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Abstract

The current availability of efficient algorithms for deci-
sion tree induction makes intricate post-processing tech-
niques worth to be investigated both for efficiency and
effectiveness. We study the simplification operator of
subtree replacement, also known as grafting, originally
implemented in the C4.5 system. We present a paramet-
ric bottom-up algorithm integrating grafting with the
standard pruning operator, and analyze its complexity
in terms of the number of nodes visited. Immediate in-
stances of the parametric algorithm include extensions
of error based, reduced error, minimum error, and pes-
simistic error pruning. Experimental results show that
the computational cost of grafting is paid off by statis-
tically significant smaller trees without accuracy loss.

1 Introduction

Decision tree induction has been extensively studied in
the machine learning and data mining communities as
a solution to the classification task. The common prob-
lems of over-fitting the training data and of “trading
accuracy for simplicity” [2] have been addressed by a
large class of post-processing algorithms called simplifi-
cation methods. We refer the reader to [4, 6, 11, 21] for
surveys and empirical comparisons.

The most well-known simplification method is de-
cision tree pruning, which consists of turning a deci-
sion node into a leaf by discarding the whole subtree
rooted at the node. Pruning algorithms typically pro-
ceed bottom-up, by relying on an error estimation func-
tion to compare the errors of the two alternatives: to
prune a decision node or not. Pruning is not, however,
the only simplification operator. The popular C4.5 sys-
tem [20] adds to the error based pruning method the
grafting1 or subtree replacement operator. Grafting a
decision node consists of replacing the subtree rooted
at the father of the node by the subtree rooted at the

1The term “grafting” was originally introduced by Espos-
ito et al. [11]. Unfortunately, the term has been also used in
the decision tree literature [26] for a different technique that
adds leaves to a tree to improve its predictive accuracy. In
this paper, we use the term in the former sense.
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Figure 1: Pruning (left) and grafting (right) samples.

node. Fig. 1 shows the effects of grafting node 3: its
subtree replaces the father’s subtree, and the subtree
rooted at the sibling 4 is discarded. C4.5 considers graft-
ing the largest child of a decision node, where the size
of a child is the number of cases in the training set that
follow the branch from the parent to the child node.
The decision of whether to graft, to prune, or to leave a
node unchanged is, again, made on the basis of the er-
ror estimates of the three alternatives. The underlying
intuition in considering the largest child is that its sub-
tree is likely to carry most of the discriminative power
of the father’s subtree. An immediate variant consists
of considering any child node as a candidate for subtree
replacement, by calculating the error estimates for each
child and then choosing the one with the lowest esti-
mate, or, in case of ties, the one with the smallest size.
We call grafting the largest child, or simply grafting, the
C4.5 approach and grafting any child the variant above.
Grafting any child has been considered in the context
of model trees [9] in conjunction with the reduced error
estimation function, but separately from the pruning
operator.

The study of simplification methods is a relevant
problem in decision tree induction, where the objective
is to produce models that trade off:

• simplicity and interpretability, typically measured
by tree size, tree depth, or other structural metrics;

• with accuracy and generalizability of predictions,
typically measured by error rate on unseen cases.

So far, the investigation of intricate simplification meth-
ods (i.e., other than node pruning) has been discouraged



by time-consuming tree building algorithms: adding a
second (possibly long) stage to tree induction has not
been considered an option by researchers and practi-
tioners. The current availability of efficient (sequen-
tial and parallel) implementations of decision tree in-
duction algorithms [1, 14, 22, 24] makes post-processing
techniques worth to be investigated both for efficiency
and effectiveness. Nevertheless, grafting has not been
adopted by decision tree induction systems other than
C4.5. Why? In our opinion, the reason is threefold.
First, the integration of pruning and grafting algorithms
is not well-understood. The C4.5 implementation, for
instance, is a cumbersome doubly-recursive procedure.
Second, grafting is perceived as computationally more
expensive than pruning, but the added computational
cost has not been clearly stated. Third, the effective-
ness of grafting in reducing tree size while not wors-
ening accuracy has not been assessed. In this paper,
we study grafting in conjunction with bottom-up prun-
ing precisely to solve those three issues. As original
contributions of this paper, first, we describe a gen-
eral bottom-up algorithm integrating grafting and prun-
ing which is parametric in an error estimation function.
Instances of the algorithm conservatively extend error
based pruning (EBP), reduced error pruning (REP),
minimum error pruning (MEP), and pessimistic error
pruning (PEP). Second, we characterize lower and upper
bounds for the computational cost added by grafting to
pruning, in terms of the number of nodes visited. This is
a standard cost measure in tree and graph data struc-
ture analysis. Third, we experimentally compare over
14 medium and large public datasets the performances
of pruning vs grafting the largest child vs grafting any
child, with respect to elapsed time, error rate, tree size
(as per number of nodes), and weighted depth (average
depth of leaves in classifying test cases [19]) for the four
above mentioned simplification methods.

The paper is organized as follows. Sect. 2 re-
calls background definitions, states the experimental
methodology and lists the datasets used. In Sect. 3,
we introduce a simplification algorithm which integrates
pruning and grafting, and that is parametric in an error
estimation function. In Sect. 4, we study its complex-
ity and experimentally compare it to pruning. Related
work is discussed in Sect. 5. Finally, Sect. 6 summarizes
the contributions of the paper.

2 Background

2.1 Decision Tree Induction Let us state some
basic definitions and notation. Consider a relation T ,
called a dataset. Tuples in T are called cases. An
attribute of the relation is the class attribute, while
the remaining ones are called the predictive attributes.

The domain of a predictive attribute can be discrete or
continuous, with missing values allowed. The domain
of the class is discrete, with no missing value in the
dataset. Classifiers are induced from a subset of T , the
training set, and tested on the remainder of cases, the
test set. The error rate on the test set is a measure of
the quality of the classifier. In n-fold cross-validation, T
is randomly partitioned into n folds of approximatively
equal size. For each fold, a classifier is induced from
the remaining folds and tested on it. In stratified
n-fold cross-validation, each fold maintains the same
proportion of class values as in T .

A decision tree is a classification model in the form
of a tree consisting of decision nodes and leaves. A
leaf specifies a class value. A decision node specifies
a test over one of the predictive attributes, which is
called the attribute selected at the node. For each
possible outcome of the test, a child node is present.
The weight of a child is the fraction of cases of the
training set reaching the decision node that satisfy the
test outcome of the child. The largest child is the child
node with the largest weight. A case is classified by a
decision tree by following the path from the root to a
leaf according to the decision node tests evaluated on
the case attribute values. The class value in the leaf
is the class predicted. For cases with missing value
for the attribute selected at a node, several options
are available [23]. In experiments, we consider the
distribution imputation method of C4.5: all branches
of the decision node are followed, and the prediction
of a leaf in a branch contributes in proportion to the
weight of the branch’s child node.

We assume that tree induction consists of two
phases: tree growing and tree simplification. The tree
constructed by the first phase, which typically follows a
divide & conquer top-down pattern, is called the grown
tree (or, the unpruned tree). The tree returned by the
second phase is called the trained tree (or, the pruned
tree). Some simplification methods work on the same
dataset used for tree growing, namely on the whole
training set. Other methods require that the training
set is split into two subsets, the growing set and the
pruning set, with tree growing working on the growing
set, and tree pruning working on the pruning set or on
both. The intended use of the pruning set is to provide
unseen cases for evaluating or supporting simplification
strategies.

2.2 Datasets The datasets used in experiments and
their characteristics are shown in Table 1. With refer-
ence to the relation T , we report: the dataset name;
the number of cases; the number of discrete, continu-
ous, and the total number of attributes; the number of



Table 1: Datasets used in experiments.

No. of attributes Class Grown Tree (using C4.5 Release 8)

T name |T | discr. cont. total mis. no. base e.r error rate tree size w. depth

1 Hypo Thyroid 3,772 22 7 29 8 3 7.71 0.46 ± 0.33 35.4 ± 4.5 2.62 ± 0.22
2 Blocks 5,473 10 10 4 10.23 3.24 ± 0.63 126 ± 14 8.09 ± 0.60
3 Musk Clean2 6,598 166 166 2 15.41 3.16 ± 0.75 236 ± 10 11.77 ± 0.45
4 Mushroom 8,124 22 22 1 2 48.20 0.00 ± 0.00 29.1 ± 0.4 2.53 ± 0.03
5 Letter 20,000 16 16 26 95.93 12.03 ± 0.76 2563 ± 35 13.27 ± 0.47
6 Chess 28,056 3 3 6 18 83.77 31.52 ± 0.96 9898 ± 53 9.11 ± 0.03
7 Adult 48,842 8 6 14 3 2 23.93 15.23 ± 0.45 9496 ± 248 11.04 ± 0.22
8 Statlog Shuttle 58,000 9 9 7 21.40 0.02 ± 0.02 58.5 ± 3.6 6.96 ± 0.44
9 Connect-4 67,557 42 42 3 34.17 20.45 ± 0.44 14735 ± 124 12.37 ± 0.10

10 SyD100KP5G0.2 100,000 3 6 9 2 20.00 4.74 ± 0.22 17339 ± 527 8.21 ± 0.11
11 Census-Income 299,285 33 7 40 8 2 6.20 5.53 ± 0.10 71925 ± 979 11.46 ± 0.22
12 Forest Cover 581,012 44 10 54 7 51.24 5.43 ± 0.10 32706 ± 298 30.48 ± 0.15
13 SyD1MP7G0.1 1,000,000 3 6 9 2 10.00 1.68 ± 0.06 65949 ± 1083 8.03 ± 0.10
14 KDD Cup 99 4,898,431 7 34 41 23 42.68 0.01 ± 0.00 1980 ± 165 8.12 ± 0.21

attributes with at least one missing value; the number
of class values; the base error rate, namely the error rate
of classifying all cases from the dataset with the most
frequent class value. With reference to grown decision
trees induced by C4.5 Release 8, we report the tree size,
as per number of nodes, the average depth of paths fol-
lowed in classifying test cases, called the weighted depth
[19], and the error rate on a repeated 10-fold strati-
fied cross-validation. All datasets are publicly available
from the UCI Machine Learning repository [13], apart
from 10 and 13 which are synthetically generated using
the QUEST data generator [15]. Dataset 10 (resp., 13 )
was produced using function 5 (resp., 7) with a class
distribution of 20%-80% (resp., 10%-90%).

2.3 Experimental Setup We adhere here to a re-
peated stratified 10-fold cross-validation methodology.
10-fold cross validation has been demonstrated to be a
nearly unbiased estimator [17], yet highly variable for
small datasets, with Kohavi’s final recommendation to
adopt a stratified version of it. We ameliorate possi-
ble variability of the estimator by adopting repetition
of cross validation, as discussed in [16].

All experiments reported in this paper were ob-
tained by repeating 5 times a stratified 10-fold cross-
validation. For simplification methods requiring the
splitting of the training set, we further adopted a 70%-
30% stratified splitting into growing set and pruning set.
Results are shown in the form xx ± yy (see Table 1),
where xx is the mean value over the 50 executions, and
yy is the sample standard deviation. For tree size and
weighted depth, xx and yy are absolute values. For
error rate, xx and yy are percentage values, e.g., 8.5
± 0.6 means an average error rate of 8.5% and a sam-
ple standard deviation of 0.6%. When comparing two
simplification methods (e.g., pruning vs grafting), we

adopt the standard approach of [7], which resorts to a
two-tailed paired t-test of the differences of error rates
over the 50 executions at some significance level.

For tree growing, we adopted a C++ implementa-
tion of C4.5 Release 8 [22]. The parametric simplifica-
tion algorithm proposed in this paper was developed on
top of it, with all source code written in standard C++.
Elapsed times reported in the paper consider only the
tree simplification phase, not tree growing. They re-
fer to a common PC desktop architecture: Xeon 5150
@2.66GHz 4MB L2 cache and 2 GBytes of main mem-
ory, with Linux x86 64 2.6.18.

3 Simplification by Pruning and Grafting

3.1 Data Structures and Error Accumulation
Before entering the details of the pruning and grafting
algorithms, let us introduce the data structures they
work on: cases, nodes, and trees. Here, and for the
rest of the paper, we follow a (as much as reasonable)
C++ syntax, with the intent of conveying a clear and
unambiguous description of the proposed algorithms.

class acase {
...
int classValue;
double weight;
};

typedef vector<acase> &cases;

class tree {
...
node ∗root;
};

class node {
...
size t nChilds;
size t nLeaves;
int classValue;
node ∗get child(int i ) ;
node ∗largest(cases c) ;
};



template<class error est>
2. double node::acc(cases c) {

if (nChilds == 0)
2. return error est(c) ;

double tree err = 0;
2. for(int i=0; i < nChilds; i++) {

node ∗child = get child( i) ;
2. cases cc = select(c, i ) ;

tree err += child−>acc(cc);
2. release (cc) ;

}
2. return tree err;

}

double node::base err(cases c) {
2. double err = 0;

for( size t i=0;i<c.size();++i)
2. if (c[ i ]. classValue!=classValue)

err += c[i].weight;
2. return err;

}

Figure 2: Accumulation algorithm.

template<class error est>
3. double node::simp(cases c, cases t) {

classValue = most freq(t);
3. double n err = error est(c);

if (nChilds == 0)
3. return n err;

double tree err = 0;
3. for(int i=0; i < nChilds; i++) {

node ∗child = get child( i) ;
3. cases cc = select(c, i ) ;

cases tc = select(t , i ) ;
3. tree err += child−>simp(cc, tc);

release (cc) ;
3. release (tc) ;

}
3. // grafting fragment start

node ∗large = largest(t) ;
3. double l err =

large−>acc<error est>(c);
3. if ( l err <= tree err

&& l err < n err) {
3. replace with child (large) ;

return simp(c, t);
3. }

// grafting fragment end

3. if (n err <= tree err) {
make a leaf();

3. return n err;
}

3. return tree err;
}

void tree ::EBPsimp() {
3. cases c = training cases() ;

root−>simp<ebp est>(c, c);
3. }

3. void tree ::REPsimp() {
cases c = pruning cases();

3. cases t = growing cases();
root−>simp<base err>(c, t);

3. }

3. double tree::MEPsimp() {
cases c = growing cases();

3. root−>simp<mep est>(c, c);
cases p = pruning cases();

3. return root−>acc<base err>(p);
}

Figure 3: Bottom-up simplification, and EBP, REP, and MEP instances.

A case contains a reference to the attribute values
(not shown here, since it is not relevant for our pur-
poses), the class value, modelled here as an integer data
type, and the case weight. Cases can be weighted by
the user to set their relevance in the classification task
(i.e., weights are a further input of the classification
task), or by the distribution imputation method of C4.5
when dealing with missing attribute values. The cases
data type is a reference to a vector of cases. A tree con-
tains a pointer root to the root node. A node stores the
number nChilds of child nodes (zero in case it is a leaf),
the number nLeaves of leaves in its subtree, and the
most frequent class classValue of cases from the train-
ing set reaching the node (for leaf nodes, this is the
predicted class value). Also, references to child nodes
are stored (not shown), and accessed by the get child
method. Finally, the largest(c) method returns the child
with the largest fraction of cases in c that satisfy the
test outcome of the child. It is worth noting that the
largest child cannot be fixed statically, due to changes
in the structure of the tree as an effect of grafting nodes.

Example 1. Consider the sample tree from Fig. 1.
Assume that there are 3 cases of the training set
reaching node 3, with 2 having a3 = t and 1 having a3

= f. Hence node 5 is the largest child of node 3. After
grafting node 3 (right-hand side tree), cases previously
at the sibling 4 reach now node 3. Assume there are 2
of them, both with a3 = f. As a result, node 6 becomes
now the largest child of node 3.

Fig. 2 reports a simple parametric method node::acc
for accumulating the result of an error estimation func-

tion error est evaluated on the leaves of a subtree start-
ing from a set of cases c. Since the pruning and grafting
algorithms that we will consider follow a similar bottom-
up pattern, let us discuss it in more detail. For a leaf
node, it simply returns the result of error est over cases
in c (§2. — throughout the paper, we use the §M.n to
reference line n from the pseudo-code in Fig. M). Oth-
erwise, it accumulates in tree err the results of recursive
calls over the child nodes (§2.), and returns it as the
final result (§2.).

Example 2. Consider the node::base err method re-
ported in Fig. 2 (§2.-). It calculates the weighted
number of misclassified cases at a leaf node. The call
root—>acc<base err>(c) returns the weighted number
of cases in c misclassified by the decision tree rooted at
the node pointer root.

Finally, we point out the attention on the call
select(c,i) at (§2.). It computes the subset of cases
in c that follow the branch towards the i th child.
The call release(cc) at (§2.) performs some restoring
operations, depending on the actual implementation of
select, as described next.

Example 3. The C4.5 [20] and dti [3] systems imple-
ment select by rearranging the cases that follow the
branch towards a child at the beginning of the vector
storing cases. In the distribution imputation method,
cases with missing value of the attribute selected at the
node are passed to each child with a scaled weight. The
role of release is then to reset the original weights. The
YaDT [22] and Weka [27] systems implement select by



allocating a new vector of cases. The method release
now reduces to its deallocation. This is more memory
consuming than C4.5, but more efficient and it allows
for a direct parallelisation [1].

3.2 Parametric Algorithm EBP, REP and MEP
share a common bottom-up algorithm, shown in Fig. 3,
which is parametric in the error estimation function
error est. The node::simp method visits the subtree of
a node starting from a pair of sets of cases c and t. c
is used to calculate the error estimates of the various
alternatives (pruning, grafting, or none). t is the subset
of the training set reaching the node, and it is used to
update the most frequent class at the node. node::simp
possibly prunes decision nodes or grafts largest childs,
and it returns the error estimate accumulated on the
resulting subtree. Let us present the algorithm in detail.

For the current node, the error estimate n err of
turning the node into a leaf is calculated first (§3.). If
the node is actually a leaf, such an estimate is simply
returned (§3.). Otherwise, the error estimates of all
child subtrees are accumulated in the tree err variable
through recursive calls (§3.), which in turn may prune
and/or graft subtrees.

Do not consider for a while the grafting fragment
delimited by the C++ comments (§3.-). If the error
estimate n err of the node as if it would be a leaf is
lower or equal than the error estimate tree err of the
whole subtree, then the node is turned into a leaf (§3.).
This is the basic condition of decision tree pruning. The
return value is n err or tree err on the basis of the final
state of the subtree.

Consider now the grafting fragment. The additional
error estimate l err is computed on the largest child
node for the cases c at the current node (§3.-) by
accumulating the error estimates of the leaves from the
largest child subtree2. Intuitively, this means consider-
ing the error estimate of the subtree obtained by graft-
ing the largest child. The basic pruning condition natu-
rally extends to grafting by testing whether l err is lower
than n err (i.e., grafting is better than pruning) and
lower or equal than tree err (i.e., grafting is not worse
than leaving the subtree as it is). If this is the case,
the current subtree is replaced by its largest child sub-
tree by calling the method node::replace with child at
(§3.). In such a case, we say that subtree replacement
takes place. In addition, the simplification procedure is
repeated on the new current node (the previous largest
child) (§3.), due to two reasons. First, since cases c
now distribute differently in the grafted subtree, addi-

2Notice that such an error estimate cannot be computed during
the recursive call (§3.), since it refers to the cases c at the

current node, not to the cases cc at the largest child.

tional pruning and/or grafting may take place. Second,
since cases t now distribute differently in the grafted
subtree, the most frequent class value at a node (and,
hence, the class predicted at a leaf) must be updated.
This second task is performed during the recursive visit
at (§3.). Strictly speaking, this is not needed in prun-
ing without grafting, since pruning alone does not affect
the distribution of cases.

An alternative option to grafting the largest child
consists of considering every child as a candidate for
grafting. This is easily implemented by computing the
minimum value of l err at (§3.-) over all child nodes,
and, if grafting takes place, by calling replace with child
over the child that yielded that minimum value (if there
is more than one, choose the child with the smallest
subtree).

3.3 Algorithm Instances: EBP, REP, and MEP
Simplification The parametric algorithm in Fig. 3 is
instantiated by specifying the error estimation function
error est and the initial set of cases c, while t is fixed
to the set of cases used to grow the tree (the whole
training set or the growing set depending on the error
estimation function). Let us see how to derive the EBP,
REP, and MEP simplification methods – while referring
the reader to survey papers [6, 11, 21] for details on their
error estimation functions.

EBP adopts the C4.5 pessimistic error estimate
ebp est (not shown) based on binomial distribution con-
fidence limits at some confidence level. In experiments,
we leave the C4.5 default confidence level of 25%. The
pessimistic error estimate works on cases from the train-
ing set.

REP adopts the simple error count estimation,
i.e., the base err method from Fig. 2. It works on the
pruning set.

MEP adopts the expected error rate estimate3

mep est (not shown) based on the m-probability of a
class value. MEP was originally proposed to work on
the training set, but the m parameter has no default
value. For this reason, we adhere to [11] by splitting
the training set into growing set and pruning set. In
experiments, MEP will be called on the growing set for
a collection of m values4. The pruned tree with the
lowest error rate over the pruning set is chosen as the
final pruned tree.

3Since the expected error rate of a subtree is defined as the

weighted sum of the expected error rates of its child subtrees,

the accumulation (§3.) has to be changed accordingly. An
alternative way, which fully adheres to the accumulation schema

of node::simp, consists of coding mep est to return the expected
error rate multiplied by the number of cases at the node.

4m ∈ {0.5, 1, 2, 3, 4, 8, 12, 16, 32, 64, 128, 512, 1024}.



void node::simpTD(cases c) {
4. classValue = most freq(c);

double n err = base err(c)+0.5;
4. if (nChilds == 0)

return n err;
4. double tree err = correct(c, acc<base err>(c));

// grafting fragment start
4. node ∗large = largest(c) ;

double l err = correct(c, large−>acc<base err>(c));
4. if ( l err <= tree err && l err < n err) {

replace with child (large) ;
4. simpTD(c);

return;
4. }

// grafting fragment end
4. if (n err <= tree err) {

make a leaf();
4. return;

}
4. for(int i=0; i < nChilds; i++) {

node ∗child = get child( i) ;
4. cases cc = select(c, i ) ;

child−>simpTD(cc);
4. release (cc) ;

}
4. }

4. double node::correct(cases c, double err) {
err += nLeaves/2;

4. double nc = c.size();
err += sqrt(err∗(nc−err)/nc);

4. return err;
}

void tree ::PEPsimp() {
4. cases c = training cases() ;

root−>simpTD(c);
4. }

Figure 4: PEP simplification algorithm.

We code these instances respectively by the meth-
ods EBPsimp, REPsimp, and MEPsimp shown in Fig. 3.
Notice that for EBP and MEP, the parameters c and t
refer to the same set of cases, hence the actual imple-
mentation can benefit of this, e.g., (§3.,§3.) can be
omitted.

To take the notation simple, for an error estima-
tion function X, we denote by X-p the instance of the
parametric algorithm in Fig. 3 without the grafting frag-
ment, by X-g the instance with the grafting fragment,
and by X-a the instance (not shown in the figure) with
the option of considering every child as candidate for
grafting. As an example, EBP-p denotes error based
pruning without grafting, EBP-g pruning with grafting
of the largest child, and EBP-a pruning with grafting of
any child. In particular, EBP-g is the original simplifi-
cation algorithm of the C4.5 system.

3.4 A Top-Down Variant: PEP Simplification
The integration of grafting and PEP pruning consists of
a top-down variant of the algorithm in Fig. 3. Top-down
means that the for-loop over child nodes is moved after
the pruning and grafting tests, as shown in Fig. 4. Since

nT - 1

6

3 2

1 0

nT - 2

5 4

nT nodes

(nT - 1)/2 decision nodes

(nT + 1)/2 leaves

Figure 5: A sample binary decision tree.

the pessimistic error estimation function works on the
training cases, the node::simpTD method is reported
with only the parameter c. The PEP error estimate for
a leaf is the corrected base error (§4.). For a decision
node, it is a pessimistic estimate of the corrected subtree
error, calculated by the correct function in (§4.-).
Notice that simplification acts top-down, but it has to
be performed after the tree is grown, since the whole
subtree of a node is required for calculating the error
estimates tree err5 (§4.) and the error estimate of
grafting the largest child l err (§4.).

4 Complexity, Efficiency, Effectiveness

4.1 Complexity While pruning is universally recog-
nized as an efficient simplification method, requiring
only a bottom-up tree transversal, grafting is deemed a
complex method, yet its complexity has not been thor-
oughly investigated. Let us shed some light on the com-
putational burden of adding grafting to decision tree
pruning. We will consider EBP-p, EBP-g, and EBP-a,
but the same conclusions apply to the REP, MEP, and
PEP instances, since they all share the same algorithmic
schema. First of all, we recall some standard definitions
and notation on trees. For a tree T , we denote by nT
the number of nodes in T , and by mT the number of
decision nodes (or internal nodes) in T . The depth of a
node is the length of the path from the root to the node
(the root has depth 0). The total path length of T , de-
noted by TPL(T ), is the sum of the depths of all nodes
in T [8]. The average depth of T is δ(T ) = TPL(T )/nT .

Let us denote by Vp(T ), Vg(T ), and Va(T ) the
number of nodes respectively visited by EBP-p, EBP-
g, and EBP-a. The next result provides us with precise
characterizations of Vp(T ) and of the ratio Va(T )/Vp(T ),
and with lower and upper bounds for Vg(T )/Vp(T ). The

5Actually, the call acc<base err>(c) at (§4.) is executed only
for the root node and when grafting takes place. The values

computed for each node in the subtree are cached in a purposely
dedicated node member.



Table 2: Elapsed time average ratios.

EBP-g/ EBP-a/ EBP-a REP-g/ REP-a/ REP-a MEP-g/ MEP-a/ MEP-a PEP-g/ PEP-a/ PEP-a
EBP-p EBP-g time (s) REP-p REP-g time (s) MEP-p MEP-g time (s) PEP-p PEP-g time (s)

1 Hypo Thyroid 1.62 1.89 0.0018 1.88 1.84 0.0017 1.23 1.36 0.0262 2.00 2.14 0.0017
2 Blocks 2.31 1.53 0.0077 2.35 1.40 0.0060 1.33 1.21 0.1548 3.23 1.53 0.0088
3 Musk Clean2 3.89 1.36 0.0240 3.77 1.33 0.0180 1.99 1.25 0.2824 4.20 1.38 0.0233
4 Mushroom 1.44 1.19 0.0028 1.54 1.36 0.0031 1.21 1.17 0.0319 1.73 1.25 0.0022
5 Letter 4.59 1.45 0.1426 4.69 1.44 0.1199 2.95 1.39 1.0559 5.34 1.46 0.1448
6 Chess 2.81 2.07 0.2339 2.92 2.36 0.2189 2.05 1.81 1.5678 3.49 2.20 0.2368
7 Adult 2.53 1.54 0.2218 3.95 1.65 0.3704 3.68 1.52 3.7600 42.09 0.47 0.2876
8 Statlog Shuttle 2.19 1.67 0.0725 2.45 1.51 0.0563 1.52 1.53 0.6196 2.57 1.48 0.0698
9 Connect-4 3.57 1.57 0.4333 4.12 1.60 0.4554 3.59 1.52 5.0027 6.21 1.60 0.5665

10 SyD100KP5G0.2 1.54 1.67 0.2574 1.91 2.28 0.3975 1.53 1.84 3.3860 14.01 2.06 0.6373
11 Census-Income 1.64 1.73 1.1612 3.56 2.07 3.1486 3.24 2.07 43.5307 13.36 7.60 2.5818
12 Forest Cover 9.25 1.34 16.7775 10.61 1.34 16.6491 6.20 1.33 134.4037 9.77 1.34 17.0824
13 SyD1MP7G0.1 2.21 2.55 8.4421 3.08 2.50 9.8591 2.31 2.80 87.1998 7.24 3.42 14.5895
14 KDD Cup 99 3.31 5.56 62.7238 3.76 4.43 50.1524 1.45 3.41 510.3884 7.69 3.79 73.3375

result can be read as follows:

• Vp(T ) = nT : pruning alone consists of a linear visit
of the decision tree, as one would expect;

• Va(T )/Vp(T ) = 1 + δ(T ): grafting any child has
exactly 1 + δ(T ) times the complexity of pruning
alone, where δ(T ) is the average depth of the
decision tree;

• the complexity of grafting the largest child is in
between 1 and 1 + δ(T ) times the complexity of
pruning alone.

The second and third characterizations hold under the
assumption that no subtree replacement takes place,
i.e., that the test at (§3.-) is always false.

Theorem 4.1. For a decision tree T , we have Vp(T ) =
nT . Moreover, under the assumption that no subtree
replacement takes place, we have:

k + 1

k
− 1

knT
≤ Vg(T )

Vp(T )

≤ k − 1

k
+

1

knT
+ δ(T )

≤ 1 + δ(T ) =
Va(T )

Vp(T )

where k ≥ 2 is the maximum out-degree of a node in T .

Proof. EBP-p visits each node exactly once, thus
Vp(T ) = nT . The number of nodes visited by EBP-a is
Va(T ) = nT +

∑
sub(T ′) nT ′ , where sub(T ′) holds iff T ′

is a subtree of T not equal to T itself. In fact, nT nodes
are visited bottom-up, while whole trees T ′, such that
sub(T ′) holds, are visited to compute the error estimates
of grafting any child. Since each node contributes to the

second addend a number of times equal to its depth, we
have Va(T ) = nT + TPL(T ). By definition of δ(T ) and
since Vp(T ) = nT , we conclude the rightmost equality
Va(T )/Vp(T ) = 1 + δ(T ).

The number of nodes visited by EBP-g is: Vg(T ) =
nT +

∑
largest(T ′) nT ′ , where largest(T ′) holds iff T ′ is

a subtree of T whose top node is the largest child of
its father. This implies Vg(T ) ≥ nT +

∑
largest(T ′) 1.

The cardinality of largest is equal to the number mT

of decision nodes in T , since every decision node has a
largest child. It is well-known that for trees of degree at
most k, it turns out that nT ≤ kmT +1. The inequality
Vg(T ) ≥ nT + (nT − 1)/k = (k + 1)nT /k − 1/k directly
follows. Dividing by nT yields the lower bound.

The difference Va(T )−Vg(T ) consists of the sum of
nodes from non-largest child subtrees. This is minimum
when there is only one non-largest child for each decision
node (recall that k ≥ 2), namely Va(T ) − Vg(T ) ≥ mT

holds. This and nT ≤ kmT + 1 imply Va(T )− Vg(T ) ≥
(nT − 1)/k. Dividing by nT , we have:

Va(T )/Vp(T )− 1/k + 1/(knT ) ≥ Vg(T )/Vp(T ).

Since Va(T )/Vp(T ) = 1 + δ(T ) has been already shown,
we conclude the upper bound δ(T ) + (k − 1)/k +
1/(knT ) ≥ Vg(T )/Vp(T ). Finally, the inequality (k −
1)/k + 1/(knT ) + δ(T ) ≤ 1 + δ(T ) trivially holds for
nT ≥ 1. �

The lower and upper bounds on Vg(T )/Vp(T ) are tight.
They can be reached as shown in the next two examples.
The third example shows that, under the assumption
that no subtree replacement takes place, EBP-g and
EBP-a are in the worst case quadratic in nT . In all of
the three examples, we refer to the binary tree in Fig. 5.
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Figure 6: Top: elapsed time over simplification set size as a fraction of the dataset for a fixed grown tree (the one
grown on the whole dataset). Bottom: elapsed time over grown tree size for the simplification set fixed to the
whole dataset.

Example 4. Assume that the largest child of a decision
node is always its left child. We have that Vg(T ) =
nT + (nT − 1)/2, since nT nodes are visited bottom-
up, and (nT − 1)/2 nodes are visited as largest childs.
Thus, Vg(T ) = (3nT − 1)/2 and then Vg(T )/Vp(T ) =
3/2 − 1/(2nT ), which is precisely the lower bound of
Thm. 4.1 for k = 2.

Example 5. Assume now that the largest child is al-
ways the right child. By observing that there are ex-
actly 2 nodes at depth d, for d = 1 . . . (nT − 1)/2,

it turns out TPL(T ) =
∑(nT−1)/2

i=1 2i. We have then

Vg(T ) = nT +
∑(nT−1)/2

i=1 (2i − 1), since nT nodes are
visited bottom-up, and for the decision node 2i, with
i = 1 . . . (nT − 1)/2, there are 2i − 1 nodes in its
largest child’s subtree. By basic algebra, Vg(T ) =

(nT + 1)/2 +
∑(nT−1)/2

i=1 2i = (nT + 1)/2 + TPL(T ),
and then Vg(T )/Vp(T ) = 1/2 + 1/(2nT ) + δ(T ), which
is precisely the upper bound of Thm. 4.1 for k = 2.

Example 6. By Thm. 4.1, since δ(T ) ≤ nT clearly
holds, Vg(T ) and Va(T ) are at worst quadratic in nT .
Let us show that such a bound can be reached for the
tree in Fig. 5. Assume again that the largest child
of a decision node is always its right child. Since

TPL(T ) =
∑(nT−1)/2

i=1 2i = (n2T − 1)/2, we have δ(T ) =

nT /2−1/(2nT ). By Thm. 4.1 and the previous example,
both Vg(T ) and Va(T ) are then quadratic in nT .

4.2 Efficiency Table 2 reports the actual ratios of
the elapsed times of X-g over X-p, and of X-a over X-
g for X being EBP, REP, MEP, and PEP over the 14
experimental datasets. Also, the absolute elapsed times
of the X-a procedures are shown. The values in the table
are averaged over 50 executions (10 fold cross-validation
repeated 5 times).

The ratios EBP-g/EBP-p, REP-g/REP-p, and
MEP-g/MEP-p remain below 5 for all datasets, apart
for dataset 12. The ratio PEP-g/PEP-p remains below
14, with the exception of dataset 7.

The ratios EBP-a/EBP-g, REP-a/REP-g, and
MEP-a/MEP-g are below 3 apart for dataset 14. The
ratio PEP-a/PEP-g remains below 4, apart for 11.

In summary, adding grafting the largest child to
pruning does not increase in the order of magnitude of
the elapsed time of pruning for EBP, REP, and MEP,
while it is an order of magnitude higher for PEP. The
further option of grafting any child does not change the
order of magnitude of grafting the largest child for any
of the four methods.

It should be also noticed that, in absolute terms, the
elapsed times reported in Table 2 for the X-a procedures



Table 3: Effectiveness of EBP simplification.
Error rate Tree size Weighted depth

EBP-p EBP-g EBP-a EBP-p EBP-g EBP-a EBP-p EBP-g EBP-a

1 Hypo Thyroid 0.44 ± 0.37 0.43 ± 0.35 0.43 ± 0.35 30.2 ± 4.0 29.4 ± 3.4 29.4 ± 3.4 2.55 ± 0.04 2.53 ± 0.04 2.53 ± 0.04
2 Blocks 3.13 ± 0.61 3.12 ± 0.63 3.11 ± 0.63 89.7 ± 9.1 85.0 ± 8.3 84.4 ± 8.5 7.04 ± 0.22 7.01 ± 0.22 7.06 ± 0.26
3 Musk Clean2 3.16 ± 0.76 3.14 ± 0.77 3.14 ± 0.77 226 ± 9.6 221 ± 10 219 ± 9.8 11.67 ± 0.41 11.59 ± 0.43 11.58 ± 0.44
4 Mushroom 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 29.1 ± 0.4 29.1 ± 0.4 29.1 ± 0.2 2.53 ± 0.03 2.53 ± 0.03 2.53 ± 0.02
5 Letter 12.06 ± 0.78 12.03 ± 0.79 12.03 ± 0.79 2394 ± 43 2340 ± 37 2338 ± 36 12.99 ± 0.50 12.86 ± 0.44 12.87 ± 0.44
6 Chess 31.84 ± 0.89 31.28 ± 0.87 31.16 ± 0.85 8644 ± 79 8278 ± 79 8165 ± 75 8.88 ± 0.03 8.86 ± 0.03 8.86 ± 0.03
7 Adult 13.90 ± 0.42 13.92 ± 0.43 13.86 ± 0.43 1013 ± 130 718 ± 108 679 ± 103 6.80 ± 0.16 6.69 ± 0.21 6.79 ± 0.23
8 Statlog Shuttle 0.02 ± 0.02 0.03 ± 0.02 0.03 ± 0.02 55.0 ± 3.4 47.4 ± 3.3 47.2 ± 2.9 6.89 ± 0.45 5.79 ± 0.29 5.86 ± 0.29
9 Connect-4 19.16 ± 0.45 18.98 ± 0.42 18.96 ± 0.44 6442 ± 142 6038 ± 118 5989 ± 116 10.12 ± 0.09 9.98 ± 0.09 9.98 ± 0.09

10 SyD100KP5G0.2 3.72 ± 0.18 3.68 ± 0.18 3.62 ± 0.18 274 ± 17 286 ± 16 296 ± 13 6.26 ± 0.21 6.33 ± 0.20 6.38 ± 0.20
11 Census-Income 4.69 ± 0.09 4.59 ± 0.09 4.59 ± 0.09 2805 ± 581 2559 ± 292 2451 ± 261 5.52 ± 0.09 5.56 ± 0.13 5.59 ± 0.13
12 Forest Cover 5.43 ± 0.10 5.41 ± 0.11 5.41 ± 0.11 29563 ± 240 28530 ± 240 28422 ± 232 30.12 ± 0.14 29.88 ± 0.14 29.89 ± 0.15
13 SyD1MP7G0.1 1.40 ± 0.05 1.38 ± 0.05 1.37 ± 0.05 2820 ± 143 2821 ± 128 2785 ± 126 6.86 ± 0.06 6.87 ± 0.06 6.90 ± 0.06
14 KDD Cup 99 0.01 ± 0.00 0.01 ± 0.00 0.01 ± 0.00 1234 ± 110 1123 ± 123 1068 ± 119 7.15 ± 0.29 6.91 ± 0.23 13.61 ± 3.13

remain reasonably low in all cases except for the largest
dataset. MEP-a exhibits the highest values, but this
is well-explained by recalling that at each of the 50
executions the MEP-a procedure is actually called 13
times to select the best parameter m (see footnote 4).

4.3 Scalability Let us consider how the simplifica-
tion procedures scale with respect to the size of their
two inputs considered in isolation: the simplification set
and the grown tree to be simplified. By simplification
set, we denote the union of cases c and t in input to
node::simp, namely the training set for EBP, REP, and
PEP, and the growing set for MEP.

Simplification set. Since select and the error esti-
mation functions of EBP, REP, MEP, and PEP are lin-
ear in the number of cases, we expect that, for a fixed
tree, the elapsed time of simplification algorithms is ap-
proximatively linear in the size of the simplification set.
This certainly holds for pruning in isolation, since it is a
pure bottom-up tree traversal of the grown tree. In the
case of grafting, this holds only if the number of pruning
and/or subtree replacement operations do not vary with
the (size of the) simplification set. Fig. 6 (top) shows
the elapsed times of EBP-p, EBP-g, and EBP-a for a
same decision tree (built from the whole dataset) for dif-
ferent fractions of the dataset as simplification set, over
the three largest datasets (12, 13, and 14 ). Linearity
is apparent across the datasets and the simplification
algorithms. A case worth noting is EBP-g for dataset
14, which has a reduction in elapsed time from fraction
40% to 50% of the dataset. This is due to the fact that a
child of the root node is grafted up to fraction 40%, but
not after. Since the grafted subtree is revisited, such an
additional, considerable, cost stops at fraction 50%.

Grown tree size. Thm. 4.1 provides us with theo-
retical bounds on the number of nodes visited by the
simplification procedures. However, the cost of visit-
ing a node is not constant, but, as already mentioned,

linear in the number of cases. Since the cases at a deci-
sion node are partitioned among the child nodes, we can
expect that the elapsed time of the visit performed by
X-p grows sub-linearly in the tree size (logarithmically
for balanced trees). For X-g and X-a, the same reason-
ing leads to a sub-quadratic conclusion (quadratic in the
logarithm of the tree size for balanced trees). The plots
in Fig. 6 (bottom) report the elapsed times of EBP-p,
EBP-g, and EBP-a for trees of increasing size over the
three largest datasets. Technically, decision trees of in-
creasing size but with the same top-level structure are
obtained by setting the C4.5 option of stopping-earlier
when the number of cases at a node reaches a minimum
threshold. In all plots, the simplification set is fixed to
the whole dataset, so that, as in the previous discussion,
we are testing the impact of varying only one input of
the simplification procedures. It is readily checked from
Fig. 6 (bottom) that the elapsed times grow sub-linearly
with the size of the tree, with the top-level nodes taking
most of the elapsed time.

4.4 Effectiveness A simplification method is effec-
tive if it reduces tree size, weighted depth, or other
structural metrics of decision trees while not worsening
accuracy. Even in the case of equal accuracy, a method
that is able to reduce tree complexity is worth being
adopted:

• in descriptive tasks, since it provides a more com-
pact description of the class values;

• and in predictive tasks, since it allows for a faster
prediction time.

Table 3 reports the details of error rate, tree size, and
weighted depth for EBP-p, EBP-g, and EBP-a over the
50 experimental executions.

Concerning error rates, grafting is at least as accu-
rate as pruning and sometimes is more accurate, with a



Table 4: Paired t-test for statistical significance of the differences.

EBP-p - EBP-g - REP-p - REP-g - MEP-p - MEP-g - PEP-p - PEP-g -
EBP-g EBP-a REP-g REP-a MEP-g MEP-a PEP-g PEP-a

Error Rate 1 Hypo Thyroid
2 Blocks
3 Musk Clean2 −(0.99) +(1.00)
4 Mushroom
5 Letter +(0.99) −(0.97) +(1.00)
6 Chess +(1.00) +(1.00) +(1.00) +(1.00) +(1.00) +(1.00)
7 Adult +(1.00) −(1.00) +(1.00) −(1.00)
8 Statlog Shuttle −(1.00) +(0.98) −(1.00) +(1.00) +(0.99)
9 Connect-4 +(1.00) +(0.99) +(0.99) +(1.00) +(1.00) +(1.00)

10 SyD100KP5G0.2 +(1.00) +(1.00) +(0.98) +(1.00) −(1.00) +(1.00)
11 Census-Income +(1.00) +(0.98) +(1.00)
12 Forest Cover +(1.00) −(0.99) +(1.00) +(1.00) +(1.00)
13 SyD1MP7G0.1 +(1.00) +(1.00) +(1.00) +(1.00) +(1.00) +(1.00) −(1.00)
14 KDD Cup 99 +(0.97) −(0.99) +(1.00) −(0.97)

Tree Size 1 Hypo Thyroid +(1.00) +(1.00) +(1.00)
2 Blocks +(1.00) +(0.99)
3 Musk Clean2 +(1.00) +(1.00) +(1.00) −(0.95) +(1.00)
4 Mushroom +(0.99)
5 Letter +(1.00) +(0.98) +(1.00) +(1.00) +(1.00) +(0.99) +(1.00) +(1.00)
6 Chess +(1.00) +(1.00) +(1.00) +(0.99) +(1.00) +(1.00) +(1.00)
7 Adult +(1.00) +(1.00) +(1.00) −(1.00) +(1.00)
8 Statlog Shuttle +(1.00) +(1.00) +(1.00) −(1.00) +(1.00)
9 Connect-4 +(1.00) +(1.00) +(1.00) +(1.00) +(0.95) −(0.99) +(1.00) +(1.00)

10 SyD100KP5G0.2 −(1.00) −(1.00) +(1.00) −(1.00)
11 Census-Income +(1.00) +(1.00) +(1.00) +(1.00) +(1.00) −(1.00)
12 Forest Cover +(1.00) +(1.00) +(1.00) +(1.00) +(1.00) +(1.00) +(1.00)
13 SyD1MP7G0.1 −(1.00) +(1.00) +(1.00) +(1.00) +(1.00) −(1.00) +(1.00)
14 KDD Cup 99 +(1.00) +(1.00) +(1.00) +(1.00) +(1.00) −(1.00) +(1.00)

Weighted 1 Hypo Thyroid +(1.00) +(0.99) +(0.96)
Depth 2 Blocks +(1.00) −(0.97) −(1.00) +(0.99)

3 Musk Clean2 +(1.00) +(0.99) +(0.95)
4 Mushroom +(0.99)
5 Letter +(1.00) +(1.00) +(1.00) +(0.98) +(1.00)
6 Chess +(1.00) +(1.00) −(1.00) −(1.00)
7 Adult +(1.00) −(1.00) −(0.96) −(0.99) −(1.00) −(1.00) +(1.00)
8 Statlog Shuttle +(1.00) −(1.00) +(1.00) +(1.00) −(1.00) +(1.00) −(1.00)
9 Connect-4 +(1.00) +(1.00) −(0.99) +(1.00)

10 SyD100KP5G0.2 −(1.00) −(1.00) −(0.97) +(0.97) −(0.98) −(1.00) −(1.00)
11 Census-Income −(0.95) −(1.00) +(0.99) −(1.00)
12 Forest Cover +(1.00) −(1.00) +(1.00) +(1.00) +(1.00) −(1.00)
13 SyD1MP7G0.1 −(1.00) −(1.00) −(1.00) +(1.00) −(1.00) −(1.00) −(1.00)
14 KDD Cup 99 +(1.00) −(1.00) +(1.00) −(1.00) +(1.00) −(0.99) +(1.00) −(1.00)

lower mean error rate and/or a lower sample standard
deviation. EBP-a performs slightly better than EBP-g.
This justifies the C4.5 choice of adopting grafting, but
it would suggest that the option of grafting any child
should be preferred.

Concerning tree size, EBP-a is the best method
in almost all cases. Dataset 10 is a paradigmatic
example showing that grafting does not necessarily lead
to smaller trees than pruning alone. Intuitively, grafting
the grandchild of a node n may prevent the subsequent
pruning of n to a leaf, since the error estimate for the
subtree of n is affected by the change in its structure.

Finally, EBP-g is the champion method with re-
spect to weighted depth. By definition, the largest child
carries the largest fraction of the cases at the parent
node. Therefore, grafting the largest child, instead of
any other child, results in a higher impact on the aver-

age depth. Datasets 10, 11, and 13 show that grafting
does not necessarily reduces the weighted depth com-
pared to pruning alone.

Table 4 shows the results of a two-tailed paired t-
test over the differences in error rate, tree size, and
weighted depth for the four simplification methods.
Grafting the largest child vs pruning, and grafting any
child vs grafting the largest child are compared. A cell
in a column labelled “X - Y” contains “+” if the differ-
ence of the mean true values of X and Y is positive at
a confidence level of 95%, and hence Y performs better
than X. The actual confidence level at which it holds
is reported in parenthesis, with 1.00 denoting a level
higher than 99.5%. Analogously, a cell reports “−” if
the difference of the means is negative, and hence Y per-
forms worse than X. Finally, a cell is left blank if neither
conclusion can be drawn. In summary, adding grafting



to pruning does not yield less accurate decision trees
for all of the four methods EBP-g, REP-g, MEP-g, and
PEP-g. For the EBP-g and PEP-g simplification meth-
ods, it (slightly but statistically significantly) improves
error rate for most of the datasets, and grafting any
child is even superior to grafting the largest child. Con-
cerning tree size, apart from the paradigmatic dataset
10, grafting improves over pruning, and, in turn, graft-
ing any child improves over grafting the largest child.
Finally, for weighted depth, grafting the largest child is
the preferable method.

5 Related Work

To the best of our knowledge, the systematic extension
of pruning methods to include grafting has not been
addressed in the literature. Also, a comparison of
complexity, efficiency, and effectiveness of grafting vs
pruning in decision tree simplification has not been
considered. As already observed, C4.5 [20] firstly added
the grafting operator to error based pruning, thus
obtaining, in our notation, EBP-g. Strangely enough,
however, C4.5 does not offer the possibility not to
perform grafting, i.e., it does not implement EBP-p.

A theoretical framework for the simplification of de-
cision trees, which include both pruning and grafting op-
erators, has been proposed in [12]. Ceci et al. [9] discuss
a form of grafting any child with reference to reduced
error pruning. Under the view that the bottom-up algo-
rithm is a greedy search in the space of possible grafting
operations, they prove that the algorithm returns the
smallest tree among those with the lowest error. Strictly
speaking, their algorithm differs from REP-a in two as-
pects. First, only grafting is performed, without prun-
ing. Second, the error estimate of grafting a child is cal-
culated by recursively calling the simplification proce-
dure. Concretely, line (§3.) becomes large—>simp(c).
This has two consequences. First, once subtree replace-
ment takes place, the procedure does not need to be
recursively called on the grafted subtree – i.e., (§3.)
simply returns l err. This is because the grafted sub-
tree has been already recursively visited for the cases
at the parent. Second, the complexity of the algorithm
becomes now exponential.

Example 7. Let us denote by V (T ) the number of
nodes visited by Ceci et al.’ procedure on a tree T .
Consider the tree from Fig. 5. We have V (T ) = 3 +
2V (Tr), where Tr is the right subtree of T . In fact, the
root node is visited once, the left child is visited twice
(once for the cases at the node and once for the cases at
the parent), and then the procedure is recursively called
on the right child twice again (once for the cases at the
node and once for the cases at the parent). In terms of

the tree size, this means V (nT ) = 3+2V (nT −2), hence
V (T ) is in the order of 2nT .

Finally, our approach can be readily applied to
integrate grafting with other old and new bottom-up
pruning algorithms, such as CART cost complexity [5],
minimum description length [18], cost sensitive [25], and
k-norm [28] pruning.

6 Conclusions

With the advent of optimized (sequential and paral-
lel) algorithms for building decision trees, the post-
processing phase of tree simplification becomes worth
investigating in terms of complexity, efficiency, and ef-
fectiveness. One of the less understood simplification
operators is the one of grafting, or subtree replacement,
originally implemented by C4.5. In this paper, we have
introduced a general bottom-up algorithm, parametric
in an error estimation function, for simplifying decision
trees by integrating pruning and grafting. The algo-
rithm has been instantiated and analyzed over the error
based, reduced error, minimum error, and pessimistic
error estimation functions. A theoretical analysis of the
complexity of the algorithm in terms of number of nodes
visited has been presented, with tight lower and upper
bounds. From the experimental side, we have drawn the
following conclusions on efficiency:

• grafting the largest child is no more than one order
of magnitude higher than pruning;

• grafting any child is in the same order of magnitude
of grafting the largest child;

• and, in absolute terms, both remain affordable for
moderately large datasets.

A statistically-validated evaluation of the effectiveness
of adding grafting to pruning has led to the conclusions
that:

• grafting any child yields the smallest trees com-
pared to pruning alone and to grafting the largest
child;

• grafting the largest child yields the smallest
weighted depth compared to pruning alone and to
grafting the largest child;

• grafting does not degrade tree accuracy compared
to pruning alone; rather, for EBP and PEP, it
slightly (but significantly) improves in accuracy.

Summarizing, the recommendation for data mining
researchers and practitioners is that grafting can be
used in decision tree simplification without incurring



in accuracy degradation, without requiring orders of
magnitude of additional running time, and with a
significant reduction of tree size (for grafting any child)
and weighted depth (for grafting the largest child).
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