and the query

append([],[],X), append(X,[],Y)

input terminate for the mode append(I,I,O). However, they do not local delay
terminate w.r.t. a level mapping |.| such that |A| = 0 for every A (e.g. consider
the RD selection rule).

However, in Subsec. 10.2 we will see that under natural assumptions (in
particular, the level mapping must be moded) delay-safe selection rules are also
input-consuming. Then, input termination implies local delay termination. As is
witnessed by Ex. 6.1, a program which local delay terminates but does not even
input P-terminate, this implication is strict.

6.2 Information on Data Flow: Covers

Delay-safe selection rules ensure that selected atoms are bounded. To ensure
that the level mapping decreases during a derivation, we exploit additional in-
formation provided by a model of the program. Given an atom B in a query, we
are interested in other atoms that share variables with B, so that instantiating
these variables makes B bounded. A set of such atoms is called a direct cover.
The only way of making B bounded is by resolving away one of its direct covers.
The formal definition is as follows.

Definition 6.4. Let |.| be a level mapping, A←Q a clause containing a body
atom B, and C̃ a subset7 of Q such that B 6∈ C̃. We say that C̃ is a direct
cover for B (w.r.t. A←Q and |.|) if there exists a substitution θ such that Bθ
is bounded w.r.t. |.| and Dom(θ) ⊆ Vars(A, C̃).

A direct cover is minimal if no proper subset is a direct cover.
7 By abuse of terminology, here we identify a query with the set of atoms it contains.

Note that the above concept is similar to well-modedness, assuming a moded
level mapping. In this case, for each atom, the atoms to the left of it are a direct
cover. This generalises in the obvious way to permutation well moded queries.

Considering an atom B, we have said that the only way of making B bounded
is by resolving away one of B’s direct covers. However, for an atom in a direct
cover, say atom A, to be selected, A must be bounded, and the only way of
making A bounded is by resolving away one of A’s direct covers. Iterating this
reasoning gives rise to a kind of closure of the notion of direct cover. In the
following definition, Pow stands for the powerset.

Definition 6.5. Let |.| be a level mapping and A←Q a clause. Consider the
least set C, subset of Pow(Q× Pow(Q)), such that

1. 〈B, ∅〉 ∈ C whenever ∅ is a minimal direct cover for B in A←Q;
2. 〈B, C̃〉 ∈ C whenever B 6∈ C̃, and C̃ = {C1, . . . , Ck} ∪ D̃1 ∪ . . . D̃k, where
{C1, . . . , Ck} is a minimal direct cover of B in A←Q, and for i ∈ [1, k],
〈Ci, D̃i〉 ∈ C.

The set Covers(A←Q) ⊆ Q×Pow(Q) is defined as the set obtained by deleting
from C each element of the form 〈B, C̃〉 if there exists another element of C of
the form 〈B, C̃ ′〉 such that C̃ ′ ⊂ C̃.

We say that C̃ is a cover for B (w.r.t. A←Q and |.|) if 〈B, C̃〉 is an element
of Covers(A←Q).

6.3 Declarative Characterisation

The following concept is used to show that programs terminate for local and
delay-safe selection rules. We present a definition slightly different from the orig-
inal one [47], albeit equivalent.

Definition 6.6. Let |.| be a level mapping and I a Herbrand interpretation. A
program P is delay-recurrent by |.| and I if I is a model of P , and for every
clause c = A←B1 , . . . , Bn of P , for every i ∈ [1, n], for every cover C̃ for Bi,
for every substitution θ such that cθ is ground,

if I |= C̃θ then |Aθ| > |Biθ|.

We believe that this notion should have better been called delay-acceptable,
since the convention is to call decreasing notions that involve models (. . .)-
acceptable, and the ones that do not involve models (. . .)-recurrent.

Just as simply-acceptability, delay-recurrence imposes no proof obligation on
queries. Such a proof obligation is made redundant by the fact that selected
atoms must be bounded. Note that if no most recently introduced atom in a
query is bounded, we obtain termination by deadlock.

In order for delay-recurrence to ensure termination, it is crucial that when
an atom is selected, its cover is resolved away completely (this allows to use the
premise I |= C̃θ in Def. 6.6). This is the reason why the selection rule is assumed
to be local. We can now state the result of this section.

Theorem 6.7 ([47]). Let P be a program. If P is delay-recurrent by some |.|
and I, then for every query Q, P and Q local delay terminate.

Remark 6.8. Remark 4.11 applies to local delay termination as well.

6.4 Examples

Example 6.9. Consider again the program in Fig. 8, with the level mapping and
model

|p(x, y)| = size(x)
|r(x)| = size(x) + 1

I = {p(s(z), z) | z arbitrary} ∪ {r(sn(0)) | n ≥ 0}.

The program is delay-recurrent by |.| and I. We check the recursive clause for
r. Consider an arbitrary ground instance

r(x)← p(x, y), r(y). (5)

First, we observe that I is a model of this instance. In fact, if its body is true in
I, then x = sn+1(0) and y = sn(0) for some n ≥ 0, and so r(x) is true in I.

Consider the first body atom. It has an empty cover. Since size(x) + 1 >
size(x), we have a decrease as required.

Consider now the second body atom. There is only one cover p(X, Y), so we
must show that

x = sn+1(0) and y = sn(0) imply size(x) + 1 > size(y) + 1,

which is evident. Hence we have shown that the clause is delay-recurrent.
Note that for the P given in Ex. 6.1, any input-consuming P-derivation

is delay-safe. So it is the locality property that makes the difference to that
example.

We now give another example, which seems even more contrived than Ex. 6.1,
but turns out to be interesting because of the similarity to Ex. 7.1.

Example 6.10. Consider

p(X) ← q(Y), p(Y).
q(0) ← fail.

with |p(0)| = 0.
For the sake of comparison, assume the mode p(I), q(O) and let P = {p(0)}∪

{q(X) | X arbitrary}.
Then the program local delay terminates but does not input P-terminate for

the query p(0). We will discuss this example further in the conclusion.

In an article that was the predecessor of this one [60], we gave PERMUTE BACK
(Fig. 5) as an example of a delay-recurrent program, but since then, it has been
shown that this program does not require locality for termination (Ex. 5.5).

6.5 On Completeness of the Characterisation

Note that delay-recurrence is a sufficient but not necessary condition for local
delay termination. The limitation lies in the notion of cover: to make an atom
bounded, one has to resolve one of its covers; but conversely, resolving a cover
will not necessarily make the atom bounded.

Example 6.11. Consider the following simple program

z ← p(X), q(X), r(X).
p(0).
q(s(X)) ← q(X).
r(X).

The program and any query z local delay terminate w.r.t. the level mapping:

|z| = |p(t)| = |r(t)| = 0
|q(t)| = size(t).

In fact, the only source of non-termination for a query might be an atom q(X).
However, for any such atom selected by a delay-safe selection rule, X is a ground
term. Hence the recursive clause in the program cannot generate an infinite
derivation. On the other hand, it is not the case that the program is delay-
recurrent. Consider the first clause. Since r(X) is a cover for q(X) and since every
model of the program contains r(t) for every t, we would have to show for some
|.|′ that for every t:

|z|′ > |q(t)|′.
This is impossible, since delay-recurrence on the third clause implies |q(sk(0))|′ ≥
k for any natural k.

7 Left-Termination

In this section, we consider the LD selection rule. We first give an example of a
program that is not local delay terminating.

Example 7.1. Consider the program

p ← q, p.

with query p, where |p| = 1 and |q| = 0. It terminates for the LD selection rule
but does not local delay terminate.

The example is artificial, and hence not a convincing motivation for studying
the LD selection rule. We discuss this further in the conclusion, but in any case,
there are several reasons for studying the LD selection rule in its own right.
First, the conditions for termination are easier to formulate than for local delay
termination. Secondly, the vast majority of works consider this rule, being the
standard selection rule of Prolog. Finally, for the class of programs and queries
that terminate w.r.t. the LD selection rule we are able to provide a sound and
complete characterisation.

7.1 Operational Definition

Definition 7.2. A program P and query Q left-terminate if they universally
terminate w.r.t. the set consisting of only the LD selection rule.

Formally comparing this class to the three previous ones is difficult. In par-
ticular, left-termination is not necessarily stronger than input or local delay
termination, e.g. when applied to programs written with the RD selection rule
in mind.

Example 7.3. Consider the program PERMUTE BACK in Fig. 5, but this time in
mode permute(I ,O), insert(I , I ,O). This program input terminates but does
not left-terminate (see Ex. 4.13 and note Remark 4.11).

Example 7.4. Consider the program in Fig. 8, where we permute two body atoms
in the first clause to obtain

r(X) ← r(Y), p(X,Y).

By Remark 6.8 and Ex. 6.9, the program and every query local delay ter-
minate w.r.t. the level mapping given there. Moreover, no derivation deadlocks.
However, the program and the query r(0) do not left-terminate.

Also, local delay termination may not imply left-termination because of the
deadlock problem. We will comment on this in the conclusion.

7.2 Extended Level Mappings

Left-termination was addressed by Apt & Pedreschi [7], who introduced the
class of acceptable logic programs. However, their characterisation encountered
a completeness problem similar to the one highlighted for Theorem 3.3.

Example 7.5. Figure 9 shows TRANSP, a program that terminates on a strict sub-
set of ground queries only. In the intended meaning of the program, trans(x, y, e)
succeeds iff x ;e y, i.e. if arc(x, y) is in the transitive closure of a direct acyclic
graph (DAG) e, which is represented as a list of arcs. It is readily checked that
if e is a graph that contains a cycle, infinite derivations may occur.

In the approach of [7], TRANSP cannot be reasoned about, since the same in-
completeness problem as for recurrent programs occurs, namely that they char-
acterise a class of programs that (left-)terminate for every ground query.

The cause of the restricted form of completeness of Theorem 3.3 lies in the use
of level mappings, which must specify a natural number for every ground atom —
hence termination is forced for every ground query. A more subtle problem with
using level mappings is that one must specify values also for uninteresting atoms,
such as trans(x, y, e) when e is not a DAG. The solution to both problems is to
consider extended level mappings [61, 62].

% trans(x,y,e) ← x ;e y for a DAG e

trans(X,Y,E) ←
member(arc(X,Y),E).

trans(X,Y,E) ←
member(arc(X,Z),E), trans(Z,Y,E).

member(X,[X|Xs]).

member(X,[Y|Xs]) ←
member(X,Xs).

Fig. 9. TRANSP

Definition 7.6. An extended level mapping is a function |.| : BL→ IN∞ of
ground atoms to IN∞, where IN∞ = IN ∪ {∞}.

In particular, we define n � m for n, m ∈ IN∞ iff n =∞ or n > m. We write
n � m iff n � m or n = m.

We have ∞� m for every m ∈ IN∞. In particular ∞�∞. For (only) this
reason, � is not well-founded. However, this makes sense since the inclusion
of ∞ in the codomain is intended to model non-termination and uninteresting
instances of program clauses.

7.3 Declarative Characterisation

With the above notation we are now ready to introduce (a modified definition
of) acceptable programs and queries. A program P is acceptable if for every
ground instance of a clause from P , the level of the head is greater than the
level of each atom in the body such that the body atoms to its left are true in
a Herbrand model of the program.

The modification w.r.t. [7] lies in the fact that the definition of an acceptable
clause may involve clause instances where both the head and a body atom have
level ∞. Intuitively, a non-terminating derivation would start in a query of level
∞ and always use clause instances where head and recursive body atoms have
level ∞, while an acceptable (and terminating) query must have a level in IN.

Definition 7.7. Let |.| be an extended level mapping, and I a Herbrand inter-
pretation. A program P is acceptable by |.| and I if I is a model of P , and for
every A←B1 , . . . , Bn ∈ groundL(P),

for all i ∈ [1, n], I |= B1, . . . , Bi−1 implies |A|� |Bi|.

A query Q is acceptable by |.| and I if there exists k ∈ IN such that for every
A1 , . . . , An ∈ groundL(Q),

for all i ∈ [1, n], I |= A1, . . . , Ai−1 implies k � |Ai|.

Let us compare this definition to the definition of delay-recurrence (Def. 6.6).
In the case of local and delay-safe selection rules, an atom cannot be selected
before one of its covers is completely resolved. In the case of the LD selection
rule, an atom cannot be selected before the atoms to its left are completely

resolved. Because of the correctness of LD resolution [2], this explains why, in
both cases, a decrease is only required if the instance of the cover, resp. the
instance of the atoms to the left, are in some model of the program. We also
refer to Subsec. 10.1.

Acceptable programs and queries precisely characterise left-termination.

Theorem 7.8 ([7, 61]). Let P be a program and Q a query.
If P and Q are both acceptable by some |.| and I, then P and Q left-terminate.
Conversely, if P and Q left-terminate, then there exist an extended level map-

ping |.| and a Herbrand interpretation I such that P and Q are both acceptable
by |.| and I.

7.4 Examples

Example 7.9. The program in Ex. 7.1 is trivially acceptable. Let |p| = 1 and
|q| = 0 and I = ∅. Then |p|� |q|, and since I is a model of the program, I |= q
implies |p|� |p|.

We now give an example that highlights the use of extended level mappings
in termination proofs. Note that we do not intend this example to be contrasted
with the three preceding termination classes.

Example 7.10. We will show that TRANSP is acceptable. We have pointed out
that in the intended use of the program, e is supposed to be a DAG. We define:

|trans(x, y, e)| =
{

length(e) + 1 + Card{v | x ;e v} if e is a DAG
∞ otherwise

|member(x, e)| = length(e)

I = {trans(x, y, e) | x, y, e ∈ UL} ∪
{member(x, e) | x is in the list e}.

where Card is the set cardinality operator. It is easy to check that TRANSP is
acceptable by |.| and I. In particular, consider a ground instance of the second
clause:

trans(x, y, e)← member(arc(x, z), e), trans(z, y, e).

It is immediate to see that I is a model of it. In addition, we have the proof
obligations:

(i) |trans(x, y, e)|� |member(arc(x, z), e)|
(ii) arc(x, z) is in e implies |trans(x, y, e)|� |trans(z, y, e)|.

The first one is easy to show since |trans(x, y, e)|� length(e). Considering the
second one, we distinguish two cases. If e is not a DAG, the conclusion is imme-
diate. Otherwise, arc(x, z) in e implies that Card{v | x ;e v} > Card{v | z ;e

v}, and so:

|trans(x, y, e)| = length(e) + 1 + Card{v | x ;e v}
� length(e) + 1 + Card{v | z ;e v} = |trans(z, y, e)|.

(s) system(N) ←
prod(Bs), cons(Bs,N).

(p1) prod([s(0)|Bs])) ←
prod(Bs).

(p2) prod([s(s(0))|Bs])) ←
prod(Bs).

prod([]).

(c) cons([D|Bs],s(N)) ←
cons(Bs,N), wait(D).

cons([], 0).

(w) wait(s(D)) ←
wait(D).

wait(0).

Fig. 10. PRODCONS

Finally, observe that for a DAG e, the queries trans(x, Y, e) and trans(X, Y, e)
are acceptable by |.| and I. The first one is intended to compute all nodes y such
that x ;e y, while the second one computes the binary relation ;e. Therefore,
the TRANSP program and those queries left-terminate.

Note that this is of course also an example of a program and a query which
left-terminate but do not strongly terminate (e.g. consider the RD selection rule).

8 ∃-Termination

So far we have considered five classes of terminating programs, making increas-
ingly strong assumptions about the selection rule, or in other words, considering
in each section a smaller set of selection rules. In the previous section we have
arrived at a singleton set containing the LD selection rule. Therefore we can
clearly not strengthen our assumptions, in the same sense as before, any further.

We will now consider an assumption about the selection rule which is the
dual to assuming all selection rules (Sec. 3). We introduce ∃-termination of
logic programs [63], claiming that it is an essential concept for separating the
logic and control aspects of a program.

Before, however, we motivate the limitations of left-termination.

Example 8.1. The program PRODCONS in Fig. 10 abstracts a (concurrent) system
composed of a producer and a consumer. For notational convenience, we identify
the term sn(0) with the natural number n. Intuitively, prod is the producer
of a non-deterministic sequence of 1’s and 2’s, and cons the consumer of the
sequence. The shared variable Bs in clause (s) acts as an unbounded buffer. The
overall system is started by the query system(n). Note that the program is well
moded with the obvious mode prod(O), cons(I , I), wait(I), but assuming LD
(and hence, input-consuming) derivations does not ensure termination. The crux
is that prod can produce a message sequence of arbitrary length. Now cons can
only consume a message sequence of length n, but for this to ensure termination,
atoms using cons must be eventually selected. We will see that a selection rule
exists for which this program and the query system(n) terminate.

8.1 Operational Definition

Definition 8.2. A program P and a query Q ∃-terminate if there exists a non-
empty set S of standard selection rules such that P and Q universally terminate
w.r.t. S.

If P and Q do not ∃-terminate, then no standard selection rule can be ter-
minating. For extensions of the standard definition of selection rule, such as
input-consuming and delay-safe rules, this is not always true.

Example 8.3. The simple program

p(s(X)) ← p(X).
p(X).

with mode p(I) and query p(X) input terminates by deadlock, but does not ∃-
terminate. The same program and query local delay terminate (w.r.t. |p(t)| =
size(t)).

We will come back to the issue of deadlock in Subsec. 10.2.
We observe that ∃-termination coincides with universal termination w.r.t. the

set of fair selection rules. Therefore, any fair selection rule is a terminating control
for any program and query for which a terminating control exists.

Theorem 8.4 ([62, 63]). A program P and a query Q ∃-terminate iff they
universally terminate w.r.t. the set of fair selection rules.

Concerning Ex. 8.1, it can be said that viewed as a concurrent system, the
program inherently relies on fairness for termination.

8.2 Declarative Characterisation

Ruggieri [62, 63] offers a characterisation of ∃-termination using the notion of
fair-bounded programs and queries. Just as Def. 7.7, it is based on extended
level mappings.

Definition 8.5. Let |.| be an extended level mapping, and I a Herbrand inter-
pretation. A program P is fair-bounded by |.| and I if I is a model of P such
that for every A←B1 , . . . , Bn ∈ groundL(P):

(a) I |= B1 , . . . , Bn implies that for every i ∈ [1, n], |A|� |Bi|, and
(b) I 6|= B1 , . . . , Bn implies that for some i ∈ [1, n] with I 6|= Bi ∧ |A|� |Bi|.

A query Q is fair-bounded by |.| and I if there exists k ∈ IN such that for
every A1 , . . . , An ∈ groundL(Q):

(a) I |= A1, . . . , An implies that for every i ∈ [1, n], k � |Ai|, and
(b) I 6|= A1, . . . , An implies that for some i ∈ [1, n] with I 6|= Ai ∧ k � |Ai|.

Note that the hypotheses of conditions (a) and (b) are mutually exclusive.
Let us discuss in more detail the meaning of proof obligations (a) and (b) in

Def. 8.5. Consider a ground instance A←B1 , . . . , Bn of a clause.
If the body B1 , . . . , Bn is true in the model I, then there might exist a

SLD-refutation for it. Condition (a) is then intended to bound the length of the
refutation.

If the body is not true in the model I, then it cannot have a refutation. In
this case, termination actually means that there is an atom in the body that has
a finitely failed SLD-tree. Condition (b) is then intended to bound the depth of
the finitely failed SLD-tree. As a consequence of this, the complement of I is
necessarily included in the finite failure set of the program.

Compared to acceptability, the model and the extended level mapping in the
proof of fair-boundedness have to be chosen more carefully, due to more binding
proof obligations. As we will see in Subsec. 10.2, however, the simpler proof
obligations of recurrence and acceptability are sufficient conditions for proving
fair-boundedness. Note also that, as in the case of acceptable programs, the
inclusion of ∞ in the codomain of extended level mapping allows for excluding
unintended atoms and non-terminating atoms from the termination analysis. In
fact, if |A| =∞ then (a, b) in Def. 8.5 are trivially satisfied.

Fair-bounded programs and queries precisely characterise ∃-termination,
i.e. the class of logic programs and queries for which a terminating control exists.

Theorem 8.6 ([62, 63]). Let P be a program and Q a query.
If P and Q are both fair-bounded by some |.| and I, then P and Q ∃-

terminate.
Conversely, if P and Q ∃-terminate, then there exist an extended level map-

ping |.| and a Herbrand interpretation I such that P and Q are both fair-bounded
by |.| and I.

8.3 Example

Example 8.7. The PRODCONS program is fair-bounded. First, we introduce the
list-max norm:

lmax(f(x1, . . ., xn)) = 0 if f 6= [. | .]
lmax([x|xs]) = max{lmax(xs), size(x)} otherwise.

Note that for a ground list xs, lmax(xs) equals the maximum size of an element
in xs. Then we define:

|system(n)| = size(n) + 3
|prod(bs)| = length(bs)

|cons(bs, n)| =
{

size(n) + lmax(bs) if I |= cons(bs, n)
size(n) if I 6|= cons(bs, n)

|wait(t)| = size(t)

I = {system(n) | n ∈ UL} ∪ {prod(bs) | lmax(bs) ≤ 2} ∪
{cons(bs, n) | length(bs) = size(n)} ∪ {wait(x) | x ∈ UL}.

Let us show the proof obligations of Def. 8.5. Those for unit clauses are trivial.
Consider now the recursive clauses (w), (c), (p1), (p2), and (s).

(w). I is obviously a model of (w). In addition, |wait(s(d))| = size(d) + 1 �

size(d) = |wait(d)|. This implies (a, b).

(c). Consider a ground instance cons([d|bs], s(n))← cons(bs, n), wait(d) of (c).
If I |= cons(bs, n), wait(d), then length(bs) = size(n), and so

length([d|bs]) = length(bs) + 1 = size(n) + 1 = size(s(n)),

i.e. I |= cons([d|bs], s(n)). Therefore, I is a model of (c). Let us show proof
obligations (a, b) of Def. 8.5.

(a) Suppose that I |= cons(bs, n), wait(d). We have already shown that I |=
cons([d|bs], s(n)). We calculate:

|cons([d|bs], s(n))| = size(n) + 1 + max{lmax(bs), size(d)}
� size(n) + lmax(bs) = |cons(bs, n)|

|cons([d|bs], s(n))| = size(n) + 1 + max{lmax(bs), size(d)}
� size(d) = |wait(d)|.

These two inequalities show that (a) holds.
(b) If I 6|= cons(bs, n), wait(d), then necessarily I 6|= cons(bs, n). Therefore

|cons([d|bs], s(n))| � size(n) + 1
� size(n) = |cons(bs, n)|,

and so we have (b). Recall that (b) states that the depth of the finitely failed
SLD-tree must be bounded. In fact, it is the decrease of the “counter”, the
second argument of cons, which in this case bounds the depth of the SLD-
tree.

(p1,p2). I is obviously a model of (p1). Moreover we have

|prod([s(0)|bs])| = length(bs) + 1 � length(bs) = |prod(bs)|,

which implies (a) and (b). The reasoning for (p2) is analogous.

(s). Consider a ground instance system(n)← prod(bs), cons(bs, n) of (s). Ob-
viously I is a model of (s). Let us show (a,b).

(a) Suppose that I |= prod(bs), cons(bs, n). This implies lmax(bs) ≤ 2 and
length(bs) = size(n). These imply:

|system(n)| = size(n) + 3 � length(bs) = |prod(bs)|
|system(n)| = size(n) + 3 � size(n) + lmax(bs) = |cons(bs, n)|.

% even(X) ←
% X is an even natural number.

even(s(X)) ← odd(X).

even(0).

% odd(X) ←
% X is an odd natural number.

odd(s(X)) ← even(X).

Fig. 11. ODDEVEN

(b) Suppose that I 6|= prod(bs), cons(bs, n). Intuitively, this means that the
query prod(bs), cons(bs, n) has no refutation. We distinguish two cases. If
I 6|= cons(bs, n) (cons(bs, n) has no refutation) then:

|system(n)| = size(n) + 3 � size(n) = |cons(bs, n)|.

If I |= cons(bs, n) and I 6|= prod(bs) (prod(bs) has no refutation) then
length(bs) = size(n), which implies:

|system(n)| = size(n) + 3 � length(bs) = |prod(bs)|.

To conclude the example, note that for every n ∈ IN the query system(n)
is fair-bounded by |.| and I, and so every fair SLD-derivation of PRODCONS and
system(n) is finite.

9 Bounded Nondeterminism

In the previous section, we have made the strongest possible assumption about
the selection rule, in that we considered programs and queries for which there
exists a terminating control. In general, a terminating control may not exist.
Even in this case however, all is not lost. If we can establish that a program and
query have only finitely many successful derivations, then we can transform the
program so that it terminates.

Example 9.1. The program ODDEVEN in Fig. 11 defines the even and odd predi-
cates, with the usual intuitive meaning. The query even(X), odd(X) is intended
to check whether there is a number that is both even and odd. It is readily
checked that ODDEVEN and the query do not ∃-terminate. However, ODDEVEN and
the query have only finitely many, namely zero, successful derivations.

9.1 Operational Definition

Pedreschi & Ruggieri [58] propose the notion of bounded nondeterminism to
model programs and queries with finitely many refutations.

Definition 9.2. A program P and query Q have bounded nondeterminism if
for every standard selection rule s there are finitely many SLD-refutations of P
and Q via s.

By the Switching Lemma [2], each refutation via some standard selection rule
is isomorphic to some refutation via any other standard selection rule. Therefore,
bounded nondeterminism could have been defined by requiring finitely many
SLD-refutations of P and Q via some standard selection rule. Also, note that,
while bounded nondeterminism implies that there are finitely many refutations
also for non-standard selection rules, the converse implication does not hold, in
general (see Ex. 8.3).

Bounded nondeterminism, although not being a notion of termination in the
strict sense, is closely related to termination. In fact, if P and Q ∃-terminate,
then P and Q have bounded nondeterminism. Conversely, if P and Q have
bounded nondeterminism then there exists an upper bound for the length of
the SLD-refutations of P and Q. If the upper bound is known, then we can
syntactically transform P and Q into an equivalent program and query that
strongly terminate, i.e. any selection rule will be a terminating control for them.
Note that this transformation is even interesting for programs and queries that
∃-terminate, since few existing systems adopt fair selection rules. In addition,
even if we adopt a selection rule that ensures termination, we may apply the
transformation to prune the SLD-tree from unsuccessful branches.

9.2 Declarative Characterisation

In the following, we present a declarative characterisation of programs and
queries that have bounded nondeterminism, by introducing the class of bounded
programs and queries. Just as Defs. 7.7 and 8.5, it is based on extended level
mappings.

Definition 9.3. Let |.| be an extended level mapping, and I a Herbrand inter-
pretation. A program P is bounded by |.| and I if I is a model of P such that for
every A←B1 , . . . , Bn ∈ groundL(P):

I |= B1 , . . . , Bn implies that for every i ∈ [1, n], |A|� |Bi|.

A query Q is bounded by |.| and I if there exists k ∈ IN such that for every
A1 , . . . , An ∈ groundL(Q):

I |= A1, . . . , An implies that for every i ∈ [1, n], k � |Ai|.

It is straightforward to check that the definition of bounded programs is a
simplification of Def. 8.5 of fair-bounded programs, where proof obligation (b) is
discarded. Intuitively, the definition of boundedness only requires the decreasing
of the extended level mapping when the body atoms are true in some model of
the program, i.e. they might have a refutation.

Bounded programs and queries precisely characterise the notion of bounded
nondeterminism.

Theorem 9.4 ([58, 62]). Let P be a program and Q a query.
If P and Q are both bounded by some |.| and I, then P and Q have bounded

nondeterminism.

Conversely, if P and Q have bounded nondeterminism, then there exist an
extended level mapping |.| and a Herbrand interpretation I such that P and Q
are both bounded by |.| and I.

9.3 Examples

Example 9.5. Consider again the ODDEVEN program. It is readily checked that it
is bounded by defining:

|even(x)| = |odd(x)| = size(x)
I = {even(s2·i(0)), odd(s2·i+1(0)) | i ≥ 0}.

The query even(X), odd(X) is bounded by |.| and I. In fact, since no instance
of it is true in I, Def. 9.3 imposes no requirement. Therefore, ODDEVEN and the
query above have bounded nondeterminism.

Generally, for a query that has no instance in a model of the program (it
is unsolvable), the k in Def. 9.3 can be chosen as 0. An automatic method to
check whether a query (at a node of a SLD-tree) is unsolvable has been pro-
posed by [19]. Of course, the example is somewhat a limit case, since one does
not even need to run a query if it has been shown to be unsolvable. However,
we have already mentioned that the benefits of characterising bounded nonde-
terminism also apply to programs and queries belonging to the previously intro-
duced classes. In addition, it is still possible to devise an example program and
a satisfiable query that do not ∃-terminate but have bounded nondeterminism.

Example 9.6. We define the predicate all such that the query all(n0, n1, Xs)
collects in Xs the answers of a query q(m,A) for values m ranging from n0 to
n1.

all(N,N,[A]) ← q(N,A).
all(N,N1,[A|As]) ← q(N,A), all(s(N),N1,As).
q(Y,Y). %just as an example

The program and the query all(0, s(s(0)), As) do not ∃-terminate, but they
have only one computed answer, namely As = [0, s(0), s(s(0))]. The program and
the query are bounded (and thus have bounded nondeterminism) by defining:

|all(n, m, x)| = max{size(m)− size(n), 0}+ 1
|q(x, y)| = 0

I = {all(n, m, x) | size(n) ≤ size(m)} ∪ {q(x, y) | x, y, arbitrary}.

10 Relations between Classes

We have defined seven classes of programs and queries, which provide declarative
characterisations of operational notions of universal termination and bounded
nondeterminism. In this section we summarise the relationships between these
classes.

Table 1. Comparison of characterisations

only ground?

only recu
rsiv

e?

uses
model?

query
oblig.?

∞ in codomain?

neg. model info.?

boundedness yes no yes yes yes no
fair-boundedness yes no yes yes yes yes

acceptability yes no yes yes yes no
delay-recurrence yes no yes no no no

P-simply-acceptability no yes yes no no no
recurrence yes no no yes no n.a.

10.1 Comparison of Characterisations

We now try to provide an intuitive understanding of the technical differences
between the characterisations of termination we have proposed. These are sum-
marised in Table 1. Note that simply-acceptability is a special case of P-simply-
acceptability that does not need to be distinguished in this context.

The first difference concerns the question of whether a decrease is defined for
all ground instances of a clause, or rather for instances specified in some other
way. All characterisations except P-simply-acceptability require a decrease for
all ground instances of a clause. One cannot attribute this difference to the termi-
nation classes themselves: the first criterion for input-termination by Smaus [67]
also required a decrease for the ground instances of a clause, just as there are
characterisations of left-termination [14, 25] based on generalised level mappings
and hence non-ground instances of clauses. However, one can say that our char-
acterisation of input P-termination inherently relies on measuring the level of
non-ground atoms, which may change via further instantiation. Nevertheless,
this instantiation is not arbitrary: it is controlled by the fact that derivations
are input-consuming and the programs are simply moded. This is reflected in
the condition that a decrease holds for all simply-local instantiations of a clause.

The second difference concerns the question of whether a decrease is required
for recursive body atoms only, or whether recursion plays no role. P-Simply-
acceptability is the only characterisation that requires a decrease for recursive
body atoms only. We attribute this difference essentially to the explicit use of
modes. Broadly speaking, modes restrict the data flow of a program in a way
that allows for termination proofs that are inherently modular. Therefore one
does not explicitly require a decrease for non-recursive calls, but rather one
requires that for the predicate of the non-recursive call, termination has already
been shown (independently). To support this explanation, we refer to [32], where
left-termination for well moded programs is shown, using well-acceptability. Well-
acceptability requires a decrease only for recursive body atoms.

The third difference concerns the question of whether the method relies on
(some kind of) models or not. It is not surprising that a method for showing

strong termination cannot rely on models: one cannot make any assumptions
about certain atoms being resolved before an atom is selected. However, the first
methods for showing termination of input-consuming derivations were also not
based on models [16, 67], and it was remarked that the principle underlying the
use of models in proofs of left-termination cannot be easily transferred to input
termination. By restricting to simply moded programs and defining a special
notion of model, this was nevertheless achieved. For a clause H ←A1, . . . , An,
assuming that Ai is the selected atom, we exploited that provided that programs
and queries are simply moded, we know that even though A1, . . . , Ai−1 may
not be resolved completely, A1, . . . , Ai−1θ will be in any “partial model” of the
program.

The fourth difference concerns the question of whether proof obligations are
imposed on queries. Delay-recurrence and P-simply-acceptability are the charac-
terisations that impose no proof obligations for queries (except that in the latter
case, the query must be simply moded). The reason is that the restrictions on
the selectability of an atom, which depends on the degree of instantiation, take
the role of such a proof obligation.

The fifth difference concerns the question of whether∞ is in the codomain of
level mappings. This is the case for acceptability, fair-boundedness and bound-
edness. In all three cases, this allows for excluding unintended atoms and non-
terminating atoms from the termination analysis, which is crucial for achieving
full completeness of the characterisation. For an atom A with |A| =∞ the proof
obligations are trivially satisfied. However, we do not see any reason why some
of the other characterisations could not also be generalised by allowing∞ in the
codomain of level mappings.

A final difference concerns the way information on data flow (modes, models,
covers) is used in the declarative characterisations. For recurrence this is not
applicable. Apart from that, in all except fair-boundedness, such information
is used only in a “positive” way, i.e. “if . . . is in the model then . . . ”. In fair-
boundedness, it is also used in a “negative” way, namely “if . . . is not in the
model then . . . ”. Intuitively, in all characterisation, except fair-boundedness,
the relevant part of the information concerns a characterisation of atoms that
are logical consequences of the program. In fair-boundedness, it is also relevant
the characterisation of atoms that are not logical consequences, since for those
atoms we must ensure finite failure.

10.2 From Strong Termination to Bounded Nondeterminism

In this subsection, we show inclusions between the introduced classes, i.e. we
justify each arrow in Fig. 1. Note that in that figure, we have not only given
the numbers of the statements, but also the numbers of two kinds of examples:
examples that demonstrate that an inclusion is strict, and “counterexamples”
that demonstrate that an inclusion does not hold without making additional
assumptions.

We first leave aside the classes involving dynamic scheduling, i.e. input
(P-)termination and local delay termination, since for these classes, the com-
parison is much less clearcut.

Looking at the four remaining classes from an operational point of view, we
note that strong termination of a program and a query implies left-termination,
which in turn implies ∃-termination, which in turn implies bounded nondeter-
minism. Examples 7.10, 8.1 and 9.1 show that these implications are strict.

Since the declarative characterisations of those notions are sound and com-
plete, the same strict inclusions hold among recurrence, acceptability, fair-
boundedness and boundedness. This allows for reusing or simplifying termina-
tion proofs.

Theorem 10.1. Let P be a program and Q a query, |.| an extended level map-
ping and I a Herbrand model of P . Each of the following statements strictly
implies the statements below it:

– P and Q are recurrent by |.|,
– P and Q are acceptable by |.| and I,
– P and Q are fair-bounded by |.| and I,
– P and Q are bounded by |.| and I.

Consider now local delay termination. Obviously, it is implied by strong ter-
mination, and this implication is strict (Ex. 6.1). However, we have observed
with the programs and queries of Exs. 7.4 and 8.3 that local delay termination
does not imply left-termination or ∃-termination, in general. These results can be
obtained under reasonable assumptions, which, in particular, rule out deadlock.

The following proposition relates local delay termination with ∃-termination.

Proposition 10.2. Let P and Q be a permutation well moded program and
query, and |.| a moded level mapping.

If P and Q local delay terminate (w.r.t. |.|) then they ∃-terminate.
If P is delay-recurrent by |.| and some Herbrand interpretation then P and Q

are fair-bounded by some extended level mapping and Herbrand interpretation.

Proof. Since P and Q are permutation well moded, every query Q′ in a derivation
of P and Q is permutation well moded [66], and so by Def. 2.2, Q′ contains an
atom that is ground in its input positions and hence bounded w.r.t. |.|. Consider
the selection rule that always selects this atom together with all program clauses.
This selection rule is local and delay-safe, and it is a standard selection rule (since
there is always a selected atom). Therefore, local delay termination implies ∃-
termination.

Concerning the second claim, since fair-boundedness is a complete charac-
terisation of ∃-termination, we have the conclusion.

The next proposition relates local delay termination with left-termination.
In this case, programs must be well moded, not just permutation well moded.
The proof is similar to the previous one but simpler.

Proposition 10.3. Let P and Q be a well moded program and query, and |.| a
moded level mapping.

If P and Q local delay terminate (w.r.t. |.|) then they left-terminate.
If P is delay-recurrent by |.| and some Herbrand interpretation then P and

Q are acceptable by some extended level mapping and Herbrand interpretation.

Marchiori & Teusink [47] propose a program transformation such that the
original program is delay-recurrent iff the transformed program is acceptable.
This transformation allows us to use automated proof methods originally de-
signed for acceptability for the purpose of showing delay-recurrence.

Consider now input termination. As before, it is implied by strong termi-
nation, and this implication is strict (Exs. 4.1 and 4.13). However, as observed
in Exs. 6.3, 7.3 and 8.3, input termination does not imply local delay termina-
tion, left-termination, or ∃-termination, in general. Again, these results can be
obtained under reasonable assumptions.

The following proposition relates input termination to ∃-termination.

Proposition 10.4. Let P and Q be a permutation well moded program and
query. If P and Q input terminate then they ∃-terminate.

Let P and Q be a permutation well and simply moded program and query.
If P is simply acceptable by some |.| and I then P and Q are fair-bounded by
some extended level mapping and Herbrand interpretation.

Proof. The selection rule s constructed as in the proof of Prop. 10.2 is an input-
consuming selection rule, and also a standard selection rule. Therefore, input
termination implies universal termination w.r.t. {s} and hence ∃-termination.

Concerning the second claim, by Theorem 4.10, P and Q input terminate.
As shown above, this implies that they ∃-terminate. Since fair-boundedness is a
complete characterisation of ∃-termination, we have the conclusion.

The next proposition gives a direct comparison between input and left-
termination. The proof is similar to the previous one.

Proposition 10.5. Let P and Q be a well moded program and query. If P and
Q input terminate then they left-terminate.

Let P and Q be a well and simply moded program and query. If P is simply
acceptable by some |.| and I then P and Q are acceptable by some extended
level mapping and Herbrand interpretation.

To relate input termination to local delay termination, we introduce a notion
that relates delay-safe derivations with input-consuming derivations, based on
an a similar concept from [5].

Definition 10.6. Let P be a program and |.| a moded generalised level map-
ping.

We say that |.| implies matching (w.r.t. |.|) if for every atom A = p(s, t)
bounded w.r.t. |.| and for every B = p(v,u) head of a renaming of a clause from
P which is variable-disjoint with A, if A and B unify, then s is an instance of v.

Note that, in particular, |.| implies matching if every atom bounded by |.| is
ground in its input positions.

Proposition 10.7. Let P and Q be a permutation simply moded program and
query, and |.| a moded generalised level mapping that implies matching.

If P and Q input terminate then they local delay terminate (w.r.t. |.|).

Proof. The conclusion follows by showing that any derivation of P and any per-
mutation simply moded query Q′ via a local delay-safe selection rule (w.r.t. |.|) is
also a derivation via an input-consuming selection rule. So, let s be a local delay-
safe selection rule and Q′ a permutation simply moded query such that s selects
atom A = p(s, t). Then by Def. 10.6, for each B = p(v,u), head of a renaming
of a clause from P , if A and B unify, then s is an instance of v, i.e. s = vθ for
some substitution θ such that dom(θ)⊆Vars(v). By [5, (Apt & Luitjes, 1995,
Corollary 31)], this implies that the resolvent of Q′ and any clause in P is again
permutation simply moded. Moreover, by applying the unification algorithm [2],
it is readily checked that, if A and B unify, then σ = θ ∪ {t/uθ} is an mgu. Per-
mutation simply-modedness implies that s and t are variable-disjoint. Moreover,
s and v are variable-disjoint. This implies that Dom(σ) ∩ Vars(s) = ∅, and so
the derivation step is input-consuming.

By repeatedly applying this argument to all queries in the SLD-derivation
of P and Q via s, it follows that the derivation is via some input-consuming
selection rule.

Definition 10.6 seems to express the natural condition for level mappings that
ensure input-consuming derivations. Note that the proposition is not straightfor-
ward to generalise to, say, nicely moded programs, since in this case one cannot
in general construct an mgu by matching as in the above proof.

It remains an open question if simply-acceptability implies delay-recurrence
under some general hypotheses. The problem with showing such a result lies in
the fact that delay-recurrence is a sufficient but not necessary condition for local
delay termination.

Example 10.8. Consider again the program and the level mapping |.| of Ex. 6.11.
We have already observed that the program and any query local delay terminate.

In addition, given the mode {p(O), q(I), r(I)}, it is readily checked that
the program is simply moded, and that the level mapping is moded and implies
matching. Also, note that the program is simply acceptable by |.| and any simply-
local model.

However, this is not sufficient to show that the program is delay-recurrent,
as proved in Ex. 6.11. Intuitively, the problem with showing delay-recurrence
lies in the fact that the notion of cover does not appropriately describe the data
flow in this program given by the modes.

Finally, we consider input P-termination. Obviously, if a program and query
input terminate, then they input P-terminate. Whether or not this inclusion is
strict depends on whether P is a trivial property or not. Examples 5.1 and 5.6
demonstrate situations where it is strict.

There is little sense in making general comparisons between P-selection rules
and the other classes — everything depends on P. However, the following gen-
eralisation of Prop. 10.7 is particularly interesting.

Proposition 10.9. Let P and Q be a permutation simply moded program and
query, and |.| a moded generalised level mapping that implies matching. Let P
be the set of atoms atoms that are bounded w.r.t. |.|.

If P and Q input P-terminate then they local delay terminate (w.r.t. |.|).

Proof. By the same proof as the one of Prop. 10.7, any derivation of P and
any permutation simply moded query Q′ via a local delay-safe selection rule
(w.r.t. |.|) is also a derivation via an input-consuming selection rule. Moreover,
by the definition of P, such a derivation is also a P-derivation.

10.3 From Bounded Nondeterminism to Strong Termination

Consider now a program P and a query Q which either do not universally ter-
minate for a set of selection rules in question, or simply for which we (or our
compiler) fail to prove termination. We have already mentioned that, if P and Q
have bounded nondeterminism then there exists an upper bound for the length
of the SLD-refutations of P and Q. If the upper bound is known, then we can
syntactically transform P and Q into an equivalent program and query that
strongly terminate. As shown by Pedreschi & Ruggieri [58], such an upper bound
is related to the natural number k of Def. 9.3 of bounded queries. As in our no-
tation for moded atoms, we use boldface letters to denote vectors of (possibly
non-ground) terms.

Definition 10.10. Let P be a program and Q a query both bounded by |.| and
I, and let k ∈ IN. We define Ter(P) as the program such that:

– for every clause p0(t0)← p1(t1), . . . , pn(tn) in P , with n > 0, the clause

p0(t0, s(D))← p1(t1, D), . . . , pn(tn, D)

is in Ter(P), where D is a fresh variable,
– and, for every clause p0(t0) in P , the clause

p0(t0,)←

is in Ter(P).

Also, for the query Q = p1(t1), . . . , pn(tn), we define Ter(Q, k) as the query

p1(t1, s
k(0)), . . . , pn(tn, sk(0))

The transformed program relates to the original one as shown in the following
theorem.

Theorem 10.11 ([58, 62]). Let P be a program and Q a query both bounded
by |.| and I, and let k be a given natural number satisfying Def. 9.3.

Then, for every n ∈ IN, Ter(P) and Ter(Q,n) strongly terminate.
Moreover, there is a bijection between SLD-refutations of P and Q via a

selection rule s and SLD-refutations of Ter(P) and Ter(Q, k − 1) via s.

The intuitive reading of this result is that the transformed program and query
maintain the success semantics of the original program and query. Note that no
assumption is made on the selection rule s, i.e. any selection rule is a terminating
control for the transformed program and query.

Example 10.12. Reconsider the program ODDEVEN and Q = even(X), odd(X) of
Ex. 9.1. The transformed program Ter(ODDEVEN) is:

even(s(X),s(D)) ← odd(X,D).
even(0,).

odd(s(X),s(D)) ← even(X,D).

and the transformed query Ter(Q, k − 1) for k = 3 is

even(X,s2(0)),odd(X,s2(0)).

By Theorem 10.11, the transformed program and query terminate for any selec-
tion rule, and the semantics w.r.t. the original program is preserved modulo the
extra argument added to each predicate.

The transformations Ter(P) and Ter(Q, k) are of purely theoretical inter-
est. In practice, one would implement these counters directly into the com-
piler/interpreter. Also, the compiler/interpreter should include a module that
infers an upper bound k automatically. Approaches to the automatic inference
of level mappings and models are briefly recalled in the next section. Pedreschi
& Ruggieri [58] give an example showing how the approach of Decorte et al. [29]
could be rephrased to infer boundedness.

11 Related Work

Termination in logic programming (and its extensions) has been the subject of
intense research over the last fifteen years. The survey of De Schreye & Decorte
[23], dated 1994, distinguishes three types of approaches: the ones that express
necessary and sufficient conditions for termination, the ones that provide decid-
able sufficient conditions, and the ones that prove decidability or undecidability
for subclasses of programs and queries. Under this classification, this survey pa-
per has been mainly concerned with the first type. While we do not even try to
survey the large amount of literature on automatic or semi-automatic approaches
[14, 21, 29, 23, 44, 52, 53, 71], it must be observed that existing tools typically im-
plement conditions for checking proof obligations of the characterisations we

surveyed. As an example, a challenging topic of the research in automatic termi-
nation inference consists in finding standard forms of level mappings and models,
so that the solution of the resulting proof obligations can be reduced to known
problems for which efficient algorithms exist. Note that on a theoretical level the
problem of deciding whether a program belongs to one of the classes studied in
this article is undecidable. This was formally shown by Bezem [11] for recurrence,
and by Ruggieri [62] for acceptability, fair-boundedness and boundedness. There-
fore, the conditions implemented by automatic tools are, inevitably, sufficient
conditions.

In the following, we recall other characterisations of the various notions of
termination and relate them to those presented in this survey.

11.1 Acceptability: the Modularity Issue

A termination characterisation is modular if the proof obligations for the pro-
gram P = P1 ∪ . . . ∪ Pn can be obtained from separate proof obligations of
programs P1, . . . , Pn. The modularity property is essential both in paper &
pencil proofs and in automatic tools, since it allows for reasoning on termination
of a large program by breaking it down to several small modules.

Since non-termination can only arise from recursion, the decomposition P1,
. . . , Pn should partition P in such a way that all clauses defining two mutually
recursive predicates appear in a same module Pi. Therefore, a termination char-
acterisation is modular if the proof obligations for a clause defining a predicate
p depend only on predicates mutually recursive with p.

Apt & Pedreschi [8] refined acceptability to provide a partially modular
method. The resulting notion, called semi-acceptability, requires that: for ev-
ery A←B1 , . . . , Bn ∈ groundL(P),

for all i ∈ [1, n] : I |= B1 , . . . , Bi−1 implies
{
|A| > |Bi| if rel(A) ' rel(B)
|A| ≥ |Bi| otherwise.

Compared to acceptability, a strict decrease is now required for mutually recur-
sive predicates only. Even if this simplifies proofs, it is a restricted notion of
modularity, since changes in the level mapping of atoms defined in one module
may make the proof obligations in higher modules invalid.

Etalle et al. [32] proposed a refinement of acceptability (well-acceptability) for
well moded programs and queries. The requirement of well-modedness simplifies
proofs of acceptability. On the one hand, the decrease of the level mapping is
now required only for mutually recursive calls, i.e. for every A←B1 , . . . , Bn ∈
groundL(P),

for all i ∈ [1, n], I |= B1 , . . . , Bi−1 and rel(A) ' rel(B) imply |A| > |Bi|.

On the other hand, level mappings are assumed to be moded, and this leads
to no proof obligation on queries (or better, queries are bounded as an im-
mediate consequence). Also, it is interesting to observe that the definition of
well-acceptability is then very close to simply-acceptability (Def. 4.9). Actually,

well-modedness of a program and a query implies that atoms selected by the LD
selection rule are ground in their input positions, hence a derivation via the LD
selection rule is input-consuming.

De Schreye & Serebrenik [24] generalised well-acceptability to order-accepta-
bility, by having any well-founded ordering, not necessarily IN, as codomain of
level mappings. This allows us to show the same termination results and to
simplify termination proofs when complex level mappings may be needed.

11.2 Non-ground Characterisations of Left-termination

Alternative characterisations of left-termination consider proof obligations on
generalised level mappings and thus on possibly non-ground instances of clauses
and queries. Let us recall the well-known approach of Decorte et al. [25, 29].

First, they use a non-ground notion of model.

Definition 11.1. A generalised model8 of a program P is a set I ⊆ AtomL such
that for every A←B1 , . . . , Bn ∈ instL(P),

B1 , . . . , Bn ∈ I implies A ∈ I.

Second, they require (generalised) level mappings to be invariant under instan-
tiation for atoms that may appear in a derivation starting from a set of intended
queries. This is the counterpart of acceptability of a(n atomic) query.

Definition 11.2. For a program P and a set of queries Q, let Call(P,Q) be
the set of atoms selected along a SLD-derivation of P and any Q ∈ Q via the
LD selection rule.

A generalised level mapping |.| is rigid if for every A ∈ Call(P,Q) and every
substitution θ, we have |A| = |Aθ|.

Usually, abstract interpretation techniques allow us to compute a superset of
Call(P,Q) given P and Q, while for a broad class of norms, rigidity can be
verified syntactically [14].

The proof method, called rigid acceptability w.r.t. a set Q, requires that for a
rigid level mapping |.| and a generalised model I: for every A←B1 , . . . , Bn ∈
instL(P),

for all i ∈ [1, n], I |= B1 , . . . , Bi−1 and rel(A) ' rel(B) imply |A| > |Bi|.

If those proof obligations are satisfied, then P and every A ∈ Q left-terminate.
This characterisation is fully modular, i.e. it does not require P to be well-

moded as in the case of well-acceptability. However, the characterisation is not
complete. The main problem is due to the notion of rigidity.

Example 11.1. The query p(X) and the simple program P below left-terminate.
8 A generalised model coincides with a set of valid interargument relations in the

terminology of [25, 29].

p(a) ← p(b).
p(b).

Consider now Q = {p(X)}. We have Call(P,Q) = {p(X),p(a),p(b)}. However,
for any generalised level mapping |.|, proof obligations require |p(a)| > |p(b)|,
which implies that |.| cannot be rigid on Call(P,Q).

The source of the problem lies in the requirement |A| = |Aθ| of Def. 11.2.
By assuming |A| ≥ |Aθ|, the example program and query above can be reasoned
about.

De Schreye and Serebrenik [24] have adapted this approach, i.e. the use of
call sets, to general orderings, as opposed to level mappings. However, the aspect
of incompleteness is pretty much the same as in the approach of Decorte et al.
(see [24, Example 6]).

A general solution is provided by Bossi et al. [14] consisting of: (1) generalised
level mappings with an arbitrary well-founded ordering as the codomain that
do not increase w.r.t. substitutions; (2) a specification (Pre, Post), with Pre,
Post⊆AtomL, which is intended to characterise call patterns (Pre) and correct
instances (Post) of atomic queries. Call patterns provide information on the
structure of selected atoms, while correct instances provide information on data
flow. However, the proof obligations are not well suited for paper & pencil proofs,
since they require to reason on the strongly connected components of a graph
abstracting the flow of control of the program under consideration.

11.3 Left-termination with Respect to a Set of Queries

Acceptability w.r.t. a set allows us to reason on a program and a set of queries,
while acceptability seems to concentrate on a program and a single query at
once. The benefit of acceptability w.r.t. a set consists of having just one single
proof of termination for a set of queries rather than a set of proofs, one for each
query in the set.

However, we observe that in our examples on acceptability, proofs can easily
be generalised to a set of queries. If this was not the case, the practical use of
termination analysis would be very limited. For instance, given a level mapping
such that |p(t)| = length(t), it is immediate to conclude that all queries p(T),
where T is a list, are acceptable.

Conversely, is it the case that if P and all queries in a set Q left-terminate
then P and every Q ∈ Q are acceptable by a same |.| and I?

The answer is affirmative. In fact, from the proof of the Completeness Theo-
rem 7.8 [62, Theorem 2.3.20], if P and Q left-terminate then they are acceptable
by a level mapping |.|P and a Herbrand model IP that only depend on P . This
implies that every Q ∈ Q is acceptable by |.|P and IP . In conclusion, acceptabil-
ity by |.|P and IP precisely characterises the maximal set Q such that P and Q
left-terminate for each Q ∈ Q.

11.4 Permutation Terminating Programs

A permutation of a program P (resp., query Q) is any program (query) obtained
by reordering clause body atoms in P (atoms in Q). We say that P and Q
permutation terminate if for some permutation P ′ of P and Q′ of Q, P ′ and Q′

left-terminate. Observe that permutation termination is strictly weaker than left-
termination, and strictly stronger than ∃-termination (e.g. program PRODCONS
in Fig. 10 and system(n), with n ∈ IN, ∃-terminate but do not permutation
terminate).

We have not included permutation termination in our formal hierarchy since
it is trivial from a theoretical point of view to relate it to left-termination: simply
analyse all possible permutations of the program and query for left-termination.
Permutation termination is mainly an issue for automatic tools, since one would
like to compute this permutation efficiently.

Deransart & Ma luszyński [30] presented the proof obligations of their method
by considering a generic permutation of body atoms. However, the choice of the
permutation is left to the user.

The inference of an appropriate permutation has been proposed by Speirs
et al. [71] and by Hoarau & Mesnard [39]. In [71], mode and type information
provided by the programmer are used to reorder the body atoms. The resulting
static termination algorithm is part of the Mercury system [70]. In contrast,
the approach of [39] aims at inferring an as large as possible set of queries for
which a program permutation terminate without involving the programmer in
additional specifications.

11.5 Transformational Approaches

It is possible to investigate termination of logic programs by transforming them
to some other formal system. If the transformation preserves termination, one
can resort to the compendium of techniques of those formal systems for the
purpose of proving termination of the original logic program.

Baudinet [10] considered transforming logic programs into functional pro-
grams. Termination of the transformed programs can then be studied by struc-
tural induction. Her approach covers general logic programs, existential termi-
nation and the effects of the Prolog cut. Also, there is a considerable body of
literature on transforming logic programs to term rewriting systems (TRSs),
where a large set of well-founded orderings is available for reasoning about ter-
mination . It is very common in these transformational approaches to use modes.
The intuitive idea is usually that the input of an atom has to rewrite into the
output of that atom. Most of those works assume the LD selection rule [9, 35,
41, 56]. One notable exception is due to Krishna Rao et al. [43], where termina-
tion is considered w.r.t. selection rules that respect a producer-consumer relation
among variables in clauses. Such a producer-consumer relation is formalised with
an extension of the notion of well-modedness.

While the transformation must be sound (if the transformed program ter-
minates then the original one terminates as well), the converse (if the original

program terminates then the transformed one terminates as well) is not well
studied. One remarkable exception is the approach by Aguzzi & Modigliani [1],
whose transformation is complete, albeit only for the limited class of input driven
logic programs [4]. So for this limited class, a program terminates if and only if
the corresponding TRS terminates.

11.6 Integer and Floating-Point Computations

For efficiency reasons, integers and integer predicates are implemented in Prolog
(and other logic programming languages) by means of special terms and predi-
cates, built-in’s of the system. As an example, 3 < (2+2) is an atom containing
the less-than predicate < and the ground arithmetic expression terms 3 and
(2+2). As one could expect, the resolution of the atom above leads to success.

Integer arithmetic does not require special treatment when termination does
not depend on integer computation, such as in the definition of the partition
predicate in Ex. 7. In contrast, in presence of integer computations, the definition
of the level mapping might take into account integer arguments of atoms. The
approach of Dershowitz et al. [31] deduces automatically from a given program
a finite abstract domain for representing ranges of integer expressions involved
in program clauses. The abstract domain serves as a basis for checking the de-
creasing of level mappings over recursive calls.

Serebrenik [64] shows that the definition of a level mapping when integer ar-
guments are critical for termination may be not as simple as expected, e.g. it may
be non-linear. He proposed and implemented a sufficient condition for partition-
ing integers into intervals (called adornments) such that a linear level mapping
can be defined on each of them. Even further, Serebrenik & De Schreye [65]
extended the approach to reason on floating-point computations, i.e. in presence
of rounding errors.

Also, Apt et al. [6] proposed a variant of acceptability for reasoning on built-
in predicates, including arithmetic ones, var() and ground(). Their key concept
is a specialised semantics (called Θ-semantics) and a notion of model w.r.t. such
semantics to be used instead of Herbrand models in the definition of acceptabil-
ity.

11.7 Dynamic Scheduling

The term dynamic scheduling refers to selection rules where the selection of an
atom depends on its degree of instantiation at runtime. Dynamic scheduling can
be implemented using delay declarations as provided by Gödel [38] or SICStus
[73], or using guards (see Subsec. 11.12).

We believe that modes are important for understanding dynamic scheduling,
even though some authors have not used them explicitly [45, 47, 49, 55]. Modes
are the basis for defining input-consuming derivations, which are a formalism
for describing dynamic scheduling while abstracting from the technical details
of delay declarations. We also believe that within dynamic scheduling, there
is an important qualitative distinction between what we call (here) weak and

strong selection rules. Weak selection rules are achieved by delay declarations
that test for arguments being at least non-variable, and ideally correspond to
input-consuming selection rules. Strong selection rules ensure that the depth of
the SLD-tree of an atom is bounded at the time of selection, and more or less
correspond to delay-safe selection rules.

Naish [55] considers delay declarations that would fall under weak selection
rules. Naish has given two intuitive causes for loops: circular modes and specula-
tive output bindings. The first cause (see Ex. 4.4) can be eliminated by requiring
programs to be permutation nicely moded9. Speculative output bindings are in-
deed a good explanation for the fact that permute(O , I) (see Ex. 5.1) does not
input terminate. Naish then makes the additional assumption that the selection
rule always selects the leftmost selectable atom, and proposes to put recursive
calls last in clause bodies. Effectively, this guarantees that the recursive calls are
ground in their input positions, which would fall under strong selection rules.

Lüttringhaus-Kappel [45] proposed a method for generating delay declara-
tions automatically. The method finds acceptable delay declarations, ensuring
that the most general selectable atoms have finite SLD-trees. What is required
however are safe delay declarations, ensuring that instances of most general se-
lectable atoms have finite SLD-trees. A safe program is a program for which
every acceptable delay declaration is safe. Lüttringhaus-Kappel states that all
programs he has considered are safe, but gives no hint as to how this might be
shown in general. This work is hence not about proving termination. Sometimes
the generated delay declarations would fall under weak selection rules, but in
some cases, the delay declarations require an argument of an atom to be a list
before that atom can be selected, which would fall under strong selection rules.

Apt & Luitjes [5] made a first attempt to show termination for dynamic
scheduling. They considered deterministic programs, i.e. programs where for
each selectable atom (according to the delay declarations) there is at most one
clause head unifiable with it. For such programs, the existence of one successful
derivation implies that all derivations are finite. Such a class of programs, how-
ever, is of limited interest. Apt & Luitjes also give conditions for the termination
of APPEND, but these are ad-hoc and do not address the general problem.

The work by Marchiori & Teusink [47], which we surveyed in Sec. 6, not only
assumes strong selection rules, but in addition selection rules must be local. A
limitation of their method lies in the fact that the notion of cover is just an
approximation of the data flow in a program (see Ex. 6.11). No implementation
of local selection rules is mentioned by the authors. We refer to the conclusion
for further discussion.

Martin & King [49] ensure termination by imposing a depth bound on the
SLD-tree. This is realised by a program transformation introducing additional
argument positions for each predicate, which are counters for the depth of the
computation. Of course, this falls under strong selection rules.

Naish’s proposal [55] has been formalised and refined by Smaus et al. [69].
The authors consider atoms that may loop when called with insufficient input.

9 A generalisation of “permutation simply moded”.

It is proposed to place such atoms sufficiently late; all producers of input for
such atoms must occur textually earlier. Effectively, this is a hybrid selection
rule where strong assumptions are made only for certain atoms.

Concerning input termination, the first sound but incomplete characterisa-
tion assumed well and nicely moded programs [67]. It was then found that the
condition of well-modedness could easily be lifted [16]. By restricting to simply
moded programs, it was possible to give a characterisation that is also complete
[17], which is the work we survey in Sec. 4. It has been shown that under nat-
ural conditions, input-consuming derivations can be implemented using delay
declarations [15, 17, 66].

The recent work of [68] considers input-consuming selection rules with addi-
tional assumptions. In one dimension, a selection rule can be parametrised by
a property P that the selected atoms must have. This can be used to formalise
delay-safe selection rules as we did in Sec. 5. However, the notion of P-derivation
abstracts from the distinction between weak and strong selection rules, since P
could be any instantiation property. In another dimension, a selection rule can
be local or not (necessarily) local. These dimensions can freely be combined.

11.8 ∃-Termination

Concerning termination w.r.t. fair selection rules, i.e. ∃-termination, we are aware
only of the works of Gori [36] and McPhee [50]. Gori proposed an automatic sys-
tem based on abstract interpretation analysis that infers ∃-termination. McPhee
proposed the notion of prioritised fair selection rules, where atoms that are
known to terminate are selected first, with the aim of improving efficiency of
fair selection rules. He adopts the automatic test of Lindenstrauss & Sagiv [44]
to infer (left-)termination, but, in principle, the idea applies to any automatic
termination inference system.

11.9 Bounded Nondeterminism

Sufficient (semi-)automatic methods to approximate the number of computed
instances by means of lower and upper bounds have been studied in the context
of cost analysis of logic programs [26] and of cardinality analysis of Prolog pro-
grams [18]. As an example, cost analysis is exploited in the Ciao-Prolog system
[37]. Of course, if∞ is a lower bound to the number of computed instances of P
and Q then they do not have bounded nondeterminism. Dually, if n ∈ N is an
upper bound then P and Q have bounded nondeterminism. In this case, how-
ever, we are still left with the problem of determining a depth of the SLD-tree
that includes all the refutations.

The idea of cutting unsuccessful SLD-derivations is common to the research
area of loop checking (see e.g. [12]). While a run-time analysis is potentially
able to cut more unsuccessful branches, the evaluation of a pruning condition at
run-time, such as for loop checks, involves a considerably higher computational
overhead than statically checking the boundedness proof obligations.

11.10 General Programs

General programs admit negative literals in clause bodies and in queries. In pres-
ence of negation, there are several execution models proposed in the literature.

The most widely known is SLDNF-resolution, where negation is interpreted
by the negation-as-failure rule. A declarative characterisation of strong termina-
tion for general logic programs and queries was proposed by Apt & Bezem [3].
They assume safe (not to be confused with delay-safe [47]) selection rules, mean-
ing that negative literals can be selected only if they are ground. Apt & Pedreschi
[7] have generalised acceptability to reason on programs with negation under
SLDNF resolution. The characterisation is sound. Also, it is complete for safe
selection rules.

When turning on other execution models, the class of (left-)terminating pro-
grams and queries may differ. A declarative characterisation of left-termination
was provided by Marchiori [46] in the context of constructive negation by extend-
ing acceptability. Also, an elaborated notion extension of recurrence has been
proposed in the context of SLDNFA-resolution by Verbaeten [76], and in the
context of the EK-proof procedure by Mancarella et al. [57].

Finally, the modularity issue for general programs is discussed by Bossi et
al. [13].

11.11 Extensions of LP: Constraint Logic Programs

The first work on characterisations of (left-)termination in constraint logic pro-
gramming (CLP) is due to Colussi et al. [22], who proposed a necessary and
sufficient condition inspired by the method of Floyd for termination of flowchart
programs [33]. Their method consists of assigning a data flow graph to a pro-
gram, where each node is labelled with the set of constraint stores of calls that
may reach the associated program point. The decreasing of a function on every
cycle of the data flow graph is then a necessary and sufficient condition for left-
termination. A drawback of the method is that the set of constraints associated
to nodes must be specified (the approach is not automated), which means rea-
soning operationally (as opposed to declaratively in terms of level mappings) on
the program.

Ruggieri [61] proposed an extension of acceptability that is sound and com-
plete for ideal CLP languages. A CLP language is ideal if its constraint solver,
the procedure used to test consistency of constraints, returns true on a consistent
constraint and false on an inconsistent one. In contrast, a non-ideal constraint
solver may return unknown if it is unable to determine (in)consistency. An ex-
ample of non-ideal CLP language is the CLP(R) system, for which Ruggieri
proposes proof obligations (based on a notion of modes) in addition to accept-
ability in order to obtain a sound characterisation of left-termination.

Mesnard [51] provided sufficient termination conditions based on approxi-
mation techniques and Boolean µ-calculus, with the aim of inferring a class of
left-terminating CLP queries. Recently, the approaches of Mesnard and Ruggieri

have been merged into a unified framework [54], for which an implementation is
described in [52].

Finally, Frühwirth [34] adapted the notion of recurrent logic programs to show
termination of constraint handling rules, a language closely related to concurrent
constraint programming and especially designed for writing constraint solvers.

11.12 Extensions of LP: Programs with Guards

The definition of input-consuming derivations has a certain resemblance with
derivations in the parallel logic language of (Flat) Guarded Horn Clauses [75].
In (F)GHC, an atom and clause may be resolved only if the atom is an instance of
the clause head, and a test (guard) on clause selectability is satisfied. Termination
of GHC programs was studied by Krishna Rao et al. [42] by transforming them
into TRSs.

Pedreschi & Ruggieri [59] characterised a class of programs (with guards
and delay declarations) and queries that have no failed derivation. For those
programs, termination for one selection rule implies termination (with success)
for all selection rules. This situation has been previously described as saying that
a program does not make speculative bindings [69]. The approach by Pedreschi
& Ruggieri is an improvement w.r.t. the latter one, since what might be called
“shallow” failure does not count as failure. For example, the program QUICKSORT
is considered failure-free in the approach of [59].

11.13 Extensions of LP: Tabled Programs

Tabled logic programming is particularly interesting since tabling improves the
termination behaviour of a logic program, compared to ordinary execution.

A declarative characterisation of tabled left-termination has been given by
Decorte et al. [28]. The method can show termination in interesting cases where
ordinary execution does not terminate. The approach has been extended and
automated by Verbaeten et al. [77], where a mix of tabled and ordinary SLD-
resolution is also studied. The characterisation provided is in general sound, and
complete under some conditions on tabled predicates.

12 Conclusion

In this article, we have surveyed seven different classes of terminating logic pro-
grams and queries. For each of them, we have provided a sound declarative
characterisation of termination, which, in five cases, was also complete. We have
offered a unified view of those classes allowing for non-trivial formal comparisons.
In particular, we have shown strict inclusions among the classes, establishing the
hierarchy shown in Fig. 1. We conclude by discussing two questions: Why, in
some cases, did we need additional assumptions to obtain a unified view? How
significant are the classes of the hierarchy?

To make the first question more specific: why do the inclusions between ter-
mination for dynamic selection rules on the one hand and left-termination and
∃-termination on the other hand not simply hold without additional assump-
tions? We have two kinds of counterexamples.

We have counterexamples where the textual order of atoms in the clause
bodies of a program makes the program unsuitable for the LD selection rule
(Exs. 7.3 and 7.4). It is not pathological for a program to be written for, say, the
RD selection rule, but we should not be surprised about pathological (i.e. non-
termination) behaviour when we run the program using the LD selection rule.

Moreover, we have counterexamples where a program input terminates, or
local delay terminates, thanks to deadlock (Ex. 8.3). Is a program that relies on
deadlock for termination pathological? Generally, deadlock is considered an un-
desirable situation, but it is still preferable to non-termination. Also, it should be
noted that deadlock cannot necessarily be blamed on the program. The APPEND
program and the query append([1|Xs], Ys, Zs) do not ∃-terminate, but they input
terminate (for the mode input(I , I ,O)), and in this sense, one could argue that
selection rules allowing for deadlock are a stronger assumption for termination
than any standard selection rule. This is in contrast to Props. 10.2, 10.3, 10.4
and 10.5 (where the hypotheses imply absence of deadlock).

Concerning the second question, there is of course a general answer: this is
a survey article, and so we surveyed those works that are commonly recognised
as most relevant in the field of termination for various selection rules, even if
sometimes the significance of a result is diminished by a later result. However,
we also have a few more specific answers.

The interest in strong termination, ∃-termination and bounded nondetermin-
ism is evident because they are cornerstones of the whole spectrum of classes.
The interest in left-termination is motivated by the fact that the standard se-
lection rule of Prolog is assumed. With the three classes related to dynamic
scheduling, we have captured the important distinction between weak selection
rules, strong selection rules, and strong and local selection rules, as explained in
Subsec. 11.7.

The question can also be phrased differently: for each inclusion between
classes, how significant is it that the inclusion is strict? If A ⊂ B but B \ A
contains only some very obscure and contrived programs, then is it worthwhile
to study B in detail?

The strict inclusion between input termination and input P-termination,
for an appropriate P, is witnessed by Exs. 5.1 and 5.6. These programs are
not contrived, in fact they are famous in this context [55], but they are small
programs, and it remains to be seen if other examples can be found.

In our opinion, the strict inclusion between local delay termination and left-
termination demonstrated by Ex. 7.1 is insignificant. The example is artificial.
Most of the time, the LD selection rule turns out to be simple implementation
of a local delay-safe selection rule — no more and no less.

Example 6.10 is very similar to Ex. 7.1 and suggests that the strict inclusion
between input P-termination and local delay termination is also insignificant,

or put differently, that the difference made by assuming local selection rules
is insignificant. Actually, we are not aware of a realistic program where locality
matters for termination. However, Ex. 6.1 exhibits a certain pattern that suggests
that there could be a realistic example: consider the clause r(X)← p(X, Y), r(Y).
There are two derivations for p(X, Y), one that generates a Y bigger (say, by the
term size norm) than X but is bound to fail, and one that generates a Y smaller
than X and succeeds. Locality is crucial so that this failure occurs before the
recursive call r(Y).

Marchiori & Teusink justify the restriction of local derivations saying that
“the termination behaviour of ‘delay until nonvar’10 is poorly understood”, and
that “the class of local selection rules [. . .] supports simple tools for proving
termination” [47]. In the meantime, as discussed in Sections 4 and 5, both ter-
mination for input-consuming derivations and termination for delay-safe (but
not necessarily local) derivations are well understood.

Can we conclude from the above that the strict inclusion between input
P-termination and left-termination is insignificant, and so all the research ef-
fort currently devoted to left-termination should be redirected towards input
P-termination? Not quite. Left-termination is the most important notion of ter-
mination in practice and has been studied under every conceivable aspect. One
cannot expect that all this work will readily translate to input P-termination.

References

1. G. Aguzzi and U. Modigliani. Proving termination of logic program by transform-
ing them into equivalent term rewriting systems. In R. K. Shyamasundar, editor,
Proc. of the 13th Conference on Foundations of Software Technology and Theo-
retical Computer Science, volume 761 of LNCS, pages 114–124. Springer-Verlag,
1993.

2. K. R. Apt. From Logic Programming to Prolog. Prentice Hall, 1997.

3. K. R. Apt and M. Bezem. Acyclic programs. New Generation Computing,
29(3):335–363, 1991.

4. K. R. Apt and S. Etalle. On the unification free Prolog programs. In
A. Borzyszkowski and S. Sokolowski, editors, Proc. of the 18th International Sym-
posium on Mathematical Foundations of Computer Science, volume 711 of LNCS,
pages 1–19. Springer-Verlag, 1993.

5. K. R. Apt and I. Luitjes. Verification of logic programs with delay declarations.
In V. S. Alagar and M. Nivat, editors, Proc. of the 4th International Conference
on Algebraic Methodology and Software Technology, volume 936 of LNCS, pages
66–90. Springer-Verlag, 1995.

6. K. R. Apt, E. Marchiori, and C. Palamidessi. A declarative approach for first-
order built-in’s of Prolog. Applicable Algebra in Engineering, Communication and
Computation, 5(3/4):159–191, 1994.

7. K. R. Apt and D. Pedreschi. Reasoning about termination of pure Prolog programs.
Information and Computation, 106(1):109–157, 1993.

10 This amounts to input-consuming derivations.

8. K. R. Apt and D. Pedreschi. Modular termination proofs for logic and pure Prolog
programs. In G. Levi, editor, Advances in Logic Programming Theory, pages 183–
229. Oxford University Press, 1994.

9. T. Arts. Automatically proving termination and innermost normalisation of term
rewriting systems. PhD thesis, Universiteit Utrecht, 1997.

10. M. Baudinet. Proving termination properties of Prolog programs: a semantic ap-
proach. Journal of Logic Programming, 14:1–29, 1992.

11. M. A. Bezem. Strong termination of logic programs. Journal of Logic Programming,
15(1 & 2):79–98, 1993.

12. R. N. Bol, K. R. Apt, and J. W. Klop. An analysis of loop checking mechanism
for logic programs. Theoretical Computer Science, 86(1):35–79, 1991.

13. A. Bossi, N. Cocco, S. Etalle, and S. Rossi. On modular termination proofs of
general logic programs. Theory and Practice of Logic Programming, 2(3):263–291,
2002.

14. A. Bossi, N. Cocco, and M. Fabris. Norms on terms and their use in proving univer-
sal termination of a logic program. Theoretical Computer Science, 124(2):297–328,
1994.

15. A. Bossi, S. Etalle, and S. Rossi. Semantics of input-consuming logic programs. In
J. W. Lloyd et al., editor, Proc. of the 1st International Conference on Computa-
tional Logic, volume 1861 of LNCS, pages 194–208. Springer-Verlag, 2000.

16. A. Bossi, S. Etalle, and S. Rossi. Properties of input-consuming derivations. Theory
and Practice of Logic Programming, 2(2):125–154, 2002.

17. A. Bossi, S. Etalle, S. Rossi, and J.-G. Smaus. Semantics and termination of simply
moded logic programs with dynamic scheduling. Transactions on Computational
Logic, 2004. To appear in summer 2004.

18. C. Braem, B. Le Charlier, S. Modart, and P. Van Hentenryck. Cardinality analysis
of Prolog. In M. Bruynooghe, editor, Proc. of the International Logic Programming
Symposium, pages 457—471. MIT Press, 1994.

19. M. Bruynooghe, H. Vandecasteele, D. A. de Waal, and M. Denecker. Detecting
unsolvable queries for definite logic programs. In C. Palamidessi et al., editor,
Proc. of PLILP/ALP ’98, volume 1490 of LNCS, pages 118–133. Springer-Verlag,
1998.

20. L. Cavedon. Continuity, consistency, and completeness properties for logic pro-
grams. In G. Levi and M. Martelli, editors, Proceedings of the 6th International
Conference on Logic Programming, pages 571–584. The MIT Press, 1989.

21. M. Codish and C. Taboch. A semantic basis for the termination analysis of logic
programs. Journal of Logic Programming, 41(1):103–123, 1999.

22. L. Colussi, E. Marchiori, and M. Marchiori. On termination of constraint logic
programs. In M. Bruynooghe and J. Penjam, editors, Proc. of the 1st International
Conference of Principles and Practice of Constraint Programming, volume 976 of
LNCS, pages 431–448. Springer-Verlag, 1995.

23. D. De Schreye and S. Decorte. Termination of logic programs: the never-ending
story. Journal of Logic Programming, 19-20:199–260, 1994.

24. D. De Schreye and A. Serebrenik. Acceptability with general orderings. In F. Sadri
and A. Kakas, editors, Computational Logic: Logic Programming and Beyond, Part
I, volume 2407 of LNCS, pages 187–210. Springer-Verlag, 2002.

25. D. De Schreye, K. Verschaetse, and M. Bruynooghe. A framework for analyzing the
termination of definite logic programs with respect to call patterns. In Proc. of the
International Conference on Fifth Generation Computer Systems, pages 481–488.
Institute for New Generation Computer Technology, 1992.

26. S. K. Debray and N. W. Lin. Cost analysis of logic programs. ACM Transactions
on Programming Languages and Systems, 15(5):826–875, 1993.

27. S. Decorte, D. De Schreye, and M. Fabris. Automatic inference of norms: A missing
link in automatic termination analysis. In D. Miller, editor, Proc. of the Interna-
tional Logic Programming Symposium, pages 420–436. The MIT Press, 1993.

28. S. Decorte, D. De Schreye, M. Leuschel, B. Martens, and K. Sagonas. Termina-
tion analysis for tabled logic programming. In N. E. Fuchs, editor, Proc. of the
7th International Workshop on Logic Programming Synthesis and Transformation,
volume 1463 of LNCS, pages 111–127. Springer-Verlag, 1998.

29. S. Decorte, D. De Schreye, and H. Vandecasteele. Constraint-based termination
analysis of logic programs. ACM Transactions on Programming Languages and
Systems, 21(6):1137–1195, 1999.

30. P. Deransart and J. Ma luszyński. A Grammatical View of Logic Programming.
The MIT Press, 1993.

31. N. Dershowitz, N. Lindenstrauss, Y. Sagiv, and A. Serebrenik. A general frame-
work for automatic termination analysis of logic programs. Applicable Algebra in
Engineering, Communication and Computing, 2001(1/2):117–156, 2001.

32. S. Etalle, A. Bossi, and N. Cocco. Termination of well-moded programs. Journal
of Logic Programming, 38(2):243–257, 1999.

33. R. W. Floyd. Assigning meaning to programs. In J. T. Schwartz, editor, Proc.
Symposium in Applied Mathematics, vol. 19 of Mathematical Aspects in Computer
Science, pages 19–32. AMS, 1967.

34. T. Frühwirth. Proving termination of constraint solver programs. In K. R. Apt et
al., editor, New Trends in Constraints, volume 1865 of LNAI, 2000.

35. H. Ganzinger and U. Waldmann. Termination proofs of well-moded logic programs
via conditional rewrite systems. In M. Rusinowitch and J. L. Rémy, editors, Proc. of
the 3rd International Workshop on Conditional Term Rewriting Systems, volume
656 of LNCS, pages 430–437. Springer-Verlag, 1992.

36. R. Gori. An abstract interpretation approach to termination of logic programs. In
M. Parigot and A. Voronkov, editors, Proc. of the 7th International Conference on
Logic for Programming and Automated Reasoning, volume 1955 of LNCS, pages
362–380. Springer-Verlag, 2000.

37. M. V. Hermenegildo, F. Bueno, G. Puebla, and P. López. Program analysis, de-
bugging, and optimization using the Ciao system preprocessor. In D. De Schreye,
editor, Proc. of the International Conference on Logic Programming, pages 52–66.
MIT Press, 1999.

38. P. M. Hill and J. W. Lloyd. The Gödel Programming Language. The MIT Press,
1994.

39. S. Hoarau and F. Mesnard. Inferring and compiling termination for constraint
logic programs. In P. Flener, editor, Proc. of the 8th International Workshop on
Logic Programming Synthesis and Transformation, volume 1559 of LNCS, pages
240–254. Springer-Verlag, 1998.

40. R. A. Kowalski. Algorithm = Logic + Control. Communications of the ACM,
22(7):424–436, 1979.

41. M .R. K. Krishna Rao, D. Kapur, and R. K. Shyamasundar. A transformational
methodology for proving termination of logic programs. In E. Börger, G. Jäger,
H. Kleine Büning, and M. M. Richter, editors, Proc. of the 5th Workshop on Com-
puter Science Logic, volume 626 of LNCS, pages 213–226. Springer-Verlag, 1992.

42. M. R. K. Krishna Rao, D. Kapur, and R. K. Shyamasundar. Proving termination
of GHC programs. New Generation Computing, 15(3):293–338, 1997.

43. M. R. K. Krishna Rao, D. Kapur, and R. K. Shyamasundar. Transformational
methodology for proving termination of logic programs. Journal of Logic Pro-
gramming, 34(1):1–41, 1998.

44. N. Lindenstrauss and Y. Sagiv. Automatic termination analysis of logic programs.
In L. Naish, editor, Proc. of the 14th International Conference on Logic Program-
ming, pages 63–77. The MIT Press, 1997.

45. S. Lüttringhaus-Kappel. Control generation for logic programs. In D. S. Warren,
editor, Proceedings of the 10th International Conference on Logic Programming,
pages 478–495. MIT Press, 1993.

46. E. Marchiori. On termination of general logic programs w.r.t. constructive nega-
tion. Journal of Logic Programming, 26(1):69–89, 1996.

47. E. Marchiori and F. Teusink. On termination of logic programs with delay decla-
rations. Journal of Logic Programming, 39(1-3):95–124, 1999.

48. M. Marchiori. Proving existential termination of normal logic programs. In
M. Wirsing and M. Nivat, editors, Proc. of the 5th International Conference on
Algebraic Methodology and Software Technology, volume 1101 of LNCS, pages 375–
390. Springer-Verlag, 1996.

49. J. Martin and A. King. Generating efficient, terminating logic programs. In
M. Bidoit and M. Dauchet, editors, Proc. of the 7th International Conference
on Theory and Practice of Software Development, volume 1214 of LNCS, pages
273–284. Springer-Verlag, 1997.

50. R. McPhee. Compositional Logic Programming. PhD thesis, Oxford University
Computing Laboratory, 2000.

51. F. Mesnard. Inferring left-terminating classes of queries for constraint logic pro-
grams. In M. Maher, editor, Proc. of the Joint International Conference and Sym-
posium on Logic Programming, pages 7–21. The MIT Press, 1996.

52. F. Mesnard and U. Neumerkel. Applying static analysis techniques for inferring
termination conditions of logic programs. In P. Cousot, editor, Proc. of the 8th
Static Analysis Symposium, volume 2126 of LNCS, pages 93–110. Springer-Verlag,
2001.

53. F. Mesnard, É. Payet, and U. Neumerkel. Detecting optimal termination conditions
of logic programs. In M. V. Hermenegildo and G. Puebla, editors, Proc. of the 9th
Static Analysis Symposium, volume 2477 of LNCS, pages 509–526. Springer-Verlag,
2002.

54. F. Mesnard and S. Ruggieri. On proving left-termination of constraint logic pro-
grams. ACM Transactions on Computational Logic, 4(2):207–259, 2003.

55. L. Naish. Coroutining and the construction of terminating logic programs. Tech-
nical Report 92/5, Department of Computer Science, University of Melbourne,
1992.

56. E. Ohlebusch, C. Claves, and C. Marché. TALP: A tool for the termination analysis
of logic programs. In Leo Bachmair, editor, Proc. of the 11th International Con-
ference on Rewriting Techniques and Applications, volume 1833 of Lecture Notes
in Computer Science, pages 270–273. Springer-Verlag, 2000.

57. D. Pedreschi P. Mancarella and S. Ruggieri. Negation as failure through abduction:
Reasoning about termination. In F. Sadri and A. Kakas, editors, Computational
Logic: Logic Programming and Beyond, Part I, volume 2407 of LNCS, pages 240–
272. Springer-Verlag, 2002.

58. D. Pedreschi and S. Ruggieri. Bounded nondeterminism of logic programs. In
D. De Schreye, editor, Proc. of the International Conference on Logic Program-
ming, pages 350–364. The MIT Press, 1999. Extended version to appear in Annals
of Mathematics and Artificial Intelligence.

59. D. Pedreschi and S. Ruggieri. On logic programs that always succeed. Science
of Computer Programming, 48(2-3):163–196, 2003. Extended version of the paper
”On logic programs that do not fail”, Proc. of ICLP 1999 Workshop on Verification
of Logic Programs, ENTCS 30(1) 1999.

60. D. Pedreschi, S. Ruggieri, and J.-G. Smaus. Classes of terminating logic programs.
Theory and Practice of Logic Programming, 2(3):369–418, 2002.

61. S. Ruggieri. Termination of constraint logic programs. In P. Degano, R. Gorrieri,
and A. Marchetti-Spaccamela, editors, Proc. of the 24th International Colloquium
on Automata, Languages and Programming (ICALP ’97), volume 1256 of LNCS,
pages 838–848. Springer-Verlag, 1997.

62. S. Ruggieri. Verification and Validation of Logic Programs. PhD thesis, Diparti-
mento di Informatica, Università di Pisa, 1999.

63. S. Ruggieri. ∃-universal termination of logic programs. Theoretical Computer
Science, 254(1-2):273–296, 2001.

64. A. Serebrenik. Termination Analysis of Logic Programs. PhD thesis, Katholieke
Universiteit, Leuven, 2003.

65. A. Serebrenik and D. De Schreye. On termination of logic programs with floating
point computations. In M. V. Hermenegildo and G. Puebla, editors, Proc. of the
9th Static Analysis Symposium, volume 2477 of LNCS, pages 151–164. Springer-
Verlag, 2002.

66. J.-G. Smaus. Modes and Types in Logic Programming. PhD thesis, University of
Kent at Canterbury, 1999.

67. J.-G. Smaus. Proving termination of input-consuming logic programs. In D. De
Schreye, editor, Proc. of the International Conference on Logic Programming, pages
335–349. MIT Press, 1999.

68. J.-G. Smaus. Termination of logic programs for various dynamic selection rules.
Technical Report 191, Insitut für Informatik, Universität Freiburg, 2003.

69. J.-G. Smaus, P. M. Hill, and A. M. King. Verifying termination and error-freedom
of logic programs with block declarations. Theory and Practice of Logic Program-
ming, 1(4):447–486, 2001.

70. Z. Somogyi, F. Henderson, and T. Conway. The execution algorithm of Mercury,
an efficient purely declarative logic programming language. Journal of Logic Pro-
gramming, 29(1–3):17–64, 1996.

71. C. Speirs, Z. Somogyi, and H. Søndergaard. Termination analysis for Mercury. In
P. Van Hentenryck, editor, Proc. of the 4th International Static Analysis Sympo-
sium, volume 1302 of LNCS, pages 160–171. Springer-Verlag, 1997.

72. L. Sterling and E. Shapiro. The Art of Prolog. The MIT Press, 1986.
73. Swedish Institute of Computer Science. SICStus Prolog User’s Manual, 2003.

http://www.sics.se/isl/sicstuswww/site/documentation.html.
74. J. Thom and J. Zobel. NU-Prolog reference manual, version 1.3. Technical report,

Department of Computer Science, University of Melbourne, Australia, 1988.
75. K. Ueda. Guarded Horn Clauses, a parallel logic programming language with the

concept of a guard. In M. Nivat and K. Fuchi, editors, Programming of Future
Generation Computers, pages 441–456. North Holland, Amsterdam, 1988.

76. S. Verbaeten. Termination analysis for abductive general logic programs. In
D. De Schreye, editor, Proc. of the International Conference on Logic Program-
ming, pages 365–379. The MIT Press, 1999.

77. S. Verbaeten, K. Sagonas, and D. De Schreye. Termination proofs for logic pro-
grams with tabling. ACM Transactions on Computational Logic, 2(1):57–92, 2001.

