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ABSTRACT
Concise representations of frequent itemsets sacrifice read-
ability and direct interpretability by a data analyst of the
concise patterns extracted. In this paper, we introduce an
extension of itemsets, called regular, with an immediate se-
mantics and interpretability, and a conciseness comparable
to closed itemsets. Regular itemsets allow for specifying that
an item may or may not be present; that any subset of an
itemset may be present; and that any non-empty subset of
an itemset may be present. We devise a procedure, called
RegularMine, for mining a set of regular itemsets that is a
concise representation of frequent itemsets. The procedure
computes a covering, in terms of regular itemsets, of the fre-
quent itemsets in the class of equivalence of a closed one.
We report experimental results on several standard dense
and sparse datasets that validate the proposed approach.

Categories and Subject Descriptors
H.2.8 [Database Management]: Database Applications-
Data Mining

General Terms
Algorithms

Keywords
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1. INTRODUCTION
The intended objective of concise representations is to al-

leviate the problems due to extracting, storing and post-
processing a huge amount of frequent patterns. They sacri-
fice readability and direct interpretability by a data analyst
in favor of a compact, lossless representation, where item-
sets whose support is derivable from others are pruned away.
Closed itemsets [2] are a concise representation of frequent
itemsets, yet not the only one [4, 5, 6, 7, 12, 13, 16], surely
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Figure 1: A sample transaction database, the θ-
equivalence class of abcd and its covering.

the most well-known. Let us explain by an example what
we intend for “sacrificing readability” in the case of closed
itemsets. Consider the transaction database in Figure 1.

For a minimum support of 2, there is a total of 15 frequent
itemsets, but only 3 frequent closed itemsets: C1 = abcd
with support 2; C2 = b with support 3; and C3 = ac with
support 3. Closed itemsets (and concise representations, in
general) are able to answer frequency queries such as “is the
itemset X frequent?” and, if it is, “what is the support of
X?”. For instance, for X = abc, we look at closed itemsets
that include X. If there is one (C1 includes it), then X is
frequent. In such a case, the support of X is the maximal
support of the closed itemsets that include it (only C1, hence
the support of X is 2).

Assume now that a data analyst has focussed her atten-
tion on itemsets with support of 2. Would it be reasonable
to prompt her with C1? On the one side, it is the only closed
itemset with support 2, hence it concisely represents all item-
sets the analyst is interested in. On the other side, however,
the conciseness itself is the source of interpretability prob-
lems. Once prompted with C1 the data analyst has to fig-
ure out which itemsets are represented by C1, or in other
words, what its semantics is. The answer is hardly useful:



all subsets of C1 except the subsets of closed itemsets whose
support is greater than the support of C1 (technically, the
θ-equivalence class of C1). Such an answer highlights that
a closed itemset in isolation makes no sense for the analyst,
because the itemsets it denotes, its semantics, is undeter-
minable. The only practical way of presenting the semantics
of C1 to the analyst seems then by enumerating the 11 item-
sets in its θ-equivalence class, as shown in Figure 1. But this
means loosing the so-much-acclaimed compactness property
of concise representations.
In this paper, we introduce an extension of itemsets, called

regular, with an immediate semantics and interpretability,
and a conciseness comparable to closed itemsets. Regular
itemsets allow for specifying that an item a may or may not
be present, using the notation a?; that any subset of an item-
set may be present, using the notation {a1, . . . , ah}⋆; and
that any non-empty subset of an itemset may be present,
using the notation {a1, . . . , ak}+. We devise a procedure,
called RegularMine, for mining a set of regular itemsets
that is a concise representation of frequent itemsets. The
procedure computes a covering, in terms of disjoint regu-
lar itemsets, of the θ-equivalence class of a frequent closed
itemset. For the example C1 above, we obtain two regu-
lar itemsets, namely b{ac}+ and d{abc}⋆. They are a cover
because every frequent itemset equivalent to C1 belongs to
the semantics of one of them. They are disjoint because no
frequent itemset belongs to the semantics of both. For the
example C2 above, we obtain b; and for C3 we obtain {ac}+.
We report experimental results on several standard dense
and sparse datasets that show how the size of the concise
representation using regular itemsets is in most cases very
close to the size of closed itemsets.
The paper is organized as follows. In Section 2, we set

up the notation and recall basic definitions about frequent
itemsets, θ-equivalence, closed itemsets, free sets and concise
representations. The syntax and semantics of regular item-
sets is introduced in Section 3. In Section 4 we propose the
mining procedure RegularMine, which is experimented in
Section 5. Finally, we discuss related work in Section 6 and
then summarize the contribution of the paper.

2. BASIC DEFINITIONS

2.1 Frequent Itemsets
Let I be a finite set of literals called items. We use meta-

variables a, b, c, . . . to denote items. A set X = {a1, . . . , ak}
⊆ I is called an itemset, or a k-itemset if it contains k items.
X ∪ Y is abbreviated to X,Y .
A transaction over I is a pair T = (tid,X) where tid is a

transaction identifier and X is an intemset. A transaction
database D over I is a set of transactions over I. From now
on, we omit I and D when clear from the context.
A transaction T = (tid,X) supports an itemset I if X ⊆ I.

The cover of I is the set of transactions that support I:

cover(I) = {tid | (tid,X) ∈ D, I ⊆ X}.

The support of I is the number of transactions in its cover:
support(I) = |cover(I)|. An itemset is called frequent if its
support is no less than a given minimum threshold minsupp.
The set of frequent itemsets is defined as:

F = {X ⊆ I | support(X) ≥ minsupp}.

2.2 Equivalence, Free and Closed Itemsets
Bastide et al. [2] introduced the relation θ between fre-

quent itemsets supported by the same set of transactions,
hence equivalent (and indistinguishable) with respect to the
transaction database. Given two itemsetsX and Y , we write
XθY , and say thatX is θ-equivalent to Y , when cover(X) =
cover(Y ). θ is an equivalence relation, namely it is reflexive,
symmetric and transitive. The class of θ-equivalence of an
itemset X consists of all itemsets θ-equivalent to X:

[X] = {Y ⊆ I | XθY }.

Minimal elements (with respect to set inclusion) of a θ-
equivalence class are called free itemsets [4] or generators
[2]. Formally, X is free if X ∈Min [X], where the mimimal
function is defined as: Min S = {X ∈ S | @Y ∈ S.Y ⊂ X}.
It turns out that X is free iff there is no Y ⊂ X such that
support(Y ) = support(X). Another useful property of free
itemsets is anti-monotonicity [2, 4], namely all subsets of a
free itemset are free.

Maximal elements (with respect to set inclusion) of a θ-
equivalence class are called closed itemsets. Formally, X
is closed if X ∈ Max [X], where the maximal function is
defined as: Max S = {X ∈ S | @Y ∈ S.Y ⊃ X}. It
turns out that X is closed iff there is no Y ⊃ X such that
support(Y ) = support(X). Given Y ∈ [X], it is immediate
to observe that the itemset X,Y belongs to [X]. This im-
plies that Max [X] is a singleton, namely there is a bijection
between classes of θ-equivalence and closed itemsets.

2.3 Concise Representations
The number of frequent itemsets can be so large that no

efficient algorithm exists to enumerate all of them. This case
occurs, for instance, for very low minimum support thresh-
olds and for highly correlated data. A concise representation
[7, 15] of frequent itemsets is a lossless representation, typi-
cally consisting in a subset of F , that addresses the problem.
By lossless representation, one means that starting from it:
(1) frequent itemsets can be enumerated; and (2) given an
itemset it can be decided whether it is frequent or not, and,
if it is frequent, its support can be derived.

The set CS of frequent closed itemsets is a concise rep-
resentation [17]. An itemset X is frequent iff there exists
Y ∈ CS such that X ⊆ Y . In such a case, the support of X
can be calculated as: max{support(Y ) | X ⊆ Y ∧ Y ∈ CS}.

The set FS of frequent free itemsets is not a concise rep-
resentation. The pair of FS and of the free itemsets in the
negative border of FS is a concise representation [4, 14]. The
latter element in the pair is essential to determine whether
an itemsetX is frequent or not. If frequent, the support ofX
can be calculated as: min{support(Y ) | X ⊇ Y ∧Y ∈ FS}.

3. REGULAR ITEMSETS
In this section, we introduce an extended formulation of

itemsets, whose main purpose is to trade-off conciseness and
interpretability. The basic idea consists of introducing spe-
cial items that model cases when: an item a may or may
not appear, and this will be denoted by a?; any subset of
items a1, . . . , ah may appear, and this will be denoted by
{a1, . . . , ah}⋆; any non-empty subset of items a1, . . . , ak may
appear, and this will be denoted by {a1, . . . , ak}+.

We start by extending the syntax of items and itemsets
along this line.



{a1, . . . , ah}⋆

a1?, . . . , ah?
N1

{a}+

a
N2

a, a?

a
N3

a, {a,X}+

a,X⋆ N4
a?, {a,X}+

{a,X}+
N5

(a) For the normal form of extended itemsets.

R,X, Y − Y ∩X ̸= ∅
R,X, (Y \X)−

S1
R,X,Z⋆ Z ∩X ̸= ∅

R,X, (Z \X)⋆
S2

R, ∅−

fail
S3

R, {a}− a ̸∈ R

R \ {a?}[{a,X}− → X⋆]
S4

R, {a, Y }− a ̸∈ R Y ̸= ∅
R \ {a?}[{a,X}− → X⋆], Y ⋆ R \ {a?}[{a,X}− → X−], a, Y −S5

(b) For splitting non-compositional itemsets.

R R, a

R, a?
M1

R R, Y +

R, Y ⋆ M2
R, b, a? R, a

R, {a, b}+
M3

R, Y +, a? R, a

R, {a, Y }+
M4

R, Y + R, a, Y ⋆

R, {a, Y }+
M5

R, Y + R,Z+, Y ⋆

R, {Z, Y }+
M6

(c) For merging extended itemsets.

Figure 2: Rewriting rules. R[X → Y ] means that every extended item matching X in R is replaced by Y .

3.1 Extended Itemsets
An extended item is defined by the following grammar:

E ::= a | a? | {a1, . . . , ah}⋆ | {a1, . . . , ak}+

where a, ai’s are items, h ≥ 0 and k > 0. We use e, f, g as
meta-variables for extended items. Let J be the (finite) set
of extended items. A extended itemset is a subset R ⊆ J .

Example 3.1. The extended itemset ab{cd}⋆ represents
the itemsets where a and b must necessarily appear, while
c and d may or may not appear. The intended meaning of
ab{cd}⋆ is then the set of itemsets {ab, abc, abd, abcd}.
The extended itemset ab?{cd}+ represents the itemsets

where a must necessarily appear, b may or may not, and
at least one between c and d appears. Its intended meaning
is then {ac, ad, acd, abc, abd, abcd}.

We now formalize the intuitions underlying the example
by providing a semantics mapping an extended item/itemset
to the set of itemsets it denotes. The semantics se() for
extended items is defined as follows:

se(a) = {{a}}
se(a?) = {{a}, ∅}

se({a1, . . . , ah}⋆) = {X | X ⊆ {a1, . . . , ah}}
se({a1, . . . , ak}+) = {X | X ⊆ {a1, . . . , ak}, X ̸= ∅}.

The semantics s() for extended itemsets is defined as follows:

s(e1, . . . , en) = { ∪ i=1...nXi | Xi ∈ s(ei), i = 1 . . . n}. (1)

Notice that the semantics s() is and-compositional, namely
s(R1, R2) = f(s(R1), s(R2)) for some function f() (actually,
for f(S1, S2) = {X ∪ Y | X ∈ S1, Y ∈ S2)}). This means
that the meaning of an extended itemset can be obtained
by looking (only) at the meaning of its parts. As discussed

in the introduction, closed itemsets and other concise repre-
sentations do not have such a property. Let us consider now
some syntactic issues. Since the following holds:

s({a1, . . . , ah}⋆) = s(a1?, . . . , ah?),

the ⋆ operator can be seen as syntactic sugar. In this sense,
we will not make any further distinction between the ⋆ and
the ? operators, e.g., when stating that a? belongs to b{ac}⋆.
Analogously, since s({a}+) = s(a), we can rewrite singleton
itemsets over the + operator into an item.

Example 3.2. According to the definition of extended item-
sets, an item can appear more than once, e.g., as in ab{ac}+b?.
However, the following identities:

s(a, a?) = s(a) s(a, {a,X}+) = s(a,X⋆)

s(a?, {a,X}+) = s({a,X}+)

allow for removing duplicates. The extended item above is
equivalent to abc?.

The rewriting rules describes so far are reported in Fig-
ure 2 (a) as rules N1−N5. We say that an extended itemset
is in normal form if no rule can further apply. Irrespectively
of the order the rules are applied, an extended itemset R
can be rewritten in one and only one extended itemset in
normal form, which we call the normal form of R.

3.2 Regular Itemsets
The notion of extended itemset does not take into account

the cover nor the support of the itemsets in its semantics.

Example 3.3. Consider the transaction database D =
{(1, ab), (2, a)}, and the extended itemset R = ab?.

Two itemsets belong to s(R), namely a and ab. However,
cover(a) = {1, 2} ̸= {1} = cover(ab).



Extended itemsets are then relevant to the frequent item-
set mining problem only when they denote itemsets with a
common cover.

Definition 3.4. An extended itemset R is said regular if
for every X,Y ∈ s(R) we have that cover(X) = cover(Y ).

Using the notation of θ-equivalence classes, R is regular if
s(R) ⊆ [X] for some itemset X. An equivalent formulation
consists of requiring that all itemsets in the semantics of R
have the same support.

Lemma 3.5. An extended itemset R is regular iff for every
X,Y ∈ s(R) we have that support(X) = support(Y ).

Proof. The only-if part is immediate, since cover(X) =
cover(Y ) implies support(X) = support(Y ). Consider the
if-part. Let C be the itemset obtained from R by replac-
ing a? with a, and {a1, . . . , ak}+ with a1, . . . , ak. C is the
maximal itemset in s(R), hence X ⊆ C and Y ⊆ C, and
then cover(X) ⊇ cover(C) and cover(Y ) ⊇ cover(C). Since
by hypothesis support(X) = support(C) = support(Y ), we
conclude that cover(X) = cover(C) = cover(Y ).

For a regular itemset R, we define cover(R) = cover(X),
where X is any itemset in s(R). Also, we extend the notion
of support as follows: support(R) = |cover(R)|. Finally,
we say that a regular itemset R is frequent if support(R) ≥
minsupp.

Example 3.6. Consider the transaction database of Fig-
ure 1. The extended itemset ab{cd}⋆ from Example 3.1
is regular, and its cover is {1, 2}. The extended itemset
ab?{cd}+ is not regular since, e.g., cover(ac) = {1, 2, 4} ≠
{1, 2} = cover(abc).

3.3 Concise Representations
Frequent regular itemsets are natural candidates to be

adopted for a concise representation of frequent itemsets.
First, a single regular itemset R represents a possibly large
set s(R) of itemsets. Second, the interpretation of an ex-
tended item in R is straightforward, even for non-technical
data analysts: a? means a may appear; {a1, . . . , ak}+ means
that at least one among a1, . . . , ak must be present. Third,
the and-compositionality property makes it possible to fig-
ure out the semantics s(R) by looking at extended items in
R only. We therefore formalize the notion of concise repre-
sentation to the case of regular itemsets.

Definition 3.7. A finite set of regular itemsets R is a
concise representation of the set F of frequent itemsets if:

(a) ∪ R∈Rs(R) = F , and

(b) for every pair R1 ̸= R2 ∈ R, s(R1) ∩ s(R2) = ∅.

Intuitively, given an itemset X: (a) means that X is fre-
quent iff X belongs to the semantics of some R ∈ R; and (b)
means that if X is frequent, there exists one and only one
such anR, hence support(X) can be obtained as support(R).
A natural question arise at this stage. How large is a

concise representation R? Since the semantics of a regular
itemset is included in the class of θ-equivalence of a closed
itemset, we conclude that |CS| ≤ |R| is a lower bound. As
for upper bounds, at this stage we cannot draw any con-
clusion (apart from the trivial one |R| ≤ |F|), but later on
we will show that, in practice, there exist concise represen-
tations whose size is close to |CS| and abundantly smaller
than the number of frequent free sets |FS|.

4. MINING REGULAR ITEMSETS
We tackle the problem of mining a concise representation

by looking for a set of (pairwise disjoint) regular itemsets
that cover all the itemsets in a θ-equivalence class. We start
with a simple observation.

Lemma 4.1. Let C be a closed itemset, and let Min[C] =
{X1, . . . , Xn} be its free sets. An itemset Y belongs to [C]
iff there exists i such that Xi ⊆ Y ⊆ C.

Proof. The if-part follows since Xi ⊆ Y ⊆ C implies
cover(Xi) ⊇ cover(Y ) ⊇ cover(C) = cover(Xi). The only-
if part is immediate.

This result characterizes the θ-equivalence class [C] given
its maximal (closed) itemset and its minimal (free) itemsets.
As a consequence, [C] is equivalent to:

∪i=1...n s(Xi(C \Xi)
⋆).

However, while the itemsets X1(C \X1)
⋆, . . . , Xn(C \Xn)

⋆

satisfy condition (a) of Definition 3.7, they do not satisfy
condition (b), namely they are not pairwise disjoint.

Example 4.2. Consider the sample database and the class
of equivalence [abcd] reported in Figure 1. Starting from the
three free itemsets X1 = d, X2 = ba and X3 = bc, the
three regular itemsets R1 = d{abc}⋆, R2 = ba{cd}⋆ and
R3 = bc{ad}⋆ cover all itemsets in the class of equivalence.

However, they overlap since s(R1) ∩ s(R2) = {abd, abcd},
s(R1) ∩ s(R3) = {bcd, abcd}, s(R2) ∩ s(R3) = {abc, abcd}.
We point out that the overlapping between Ri and Rj starts
at the itemset Xi, Xj, namely the minimal common superset
of Xi and Xj .

In the next subsections, we devise a procedure to compute
a pairwise disjoint set of regular itemsets. First, we intro-
duce a further extension of items, called non-compositional,
which serves to divide [C] into disjoint sets. Then we trans-
form non-compositional itemsets into regular itemsets with-
out the + operator. Finally, we merge pairs of regular item-
sets by means of the + operator.

4.1 Non-Compositional Itemsets
A non-compositional item is defined by the grammar of

extended items augmented with the following:

E ::= {a1, . . . , ah}−

where h ≥ 0. Intuitively, {a1, . . . , ah}− represents any sub-
set of {a1, . . . , ah} except for the the maximal one a1, . . . , ah.
Formally:

se({a1, . . . , ah}−) = {X | X ⊂ {a1, . . . , ah}}.

Notice that se({a}−) = {∅}, i.e., only the empty itemset is
in the semantics, while se({}−) = ∅, i.e., no itemset is in it.

Consider now itemsets. A non-compositional itemset is a
finite set of non-compositional items. The semantics s() de-
fined as in (1) does not reflect the intuitive meaning of non-
compositional itemsets. Consider, as an example, {ab}−{ac}−.
Intuitively, we expect that b ∈ s({ab}−) and that a ∈ s({ac}−).
However, their conjunction ab should not be in s({ab}−{ac}−)
since it violates the constraint that a and b should not oc-
cur together. In this sense, an and-compositional semantics
does not exists. Here it is a non-compositional one:

s′(e1, . . . , en) = {X ∈ s(e1, . . . , en) | X ∩ Y ⊂ Y

for every ei of the form Y −}.



A non-compositional itemset R is said regular if cover(X) =
cover(Y ) for every X,Y ∈ s′(R). Similarly, we can extend
the notion of concise representation. However, due to the
lack of and-compositionality, the class of non-compositional
itemsets is not suitable, in our opinion, to be proposed to a
data analyst for direct interpretation. Nevertheless, its is an
intermediate representation that is useful for our purposes.
The next example clarifies how the θ-equivalence class [C]
can be easily covered by regular non-compositional itemsets.

Example 4.3. Consider again the class of θ-equivalence
[C] in Figure 1, where C = abcd is a closed itemset, and
X1 = d, X2 = ba and X3 = bc are the free itemsets in the
class. As for X1, we can define R1 = X1, C

⋆ = d{abcd}⋆
to cover all itemsets X such that d ⊆ X ⊆ abcd. As for
X2, we define R2 = X2, X

−
1 , C⋆ = ba{d}−{abcd}⋆ to cover

all itemsets X such that ba ⊆ X ⊆ abcd, but such that
d ̸⊆ X. It turns out that s′(R2) = {ba, bac}. Finally, for X3

we define R3 = X3, X
−
1 , X−

2 , C⋆ = bc{d}−{ba}−{abcd}⋆ to
cover all itemsets X such that bc ⊆ X ⊆ abcd, but such that
d ̸⊆ X and ba ̸⊆ X. It turns out that s′(R3) = {bc}.

Next we formalize the intuitions of the example.

Lemma 4.4. There exists a set R of regular non-compo-
sitional itemsets with |R| = |FS| that is a concise represen-
tation of frequent itemsets.

Proof. Let C be a frequent closed itemset, and letMin[C]
= {X1, . . . , Xn} be its free sets. For the regular non-compo-
sitional itemsetsNi = Xi, X

−
1 , . . . , X−

i−1, C
⋆, with i = 1 . . . n,

we have:
(a) ∪ i=1...ns

′(Ni) = [C]. By Lemma 4.1, X ∈ [C] iff for
some i ∈ [1, n], Xi ⊆ X ⊆ C. Let k be the minimum of such
i’s. By construction, we have X ∈ s′(Nk).
(b) For every pair Ni, Nj with i ̸= j, s′(Ni) ∩ s′(Nj) =
∅. In fact, assume, without loss of generality, that i <
j. We have Nj = Xj , X

−
1 , . . . , X−

i , . . . , X−
j−1, C

⋆. If X ∈
s′(Ni) then X ⊇ Xi, but since X−

i is in Nj , we have X ̸∈
s′(Nj).

4.2 A Covering Algorithm
In this subsection, we devise a covering procedure that,

given a non-compositional itemset Rin, computes a set Rout

of extended itemsets equivalent to Rin and pairwise disjoint,
or, formally, such that s′(Rin) = ∪R∈Routs(R) and such
that R1 ̸= R2 ∈ Rout implies s(R1) ∩ s(R2) = ∅. When
applied to the non-compositional itemsets whose semantics
is the class of θ-equivalence [C], it then provides a covering
of [C] through regular itemsets. The approach follows the
rewriting rules S1 − S5 reported in Figure 2 (b). Let us
introduce the intuitions behind them with a few examples.

Example 4.5. Consider Example 4.3.
It is immediate to notice that R1 = d{abcd}⋆ can be sim-

plified to d{abc}⋆, i.e., by removing the item d from {abcd}⋆,
due to the fact that d must necessarily occur. This is the
analogous of the simplification rule N3 from Figure 2 (a)
for extended itemsets. Similarly, R2 = ba{d}−{cd}⋆ and
R3 = bc{d}−{ba}−{ad}⋆. The general case is stated as rule
S2 in Figure 2 (b).
A similar reasoning applies to the extended item {ba}− in

R3. Since b necessarily appear in R3, it can be removed from
{ba}−. Thus, R3 = bc{d}−{a}−{ad}⋆. In general, we have
rule S1.

Algorithm 1 Covering

Input: a non-compositional itemset Rin of the form
X,Y −

1 , . . . , Y −
n , Z⋆

Output: a set Rout of pairwise disjoint extended itemsets
equivalent to Rin, obtained by the splitting rules S1-S5

R← X, (Y1 \X)−, . . . , (Yn \X)−, (Z \X)⋆ //rules S1, S2
Rout ← ∅
if ∀i.Yi \X ̸= ∅ then //rule S3
R← {R}
while R ≠ ∅ do

let R be in R
R← R \ {R}
while ∃Y − ∈ R do

let Y − = {a1, . . . , ak}− be in R
R′ ← R \ {a1?}
R← R′ where every {a1,X}−

is replaced by X⋆ //rules S4, S5
if k > 1 and @{a1}− ∈ R′ then //rules S5, S3

R′′ ← R′ where every {a1,X}−
is replaced by X−

R := R∪ {(a1, R
′′)}

end if
end while
Rout ←Rout ∪ {R}

end while
end if

Example 4.6. Consider R = a{a}−b?. By rule S1, R is
equivalent to a∅−b?. As already noted, s(∅−) is empty, and
this is inherited by any itemset containing ∅−. Thus, s(R) =
∅. Since any extended itemset has a non-empty semantics,
this means that no extended itemset is equivalent to R. This
motivates rule S3 in Figure 2 (b).

It is worth noting, however, that a non-compositional item-
set Ni = Xi, X

−
1 , . . . , X−

i−1, C
⋆ defined in Lemma 4.4 for

covering a θ-equivalence class has a non-empty semantics.
In fact, since X1, . . . , Xi are minimal sets, Xi ̸⊇ Xj for
j = 1 . . . n, and then Xi ∈ s′(Ni).

Example 4.7. Consider R2 = ba{d}−{cd}⋆ from Exam-
ple 4.5. The conjunct {d}− implies that the item d must not
appear. So, {d}− can be removed together with all d? in R2,
thus yielding R2 = ba{c}⋆ = bac?. Analogously, one con-
cludes R3 = bc. In general, we have rule S4 in Figure 2 (b).
Let us briefly explain what happens if the hypothesis a ̸∈ R
of such a rule is not satisfied, e.g., for the non-compositional
itemset a{a}−. Here, rule S1 applies, so it can be rewritten
as a∅− which, by rule S3, has an empty semantics.

The next example explains rule S5.

Example 4.8. Consider R = cd{ab}−{ab}⋆. The con-
junct {ab}− imposes that a and b cannot be both present.
Thus, we partition the semantics s′(R) in two sets.

First set: s′(R) ∩ {X ⊆ I | a ̸∈ X}. We characterize it by
removing any a? from R, and by replacing every occurrence
of the form {Y, a}− by Y ⋆. In fact, since a cannot be present,
any other subset of Y can appear without violating {Y, a}−.
Summarizing, R1 = cdb? covers the first set.

Second set: s′(R) ∩ {X ⊆ I | a ∈ X}. We characterize
such a set by adding a to R, by removing any a? from R, and
by replacing {Y, a}− by Y −. In fact, since a is now present,



the constraint imposed by any {Y, a}− becomes equivalent
to the one imposed by Y −. Summarizing, R2 = cda{b}−b?
covers the second set. By applying rule S4, we get R2 = cda.

Figure 2 (b) summarizes the rewriting rules mentioned
in the examples above. They allow for deriving zero, one
or two non-compositional itemsets that are equivalent to a
given one but smaller in the precise sense that at least one
item a is removed from extended items of the form Y −. As
a result, the rewriting process starting from a (set of) non-
compositional itemset(s) terminates with an equivalent set
of extended itemsets, i.e., with no item of the form Y −. The
only rewriting rule that yields two itemsets is rule S4. Here,
we have to ensure that the two itemsets in the rule conse-
quence are disjoint. This is immediate because one itemset
does not contain a (neither a? nor {X, a}−) whilst the other
does contain a. The Covering Algorithm 1 implements the
rewriting rules with two optimizations. First, if applied at
once, rules S1 and S2 do not need to be re-checked, since all
other rules remove items a appearing in {Y, a}− or in {a}−
(preventing rule S1 to fire) and explicitly remove items a?
(preventing rule S2 to fire). Also, the initial application
of S1 and S2 makes it superfluous to check the hypothesis
a ̸∈ R in rules S4 and S5. As a second optimization, if ap-
plied at once, rule S3 can only be re-checked after rule S5,
where an item ∅− can potentially be introduced. Thus, rule
S3 can be folded within rule S5.

Example 4.9. The (size of the) covering produced may
vary with the order in which free sets are considered in the
construction of the non-compositional itemset. For instance,
consider again Example 4.3. If we reverse the order of free
sets, we obtain R′

1 = bc{abcd}⋆ which can be rewritten to
bc{ad}⋆, R′

2 = ba{bc}−{abcd}⋆ which can be rewritten to
bad?, and R′

3 = d{bc}−{ba}−{abcd}⋆ = d{bc}−{ba}−{abc}⋆.
The only rule applicable to R′

3 is S5, which yields two item-
sets: d{ac}⋆; and db{c}−{a}−{ac}⋆, which by rule S4 is
equivalent to db. Summarizing, the cover obtained includes
4 regular itemsets vs. the 3 regular itemsets obtained in Ex-
amples 4.5, 4.7.

4.3 Merging Extended Itemsets
The Covering procedure yields a set of extended itemsets

of the form X,Y ⋆, that is, the + operator is not exploited
at all. In this subsection, we devise an algorithm to merge
two or more extended itemsets by exploiting the rewriting
rules M1−M6 reported in Figure 2 (c).

Example 4.10. With reference to our running example,
in Examples 4.5 and 4.7 we derived the regular itemsets
R1 = d{abc}⋆, R2 = bac? and R3 = bc. Consider R2 and
R3. Their common part is b. The semantics of R2 is that,
in addition to b, the item a is present and c may or may
not be present. The semantics of R3 is that, in addition to
b, the item c is present. The semantics of both R2 and R3

can be rephrased as follows: in addition to b, at least one of
a and c must be present. This is precisely the semantics of
b{ac}+ which, together with R1, covers [abcd] in Figure 1.

This example is an application of rule M3 in Figure 2 (c).
Rule M4 is the generalization of M3 to the case of extended
items of the form Y + (vs. items b). Rule M1 is self-
explicative, and rule M2 is its generalization to extended
items of the form Y +.

Algorithm 2 Merging

Input: a set of Rin of pairwise disjoint extended itemsets
Output: a set Rout of pairwise disjoint extended itemsets

equivalent to Rin, obtained by the merging rules M1-M6

R← Rin

Rout ← ∅
while R ≠ ∅ do

k ← max{|R ∩ I| | R ∈ R}
repeat

let R1, R2 ∈ R such that |R2 ∩ I| = k and |R1 ∩ I| ∈
[k − 1, k]
I ← R1 ∩R2

if R1 = I and R2 = I, a then //rule M1
R← I, a?

else if R1 = I and R2 = I, Y + then //M2
R← I, Y ⋆

else if R1 = I, b, a? and R2 = I, a then //M3
R← I, {a, b}+

else if R1 = I, Y +, a? and R2 = I, a then //M4
R← I, {a, Y }+

else if R1 = I, Y + and R2 = I, a, Y ⋆ then //M5
R← I, {a, Y }+

else if R1 = I, Y + and R2 = I, Z+, Y ⋆ then //M6
R← I, {Z, Y }+

end if
if any of the rules M1-M6 was applied then
R = R \ {R1, R2} ∪ {R}

end if
until for every R1, R2 no rule M1-M6 applies
K ← {R ∈ R | |R ∩ I| = k}
R ← R \ K
Rout ←Rout ∪ K

end while

Let us show next an example using rule M5.

Example 4.11. Consider the alternative cover of [abcd]
reported in Example 4.9. It consists of R′

1 = bc{ad}⋆, R′
2 =

bad?, R′
3 = d{ac}⋆ and R′

4 = db. We can apply rule M3
to R′

2 and R′
4 to obtain b{ad}+. This and R′

1 together have
the following semantics: in addition to b, if c is present then
any of a and d may be present or not; and if c is not present
then at least one of a and d must be present. This is precisely
the semantics of b{acd}+ which, together with R′

3 represent
another cover of size 2 for [abcd]. Rule M5 generalizes the
reasoning of this example.

Finally, rule M6 is the generalization of M5 to the case
of extended items of the form Z+ (vs. items a).

The rewriting rules M1 −M6 allow for merging two ex-
tended itemsets into a single one. The rewriting process ter-
minates as soon as no rule can be further applied. However,
such a process is inherently non-deterministic, in the sense
that the order with which rules are applied is left unspecified.
TheMerging Algorithm 2 implements a top-down rewriting
strategy, which is motivated by the following observation.
For an extended itemset R, let us denote by kR the number
of pure (not extended) items in R, namely kR = |R ∩ I|.
Let R1 R2

R3
be any rule from M1 −M6. We observe that

kR1 , kR3 ∈ [kR2−1, kR2 ]. For instance, for rule M1, it turns
out kR = kR,a? = kR,a − 1.



Let now k be the maximal kR for R belonging to the set of
extended itemsets R under rewriting. The Merging algo-
rithm proceeds top-down by considering first rules involving
R2 with kR2 = k. By the previous observation, the rationale
is to progressively reduce the number of pure items from
extended itemsets with large values of kR2 . Once no rule
M1 −M6 can be further applied to any R2 with kR2 = k,
the set K of residual extended itemsets with kR2 = k is re-
moved from R and added to the output. The loop continues
while R is not empty.

Example 4.12. Let C = abcd and a, b, c, and d be the
free sets in [C]. The Covering procedure returns the follow-
ing extended itemsets to be merged: a{bcd}⋆, b{cd}⋆, cd?, d.
First, a{bcd}⋆ and b{cd}⋆ are merged (rule M3) to R1 =
{ab}+{cd}⋆; and cd? and d are merged (rule M3) to R2 =
{cd}+. Then, R1 and R2 are merged (rule M6) to the final
answer {abcd}+. As the last example, assume now that ac,
ad, bc, and bd are the free sets in [C]. The Covering pro-
cedure returns: ac{bd}⋆, adb?, bcd?, bd. First, ac{bd}⋆ and
adb? are merged (rule M3) to R1 = a{cd}+b?; and bcd? and
bd are merged (rule M3) to R2 = b{cd}+. Then, R1 and R2

are merged (rule M3) to the final answer {ab}+{cd}+.

4.4 Mining through Covering
We are now in the position to devise a procedure for min-

ing a concise representation of frequent itemsets. Starting
from a frequent closed itemset and the free sets in its class
of θ-equivalence, by Lemma 4.4 we first derive a concise rep-
resentation of the frequent itemsets in the class in terms of
pairwise disjoint non-compositional itemsets. Next, by the
Covering and the Merging procedures we rewrite the non-
compositional itemsets into equivalent pairwise disjoint reg-
ular itemsets. The overall procedure, called RegularMine,
is reported as Algorithm 3.
There are three sources of non-determinism in the var-

ious components of the procedure. The first one is con-
cerned with the order by which the free itemsets X1, . . . , Xn

are considered in building the non-compositional itemsets
Ni = Xi, X

−
1 , . . . , X−

i−1C
⋆, for i = 1 . . . n. As shown in Ex-

amples 4.9 and 4.11, the (size of the) covering found may
depend on such an order. Intuitively, smaller free itemsets
should be arranged first, so that the initial Ni’s cover as
much as possible of the elements in [C]. For free sets of
the same size, a lexicographic ordering leads to simpler non-
compositional itemsets. This is due to the fact that Ni is at
once rewritten as Xi, (X1 \Xi)

−, . . . , (Xi−1 \Xi)
−(C \Xi)

⋆.
A total order considering first itemset size and then lexico-
graphic ordering was introduced in [8, 11]. It formalizes our
intuitions, and it is adopted in theRegularMine algorithm.

Definition 4.13. Let ≼ be a total order over items, and
let ≼l be the lexicographic ordering induced by ≼ over item-
sets. ≼ is extended to itemsets as follows: X ≼ Y iff
|X| < |Y | or, |X| = |Y | and X ≼l Y .

The second source of non-determinism is in the Covering
procedure, which contains two choices (see Algorithm 1): (1)
which R ∈ R to select; and (2) which Y − ∈ R to select. It
is readily checked that (1) does not affect the output, since
the splitting rules S1-S5 deal with each non-compositional
itemset in isolation. On the contrary, the choice (2) can
affect the (size of the) output.

Algorithm 3 RegularMine

Input: a transactional database D
Output: a set Rout of frequent regular itemsets that is a

concise representation of frequent itemsets

extract frequent closed itemsets CS from D
and, for each C ∈ CS, the free sets in [C]

Rout ← ∅
for every C ∈ CS do

let X1, . . . , Xn be the free sets in [C] ordered w.r.t. ≼
R = ∪i=1...nCovering(Xi,X

−
1 , . . . , X−

i−1, C
⋆)

Rout ←Rout ∪Merging(R)
end for

Example 4.14. Let C = abcd be a closed itemset and ab,
bc and cd be the (ordered) free sets in [C].

The non-compositional itemset for the third free set is R =
cd{ab}−{b}−{ab}⋆. By choosing Y − = {ab}−, we apply
first rule S5 to obtain cd{b}−b? and cda{b}−b?, which are
further rewritten by rule S4, to cd and cda. By choosing
Y − = {b}−, we apply rule S4 to obtain cda?. The latter
choice leads to a smaller cover of R.

Intuitively, rule S4 should be preferred, if possible, over
rule S5 – which rewrites a non-compositional itemset into
two ones. In the actual implementation of the Covering
procedure, we achieve that by choosing Y − ∈ R as one of
those with the smallest size.

The third source of non-determinism is in the Merging
algorithm, where a pair R1, R2 ∈ R of extended itemsets has
to be selected. Notice that, since the hypotheses of the rules
M1-M6 are mutually-exclusive, at most one of them applies
for a given pair; thus, the choice of the rule is deterministic
once the pair has been selected. The next example shows
that the choice of R1, R2 can affect the output.

Example 4.15. Let C = abcdefg be a closed itemset and
adf , aef , bdf , bef , cdf , cef , def and dfg be the free sets
in [C]. The Covering procedure returns the following ex-
tended itemsets: R1 = adf{bceg}⋆, R2 = aef{bcg}⋆, R3 =
bdf{ceg}⋆, R4 = bef{cg}⋆, R5 = cdf{eg}⋆, R6 = cefg?,
R7 = defg?, and R8 = dfg.

Assume that the Merging procedure applies rule M3 first
to R1 and R2, yielding R′

1 = af{de}+{bcg}⋆; and next to
R7 and R8, yielding R′

2 = df{eg}+. Let us follow from here
two possible computations of the Merging procedure that
yield different outputs. In the first computation, rule M3 is
applied to rewrite R5 and R6 to R′

3 = cf{de}+g?; then, to
rewrite R3 and R4 to R′

4 = bf{de}+{cg}⋆; then, to rewrite
R′

1 and R′
4 to R′

5 = f{ab}+{de}+{cg}⋆. Finally, rule M4
is able to rewrite R′

5 and R′
3 to R′

6 = f{abc}+{de}+g?. The
final result is then {R′

6, R
′
2}.

In the second computation, rule M5 is applied to rewrite
R′

2 and R5 to R′
7 = df{ceg}+; then, to rewrite R′

7 and R3

to R′
8 = df{bceg}+. Finally, rule M3 is used to rewrite

R4 and R6 to R′
9 = ef{bc}+g?. The final result is then

{R′
1, R

′
8, R

′
9}.

In the actual implementation of the Merging procedure,
the selection of a pair R1, R2 for which one of the rules M1,
M4, and M5 can be applied is preferred. The rationale is
that these rules tend to smoothly add one item at a time to
extended items of the form Y + or Y ⋆. Rules M2, M3 and
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Figure 3: Number of frequent, closed, free and regular itemsets.
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Figure 4: Number of regular itemsets extracted by
RegularMine for different orderings of free itemsets.

M6 instead, introduce new or merge existing extended items
of the form above, which could compromise further rewrit-
ings. Of course, this choice is an heuristics. Experimentally
it performs well, but there are cases, as in the previous ex-
ample, where it does not yield the smallest output.
Finally, notice that Algorithm 3 does not further specify

how to extract closed and free sets. To this purpose, we
can resort to a large body of algorithms for frequent closed
itemset mining. Most of them actually screen (and some
explicitly store, e.g., [22]) the frequent free sets associated
to a closed one as a sufficient condition for pruning the search
space. We refer the reader to [20] for a survey.

5. EXPERIMENTAL RESULTS
We have experimented the RegularMine procedure on

standard dense (pumsb, census, mushroom, chess) and sparse
(BMS-Webview 1, BMS-Webview 2, T10I4D100K, T10I8-
D100K) datasets obtained from the FIMI public repository
[10], or generated by the Quest synthetic data generator [1].
Figure 3 reports the number of frequent, free, closed and
regular itemsets at the variation of the minimum support
threshold (for mushroom and T10I8D100K, the plot of fre-
quent itemsets is well beyond the y-range, thus it is not
visible). Apart from the BMS-Webview 1 dataset, the size
of regular itemsets is very close to the size of closed itemsets.
For sparse datasets, this result is expected, since the number
of frequent, free and closed itemsets (and even of advanced
concise representations [12]) tend to coincide – apart from
very low minimum support, e.g., the plot of T10I4D100K
shows a relative support in the range of 0.004% - 0.02%.
For dense datases, this result supports our claim that regu-
lar itemsets, when compared to closed itemsets, are a good
trade-off between conciseness and interpretability.
Figure 4 shows, for the sample mushroom dataset, how the

ordering of free sets in the RegularMine procedure affects
the number of regular itemsets extracted. regular is the or-
dering of Definition 4.13; regular-inverse sorts free sets by
descending size, rather than ascending; and regular-random

is a random shuffle of the free sets. The rationale behind the
choice of the ≼ ordering is supported by its performances.
Let us consider now efficiency of RegularMine. When

compared to frequent closed itemset mining, the additional
tasks in the procedure consist of: (1) first collecting the free
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Figure 5: Execution times for mining closed, closed
& free, and regular itemsets.

sets associated to a closed one; and (2) then computing a
covering through the Covering and Merging procedures.
To understand the relative weight of these two tasks, we re-
port in Figure 5, for the sample pumsb dataset, the running
times for extracting closed itemsets, for extracting closed
and their associated free itemsets, and for the overall Reg-
ularMine procedure. Experiments were execute on a PC
with Intel Xeon 2.8Ghz and 3Gb RAM running Linux core
2.6.17. Our implementation of RegularMine is written in
standard C++, and it builts on the open source code of the
FP-growth algorithm by Borgelt [3]. Figure 5 highlights that
the overhead required by RegularMine over the extraction
of frequent closed itemsets is mainly due to the extraction
and storage of free itemsets.

6. RELATED WORK
In addition to the cornerstone concepts of closed and free

itemsets, other concise representations in the literature ex-
ploit identities (e.g., inclusion-exclusion [9]) and regularities
(e.g., disjunction rules X ⇒ a ∨ b) in order to prune from
a representation those itemsets whose support can be de-
rived from other ones in the representation. We mention
disjunction-free sets [5], non-derivable itemsets [6], closed
non-derivable itemsets [16], and, more recently, approaches
that maintain the disjunctive or the negative support of
itemsets [12, 13], or that refer to measures other than sup-
port [19]. While these proposals achieve a higher compact-
ness when compared to closed itemsets (actually, mainly for
dense datasets), they all share, and perhaps exacerbate, the
interpretability problem highlighted in the introduction for
closed itemsets. Among the large body of literature about
this subject, the investigation of a concise form for free item-
sets seems the closest work to ours. [8] introduced and [11]
systematized succint minimal generators. They observed
that free sets in a class of θ-equivalence can be partitioned
with respect to another equivalence relation, called the σ-
relation. Hence, only a representative of each σ-equivalence
class needs to be maintained. On a general level, we also
try and reduce the covering produced by Covering (start-
ing from a non-compositional itemset for each free set) by
merging extended itemsets through the + operator. On a
more concrete level, we rely on the total order ≼ of simpler-
to-complex itemsets that is introduced by [8] for defining the



σ-relation. However, there is no direct relation between suc-
cint minimal generators and regular itemsets. First, succint
minimal generators are not a concise representation, since
free sets alone are not. Second, to reconstruct the free sets
of a θ-equivalence class, one has to look at succint minimal
generators of that class and of other classes, so the meaning
of a succint minimal generator is not and-compositional.

7. CONCLUSIONS
The study of patterns that are easy to understand, to

manipulate and to reason about by data analysts, not nec-
essarily data mining experts, is of primary importance for a
general acceptance of the knowledge discovery methodology
in everyday working life. In this paper, we have introduced
an extension of itemsets, called regular itemsets, its clean
semantics and a procedure, called RegularMine, for min-
ing a concise representation of frequent itemsets. The main
idea consists of finding a covering of a θ-equivalence class in
terms of regular itemsets. Experiments support our claim
that regular itemsets are a good trade-off between concise-
ness and direct interpretability by a data analyst.
A few open directions include the application of regular

itemsets in non-redundant association rule mining [18, 21]
and in case studies to validate their actionability on the
field. From a computational side, our approach acts as a
post-processing phase starting from the closed itemset and
the free sets in a θ-equivalence class. As a future work, we
intend to study how the approach can be integrated directly
within the closed frequent itemset mining phase.
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