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Segregation discovery in a social network of companies?
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Abstract We introduce a framework for the data-driven analysis of social seg-
regation of minority groups, and challenge it on a complex scenario. The frame-
work builds on quantitative measures of segregation, called segregation indexes,
proposed in the social science literature. The segregation discovery problem is in-
troduced, which consists of searching sub-groups of population and minorities for
which a segregation index is above a minimum threshold. A search algorithm is de-
vised that solves the segregation problem by computing a multi-dimensional data
cube that can be explored by the analyst. The machinery underlying the search
algorithm relies on frequent itemset mining concepts and tools. The framework
is challenged on a cases study in the context of company networks. We analyse
segregation on the grounds of sex and age for directors in the boards of the Italian
companies. The network includes 2.15M companies and 3.63M directors.

Keywords Segregation discovery, segregation indexes, frequent itemset mining,
network of company board directors.

1 Introduction

The term social segregation refers to the “separation of socially defined groups” [39].
People are partitioned into two or more groups on the grounds of personal or
cultural traits that can foster discrimination, such as gender, age, ethnicity, income,
skin color, language, religion, political opinion, membership of a national minority,
etc. [54]. Contact, communication, or interaction among groups are limited by
their physical, working or socio-economic distance. Members of a group are often
observed to cluster together when dissecting the society into organizational units
(neighborhoods, schools, job types).

? A preliminary version of the results of this paper appeared in [5].
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Fig. 1: Racial spatial segregation in New York City, based on Census 2000 data [22].
One dot for each 500 residents. Red dots are Whites, blue dots are Blacks, green
dots are Asian, orange dots are Hispanic, and yellow dots are other races.

Early studies on residential segregation trace back to 1930’s [20]. In this con-
text, social groups are set apart in neighborhoods where they live in, in schools
they attend to, or in companies they work at. As sharply pointed out in Figure 1,
racial segregation (a.k.a. residential segregation on the grounds of race) very often
emerges in most cities characterized by ethnic diversity. Schelling’s segregation
model [14, 57] shows that there is a natural tendency to spatial segregation, as a
collective phenomenon, even if each individual is relatively tolerant – in his fa-
mous abstract simulation model, Nobel laureate Schelling assumed that a person
changes residence only if less than 30% of the neighbors are of his/her own race.

Recently, [41] argued that segregation is shifting from ancient forms on the
grounds of racial, ethnic and gender traits to modern socio-economic and cultural
segregation on the basis of income, job position, and political-religious opinions.
An earlier comparison of ideological segregation of the American electorate online
and offline is offered in [27]. The paper found that segregation in news consumption
is higher online than offline, but significantly lower than the segregation of face-
to-face interactions with neighbors, co-workers, or family members. More recently,
it has been warned that the filter bubble generated by personalization of online
social networks may foster segregation [23], opinion polarization [38], and lack of
consensus between different social groups. People are only reinforced in what they
already believe and lack exposure to alternative viewpoints and information [4,48].
Polarization in social media may also lead to unfriending peers who expressed
different opinions [29]. Consequently, online social network users are sometimes
led to self-censorship acts [17] for fear of public opinion on personal thoughts.

The problem of assessing the presence, extent, nature, and trends of social
segregation has been investigated so far by hypothesis testing. Hypothesis formu-
lation, however, can be non-trivial and biased. In this paper, we will consider the
social segregation problem from a data analysis perspective. We present theory,
tools, and examples based on data mining and network science, for data-driven seg-

regation discovery. We assume in input a dataset which records the characteristics
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of a population of individuals, including minority groups, distributed over a num-
ber of organizational units. The approach searches for sub-populations and social
groups where a-priori unknown segregation is quantitatively prominent. Segrega-
tion is measured through evenness and exposure segregation indexes well-known
in the social science literature. The approach allows for a deeper understanding of
segregation phenomena through the design of analytical processes that proactively
support policy makers and control authorities in discovering and in anticipating
potential segregation problems. We demonstrate the applicability of the proposed
methodology in a complex scenario, reflecting the risks of modern segregation in oc-
cupational social networks. The scenario considers glass-ceiling barriers for women
in accessing boards of company directors. We challenge the proposed framework
on the analysis of the real and large network of Italian companies.

The rest of the paper is organized as follows. Section 2 introduces segregation
indexes. Section 3 defines the segregation discovery problem, and devises an algo-
rithmic solution which provides the analyst with a multi-dimensional data cube
for exploratory analysis. Section 4 deals with the case study of occupational seg-
regation in networks of companies. Section 5 discusses related work. Finally, we
summarize paper contribution and open problems for future work.

2 Segregation indexes

A segregation index provides a quantitative measure of the degree of segregation of
social groups (e.g., Blacks, Whites, Hispanics, etc.) distributed among units of so-
cial organization (e.g., schools, neighborhoods, jobs, etc.). In this paper, we restrict
to consider binary indexes, which assume a partitioning of the population into two
groups, say majority and minority (but could be men/women, native/immigrant,
White/NonWhite, etc.). Several indexes have been proposed in the literature. The
surveys [21,34] represent the earliest attempts to categorize them. Afterward, [40]
provided a shared classification with reference to five key dimensions: evenness, ex-
posure, concentration, centralization, and clustering. In this paper, we will consider
evenness and exposure indexes. The other three classes of indexes are specifically
concerned with spatial notions of segregation. Concentration indexes measure the
relative amount of physical space occupied by social groups in an urban area. Cen-
tralization indexes measure the degree to which a group is spatially located near
the center of an urban area. Clustering indexes measure the degree to which group
members live disproportionately in contiguous areas.

Let T be size of the total population, 0 < M < T be the size of the minority
group, and P = M/T be the overall fraction of the minority group. Assume that
there are n organizational units (or simply, units), and that for i ∈ [1, n], ti is the
size of the population in unit i, mi is the size of the minority group in unit i, and
pi = mi/ti is the fraction of the minority population in unit i.

2.1 Evenness indexes

Evenness indexes measure the difference in the distributions of social groups among
organizational units. The indexes mostly used in the social science literature in-
clude dissimilarity, information index, and Gini. The dissimilarity index D is the
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weighted mean absolute deviation of every unit’s minority proportion from the
global minority proportion:

D =
1

2 · P · (1− P )

n∑
i=1

ti
T
· |pi − P |

The normalization factor 2 · P · (1 − P ) is to obtain an index in the range [0, 1].
Since D measures dispersion of minorities over the units, higher values of the index
mean higher segregation. Dissimilarity is minimum when for all i ∈ [1, n], pi = P ,
namely the distribution of the minority group is uniform over units. It is maximum
when for all i ∈ [1, n], either pi = 1 or pi = 0, namely every unit includes members
of only one group (complete segregation).

Example 1 With basic algebra, it is readily checked that an equivalent definition
of dissimilarity is:

D =
1

2

n∑
i=1

∣∣∣mi

M
− ti −mi

T −M

∣∣∣
D measures how different are the distributions of percentages of total minorities
and of total majorities in the units. When n = 2, the formula boils down to:

D =
∣∣∣m1

M
− t1 −m1

T −M

∣∣∣ (1)

The second widely adopted index is the information index, also known as the
Theil index in social sciences [44] and normalized mutual information in machine
learning [42]. Let the population entropy be E = −P · logP − (1− P ) · log (1− P ),
and the entropy of unit i be Ei = −pi · log pi−(1−pi) · log (1− pi). The information
index is the weighted mean fractional deviation of every unit’s entropy from the
population entropy:

H =
n∑
i=1

ti
T
· (E − Ei)

E

Information index ranges in [0, 1]. Since it denotes a relative reduction in uncer-
tainty in the distribution of groups after considering units, higher values mean
higher segregation of groups over the units. Information index reaches the min-
imum when all the units respect the global entropy (full integration), and the
maximum when every unit contains only one group (complete segregation).

The third evenness measure is the Gini index, defined as the mean absolute
difference between minority proportions weighted across all pairs of units, and
normalized to the maximum weighted mean difference. In formula:

G =
1

2 · T 2 · P · (1− P )
·
n∑
i=1

n∑
j=1

ti · tj · |pi − pj | (2)

Here
∑n
i=1

∑n
j=1 ti · tj · |pi − pj | is the weighted mean absolute difference. The

normalization factor is obtained by maximizing such a value. The definition of
the Gini index stems from econometrics, where it is used as a measure of the
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inequality of income distribution [26].1 In our context, it measures the inequality
of the majority group distribution among units. The Gini index ranges in [0, 1] with
higher values denoting higher segregation. The maximum and minimum values are
reached in the same cases of the dissimilarity index.

An equivalent formulation of the Gini index (see [21, 59]) can be stated under
the assumption that p1, . . . , pn are in descending order:

G =
1

M · (T −M)
·
n∑
i=1

(Xi−1 · Yi −Xi · Yi−1) (3)

where, for i ∈ [1, n]:

Xi =
i∑

j=1

mi Yi =
i∑

j=1

(ti −mi)

the Xi’s (resp., Yi’s) are the cumulative sums of minority (resp., majority) pop-
ulation in units 1, . . . , i. Formulation (3) easily derives from the geometric inter-
pretation of the Gini index (see footnote 1). From a computational perspective, it
allows for computing G in O(n · log n), whilst formula (2) requires O(n2). This will
be particularly relevant in our case study, where the number n of units will be in
the order of millions.

2.2 Exposure indexes

Exposure indexes measure the degree of potential contact, or possibility of interac-
tion, between members of social groups. The most used measure of exposure is the
isolation index [9], defined as the likelihood that a member of the minority group
is exposed to another member of the same group in a unit. For a unit i, this can
be estimated as the product of the likelihood that a member of the minority group
is in the unit (mi/M) by the likelihood that she is exposed to another minority
member in the unit (mi/ti, or pi) – assuming that the two events are independent.
In formula:

I =
1

M
·
n∑
i=1

mi · pi

The right hand-side formula can be read as the minority-weighted average of
minority proportions in units. The isolation index ranges over [P, 1], with higher
values denoting higher segregation. The minimum value is reached when for i ∈
[1, n], pi = P , namely the distribution of the minority group is uniform over the
units. The maximum value is reached when there is only one k ∈ [1, n] such that

1 The geometric interpretation of the Gini index is provided in the space [0, 1] × [0, 1].
The Lorenz curve plots the cumulative fraction of minority against the cumulative fraction of
majority. Formally, assume that p1, . . . , pn are in descending order. The Lorenz curve f() is

the piece-wise linear function such that f(0) = 0, f(1) = 1, and, for i ∈ [1, n], f(X̂i) = Ŷi

where X̂i is the cumulative fraction of the minority group up to unit i, and Ŷi is the cumulative
fraction of the majority group up to unit i. The diagonal represents the perfect equality of
distribution of majority vs minority population. The Gini index is twice the area between the
Lorenz curve and the diagonal. See [21,59] for details.
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mk = tk = M , namely there is a unit containing all minority members and no
majority member.

A dual measure is the interaction index, which is the likelihood that a member
of the minority group is exposed to a member of the majority group in a unit. By
reasoning as above, this leads to the formula:

Int =
1

M
·
n∑
i=1

mi · (1− pi)

It clearly holds that I + Int = 1. Hence, lower values denote higher segregation.
A more general definition of interaction index occurs when more than two groups
are considered in the analysis, so that the exposure of the minority group to one
of the other groups is worth to be considered [40].

2.3 Some properties of segregation indexes

There is a long standing debate in social sciences about which mathematical prop-
erties segregation indexes are expected to have. For instance, [32] lists seven gen-
eral properties that indexes measuring occupational segregation should have for
allowing comparison over longitudinal studies. Despite pros and cons of adopt-
ing a specific index, strong correlation among evenness indexes (D, H, and G) has
been observed in practice by empirical analyses [40]. The following are some useful
mathematical properties and differences among the evenness and exposure indexes
introduced earlier.

(P1) All indexes are insensitive to units i with ti = 0, i.e., by adding such “empty”
units the value of an index does not change.

(P2) I and Int are insensitive to units i with mi = 0, whilst D, H, and G are
not. By adding units with only majority members, the likelihood of interaction
among minority members does not change. The distributions of populations
over units, instead, do change.

(P3) D, H and G are symmetric, i.e., by inverting the minority and majority
groups the index remains unchanged, whilst I and Int are not. Intuitively,
distance between minority and majority distributions is a symmetric concept,
whilst likelihood of contact depends on the groups being considered.

(P4) I is anti-monotonic w.r.t. the addition of a majority member, i.e., by adding
one majority member to a unit the value of I decrease. Moreover, Int is mono-
tonic, and D, H, and G are neither monotonic nor anti-monotonic.

(P5) D, H and G are subject to the Simpson’s paradox. E.g., for the dissimilarity
index, there may exist datasets X and Y such that:

DX∪Y > DX and DX∪ Y > DY

where DX , DY and DX∪Y are the dissimilarity indexes for datasets X, Y and
X ∪ Y respectively.

Let us explain the last two properties in detail. The following example shows
what stated in (P4) for the dissimilarity index.
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Example 2 Assume n = 2, with m1 = m2 = 1, t1 = 2, and t2 = 4. We have M = 2,
T = 6. Using (1), it turns out D = 1/2− 1/4 = 0.25.

Consider adding one majority member to unit 1 (the most segregated because
p1 = 0.5, p2 = 0.25 and P = 0.33). We have T = 7 then D = 1/2−2/5 = 0.1. Thus,
the dissimilarity index has decreased. Consider now instead adding the majority
member to unit 2 (the most integrated). Again, we have T = 7. But now D =
1/2− 1/5 = 0.3. The dissimilarity index has now increased.

Simpson’s paradox is a well-known case in presence of ratios and differences
of distributions, in which a trend appears in different groups of data but disap-
pears or reverses when these groups are combined [49]. In our context, this occurs
when segregation appears in combined dataset X∪ Y , but disappear when looking
separately at X and Y , or vice-versa.

Example 3 Assume two university departments (n = 2). Faculty (X) and admin-
istrative staff (Y) are employed in each department. Assume the numbers on the
left hand side of the following table:

m1 t1 m2 t2 M T D H G

X 99 100 1 2 100 102 0.490 0.2903 0.490
Y 1 10 9 100 10 110 0.010 0.0002 0.010

X ∪ Y 100 110 10 102 110 212 0.811 0.8354 0.811

Using formula (1), DX∪Y = 100/110− 10/102 = 0.811, i.e., segregation at univer-
sity level appears to be high. However, when considering separately faculty and
administrative staff, we have DX = 99/100−1/2 = 0.49 and DY = 1/10−9/100 =
0.01, i.e., segregation is much lower in both sub-groups. Similar conclusions can
be drawn for H and G, as shown in the right hand side of the table above.

The previous example is a contrived one. Actually, the reversed effect (segrega-
tion in combined dataset X ∪ Y lower than in X and Y separately) is more likely
to be observed, as we will show later on.

2.4 An extension of segregation indexes

So far, we assumed that individuals are partitioned among the units of analysis.
Each individual belongs to one and only one unit. The size of the overall popu-
lation is then the sum of the population in each unit, and similarly for the size
of the minority population. This assumption readily holds in cases of residential
segregation. The case study that we will present later on, however, breaks such an
assumption, since individuals (company directors) may belong to more than one
unit (group of companies). This situation resembles the case of segregation analy-
sis in e.g., sports club where players may be associated with more than one team
at a time [25,37] or in movie productions, where actors may play in movies of more
than one producer [58]. We conservatively extend then the previously introduced
definitions of segregation indexes by considering every instance of an individual in
an unit as a distinct one. In practice, this turns out to revise the definition of T
and M as follows:

T =
n∑
i=1

ti M =
n∑
i=1

mi
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namely, the size of the total population is by definition the sum of the sizes of the
unit populations, and similarly for the minority population.

3 Segregation discovery

Traditional data analysis approaches from social sciences typically rely on formu-
lating an hypothesis, i.e., a possible context of segregation against a certain social
group, and then in empirically testing such an hypothesis – see, e.g., [45]. For
instance, a suspect case of segregation of female students in high schools from
NYC is studied first by collecting data on gender of high school students in NYC
(reference population), and then by computing and analysing segregation indexes
over female students (minority group). The formulation of the hypothesis, how-
ever, is not straightforward, and it is potentially biased by the expectations of the
data analyst of finding segregation in a certain context. In this process, one may
overlook cases where segregation is present but undetected.

Example 4 By property (P4), segregation can result undetected when the analyst
targets an actually segregated minority but considering a reference population
that is too small/large. Similarly, by property (P5), segregation is undetected if
analysed at a wrong granularity level, as shown in Example 3. However, an analyst
does not typically know a-priori which granularity is the most appropriate one.

We propose a data-driven approach, which complements hypothesis testing, by
driving the search (the “discovery”) of contexts and social groups where a-priori

unknown segregation factors are quantitatively prominent. Recall the previous
example on school segregation. The analyst has to collect data on gender and
other possible segregation attributes such as age and race of students, and on
location, school type, annual fees and other context attributes that may distin-
guish conditions of segregation. Although no segregation may be apparent in the
overall data, it may turn out that for a specific combination of context attributes
(e.g., high schools located in a particular area), a specific minority group denoted
by a combination of segregation attributes (e.g., black female students) is at risk
of segregation. We quantify such a risk through a reference segregation index, and
assume that a value of the index above a given threshold denotes a situation worth
for further scrutiny – what legal scholars call a prima-facie evidence. We call the
problem of discovering a-priori unknown minority groups and reference popula-
tions for which segregation indexes are above a given threshold, the segregation
discovery problem.

3.1 Notation and itemset mining

Let us recall notation and concepts from itemset mining [30], which will serve to
define the search space of segregation discovery. Let R be a relational table (or,
simply, a table or a dataset). Tuples σ in the table will denote individuals, and
attribute values will denote information about individuals and organizational units
they belong to. We assume that every attribute A has a discrete domain dom(A) of
values. Continuous attributes can be considered after discretization into bins. We
denote by σ(A) the value of the tuple σ on attribute A, as in e.g., σ(sex) =female.
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An A-item is a term A = v, where v ∈ dom(A). An itemset X is a set of
items. As usual in the literature, we write X,Y for X ∪ Y. A tuple σ from R
supports X if for every A = v in X, we have v ∈ σ(A). The cover of X is the
set of all tuples that support X: coverR(X) = {σ ∈ R | σ supports X}. We omit
the subscript R if it is clear from the context. Intuitively, covers will denote sets
of individuals sharing the characteristics stated by the itemset. The (absolute)
support of X is the size of its cover, namely supp(X) = |cover(X)|. X is a frequent

itemset if supp(X) ≥ minsupp, where minsupp is a given threshold. X is closed if
there is no Y ⊃ X with cover(Y) = cover(X) or, equivalently, with supp(Y) =
supp(X). A closed itemset is a representative member of the class of equivalence
of itemsets with a same cover [6]. Thus, the groups of individuals denoted by the
cover of closed itemsets are non-overlapping, i.e., restricting to closed itemsets
means pruning duplicate groups from the space of all covers of itemsets.

Example 5 Consider the dataset in Figure 2 (left). The cover of the itemset sex=fe-
male, age=young is the set of young women in the dataset, which consists of only
one tuple. Its support is then 1. The itemset is not closed, since the superset
sex=female, age=young, region=north has the same cover/support.

3.2 The segregation discovery problem

We introduce here the segregation discovery problem. Let R be an input relational
table. We assume that attributes are partitioned into three groups. First, segre-

gation attributes (SA), such as sex, age, and race, which denote minority groups
potentially exposed to segregation. Second, context attributes (CA), such as region

and job type, which denote contexts where segregation may appear. Third, an
attribute unitID, which is an ID of the unit the tuple/individual belongs to. We
write A,B to denote an itemset where A includes only SA-items, and B includes
only CA-items. We call A an SA-itemset, and B a CA-itemset.

Example 6 (Ctd.) For the itemset sex=female, age=young, region=north, it turns
out A =sex=female, age=young and B =region=north. In this example, the mi-
nority group is the set of young women, and the majority population is all the rest,
i.e., men or middle aged or elder. This is one specific pair of population and minor-
ity group. Other pairs could be considered in the segregation analysis. Actually,
one would like to consider all possible such pairs.

We are now in the position to extend the notation of segregation indexes to
itemsets A,B where the reference population is the cover of B, and the refer-
ence minority group is the cover of A,B. Recall that 0 < M < T is assumed by
segregation index definitions.

Definition 1 Let s() be a segregation index. For an itemset A,B such that 0 <

supp(A,B) < supp(B), we denote by s(A,B) the segregation index calculated for
the population in cover(B) considering as minority population those in cover(A,B).

For instance, D(A,B) is the dissimilarity index for minority A and population
B. Notice that supp(A,B) < supp(B) implies that A cannot be the empty itemset.
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Example 7 (Ctd.) D(sex=female, age=young, region=north) is then the dissimi-
larity index of segregation of young women among the units in north region.
With reference to the dataset in Figure 2 (left), we have T = 10 (the support of
region=north) andM = 1 (the support of sex=female, age=young, region=north).
Populations in the units amount at t1 = 2, t2 = 3, t3 = 2, t4 = 3, t5 = 0. Minority
distribution in the units is m1 = m3 = m4 = m5 = 0 and m2 = 1. By definition
of dissimilarity, D(sex=female, age=young, region=north) = 102/(2 · 9) · (2/10 ·
1/10 + 3/10 · (1/3− 1/10) + 2/10 · 1/10 + 3/10 · 1/10) = 7/9 ≈ 0.78.

Notice that all parameters needed to compute D can be defined using the
itemset notation. In particular, T = supp(B), M = supp(A,B), and, for a unit i:
ti = supp(B, unit=i), and mi = supp(A,B, unit=i).

Let us introduce now the problem of segregation discovery.

Definition 2 Let s() be a segregation index, and α a fixed threshold.
Let A,B be an itemset such that 0 < supp(A,B) < supp(B).
We say that A,B is α-integrative w.r.t. s() if s(A,B) ≤ α. Otherwise, A,B is

α-segregative. The problem of segregation discovery consists of computing the set
of α-segregative itemsets.

Intuitively, we are interested in searching the space of itemsets for A,B de-
noting a minority sub-group (A) and a context (B) where the segregation index
s(A,B) is above the α threshold. Notice that we assume that higher values of s()
denote higher segregation, which is the case for all introduced indexes except for
Int . For such an index, the bound in Definition 2 becomes s(A,B) ≥ α.

3.3 A data cube for exploratory analysis of segregation

The problem of segregation discovery can be readily formulated as the one of com-
puting iceberg multi-dimensional data cubes [31]. Let A1, . . . , Ak be the collection
of segregation and context attributes. They can be considered dimensions of a
multi-dimensional array. The ith dimension is named as the attribute Ai, and it
takes values in dom(Ai) ∪ {?}. The coordinate v ∈ dom(Ai) denotes the itemset
Ai = v. The coordinate ? denotes the empty itemset (absence of an Ai-item). A
multi-dimensional data cube is an array mapping dimension coordinates to values
of a measure, which, in our case, is a segregation index s():

d[A1 = v1, . . . , Ak = vk] = s(∪ki=1{Ai = vi | vi 6= ?})

With a little abuse of notation, we write items instead of coordinate values in the
index positions of the array d[]. For an itemset A,B whose support is non-zero and
is lower than the support of B, if d[A,B] = s(A,B) > α then A,B is α-segregative.
The subset of cells in a data cube whose value is higher than a minimum threshold
is called an iceberg data cube. Thus, the problem of segregation discovery is equiv-
alent to computing the iceberg data cube of d[]. However, since the number of cells
in a data cube grows exponentially with the number of dimensions, a practical
additional requirement is to impose also a minimum support threshold. Thus, we
aim at computing s(A,B) only if A,B is frequent, namely supp(A,B) ≥ minsupp.
Finally, we also aim at considering itemsets A,B that denote no duplicate pair
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SA CA
sex age region unitID

male young north 1
male young north 1
male middle south 2
male middle north 2

female middle north 2
female young north 2
male middle north 3

female middle north 3
male elder south 3
male middle south 3

female elder south 4
female elder south 4
female middle south 4
male elder north 4
male young north 4
male elder north 4
male middle south 5
male young south 5

female middle south 5

young middle

age (SA)

elder ∗

re
g
io
n
(C

A
)

female

sex (SA) male

∗

∗

north

south

0.78 0.63 - 0.71

0.71 0.63 0.88 0.71

0.50 0.83 - -

- 0.43 0.86 0.75

0.75 0.50 0.88 0.75

- 0.35 0.67 -

0.83 0.22 0.76 0.30

0.62 0.57 0.56 0.30

0.46 0.59 0.66 -

Fig. 2: Input table (left) and segregation data cube with the D index (right).

of reference population cover(B) and of minority group cover(A,B). Distinct ref-
erence populations can be considered by enumerating B’s that are frequent and
closed (in R). For a fixed B, then the distinct minority groups can be achieved by
enumerating A’s that are frequent and closed in the dataset cover(B).

Example 8 Reconsider Ex. 5. The itemsets A1,B1 = sex=female, age=young and
A2,B2 = sex=female, age=young, region=north have the same cover, i.e., they
denote the same minority population. However, the former considers as reference
population the whole dataset (B1 is empty), while the latter considers people from
the north region (B2 is region=north). By property (P4) stated in Sect. 2.3, the
dissimilarity index of A1,B1 can be lower, equal or higher than the one of A2,B2.
In Ex. 7, we have seen that D(A2,B2) ≈ 0.78. By doing the calculations, it turns
out that D(A1,B1) ≈ 0.83.

We introduce next the definition of segregation data cube.

Definition 3 Let s() be a segregation index, and minsupp > 0 a fixed threshold.
A segregation data cube is a multi-dimensional data cube such that:

d[A,B] =


s(A,B) if minsupp ≤ supp(A,B) < supp(B) and

B is closed and A is closed in cover(B)
“− ” otherwise

Recalling that M = supp(A,B) and T = supp(B), we have that the value of
d[A,B] is undefined, which is written as “-”, if:

– the minority group under analysis is smaller than a minimum threshold (M <

minsupp);
– or, there is no majority member (M = T );
– or, the reference population is analysed in another cell (B is not closed);
– or, the the minority group within the reference population is analysed in an-

other cell (A is not closed w.r.t. the dataset cover(B)).
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Algorithm 1: Segregation data cube computation.

Input: relational table R with context attributes (CA), segregation attributes (SA),
and unit attribute unitID with a total of n units. minsupp threshold.

Output: segregation data cube d[].
1 foreach B CA-itemset frequent and closed do
2 T = supp(B)
3 foreach i ∈ [1, n] do
4 ti = supp(B, unit=i)
5 end
6 foreach A SA-itemset frequent and closed w.r.t. cover(B) do
7 M = supp(A,B)
8 if M < T then
9 foreach i ∈ [1, n] with ti > 0 do

10 mi = supp(A,B, unit=i)
11 end
12 X = Y = 0
13 sum = 0
14 foreach i ∈ [1, n] with ti > 0 order by mi/ti desc do
15 X += mi

16 Y += ti - mi

17 sum += fs(mi, ti, X, Y, M, T)

18 end
19 d[A,B] = gs(sum, M, T)

20 end

21 end

22 end

Example 9 Figure 2 (right) shows the segregation data cube d[] for the input
dataset at its left. minsupp is set to 1, and dissimilarity is set as segregation index.
Several facts are worth to be pointed out:

– dissimilarity is symmetric (P3). In fact, for X ∈ dom(region) ∪ {?}, we have
d[sex=female, age=?, region=X] = d[sex=male, age=?, region=X];

– dissimilarity is neither monotonic nor anti-monotonic (P4). In Ex. 8, we showed
d[sex=female, age=young] > d[sex=female, age=young, region=north]. From
the data cube, we can also see that d[sex=female, age=elder] < d[sex=female,
age=elder, region=south].

– the Simpson’s paradox holds, in a reversed form than (P5), namely dissimi-
larity of combined context X ∪ Y is lower than dissimilarities in X and Y . For
instance, dissimilarity for females in general (0.30) is lower than in the north
region (0.71) and in the south region (0.75) separately. Why does it happen?
The proportion of females in general (P = 6/19) is close to the proportions
of females in the north (Pn = 3/10) and in the south (Ps = 3/9) regions. So,
it is the proportion of female in units that must be severely affected. In fact,
consider unit 2. The proportion of females in general is 2/4 = 0.50, which is
distant from P only 0.17. The proportion in the north is 2/3, which is distant
from Pn ≈ 0.36, and in the south it is 0/1, which is distant from Ps ≈ 0.33.

3.4 Computing segregation data cubes

Algorithm 1 provides a solution to the problem of computing a segregation data
cube. The input is a relation R with context and segregation attributes, and a
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Index fs(mi, ti, X, Y,M, T ) gs(sum,M, T )

Dissimilarity (D) ti · |mi
ti
− M

T
| T ·sum

2·M·(T−M)

Gini (G) (X −mi) · Y −X · (Y − ti + mi)
sum

M·(T−M)

Information index (H) ti · E(mi
ti

) 1− sum

T ·E(M
T

)

Isolation (I) mi · mi
ti

sum
M

Interaction (Int) mi ·
(

1− mi
ti

)
sum
M

Table 1: Function fs() and gs(). Here, E(p) = −p · log p− (1− p) · log (1− p).

unit attribute, with n units. The output is the segregation data cube for a fixed
segregation index s().

Basically, the outer loop is over the set of frequent closed CA-itemsets B.
Enumeration of this set can be achieved through state of the art algorithms for
closed itemset mining [30]. Our implementation adopts the system provided in [11].

For a given B, we first compute the size of the reference population (line 2), and
the size of unit populations t1, . . . , tn (lines 3–5). Support counting is performed by
the function supp() (lines 2,4). A possible way of implementing supp() is through
the construction of an FP-tree, a compressed representation of a dataset used for
frequent itemset mining [30]. Our implementation, instead, relies on storing all
CA and SA attributes of R in memory as compressed bitmaps, and the unitID

attribute as an array that maps a tuple position into the unit ID of that tuple. We
adopt the Enhanced WAH compression library [35], which relies on word-alignment
to provide a good trade-off between space occupation and running time. cover(B)
is explicitly computed by efficient bitmap and’s operations. Values t1, . . . , tn are
computed by iterating over such cover and incrementing counters based on the
unit ID of the tuples in the cover. This approach is more efficient than iterating
over units (line 3), when n� supp(B).

The inner loop iterates over SA-itemsets A that are frequent and closed w.r.t. the
reference population, namely cover(B). Again, enumeration of these itemsets can
be achieved through closed itemset mining. However, since the number of SA-
attributes is typically small (due to the difficulty of collecting sensitive data), our
implementation adopts a simpler approach. We compute and store all frequent
SA-itemsets C in memory. For a given B, we first compute the support of itemsets
in C w.r.t. cover(B). Obviously, itemsets that are not frequent in the whole dataset
cannot be frequent in a subset of it. Then, we order itemsets in C lexicographically
based on support and number of items. Finally, we filter out those infrequent (sup-
port lower than minsupp) and non-closed (support equal to an itemset including
one additional item).

In the inner loop, we first check that M < T (line 8) to meet the assumptions
of segregation indexes. Then, we proceed with computing mi’s only for those units
which are non-empty, i.e., such that ti > 0. This optimization is possible by prop-
erty (P1). Next, we accumulate the results of a function fs() over each non-empty
unit, and finally pass it to the normalization function gs(). The intermediate func-
tions fs and gs depend on the segregation index s() under consideration. Table 1
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shows their definitions for the indexed introduced in Section 2. The formulation (3)
of the Gini index requires sorting units based on descending proportion of minority
(line 14), and to compute cumulative sums of minority and majority population
in units (lines 15,16). These computations are not strictly necessary for the other
indexes. Finally, in the case of indexes I and Int , property (P2) can be exploited
to speed up the loop at line 14 by restricting to non-zero mi’s.

3.5 Computational complexity

Let us discuss here the computational complexity of Algorithm 1.
We start with time complexity. An upper bound to the number of outer and

inner iterations is given by the number of frequent itemsets A,B. In the worst
case, this is O(π), where π =

∏
A |dom(A)|, with A ranging over context and

segregation attributes. The loops calculating ti’s and mi’s (lines 3–5 and 9–11)
require at most k − 1 bitmap and’s operations, where k is the total number of
context and segregation attributes, and a scan of the unitID attribute. This is
in the worst case O(k · |R|). Finally, the loop at lines 14–18 requires O(n · log n)
for sorting and O(n) for computing an index – in fact, all calculations in Table 1
require constant time. In summary, the worst-case time complexity of Algorithm 1
is O(π ·(k · |R|+n · log n)), namely it is linear in the size of the relation R and in the
number of units, but exponential in the number of attributes of the relation. Since
π is an upper bound to the number of itemsets to iterate over, the performances of
the algorithm will be inversely proportional to the the minimum support threshold.
We will present actual performances on a large dataset in Sect. 4.

Consider now space complexity. Let δ =
∑
A |dom(A)| be the sum of the sizes

of domains of context and segregation attributes. Space complexity is Θ(δ · |R|).
Recall, however, that the dataset is stored in memory using (compressed) bitmaps.

Finally, one could consider whether Apriori-like optimizations could be used
to directly compute the iceberg segregation data cube (without first computing
the whole segregation data cube), namely only the cells with segregation index
higher than a given threshold α. Unfortunately, this is not possible due to proper-
ties (P4) and reversed (P5): D(A,B) is not necessarily greater than or equal to
D(A, (B, B1)), where B1 is an item not in B.

3.6 Multi-valued attributes

In our case study, we will make use of multi-valued attributes in the input relation
R. Normally, a tuple σ maps an attribute A to a single value σ(A) in its domain,
i.e., σ(A) ∈ dom(A). For multi-valued attributes, we admit instead σ(A) ⊆ dom(A),
as in e.g., σ(owns) = {house, car}. The frequent itemset mining framework allows
for a smooth generalization of our approach to include multi-valued attributes.
In fact, the input dataset R can be seen as a transaction database obtained by
mapping a tuple σ in R into a transaction:

{A1 = σ(A1), . . . , Ak = σ(Ak), unitID = σ(unitID)}

where A1, . . . , Ak are the context and segregation attributes in R. For a multi-
valued attribute Ai, the mapping Ai = σ(Ai) will become ∪v∈σ(Ai){Ai = v}.
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Example 10 A tuple σ such that σ(owns) = {house, car} is mapped to a transaction
including:

{owns = house, owns = car}

Since our segregation framework builds on the notion of support, which readily
applies to the mapped transaction database, it smoothly extends to multi-valued
attributes. In particular, the coordinates of a segregation data cube may now in-
clude multiple items over a same attributes, e.g., as in d[sex = female, owns=house,
owns=car].

4 Case Study

In this section, we challenge the framework for segregation discovery in a complex
scenario with a real and large dataset. Our case study targets segregation of mi-
nority groups (youngsters, seniors, females) in the boards of companies. The social
segregation question we intend to study is: which minority groups are segregated in

the boards of companies and for which type of companies? A possible answer may
lead to the discovery that, e.g., for IT companies, females in a certain age-range
appears frequently together in boards and rarely with members of the majority
group (men or individuals in other age-ranges).

The case study is challenging in several respects. First, gender segregation in
the labour market is a socially relevant problem, with several causes, implications,
and policy issues. Case studies, such as [10], have highlighted gender employment
segregation in many contexts (university professors, doctors, financial professional,
IT technicians, cleaners, retail sector workers, police). Data analysis, however, has
been typically conducted at national level, without (the possibility of) drilling-
down the investigation in specific sub-sectors. Our explorative approach will allow
for achieving this. Second, the data under analysis will consists of a network of
relationships (between companies) with no a-priori defined notion of organiza-
tional unit. Thus, we will face the problem of how to cluster companies, and their
directors, into units for the calculation of segregation indexes.

In the following, we first introduce the notion of social network of companies,
then we report basic facts on the case study of the network of Italian companies,
and finally challenge the segregation discovery framework on such a case study.

4.1 Social networks of companies

A director is a person appointed to serve on the board of a company. The board

of directors (BoD) is a body of elected or appointed members who jointly oversee
the activities of the company. The presence of a director is the number of BoDs
the director belongs to. If presence is two or higher, the director is called an
interlocking director [43, 53]. As an example, the board of a controlled company
typically includes directors from the board of the controlling company. Top level
managers can be appointed in the board of a company as a means to consolidate
partnership with other companies, or to share their expertise and vision. Other
reasons for multiple presence include political influence, friendship, kinship, and
so on. The presence of a same director in the boards of two companies can then
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Fig. 3: Director distributions: by gender/age (left), by residence province (right).

be considered a signal of relationships (business, personal, or other) between the
two companies [8]. Under this “social tie” assumption, we model a social network
of companies by linking those companies that share at least one director.

Formally, let N = {1, . . . , N} be a set of company IDs, and for i ∈ N , let
BoD(i) ⊆ D be the board of directors of company i, whereD = {1, . . . , D} is the set
of directors IDs. A social network of companies is a weighted undirected graph
G = 〈N , E〉 where a weighted edge (i, j, wij) is in E ⊆ N × N × N+ iff i 6= j and
wij = |BoD(i)∩BoD(j)| > 0, i.e., if companies i and j share at least one director.
Intuitively, wij is a measure of the strength of ties between the boards of directors
of i and j. We denote by L the number of edges, i.e., L = |E|. The degree of a node
i is the number of edges connecting i to other nodes. A connected component is a
maximally connected subgraph of G.

4.2 The social network of Italian companies

The Italian Business Register records information on all Italian companies and
directors. The register is managed by the Italian Chamber of Commerce. Data are
keep up-to-date by the companies themselves, since the register is recognized by
the law as the official source of information about companies. We had a unique
access to a complete snapshot of the registry regarding the year 2012. Data on
companies stored in the register include legal and financial information.

Data on directors include gender, birth year and city, and city of residence. The
age distribution of directors is shown in Figure 3 (left). The plot sadly highlights
the glass-ceiling reality for women, who suffer from a under-proportional repre-
sentativeness in top-level job positions. The plot also shows a net reduction of the
number of directors around the age that gives the option for retiring. Figure 3
(right) shows the percentage of female directors over the province2 of residence.
Values range from a minimum of 25% in the historically more depressed regions
in the south of Italy to a maximum of 43.5% in the more developed regions.

2 Level 3 of the Nomenclature of Territorial Units for Statistics (NUTS) [33].
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Fig. 4: Distributions: BoD size (left), director presence (right).

A company can be structured as a sole proprietorship, a partnership, a corpora-
tion, or other national forms. For corporations, the BoD is elected by shareholders,
while for a partnership the BoD includes all partners. We filtered out sole propri-
etorships, since this type of business does not exist separately from its owner.
Similarly, we do not consider companies with only one director who is not shared
with any other company.

The social network resulting after preprocessing and filtering raw data includes
N ' 2.15 · 106 companies/nodes, and D ' 3.63 · 106 directors. The network has
L ' 6.75×106 edges. About 631 ·103 nodes are isolated, i.e., their degree is 0. This
amounts at 29.3 % of the total number of nodes, and it is quite representative of
the Italian scenario, where tiny/family businesses are widespread. Figure 4 reports
the distributions of BoD size and director presence. Distributions are heavily tailed
(notice the log-log scale), but only for director presence there is a good fit by a
truncated powerlaw3. A few directors appear in hundreds of boards, with one ap-
pearing in as many as 404 boards. We investigated the reasons of such impressively
high numbers, and found two explanations. First, when a company is winding-up
because of bankruptcy, an official receiver is appointed by the court as an interim
receiver and manager of the company. Such directors are independent experts ap-
pointed in many boards and for a possibly long period. Second, there are groups
of companies with a pyramidal structure of management and control [1,55] which
share the same directors in their boards. An outlier case that we found consists
of a clique of 108 companies having the same person as their unique director. In
order to reduce the impact of the two special cases above on the density of the
social network of companies, we removed from the set of directors the 0.01% with
the highest presence.

4.3 Segregation discovery input

We aim at exploiting the segregation discovery framework of Section 3 to the case
study of the social network of Italian companies. The dataset under analysis will

3 We adopted the methods and software from [2] for fitting heavily tailed distributions. The
distribution with the best loglikelihood ratio is selected among power laws, truncated power
laws, exponentials, stretched exponentials, and log-normals.
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segregation atts context atts
gender age birthplace residence sector unitID

M 15-38 foreign north {education} 1
F 39-46 south south {electricity, transports} 2
M 55-65 north south {agriculture} 1

. . . . . . . . . . . . . . . . . .

Table 2: Sample input for segregation discovery.
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Fig. 5: Sample social network of companies.

have the form of the relation shown in Table 2. A tuple in the dataset regards a
director. Segregation attributes include: gender, age, and birth place. Age values
are discretized into 5 equal-frequency bins (15-38, 39-46, 47-54, 55-65, 66-100).
Birth place can be one region of Italy (islands, south, center, north-east, and
north-west) or any foreign country (foreign). This classification corresponds to
Level 1 of the Nomenclature of Territorial Units for Statistics (NUTS) [33]. We
will also consider finer-grained levels, such as provinces. Context attributes include
residence of the director, and the sectors of companies the director seats in the
board of. Residence has the same grain of the birth place attribute. Sectors are
classified into a number of categories (agriculture, education, transportation,
etc.) defined by the Italian institute of statistics. Notice that the sector attribute
is multi-valued, since interlocking directors may seat in boards of companies be-
longing to different industry sectors.

In this section, we discuss two issues that challenge the framework of Section 3,
and devise solutions for tackling them.

Segregation index definitions assume a partitioning of individuals into units
of social organization (schools, neighborhoods, communities). The first challenge

in the context of social networks of companies is then to define how such units
are defined. Intuitively, a unit is a set of companies within which directors can
get in contact, either directly (because they belong to a same BoD) or indirectly
(e.g., through an interlocking director connecting two BoDs). Our approach is to
consider a structural decomposition of the social network graph into groups of
companies, i.e., sub-graphs, each one representing a unit. A natural candidate is
to consider the decomposition based on connected components (CCs).

Example 11 Figure 5 shows a sample social network of companies. There are 4 com-
panies (C1–C4) and 11 directors (D1–D11). Edges connect C1 and C2 (interlocking
directors are D2 and D3) and C3 and C4 (D8 is the only interlocking director).
There are 2 CCs, which are then the organizational units to be considered.
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Fig. 6: Distribution of size of CCs before (left, without the giant component) and
after (right) splitting the giant component by removing the edges with weight ≤ 3.

The distribution of the size of CCs in the social network of Italian companies
is shown in Figure 6 (left). It is fitted by a power law distribution. In addition
to the isolated nodes, there are 196 · 103 other CCs with size in the range [2-99],
and one giant component consisting of 947 · 103 nodes (not shown in the figure).
The total number of CCs is 827 · 103. The giant component accounts for more
than 40% of the total number of nodes. This may prevent the discovery of some
segregation conditions, which may be hidden in units which are finer-grained than
the giant component. We argue then that the giant component needs to be further
split. Observe that our assumption that interlocking directors represent signals of
relationships between two companies does not account for the strength of such
signals. We exploit this intuition to split the giant component into components
by removing edges in it that represent “weaker ties”. Recall that the weight of an
edge between nodes i and j is wij = |BoD(i)∩BoD(j)|, i.e., the number of shared
directors. We remove edges from the giant component whose weight is lower or
equal than a threshold. The selected threshold (wij ≤ 3) is the lowest that leads to
no giant component. The resulting distribution of CCs, shown in Figure 6 (right),
is fitted by a power law with exponent close the the original distribution without
the giant component, shown in Figure 6 (left). The total number of CCs is now
' 1.74 · 106. They are the organizational units considered by segregation indexes.
In other words, the value of the unitID attribute in Table 2 is the ID of the CC a
director appears in.

The second challenge in our case study originates from the splitting of the giant
component. In fact, a side effect is that in the resulting network an interlocking
director may appear in two or more units, if the companies the director is in the
board of belong to distinct CCs. This situation was accounted for in the extension
of the segregation indexes reported in Section 2.4. Therefore, we will consider the
multiple occurrences of a director in distinct CCs as distinct individuals, and then
as separate tuples in Table 2. Gender, age, birth place, and residence attribute
values will be same for each tuple. The sector attribute will be the set of industry
sectors of only the companies in the specific CC in which the individual appears
as a director.
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H G I Int

D 0.968 0.977 0.280 -0.280
H 0.937 0.364 -0.364
G 0.333 -0.333
I -1

Table 3: Pearson’s correlation between pairs of indexes.

4.4 Segregation discovery findings

The dataset resulting from data preparation consists of 4.88 · 106 tuples. We ex-
ecuted Algorithm 1 on such dataset, setting minsupp = 100, which means con-
sidering minority groups of at least 100 directors. This section presents a few
exploratory analyses over the segregation data cube produced by the algorithm.
The advantage of providing a segregation data cube is that an analyst is free to
explore sub-cubes of interest defined along any combination of context and segre-
gation attributes values. Our implementation outputs the segregation data cube
into a spreadsheet with a Pivot table for multi-dimensional exploration.

Indexes correlation. As a first analysis, we test correlation among the segrega-
tion indexes over all 125,318 cells of the segregation data cube. Table 3 shows the
Pearson’s correlation coefficient between pairs of indexes. The evenness indexes
(D, H, and G) are strongly correlated, as already observed in other empirical
analyses [40]. There is instead low correlation between evenness indexes and expo-
sure indexes, since they measure different aspects of segregation. Finally, isolation
I and Interaction Int are obviously negatively correlated because I + Int = 1.

Gender segregation by province. The second analysis consists of mapping segrega-
tion indexes over the province of residence of directors. For example, D(gender=F,
residence=Pisa) is the dissimilarity index for the reference population of directors
with residence in Pisa province and for the minority group of female directors. A
visual representation of dissimilarity and isolation indexes for all Italian provinces
is shown in Figure 7. Provinces in the south of Italy have the highest dissimilarity,
followed by center provinces, islands, and the north provinces. Contrasting this
with the distribution of female directors (see Figure 3 right), it is worth noting
how provinces in the center of Italy have a relatively high percentage of female
directors, who however result to be more segregated than e.g., in the provinces
of islands and of north-east. Isolation follows a similar pattern, except that the
south provinces are less isolated than the center provinces. This means that fe-
male directors have more chances of getting in contact with male directors in the
south compared to the center of Italy. This can be explained by observing that the
percentage of female directors in the south is lower than in the center provinces
(see Figure 3 right).

Gender segregation by company sector. Similarly to the previous analysis, Fig-
ure 8 (left) maps segregation indexes over the sectors of companies. All indexes
show a common pattern. Sectors with the highest segregation are: 6 (construc-
tions), 12 (real estate), and 9 (accommodation and food). Sectors with the lowest
segregation are: 11 (finance and insurance), 2 (mining), and 5 (water supply).

Foreigner segregation by company sector. A variant of the previous analysis is to
consider as minority group the foreigner directors. Actually, we do not have the
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Fig. 7: Dissimilarity (left) and Isolation (right) index for Italian provinces’ popu-
lation and for female director minority group.

Fig. 8: Segregation indexes over the 19 company sectors for minority groups of:
female directors (left), foreign directors (center), and age-band directors (right,
only dissimilarity index).

exact information whether a director is Italian or not, but only whether she/he
was born in Italy or abroad. Figure 8 (center) maps segregation indexes for di-
rectors born abroad over the sectors of companies. Values of evenness indexes are
higher than for female segregation at the left hand side plot of the same figure.
Foreigners experience an even worse distribution than females among companies
in each sector. Immigration studies such as [15] have previously highlighted forms
of spatial segregation of foreign workers in Italian cities. Values of isolation are
instead lower for foreigners compared to females. Again, this is due to the smaller
number of foreigners, hence to lower chances of getting in contact among them in
BoDs.

Age-band segregation by company sector. Another variant is to consider whether
there is segregation of directors of a specific age-band. Figure 8 (right) shows the
dissimilarity index for various age-band groups. Youngsters and elderly directors
experience higher dissimilarity values than middle-aged directors across all com-
pany sectors. Such values are in between dissimilarity for female and for foreigner
directors. Notice that all age-bands have medium-to-high dissimilarity indexes,
which means that directors tends to distribute oddly with regard to their ages.
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minsupp Cube size Elapsed (s)

400 36,945 312
100 125,318 572
25 389,743 1051

Table 4: Cube size and running time of Algorithm 1. Input size: 4.88 · 106 tuples.

Top segregated groups. As a final investigation, we consider looking at the cells
in the segregation cube that have the highest values of segregation indexes and, at
the same time, a significant size of the minority group. Segregation occurs often
when considering the birth place as minority ground. For instance, the cube cell:

birthplace=Center, sector=9 (M = 97, 173 T = 506, 786 P = 19.2% D = 0.91)

shows that directors born in the center regions do not integrate with directors
born in other regions in the industry sector 9 (accommodation and food). This is
quite reasonable for a very localized sector. For sector 11 (financial and insurance
services), a lower value of the index can be observed:

birthplace=Center, sector=11 (M = 25, 550 T = 142, 672 P = 17.9% D = 0.79)

The sub-group of women aged 66 or more appears segregated in several con-
texts. For instance:

age=66+, sex=F, residence=South (M = 22, 912 T = 817, 073 P = 2.8% D = 0.956)

shows residential segregation, and:

age=66+, sex=F, sector=19 (M = 6, 995 T = 166, 827v P = 4.2% D = 0.90)

shows occupational segregation in the industry sector 9 (other services). Segrega-
tion indexes for women in sector 1 (agriculture) is not high. For instance, in the
south regions we have:

sex=F, sector=1, residence=South (M = 10, 604 T = 38, 767 P = 27.4% D = 0.57)

and similarly for other regions. This deviates from previous empirical studies that
observed segregation in agriculture when considering the whole workforce [16].

4.5 On the efficiency of the approach

Let us finally discuss the efficiency of the Algorithm 1 on the large input dataset.
Table 4 reports the size of the segregation data cube and the running time of the
algorithm at the variation of the minimum support threshold. The running times
refer to the total computation of all of the five segregation indexes considered in
this paper. Our implementation is almost entirely in Java 8, with only frequent
closed itemset extraction using a C program [11]. The test machine was a com-
modity PC with Intel Core i5-2410@2.30GHz with 16 Gb of RAM and Windows 10
OS. The running times show that the implementation is fast and scalable to small
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minimum support thresholds. The size of the segregation cube grows exponentially
with lower supports, and this is intuitive since the number of cells depends on the
number of frequent closed itemsets. However, the running time grows less than
linearly with the size of the segregation data cube. Since frequent closed item-
sets with lower support have, by definition, a smaller cover to iterate over (using
compressed bitmaps as described in Section 3.4), lowering the minimum support
leads to lowering the average time per itemset. Overall, the moderate running
time for the large input show that our approach is efficient in pratice. It is worth
noting that no multi-core programming was adopted which could futher speedup
the approach. Multi-core computing could be exploited for two purposes. First,
for frequent closed itemset mining [46], which, however, is only a small percentage
of the total running time – less than 10%. Second, for a data parallel execution of
the main loop of Algorithm 1. Such a parallelization would be trivial and highly
scalable, since there is no dependency between iterations.

5 Related work

This paper is the first to look at segregation from a knowledge discovery perspec-
tive. Our approach relies on frequent itemset mining, which is a well-established
research area with solid theory [30] and efficient tools [28]. Preliminary results
appeared in a conference version of this paper [5]. The extension reported here
is significant, and it covers: the Gini and interaction indexes and the character-
ization of properties of indexes (Section 2), the restriction to closed itemsets in
segregation discovery and index computation (Section 3), and a deeper analysis of
the case study (Section 4).

The case study presented in this paper targets gender occupational segregation,
a relevant social problem with deep roots [10,24]. More specifically, we considered
segregation in top company positions such as BoDs. This is a new topic, which
adds to related research on social and economic studies of the glass-ceiling effect for
women representation4 in BoDs [13], of wage gap for top positions [3], and of power-
concentration in the hands of a small number of directors [19]. Our topic is closely
linked to the analysis of benefits of demographic diversity in BoDs [12,47,52].

Another related strand of research concerns the decision dynamics of the corpo-
rate boards. [7,8] study the network characteristics of a bipartite graph of directors
and companies linked by board membership. The aim is to understand whether
the graph structure influences the overall set of strategies and decisions of boards.
Bipartite projection [60] over directors consists of a graph with a node for every
director, and a link between directors appearing in a same board. For such net-
works, a high level of homophily has been observed [56]. Bipartite projection over
companies consists of our network of companies, namely nodes are companies and
edges link two companies that share at least one director. In empirical analysis,
such networks have been observed to exhibit a small-world effect [18, 36, 53], and
to include a giant component [51]. The network of our case study (see Sec. 4.3 for
details) is at least two orders of magnitude larger than the ones considered by the
cited papers.

4 See also en.wikipedia.org/wiki/Gender representation on corporate boards of directors.

https://en.wikipedia.org/wiki/Gender_representation_on_corporate_boards_of_directors
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6 Conclusions

We have introduced a knowledge discovery perspective on segregation data analysis
by formulating the problem of segregation discovery. This is modelled as a search
problem in the space of combinations of reference populations and minority groups.
The search is driven by quantitative measures, called segregation indexes, which
are taken from the social science literature. Our solution provides an algorithm
for constructing a segregation data cube, i.e. a multi-dimensional data cube, for
exploratory (OLAP) data analysis. Only cells with distinct population-minority
groups are filled, and for which minority size is greater or equal than a minimum
threshold. Theory and tools from frequent itemset mining are adopted in the design
and implementation of the solution. The approach is challenged on a complex and
intriguing case study, concerning segregation of board directors in networks of
companies. Here, there is no a-priori defined notion of organizational unit. Thus,
we faced the original problem of how to cluster companies, and their directors,
into units for the calculation of segregation indexes. The case study is discussed in
deep to provide a guidance on the steps necessary for data preparation and cube
exploration. The efficiency of the proposed segregation data cube algorithm has
been demonstrated on the large input dataset of the case study.

While our approach provides a powerful exploratory tool for segregation anal-
ysis, several issues remain open for future investigation. Let us mention two rele-
vant ones. First, a higher layer of analysis on top of our approach must be devised
to solve the Simpson’s paradox in a given domain of analysis. The problem of
choosing the right level of aggregation at which considering segregation indexes
can be solved by adopting causal graphs or simulation methods as shown in [50].
Second, segregation discovery is half way towards the more challenging objective
of segregation-aware data mining and social network analysis. The objective here
is the development of responsible predictive models, such as link prediction and
group recommendation, that, by design, can provide quantitative guarantees on
the impact of their recommendations over social integration values. As an ethical
requirement, such recommender systems should promote suggestions that com-
bat emergent segregation and polarization of social groups, increase exposure to
diverse social groups, and improve social ties and cohesion in general.
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