
KDDML: a middleware language and system for
knowledge discovery in databases

Andrea Romei, Salvatore Ruggieri, Franco Turini

Dipartimento di Informatica, Università di Pisa
Largo Bruno Pontecorvo 3, 56127 Pisa ITALY

Abstract. KDDML (KDD Markup Language) is a middleware language
and system designed to support the development of final applications or
higher level systems which deploy a mixture of data access, data prepro-
cessing, extraction and deployment of data mining models. A KDDML
language query is an XML-document where XML tags corresponds to
operations on data/models, XML attributes correspond to parameters
of those operations and XML sub-elements define arguments passed to
the operators. The core of the KDDML system is a KDDML language
interpreter with modularity and extensibility requirements as the main
goals.

1 Introduction

The KDD (Knowledge Discovery in Databases) process, i.e. the process of find-
ing “nuggets” of knowledge in data, is a complex task, heavily dependent on the
problem and on the data at hand. It may consists of several repeated phases
including business problem understanding, data understanding, data prepara-
tion, modelling (or data mining), evaluation and deployment. The development
of KDD solutions requires then to specify the tasks at each phase and the inter-
actions/dependencies among them. While KDD technology has reached a ma-
turity state as far as the design of efficient knowledge extraction algorithms is
concerned, the design of final applications is still an “art”, aimed at smoothly
composing algorithm libraries, proprietary API’s, SQL queries and stored pro-
cedure calls to RDBMS, and much much code.

There is a fervent activity of standardization in the area of mining model
representation and access, and of mining algorithms API’s [2–4, 9]. In our view,
a middleware language and system is needed to support the development of final
applications or higher level systems which need a mixture of data access, data
preprocessing, mining extraction and deployment. In this context, XML appears
as a bridge between database technology and data mining tools. However, its
use in existing tools appears to be limited to the exchange of mining models
between applications. We would like to go further and conceive a language (and
system) where XML is used for model and data representation and exchange, as
well as for defining data and model processing tasks.

In this paper, we present our three-year experience in the design and devel-
opment of KDDML, an XML-based middleware language and system in support
of the KDD process.

The syntax of the KDDML language is XML-based, so to favor machine-
processability, with each tag modelling an operator of the language. However, the
semantics is purely “functional”, which ensures compositionality of operators.
The semantics of a KDDML language expression is either a model or a data
table. Therefore, we call a KDDML language expression a KDDML query, in
order to emphasize that a result is expected. We will present operators on data
access and preprocessing, model extraction and deployment, and control flow
operators. Concerning data and model representation, an XML-based approach
is adopted here as well. In particular, models are represented using an extension
of the PMML (Predictive Markup Modelling Language standard) [9].

Also, we outline the general architecture of the KDDML system, structured
in layers for data/model repository, operator implementations, query interpre-
tation, graphical user interface. Modularity and extensibility are a must in the
design of the system.

2 KDDML: KDD Markup Language

The KDDML language assumes a data repository, containing relational tables, a
model repository, containing mining models, and a query repository, containing
queries. Tables, models and queries can be referenced by an identifier. KDDML
queries are XML-documents, where XML tags correspond to operations on data
and/or models, XML attributes corresponds to parameters of those operations
and XML sub-elements define arguments passed to the operators. As an example,
the query below specifies the construction and the application of a decision tree.

<KDD_QUERY name="sample">

<TREE_CLASSIFY xml_dest="results.xml">

<TREE_MINER xml_dest="tree.xml" target_attribute="class">

<TABLE_LOADER xml_source="trainingSet.xml"/>

<ALGORITHM algorithm_name="YADT">

<PARAM name="confidence_for_pruning" value="0.4"/>

<PARAM name="num_instances_for_leaf" value="3"/>

</ALGORITHM>

</TREE_MINER>

<TABLE_LOADER xml_source="testSet.xml"/>

<TREE_CLASSIFY>

</KDD_QUERY>

The root tag is <KDD QUERY>, with the query identifier as an attribute.
<TREE CLASSIFY> is the operator that applies a decision tree to predict the

class of tuples in a test set. The attribute xml dest="results.xml" states
that the results of the classification are stored in the data repository for fur-
ther processing or analysis. The decision tree to be applied is provided by
the first sub-element (with tag <TREE MINER>) which specifies the construction
of a decision tree. The test set is provided by the second element (with tag
<TABLE LOADER>), which specifies a table in the data repository. In turn, the
construction of a decision tree (tag <TREE MINER>) takes place on a training set

trainingSet.xml from the data repository by applying a decision tree induction
algorithm (here, YADT from [8]) with parameters concerning the pruning strat-
egy of the algorithm. The name of the class attribute is provided as attribute of
the <TREE MINER> element.

As one could expect, arguments to an operator must be of an appropriate
type and sequence, i.e. an operator signature must be specified. We denote the
signature of an operator f : t1 × . . . × tn → t returning type t by defining a
DTD for KDDML queries that constraints sub-elements to be of type t1, . . . , tn.
Thus, KDDML queries corresponds to terms in the algebra of operators, though
syntactically represented as XML documents.

The set of types of KDDML operators includes: table, tree, rda, sequences,
clusters, hierarchy, scalar, algs and xml. Intuitively, there is one type for
data sources, one type for each mining model (tree, rda, sequences, clusters),
one type for hierachies, one type for algorithms (algs) and one for operators that
return a scalar (i.e., a number or a string). Finally, the xml type denotes argu-
ments that are generic XML elements to be evaluated directly by the operator.

Under this interpretation, the semantics of a KDDML query amounts to
a strict functional execution of the corresponding term. The evaluation of an
XML-fragment:

<OPERATOR_NAME xml_dest="results.xml" att1="v1" ... attM="vM">

<ARG1_NAME> </ARG1_NAME>

...

<ARGn_NAME> </ARGn_NAME>

</OPERATOR_NAME>

consists of:

1. recursive evaluation of fragments from <ARG1 NAME> ... </ARG1 NAME> to
<ARGn NAME> </ARGn NAME>; in case the ith argument of <OPERATOR-
NAME> is expected of type xml, the element <ARGi NAME> ... </ARGi NAME>
is itself the result of its evaluation;

2. evaluation of attributes att1 ... attM returning a set of scalar values;
3. a call to an operator fOPERATOR NAME, accepting results from (1) and (2) and

yielding the final result of the fragment.

Moreover, a copy of the final result (which may be an intermediate result of a
possibly larger query) is stored in the (model or data) repository if the attribute
xml dest is specified. Notice that repositories are persistent, so to favor the reuse
of extracted knowledge and preprocessed data.

As a by-product, the language satisfies a closure principle, namely that any
operator returning type t can be used wherever an argument of type t is required.
Also, validation of queries as XML documents against the DTD corresponds to
static type-checking of operators in the query.

2.1 Data access and preprocessing

Data format The KDDML language assumes a data repository, where tables
are represented as an XML file containing a schema and a reference to the

actual data, which is stored in CSV (Comma Separated Values) format. Here it
is a fragment of a XML document census.xml describing a data set of people
with their age, education and purchase data (day of week, product brand and
amount).

<KDDML_TABLE data_file="census.csv">

<SCHEMA logical_name="census" number_of_attributes="6"

number_of_instances="16">

<ATTRIBUTE name="age" number_of_missed_values="0"

type="numeric">

<NUMERIC_DESCRIPTION mean="40.75" variance="237.8"

min="18.0" max="70.0"/>

</ATTRIBUTE>

<ATTRIBUTE name="education" number_of_missed_values="3"

type="nominal">

<NOMINAL_DESCRIPTION number_of_values="4">

<VALUE value="doctorate" cardinality="1"/>

<VALUE value="bachelors" cardinality="7"/>

<VALUE value="HS-grad" cardinality="3"/>

<VALUE value="masters" cardinality="2"/>

</NOMINAL_DESCRIPTION>

</ATTRIBUTE>

...

</SCHEMA>

</KDDML_TABLE>

The data file attribute of the <KDDML TABLE> tag refers the location of
physical data. The XML document specifies metadata information, including
attribute type (nominal, numeric or string) and some simple statistics on at-
tribute values.

Data access The data repository is populated by KDDML queries that yield
tables as output. As one could expect, data access operators are basically avail-
able to access RDBMS (using SQL SELECT queries) and text files in the ARFF
format adopted by the Weka [10] suite.

<ARFF_LOADER xml_dest="BasketData.xml"

arff_file_path="D:/Repository/BasketData.arff"/>

<DATABASE_LOADER xml_dest="BasketData.xml"

database_name="jdbc::odbc::basketDB"

sql_query="SELECT * FROM BasketData"/>

<TABLE_LOADER xml_source="BasketData.xml"/>

In the first (resp. second) query fragment, an ARFF table (resp. database
table) is accessed, transformed into the internal representation, saved into the
repository (recall that, however, the xml dest attribute is optional), and finally

passed up to the father node of the query fragment. Mapping from ARFF (resp.,
SQL) data types to the logical data types of the XML representation is auto-
matic. However, preprocessing operators allows for specifying different logical
types of attributes of loaded tables.

Export of tables to database and ARFF formats is achieved by the <DATA-
BASE WRITER> and <ARFF WRITER> operators.

<DATABASE_WRITER database_name="jdbc:odbc:basketDB",

table_name="BasketData">

<TABLE_LOADER xml_source="BasketData.xml"/>

</DATABASE_WRITER>

Data preprocessing Data preprocessing [7] is a time-consuming phase of the
KDD process, including tasks such as data selection, filtering, merging, cleaning,
discretization, sorting, aggregating and many others. KDDML offers some op-
erators for data preprocessing, yet they are the latest addition to the language
and system. Their typing is quite intuitive, typically requiring a table as an ar-
gument. As a simple example, the following fragment removes the age attribute
from the input table. Its typing is fPP FILTER ATTRIBUTES : table→ table.

<PP_FILTER_ATTRIBUTES xml_dest="census_removed.xml"

attributes_list="age"

take_or_remove="remove">

<TABLE_LOADER xml_source="census.xml"/>

</PP_FILTER_ATTRIBUTES>

On the contrary, new attributes can be added by the operator PP NEW ATTRI-
BUTE In this case, the attribute is derived from existing ones by means of a
simple expression language. Also, the type of the derived attribute can be set.
Its typing is fPP NEW ATTRIBUTE : table × xml → table. The second argument is
an EXPRESSION tag, which is directly interpreted by the operator in order to
compute calculated values.

<PP_NEW_ATTRIBUTE attribute_name="born_year"

attribute_type="numeric"

position="1">

<TABLE_LOADER xml_source="census.xml"/>

<EXPRESSION>

<SEQ_TERM op_type="subtract">

<BASE_TERM value="2004"/>

<BASE_TERM value="@age"/>

</SEQ_TERM>

</EXPRESSION>

</PP_NEW_ATTRIBUTE>

In this example, a new numeric attribute born year is added in the first
position of the census.xml dataset. The values of the new attribute are calcu-
lated as the difference between the current year and the year of birth. With the

special symbol ”@“ in the second term of the expression, we denote the input
table attribute age.

Sampling is a largely used task: for an input table, a subset of rows is selected
accordingly to a sampling method. Therefore, the typing of a sampling operator
is fPP SAMPLING : table×algs→ table. Below is an example query selecting 66%
of input rows without replacement sampling policy.

<PP_SAMPLING xml_dest= "sampling.xml">

<TABLE_LOADER xml_source= "census.xml"/>

<ALGORITHM algorithm_name="simple_sampling">

<PARAM name="percentage" value="0.66"/>

<PARAM name="with_replacement" value="false"/>

</ALGORITHM>

</PP_SAMPLING>

There are a few other preprocessing operators in KDDML, including: PP NU-
MERIC DISCRETIZATION to discretize numeric attributes, PP RENAME ATTRIBUTES
to rename attributes, PP CHANGE TYPE to change the logical type of attributes,
PP REMOVE ROWS to delete rows under specified conditions, PP REWRITING to ap-
ply pattern matching rewriting of attribute values, PP SORTING ATTRIBUTE to
sort rows according to the values of an attribute or according to their frequen-
cies.

While the list of KDDML preprocessing operators is not comparable to the
huge number of preprocessing tasks described in the literature, we point out
that adding a new operator in KDDML is not much of a problem, since it is
enough to specify the operator signature and the DTD of the operator tags. The
overall (functional & compositional) semantics of KDDML allows for a smooth
integration of the new operator in the language.

2.2 Mining models

Model format As for data, the KDDML language assumes a model reposi-
tory, containing extracted data mining models, which can be referenced by an
identifier (in a different namespace from data).

KDDML represents models as an extension of PMML documents. Since
PMML in its present version is not sufficient to capture all details of mining
models, we deploy the PMML extension mechanism in two cases both regarding
classification models. In the first one, the notion of confusion matrix is added to
decision tree models. In the second one, we allow for classification models that
exploit predictions of two or more decision trees, e.g. a voting classifier. A clas-
sic example concerns meta-classifiers, which are intended to overcome the bias
due to the random selection of the training set or due to the choice of specific
algorithms and parameters.

Model access Direct access to models in the model repository is achieved by the
TREE LOADER, SEQUENCE LOADER, RDA LOADER, CLUSTER LOADER, HIERARCHY LOA-
DER operators. As the name suggests, the forms of knowledge currently addressed

include decision trees, sequential patterns, association rules (RDA), clustering and
item hierarchies. Also, PMML compliant models provided from external tools
can be accessed and imported in the repository.

<TREE_LOADER xml_source="DecisionTree.xml"/>

<PMML_RDA_LOADER xml_dest="ExternRdA.xml"
pmml_source="ftp://www.foo.edu/models/RdA.xml"/>

Model extraction Mining models are extracted from a data source using a data
mining algorithm. In the next example, the top 20 association rules are extracted
from market basket data with minimum support of 40% and confidence of 60%.

<RDA_MINER xml_dest="MineBasket.xml">

<ARFF_LOADER arff_file_path="D:/Repository/BasketData.arff"/>

<ALGORITHM algorithm_name="DCI">

<PARAM name="min_support" value="0.4"/>

<PARAM name="min_confidence" value="0.6"/>

<PARAM name="max_number_of_rules" value="20"/>

</ALGORITHM>

</RDA_MINER>

The <RDA MINER> tag expects a sub-element with input data and a second
sub-element with the algorithm name and parameters (name and value).

Input data can be in the transactional format, i.e. with an attribute trans-
action and an attribute event. This format allows for deriving intra-attribute
association rules, such as spaghetti AND tomato juice → parmesan.

Also, the relational format is recognized, i.e. with an attribute for every item
(or item category). This format allows for deriving inter-attribute association
rules, such as carType=racing AND homeInsurance=false → married=false.

The algorithm used here is DCI (Direct Count & Intersect) from [5]. DCI
is an efficient procedure that takes into account density or sparsity of input
transactions.

Analogously, tags <TREE MINER>, <SEQUENCE MINER> and <CLUSTER MINER>
exists for extracting decision trees, sequence patterns and clusters. The algo-
rithms used are respectively the already mentioned YADT [8] for decision tree
induction, a main-memory implementation of the PrefixSpan [6] for sequential
patterns, and the EM and KMeans clustering algorithms from the Weka library
[10]. In the next example, three clusters are extracted from census.xml using
the EM algorithm.

<CLUSTER_MINER xml_dest="MineClusters.xml">
<TABLE_LOADER xml_source="census.xml"/>
<ALGORITHM algorithm_name="EM">

<PARAM name="number_of_clusters" value="3"/>
</ALGORITHM>

</CLUSTER_MINER>

Model application and evaluation Extracted models can be applied on
(new) data to predict features or to select data accordingly to the knowledge
stored in the model.

We have seen earlier how a decision tree extracted from a training set can be
applied to predict the class of tuples in a test set. More in detail, <TREE CLASSIFY>
yields a table with an additional column (whose name is the one of the class
column followed by predicted) consisting of the class predicted by the decision
tree. The procedure used to determine the class predicted is the one adopted
in the C4.5 algorithm [8]. In addition to <TREE CLASSIFY>, operators for model
application include:

– <MISCLASSIFIED>: given a table returned by the <TREE CLASSIFY> operator,
selects the rows where the predicted class value differs from the actual class
one;

– <RULE SATISFY> (resp., <RULE EXCEPTION): given a set of association rules
and a table, extracts those transactions in the table that satisfy (resp., are
exceptions to) one or more of the association rules; <SEQUENCE SATISFY> and
<SEQUENCE EXCEPTION> are the equivalent operators for sequence models;

– CLUSTER NUMBER: given a cluster model and a dataset, this operator returns
the tuples of the dataset belonging to a specified cluster number (max can
also be specified to get the tuple in the cluster of maximal cardinality);

– CLUSTER CENTROID: given a cluster model, it returns tuples describing the
cluster centroids.

Model (meta-)reasoning Models extracted by data mining algorithms very
often need to be further processed, e.g., combined with other models. The ex-
ample below returns a voting classifier among three decision trees: tree1.xml
and tree2.xml are already present in the model repository, and tree3.xml is
mined from trainingSet.xml.

<TREE_COMMITTEE xml_dest="treeCommittee.xml">

<TREE_LOADER xml_source="tree1.xml"/>

<TREE_LOADER xml_source="tree2.xml"/>

<TREE_MINER xml_dest="tree3.xml" target_attribute="class_name">

<TABLE_LOADER xml_source="trainingSet.xml"/>

<ALGORITHM algorithm_name="YADT">

<PARAM name="confidence_for_pruning" value="0.4"/>

<PARAM name="num_instances_for_leaf" value="3"/>

</ALGORITHM>

</TREE_MINER>

</TREE_COMMITTEE>

The operator performs a run-time checking that the three classifiers share the
same meta-data. If this is not the case, the evaluation of the query terminates
with a run-time error.

Other operators on model (meta-)reasoning available in the system include
filtering of association rules and sequential patterns, and the selection of rules
that are preserved over a hierarchy of items.

2.3 Control flow and external programs

In this section, we describe the operators that allow for better control of flows
of data and models in queries, and for calling external programs.

Calls to external programs / RDBMS Specialized procedures can some-
times be useful to preprocess or analyse data. The <EXT CALL> operator allows
for calling external programs, including e.g., calls to RDBMS stored procedures.

<EXT_CALL path="/usr/bin/mysql">

<PARAM value="localhost">

<PARAM value="UPDATE mytable SET cost = cost * 1.10"/>

</EXT_CALL>

The <PARAM> operator returns a scalar (the one of the value attribute), which
is then used as a command line argument of the called program. <EXT CALL> also
returns a scalar, e.g., the number of updated rows in the example above.

Calls of queries In order to modularize (long) queries, an operator that re-
trieves and evaluates queries in the query repository is provided. Queries admit
parameters, whose list is specified at the <KDD QUERY> tag. Actual parameters
are substituted to formal parameters at the time the query is loaded from the
repository.

<KDD_QUERY name="generic_tree" par_list="perc,source,dest">

<TREE_MINER xml_dest="#dest#" target_attribute="class_name">

<PP_SAMPLING xml_dest= "sampling.xml">

<TABLE_LOADER xml_source="#source#"/>

<ALGORITHM algorithm_name="simple_sampling">

<PARAM name="percentage" value="#perc#"/>

<PARAM name="with_replacement" value="false"/>

</ALGORITHM>

</PP_SAMPLING>

<ALGORITHM algorithm_name="YADT">

<PARAM name="num_instances_for_leaf" value="3"/>

</ALGORITHM>

</TREE_MINER>

</KDD_QUERY>

The above query builds a decision tree on a subset of a data source and saves
the tree in a specified destination. Notice that the syntax for using a formal
parameter requires to write it between # signs. The sample query can be called
from within other queries as follows:

<CALL_QUERY name="generic_tree">

<PARAM name="perc" value="0.6"/>

<PARAM name="source" value="training.xml"/>

<PARAM name="dest" value="tree.xml"/>

</CALL_QUERY>

The operator <CALL QUERY> returns the same result of the called query. Since
the type may not be known at compile time (e.g., when the query name itself is
provided by a parameter), the type of the result is checked at run-time.

Sequences and parallelism of queries It is sometimes useful to evaluate
queries in strict sequence or to mark potential parallelism. As an example, con-
sider building two distinct models on a same training set. The preprocessing of
the training set is preliminary to the (independent, hence potentially parallel)
evaluation of the tree building queries.

<KDD_QUERY>

<SEQ_QUERY>

<EXT_CALL path="mypreprocessing">

<PARAM value="inputdata.arff"/>

<PARAM value="training.arff"/>

</EXT_CALL>

<PAR_QUERY>

<TREE_MINER xml_dest="tree1.xml>

...

</TREE_MINER>

<TREE_MINER xml_dest="tree2.xml>

...

</TREE_MINER>

<PAR_QUERY>

</SEQ_QUERY>

</KDD_QUERY>

The <SEQ QUERY> operator (resp., <PAR QUERY>) models sequentialization
(resp., potential parallelism). The returned value of both operators is assumed
to be the one of the last operator in the sequence of their arguments.

3 KDDML: system architecture

KDDML is implemented in Java, in order to be portable. The overall architecture
of KDDML is structured in layers, as reported in Fig. 1. Each layer implements
a specific functionality and supplies an interface to the layer above:

– The repository layer manages the read/write access to data and models
repositories and the read access to data and models from external sources
providing programmatic functionality to the higher layers.

– The operators and algorithms layer includes the implementations of language
operators

– The interpreter layer accepts a validated KDDML query, evaluates it, save
the final result in the repository and returns it to caller.

– The user interface layer is a GUI for user friendly input of queries and for
browsing of extracted knowledge. Strictly speaking, the GUI is not part of
the core of the system. In fact, KDDML queries can be generated by other

Fig. 1. KDDML system architecture.

programs, such as a vertical applications that need performing some KDD
steps. The result of the invoked interpreter is returned as a DOM object
or an XML document, which can be further processed with standard tools.
The picture shows that queries can also be expressed in a logic and algebraic
query language MQL [1] and then compiled into KDDML.

The design of the KDDML system took into special account the requirements
of extensibility of the KDDML language, which can be distinguished in:

– data sources extensibility: adding a new data source type in the KDDML
language consists of simply adding a new tag (such as <NEW DATA SOURCE -
LOADER>) with appropriate attributes and sub-elements specifying how to
locate the table. As a consequence, the system should allow for transparently
adding a wrapper to/from the new data source type, which encapsulates the
details of transforming data and meta-data into the ones the internal table
representation;

– and algorithms extensibility: adding a new preprocessing, tree induction,
clustering, association rules or sequential pattern mining algorithm should be
as simple as possible. As for data sources, the idea is that the new algorithm
should be pluggable in the language and system. Notice that, as far as the
language part is concerned, this is not much of a problem, since the algorithm
name and parameters are not part of the language syntax.

4 Conclusions

KDDML is a middleware language and system for KDD that supports the devel-
opment of higher level applications and systems. The language is XML-based,
with a functional semantics of language operators, which are represented as
XML tags. The system has been designed to be easily extensible with new
data formats/sources, model format/sources, and preprocessing/mining algo-
rithms. KDDML is distributed under the GNU GPL licence at the web site:
http://kdd.di.unipi.it/kddml.

Acknowledgments. This work has been partially supported by Italian na-
tional FIRB project no. RBNE01KNFP GRID.it and by Italian national strate-
gic project legge 449/97 No. 02.00640.ST97.

References

1. M. Baglioni and F. Turini. MQL: An Algebraic Query Language for Knowledge
Discovery. In A. Cappelli and F. Turini, editors, Proceedings of the 8th Congress
of the Italian Association for Artificial Intelligence, volume 2829 of Lecture Notes
in Computer Science, pages 225–236. Springer-Verlag, 2003.

2. International Organization for Standardization (ISO). Information Technology –
Database Language – SQL Multimedia and Application Packages – Part 6: Data
Mining, 2003. Draft Standard No. ISO/IEC 13249-6:2003.

3. JSR-73 Expert Group. Java Data Mining API, 2004. Java Specification Request
No. 73, http://www.jcp.org/en/jsr/detail?id=73.

4. Object Management Group (OMG). Common Warehouse Meta-model (CWM),
2002. Version 1.1, http://www.omg.org/cwm.

5. S. Orlando, P. Palmerini, R. Perego, and F. Silvestri. Adaptive and resources-
aware mining of frequent sets. In IEEE ICDM Int. Conf. on Data Mining. IEEE
Computer Society, 2002. http://hpc.isti.cnr.it/∼palmeri/datam/DCI.

6. J. Pei, J. Han, B. Mortazavi-Asl, J. Wang, H. Pinto, Q. Chen, U. Dayal, and M.C.
Hsu. Mining sequential patterns by pattern-growth: The prefixspan approach.
IEEE Trans. on Knowledge and Data Eng., 16(11):1424–1440, 2004.

7. D. Pyle. Data Preparation for Data Mining. Morgan Kaufmann Publishers, San
Francisco, 1999.

8. S. Ruggieri. YaDT: Yet another Decision Tree builder. In Proc. of the 16th Int.
Conf. on Tools with Artif. Intellig., pages 260–265. IEEE Computer Society, 2004.

9. The Data Mining Group. Predictive Model Markup Language (PMML). Version
2.1, 2003. http://www.dmg.org.

10. I.H. Witten and E. Frank. Data Mining: Practical Machine Learning Tools and
Techniques with Java Implementations. Morgan & Kaufmann, 2000. Version 3.4.3
from http://www.cs.waikato.ac.nz/ml/weka.

