Computational complexities of inclusion queries over polyhedral sets

Pavlos Eirinakis *
LDCSEE
West Virginia University
Morgantown, WV
pavlos.eirinakis@mail.wvu.com

Salvatore Ruggieri
Dipartimento di Informatica
Universita' di Pisa Pisa, Italy
ruggieri@di.unipi.it

K. Subramani *
LDCSEE
West Virginia University
Morgantown, WV
ksmani@csee.wvu.edu

Piotr Wojciechowski *
LDCSEE
West Virginia University
Morgantown, WV
pwojciec@mix.wvu.edu

Abstract

In this paper we discuss the computational complexities of procedures for inclusion queries over polyhedral sets. The polyhedral sets that we consider occur in a wide range of applications, ranging from logistics to program verification. The goal of our study is to establish boundaries between hard and easy problems in this context.

1 Introduction

Extending linear constraints by admitting parameters allows for more abstract problem modelling and reasoning. However, how does the basic notion of constraint entailment extend in the presence of parameters? Does its computational complexity become harder or intractable? In this paper, we define entailment of parametric linear constraints and investigate its computational complexity.

Let us provide some intuition. We adhere to standard notation of linear algebra (Schrijver 1987). \Re is the set of real numbers. Small capital letters ($\mathbf{a}, \mathbf{b}, \ldots$) denote column vectors, while capital letters ($\mathbf{A}, \mathbf{B}, \ldots$) denote matrices. $\mathbf{0}$ is the column vector with all elements equal to $0 . a_{i}$ denotes the $i^{t h}$ element in a. a ${ }^{T}$ denotes the transposed vector of \mathbf{a}. - denotes the inner product.

Consider two linear constraints (or, equivalently, two linear systems of inequalities) over the reals $c_{1}=\mathbf{A} \cdot \mathbf{x} \leq \mathbf{b}$ and $c_{2}=\mathbf{C} \cdot \mathbf{x} \leq \mathbf{d} . c_{1}$ entails c_{2} if every solution of c_{1} is a solution of c_{2}, or, in logic formula, if $\forall \mathbf{x} \quad\left[c_{1} \rightarrow c_{2}\right]$ is true in the domain of the reals. Entailment for linear constraints is a polynomial time decision problem (Subramani 2009).
A parameterized linear constraint over the reals is a system of linear inequalities $\mathbf{A} \cdot \mathbf{x} \leq \mathbf{b}+\mathbf{N} \cdot \mathbf{s}$ where variables in s are called parameters. We say that a parameterized linear constraint $c p_{1}=\mathbf{A} \cdot \mathbf{x} \leq \mathbf{b}+\mathbf{N} \cdot \mathbf{s}$ entails $c p_{2}=\mathbf{C} \cdot \mathbf{x} \leq \mathbf{d}+\mathbf{M} \cdot \mathbf{r}$ if for every parameter instance s_{0} of s there exists an instance \mathbf{r}_{0} of \mathbf{r} such that the linear system $\mathbf{A} \cdot \mathbf{x} \leq \mathbf{b}+\mathbf{N} \cdot \mathbf{s}_{0}$ entails $\mathbf{C} \cdot \mathbf{x} \leq \mathbf{d}+\mathbf{M} \cdot \mathbf{r}_{0}$. Note that $c p_{1}$ will be referred to as the entailing polyhedral set, while $c p_{2}$ as the entailed polyhedral set.

The rest of the paper is organized as follows. Section 2 discusses basic notions that will be used and the contribu-

[^0]tion of the paper. Section 3 details the motivation and related work. The complexities of different classes of entailment is investigated in Sections 4, 5, and 6 Section 7 concludes the paper.

2 Background and Contribution

A simple (unquantified) linear system is denoted as:

$$
\begin{equation*}
\exists \mathbf{x} \in \Re \mathbf{A} \cdot \mathbf{x} \leq \mathbf{b} \tag{1}
\end{equation*}
$$

We assume that the dimensions of vectors and matrices in inner products and linear systems are of the appropriate size. Observe that System (1) represents a convex, polyhedral set (Schrijver 1987).
An equivalent formulation of linear systems is provided in terms of logic formulas over the reals. A primitive linear constraint is an expression $a_{1} \cdot x_{1}+\ldots a_{n} \cdot x_{n} \leq a_{0}$, where a_{0}, \ldots, a_{n} are constants in \Re and x_{1}, \ldots, x_{n} are variables. We will also use the inner product form by rewriting it as $\mathbf{c}^{T} \cdot \mathbf{x} \leq \alpha$. A linear constraint c is a conjunction of primitive constraints. Conjunction is syntactically represented either by " \wedge " or by a comma. Inequalities $\mathbf{c}^{T} \cdot \mathbf{x} \geq \alpha$ and equalities $\mathbf{c}^{T} \cdot \mathbf{x}=\alpha$ can be reduced to linear constraints.
A system of linear inequalities $\mathbf{A} \cdot \mathbf{x} \leq \mathbf{b}+\mathbf{B} \cdot \mathbf{s}$ is a parameterized linear system over \Re; variables in \mathbf{s} are referred to as parameters. The semantics of a parameterized linear system is then a collection of linear systems over variables in \mathbf{x}, each obtained by instantiating the parameters s . The solutions of parameterized linear systems are modeled by the notion of parameterized polyhedra (Loechner and Wilde 1997).

Quantified Linear Programming (QLP) was introduced in (Subramani 2007). A quantified linear program is a linear system in which the program variables can be either existentially quantified or universally quantified. A typical quantified linear program will have the form:

$$
\exists x_{1} \forall y_{1} \in\left[l_{1}, u_{1}\right] \ldots \exists x_{n} \forall y_{n} \in\left[l_{n}, u_{n}\right]
$$

$$
\mathbf{A} \cdot \mathbf{x}+\mathbf{N} \cdot \mathbf{y} \leq \mathbf{b}
$$

where, possibly, x_{1} and/or y_{n} are empty, and l_{i}, u_{i} are lower and upper bounds in the reals for $y_{i}, i=1, \ldots, n$. An example of a quantified linear program is the following:

$$
\begin{array}{lr}
\exists x_{1} \forall y_{1} \in[1,4] \exists x_{2} \quad & x_{1}+y_{1}+x_{2} \geq 4 \\
& 3 x_{1}-5 y_{1} \leq-5
\end{array}
$$

Two special cases of the QLP problem have also been studied in (Subramani 2007). In particular, the E-QLP problem, which is of the form $\exists \mathbf{x} \forall \mathbf{y} \in[\mathbf{l}, \mathbf{u}] \mathbf{A x} \leq \mathbf{b}$ (shown to be in \mathbf{P}), and the \mathbf{F}-QLP problem, which is of the form $\forall \mathbf{y} \in[\mathbf{l}, \mathbf{u}] \exists \mathbf{x ~} \mathbf{A}[\mathbf{x ~ y}] \leq \mathbf{b}$ (shown to be coNP-complete). Note that $\mathbf{y} \in[\mathbf{l}, \mathbf{u}]$ denotes $l_{i} \leq y_{i} \leq u_{i}, \forall i=1, \ldots, n$.

We extend the quantification to implications of linear systems. A typical quantified linear implication has the following form:

$$
\begin{aligned}
& \exists x_{1} \forall y_{1} \exists x_{2} \forall y_{2} \ldots \exists x_{n} \forall y_{n} \\
& \mathbf{A} \cdot \mathbf{x}+\mathbf{N} \cdot \mathbf{y} \leq \mathbf{b} \quad \rightarrow \quad \mathbf{C} \cdot \mathbf{x}+\mathbf{M} \cdot \mathbf{y} \leq \mathbf{d}
\end{aligned}
$$

where, possibly, x_{1} and/or y_{n} are empty. Let us introduce a nomenclature to succinctly specify the problems under consideration. We use a triple $\langle A, Q, R\rangle$ to denote the number A of quantifier alternations, the first quantifier Q, and an $(A+1)$-character string which specifies for each quantified set of variables whether they possibly appears Left, Right, or on Both sides of the implication. For instance, $\langle 1, \exists, \mathbf{R B}\rangle$ indicates a problem of the form:

$$
\exists \mathbf{y} \forall \mathbf{x}[\mathbf{A} \cdot \mathbf{x} \leq \mathbf{b} \rightarrow \mathbf{C} \cdot \mathbf{x}+\mathbf{M} \cdot \mathbf{y} \leq \mathbf{d}]
$$

A quantified linear implication is said to hold if it is true as a first-order sentence over the real numbers.

The principal contributions of this paper are briefly presented below:

- Problem $\langle 1, \exists, \mathbf{R B}\rangle$ is in \mathbf{P} (Section 4).
- Problem $\langle 1, \exists, \mathbf{L B}\rangle$ is NP-hard (Section5).
- Problem $\langle 2, \forall, \mathbf{L R B}\rangle$ is coNP-hard (Section6).
- Problem $\langle 2, \quad \forall, \quad \mathbf{L R B}\rangle$ is reducible to problem $\langle 2, \forall, \mathbf{B R B}\rangle$ and vice versa (Section 6).
- A special case of problem $\langle 2, \forall, \mathbf{L R B}\rangle$ is presented which is still coNP-hard (Section 6.1).
- Several sub-classes of problem $\langle 2, \forall, \mathbf{L R B}\rangle$ are shown to be in \mathbf{P} (Section 6.2).

3 Motivation and Related Work

Parameterized linear systems are an extension of linear systems that trace back to late 60's in the context of (multi)parametric linear programming, where the objective is to optimize a parameterized linear or quadratic function over the solutions of a parameterized linear system. Parametric linear programming differentiates from sensitivity analysis, which provides solutions in the neighborhood of the nominal value of the varying parameters, by providing a complete map of the optimal solution in the space of the varying parameters. Parametric linear programming has a solid theoretical basis (see Gal 1995; Pistikopoulos, Georgiadis, and Dua 2007b $)$, and a wide range of applications, including hybrid parametric/stocastic programming, process planning under uncertainty, material design under uncertainty, model based control, multi-processor scheduling (see (Kvasnica 2009, Pistikopoulos, Georgiadis, and Dua 2007a)).

Besides linear programming problems, parameterized systems are recently gaining interest from several other
research communities. They have been adopted for: symbolic dependence analysis in computing a parallel schedule ($($ Loechner and Wilde 1997)); fracture mechanics and engineering ((Ioakimidis 2000;Solares and Chaves 2008)); hardware verification ((Cachera and Morin-Allory 2005)); type systems for constraint programming ((Ruggieri and Mesnard 2010)).

The explicit calculation of the solutions of a parameterized system of inequalities, represented in a Minkowski's sum of rays and parameterized vertices, can be computed by a generalization of the double description method, as described in (Loechner and Wilde 1997). The polylib library (Loechner 2011) implements the approach, and it provides basic set-oriented primitives for manipulating the solutions of parameterized linear systems. In the context of parametric linear programming, The Multi-Parametric Toolbox ((Kvasnica 2009; Kvasnica et al. 2011)) solves parametric linear and quadratic programming problems by explicitly computing the optimization function over the solutions of a parameterized linear system.

While the above research and tools demonstrate the usefulness of parameterized linear systems, to the best of our knowledge, there is no approach that consider primitives for reasonings over them, and in particular entailment. As an example, linear constraint-based languages and systems (such as constraint logic programming systems $\operatorname{CLP}(\mathcal{R})$, ECLiPSe, Sictus Prolog, SWI Prolog) could be readily extended to reason on parameterized linear systems by using satisfiability and entailment as building blocks. It is then of outermost importance to understand and characterize computational complexity of the entailment problem for parameterized linear constraints. This basic issue motivates our work.

Polynomial time complexity for the satisfiability of linear systems was firstly achieved by (Khachiyan 1979), with further improvements by (Karmarkar 1984) and (Vaidya 1987). Entailment of non-parameterized linear systems is in P. A formal proof of the intuition provided in the introduction is due to (Subramani 2009). Unfortunately, a direct extension of the procedure to parameterized linear system by using parametric linear programming does not work. In fact, the optimal solution of a parametric linear programming problem is a piecewise affine function defined over a polyhedral partition of the feasible parameters (Borrelli, Bemporad, and Morari 2003). Such a function can be exponentially large in the size of the linear program, even if there is only one parameter (Murty 1980).

Computational complexity of satisfiability and entailment has been considered also in close domains (without parameters). Satisfiability of quantified linear systems is covered by (Subramani 2007). The integer case is detailed in (Subramani 2005). Quantified constraint satisfaction problems are investigated by (Gottlob, Greco, and Scarcello 2005). Entailment of binary and multi-valued propositional logics is investigated by (Cadoli and Schaerf 1996). (Subramani 2005) covers entailment of linear systems over integers.

Quantified logic formulas over the reals can be solved by quantifier elimination methods (see (Dolzmann, Sturm, and Weispfenning 1998b; Weispfenning 1988)). Although
its complexity has been improved several times (Renegar 1992. Basu, Pollack, and Roy 1996), in the worst case quantifier elimination is doubly exponential in the number of quantifier alternation and exponential in the number of variables (see (Davenport and Heintz 1988, Weispfenning 1988)). Nevertheless, efficient-in-practice approaches have been proposed and successfully applied to theorem proving and program verification. We mention partial cylindrical algebraic decomposition by (Collins and Hong 1991) and provided in the QEPCAD/QEPCAD-B systems ((Brown 2003)); virtual substitution of test terms by (Dolzmann, Sturm, and Weispfenning 1998a) provided in the REDLOG system ((Dolzmann and Sturm 1997)), which is specialized for low-degree polynomials; and, finally, the RSolver algorithm by (Ratschan 2006) whose implementation is publicly available ((Ratschan 2011)).

4 Problem $\langle 1, \exists, \mathbf{R B}\rangle$

First, we analyze the complexity of a quantified linear implication of the form $\langle 1, \exists, \mathbf{R B}\rangle$, i.e., problems of the form:

$$
\begin{equation*}
\exists \mathbf{r} \forall \mathbf{x}[\mathbf{A} \cdot \mathbf{x} \leq \mathbf{b} \rightarrow \mathbf{C} \cdot \mathbf{x} \leq \mathbf{d}+\mathbf{M} \cdot \mathbf{r}] \tag{2}
\end{equation*}
$$

This implication can be read as whether there exist parameter instances \mathbf{r} such that the instance of the parameterized polyhedron $\mathbf{C} \cdot \mathbf{x} \leq \mathbf{d}+\mathbf{M} \cdot \mathbf{r}$ includes the non-parameterized one $\mathbf{A} \cdot \mathbf{x} \leq \mathbf{b}$. We will show that this problem is in \mathbf{P}. The following observation is crucial to our proof.
Lemma 4.1 The set $R=\{\mathbf{r}: \forall \mathbf{x} \quad[\mathbf{A} \cdot \mathbf{x} \leq \mathbf{b} \rightarrow \mathbf{C} \cdot \mathbf{x} \leq$ $\mathbf{d}+\mathbf{M} \cdot \mathbf{r}]\}$ is convex.
Proof: Assume otherwise and consider the set $H=\{\mathbf{x}$: $\mathbf{A} \cdot \mathbf{x} \leq \mathbf{b}\}$, and the set $K_{\mathbf{r}}=\{\mathbf{x}: \mathbf{C} \cdot \mathbf{x} \leq \mathbf{d}+\mathbf{M} \cdot \mathbf{r}\}$. Let $\mathbf{r}_{1}, \mathbf{r}_{\mathbf{2}} \in R$ and let $\mathbf{r}_{\mathbf{3}}$ be a convex combination of $\mathbf{r}_{\mathbf{1}}$ and \mathbf{r}_{2}, i.e., for some $0 \leq \alpha \leq 1, \mathbf{r}_{3}=\alpha \mathbf{r}_{1}+(1-\alpha) \mathbf{r}_{2}$. Further, assume that $\mathbf{r}_{3} \notin R$, thus we have that $H \subseteq K_{\mathbf{r}_{1}}$ and $H \subseteq K_{\mathbf{r}_{2}}$ but $H \nsubseteq K_{\mathbf{r}_{3}}$. Thus there exists an $\mathbf{x}_{\mathbf{0}}$ such that $\mathbf{x}_{\mathbf{0}} \in H$ (which also implies that $\mathbf{x}_{\mathbf{0}} \in K_{\mathbf{r}_{\mathbf{1}}}$ and $\mathbf{x}_{\mathbf{0}} \in$ $K_{\mathbf{r}_{2}}$), while $\mathbf{x}_{\mathbf{0}} \notin K_{\mathbf{r}_{3}}$.

Let us consider the linear program (LP): $\mathbf{C} \cdot \mathbf{x}_{\mathbf{0}} \leq$ $\mathbf{d}+\mathbf{M} \cdot \mathbf{r}$ with respect to \mathbf{r}. Since $\mathbf{x}_{\mathbf{0}} \in K_{\mathbf{r}_{1}}$ and $\mathbf{x}_{\mathbf{0}} \in K_{\mathbf{r}_{\mathbf{2}}}$ we have that \mathbf{r}_{1} and \mathbf{r}_{2} must satisfy this LP. However, since the solution space to an LP is convex, r_{3} must also solve this LP, which contradicts the assumption that $\mathbf{r} \notin R$. Hence, R is convex.

The next theorem completes our proof.
Theorem 4.1 The problem $\langle 1, \exists, \mathbf{R B}\rangle$ is in \mathbf{P}.
Proof: We want to show that quantified linear implications of the form (2) are in \mathbf{P}.

First, note that if $\mathbf{A} \cdot \mathbf{x} \leq \mathbf{b}$ is infeasible, the formula is always true.

Otherwise, we build an LP on \mathbf{r} as follows. For every row $\mathbf{c}_{\mathbf{i}}$ of \mathbf{C}, let d_{i}^{\prime} be the solution to the LP:

$$
\begin{array}{r}
\max \mathbf{c}_{\mathbf{i}}^{T} \cdot \mathbf{x} \\
\mathbf{A} \cdot \mathbf{x} \leq \mathbf{b}
\end{array}
$$

Let d_{i} be the $i^{t h}$ element of \mathbf{d}. Then, if d_{i}^{\prime} is infinite, there is no value of \mathbf{r} for which

$$
\mathbf{c}_{\mathbf{i}}^{T} \cdot \mathbf{x} \leq d_{i}+\mathbf{m}_{\mathbf{i}}^{T} \cdot \mathbf{r}
$$

is true for all \mathbf{x} that satisfy $\mathbf{A} \cdot \mathbf{x} \leq \mathbf{b}$. Thus, if any of the d_{i}^{\prime} are infinite, System (2) is infeasible.

Consider now the case in which all the d_{i}^{\prime} are finite; let vector $\mathbf{g}=\mathbf{d}^{\prime}-\mathbf{d}$. We create the following LP:

$$
\begin{equation*}
\mathbf{M} \cdot \mathbf{r} \geq \mathbf{g} \tag{3}
\end{equation*}
$$

If this LP is feasible, there exists a vector \mathbf{r}^{\prime} such that $\mathbf{M} \cdot \mathbf{r}^{\prime}+\mathbf{d} \geq \mathbf{d}^{\prime}$. Consider the $i^{\text {th }}$ constraint in this system, i.e., $\mathbf{m}_{\mathbf{i}}^{T} \cdot \mathbf{r}^{\prime}+d_{i} \geq d_{i}^{\prime}$. By construction

$$
\forall \mathbf{x}\left[\mathbf{A} \cdot \mathbf{x} \leq \mathbf{b} \rightarrow \mathbf{c}_{\mathbf{i}}^{T} \cdot \mathbf{x} \leq d_{i}^{\prime}\right]
$$

Thus, we have that

$$
\forall \mathbf{x}\left[\mathbf{A} \cdot \mathbf{x} \leq \mathbf{b} \rightarrow \mathbf{c}_{\mathbf{i}}^{T} \cdot \mathbf{x} \leq \mathbf{m}_{\mathbf{i}}^{T} \cdot \mathbf{r}^{\prime}+d_{i}\right]
$$

Since this holds for each constraint, we have that

$$
\forall \mathbf{x}\left[\mathbf{A} \cdot \mathbf{x} \leq \mathbf{b} \rightarrow \mathbf{C} \cdot \mathbf{x} \leq \mathbf{M} \cdot \mathbf{r}^{\prime}+\mathbf{d}\right]
$$

Hence, System (2) holds if System (3) is feasible.
We will show that if all d_{i}^{\prime} s are finite, System (3) is always feasible (and thus System (2) holds). Recall that for system (2) to hold, either $\mathbf{A} \cdot \mathbf{x} \leq \mathbf{b}$ is infeasible or we can construct vector \mathbf{d}^{\prime} and there exists a vector \mathbf{r}^{\prime} such that

$$
\forall \mathbf{x}\left[\mathbf{A} \cdot \mathbf{x} \leq \mathbf{b} \rightarrow \mathbf{C} \cdot \mathbf{x} \leq \mathbf{M} \cdot \mathbf{r}^{\prime}+\mathbf{d}\right]
$$

Let us consider the $i^{\text {th }}$ constraint of $\mathbf{C} \cdot \mathbf{x} \leq \mathbf{M} \cdot \mathbf{r}^{\prime}+\mathbf{d}$, namely $\mathbf{c}_{\mathbf{i}}{ }^{T} \cdot \mathbf{x} \leq \mathbf{m}_{\mathbf{i}}^{T} \cdot \mathbf{r}^{\prime}+\mathbf{d}$. Then we have that

$$
\forall \mathbf{x}\left[\mathbf{A} \cdot \mathbf{x} \leq \mathbf{b} \rightarrow \mathbf{c}_{\mathbf{i}}^{T} \cdot \mathbf{x} \leq \mathbf{m}_{\mathbf{i}}^{T} \cdot \mathbf{r}^{\prime}+\mathbf{d}\right]
$$

Thus

$$
\max _{\mathbf{A} \cdot \mathbf{x} \leq \mathbf{b}}\left(\mathbf{c}_{\mathbf{i}}^{T} \cdot \mathbf{x}\right) \leq \mathbf{m}_{\mathbf{i}}^{T} \cdot \mathbf{r}^{\prime}+d_{i}
$$

But, by construction, $d_{i}^{\prime}=\max _{\mathbf{A} \cdot \mathbf{x} \leq \mathbf{b}}\left(\mathbf{c}_{\mathbf{i}}^{T} \cdot \mathbf{x}\right)$ and so $d_{i}^{\prime} \leq$ $\mathbf{m}_{\mathbf{i}}^{T} \cdot \mathbf{r}^{\prime}+d_{i}$. Since this holds for every constraint, System (3) is always satisfiable.

To complete the proof, note that in order to decide System (2), we first solve $\mathbf{A} \cdot \mathbf{x} \leq \mathbf{b}$ (which is in P). If it is infeasible, System (2) holds. If it is feasible, we then solve at most n LPs $\max _{\mathbf{A} \cdot \mathbf{x} \leq \mathbf{b}} \mathbf{c}_{\mathbf{i}}{ }^{T} \cdot \mathbf{x}, i=1,2, \ldots, n$, where n is the number of constraints in $\mathbf{C} \cdot \mathbf{x} \leq \mathbf{d}+\mathbf{M} \cdot \mathbf{r}$. If all such LPs have a finite solution, System (2) holds; otherwise, it does not hold. Since n is finite and each LP is solvable in \mathbf{P}, this part is also in \mathbf{P}. The result follows.

5 Problem $\langle 1, \exists, \mathbf{L B}\rangle$

Next, we examine quantified linear implications of the form $\langle 1, \exists, \mathbf{L B}\rangle$, i.e., problems of the form:

$$
\begin{equation*}
\exists \mathbf{r} \forall \mathbf{x}[\mathbf{A} \cdot \mathbf{x} \leq \mathbf{b}+\mathbf{N} \cdot \mathbf{r} \rightarrow \mathbf{C} \cdot \mathbf{x} \leq \mathbf{d}] \tag{4}
\end{equation*}
$$

We will show that such implications are NP-Hard by proving that 3SAT can be reduced to it.

Theorem 5.1 The problem $\langle 1, \exists, \mathbf{L B}\rangle$ is NP-Hard

Proof: We want to show that quantified linear implications of the form (4) are NP-hard.

Given a 3SAT instance ϕ, we wish to produce a corresponding implication of the form $\langle 1, \exists, \mathbf{L B}\rangle$ which holds if and only if ϕ is satisfiable. Let E represent the set of
constraints $\mathbf{A} \cdot \mathbf{x} \leq \mathbf{b}+\mathbf{N} \cdot \mathbf{r}$ and F the set of constraints $\mathbf{C} \cdot \mathbf{x} \leq \mathbf{d}$. Consider an instance of 3SAT in Conjunctive Normal Form with n variables $y_{i}, i \in\{1, \ldots, n\}$ and m clauses $\phi_{j}, j=\{1, \ldots, m\}$, i.e., a 3SAT formula $\phi=$ $\phi_{1} \wedge \phi_{2} \wedge \ldots \wedge \phi_{m}$ on the literals $\left\{y_{1}, \bar{y}_{1}, y_{2}, \bar{y}_{2}, \ldots, y_{n}, \bar{y}_{n}\right\}$. We reduce it to an implication of the form $\langle 1, \exists, \mathbf{L B}\rangle$ as follows:

For each variable x_{i} in the instance of 3SAT we add an existentially quantified variable r_{i} and a universally quantified variable x_{i}. We also add the constraints $x_{i} \leq r_{i}$ and $x_{i} \leq 1-r_{i}$ to E and the constraint $x_{i} \leq 0$ to \bar{F}. These constraints are equivalent to $x \leq \min \left(r_{i}, 1-r_{i}\right) \rightarrow x_{i} \leq 0$. This forces $r_{i} \geq 1$ or $r_{i} \leq 0$.

For each clause ϕ_{j} in the instance of 3SAT, we add the universally quantified variable x_{n+j} and the constraint $x_{n+j} \geq 1$ to F. Then, depending on the form of the clause ϕ_{j}, we do one of the following:

1. If $\phi_{j}=\left(y_{i}, y_{k}, y_{l}\right)$, we add the constraint $x_{n+j} \geq r_{i}+$ $r_{k}+r_{l}$ to E.
2. If $\phi_{j}=\left(y_{i}, y_{k}, \overline{y_{l}}\right)$, we add the constraint $x_{n+j} \geq r_{i}+$ $r_{k}+\left(1-r_{l}\right)$ to E.
3. If $\phi_{j}=\left(y_{i}, \overline{y_{k}}, \overline{y_{l}}\right)$, we add the constraint $x_{n+j} \geq r_{i}+$ $\left(1-r_{k}\right)+\left(1-r_{l}\right)$ to E.
4. If $\phi_{j}=\left(\bar{y}_{i}, \overline{y_{k}}, \bar{y}_{l}\right)$, we add the constraint $x_{n+j} \geq(1-$ $\left.r_{i}\right)+\left(1-r_{k}\right)+\left(1-r_{l}\right)$ to E.
It is obvious that the resultant implication is of the form $\langle 1, \exists, \mathbf{L B}\rangle$. For example, the following instance of 3SAT

$$
\left(x_{1}, x_{2}, \overline{x_{3}}\right),\left(\overline{x_{2}}, x_{3}, \overline{x_{4}}\right)
$$

becomes

$$
\begin{array}{rll}
\exists r_{1} \exists r_{2} \exists r_{3} \exists r_{4} \forall x_{1} \forall x_{2} \forall x_{3} \forall x_{4} \forall x_{5} \forall x_{6} & \\
x_{1} \leq r_{1}, x_{1} \leq 1-r_{1} & x_{1} \leq 0 \\
x_{2} \leq r_{2}, x_{2} \leq 1-r_{2} & x_{2} \leq 0 \\
x_{3} \leq r_{3}, x_{3} \leq 1-r_{3} & \rightarrow & x_{3} \leq 0 \\
x_{4} \leq r_{4}, x_{4} \leq 1-r_{4} & x_{4} \leq 0 \\
x_{5} \geq r_{1}+r_{2}+\left(1-r_{3}\right) & x_{5} \geq 1 \\
x_{6} \geq\left(1-r_{2}\right)+r_{3}+\left(1-r_{4}\right) & x_{6} \geq 1
\end{array}
$$

Consider an assignment y to the clause set ϕ which satisfies ϕ_{j} for each $j \in 1, \ldots, m$. This means that at least one of the literals in each ϕ_{j} is true. Without loss of generality, assume that y_{k} is in ϕ_{j} and $y_{k}=$ true. In the resultant $\langle 1, \exists, \mathbf{L B}\rangle$ instance, we set $r_{k}=1$. This forces x_{n+j} to be at least 1 , in order to satisfy its corresponding constraint (see 1-4 above); for example, $x_{n+j} \geq r_{i}+r_{k}+\left(1-r_{l}\right)$. Hence, whenever an assignment satisfies ϕ_{j}, then also $x_{n+j} \geq 1$, thus satisfying the corresponding constraint of the set of constraints F. Moreover, since $r_{i} \in\{0,1\}$, we have $x_{i} \leq 0$ for all $i \in\{1, \ldots, n\}$, thus satisfying the corresponding constraint of $F\left(x_{i} \leq 0\right)$. Therefore, if ϕ is satisfiable, the resultant $\langle 1, \exists, \mathbf{L B}\rangle$ implication holds.

On the other hand, consider an assignment y^{\prime} to the clause set ϕ which does not satisfy ϕ_{j} (and hence ϕ). This means that the constraint corresponding to ϕ_{j}, for example $x_{n+j} \geq$ $r_{i}+r_{k}+\left(1-r_{l}\right)$, will set $x_{n+j} \geq 0$. But then the resultant
$\langle 1, \exists, \mathbf{L B}\rangle$ implication does not hold, since there exists x_{n+j}, with $0 \leq x_{n+j}<1$, such that E is feasible and F is infeasible.

Now consider the case that the resultant $\langle 1, \exists, \mathbf{L B}\rangle$ implication holds. Since each r_{i} satisfies $r_{i} \geq 1$ or $r_{i} \leq 0$, the constraints 1-4 given above on x_{n+j} are equivalent to forcing each one of the $r_{i} \geq 1$ (thereby setting y_{i} to true) and thus the ϕ_{j} clauses to be true, and hence ϕ to be true. If, on the other hand, the implication does not hold, then at least one of the constraints $1-4$ sets $x_{n+j} \geq 0$, allowing all literals of clause ϕ_{j} to be false, which also makes ϕ_{j} (and hence ϕ) false.

Thus, the 3SAT problem can be reduced to the resultant implication, which is of the form $\langle 1, \exists, \mathbf{L B}\rangle$.

6 Problem $\langle 2, \forall$, LRB \rangle

We will now focus on the problems of the form $\langle 2, \forall, \mathbf{L R B}\rangle$, i.e., problems of the form:

$$
\begin{equation*}
\forall \mathbf{s} \exists \mathbf{r} \forall \mathbf{x}[\mathbf{A} \cdot \mathbf{x} \leq \mathbf{b}+\mathbf{N} \cdot \mathbf{s} \rightarrow \mathbf{C} \cdot \mathbf{x} \leq \mathbf{d}+\mathbf{M} \cdot \mathbf{r}] \tag{5}
\end{equation*}
$$

Theorem 6.1 The problem $\langle 2, \forall, \mathbf{L R B}\rangle$ is coNP-hard.
Proof: We want to show that quantified linear implications of the form (5) are coNP-hard.

Consider an instance of the F-QLP problem:

$$
\forall \mathbf{s} \in[\mathbf{l}, \mathbf{u}] \exists \mathbf{r} \mathbf{C} \cdot \mathbf{s}-\mathbf{M} \cdot \mathbf{r} \leq \mathbf{d}
$$

The problem of checking validity of such a class of formulas is coNP-complete (Subramani 2007). This problem will be reduced to a problem of the form (5) as follows: For each s_{i} of \mathbf{s}, add x_{i} such that $\mathbf{s}=\mathbf{x}$. We create the following equivalent implication using elementary logical properties:

$$
\forall \mathbf{s} \exists \mathbf{r} \forall \mathbf{x} \quad[(\mathbf{x}=\mathbf{s} \wedge \mathbf{G} \cdot \mathbf{s} \leq \mathbf{h}) \rightarrow \mathbf{C} \cdot \mathbf{x} \leq \mathbf{d}+\mathbf{M} \cdot \mathbf{r}]
$$

where $\mathbf{G} \cdot \mathbf{s} \leq \mathbf{h}$ captures $\mathbf{s} \in[\mathbf{l}, \mathbf{u}]$. It is easy to see that the initial F-QLP problem is satisfied if and only if the resultant $\langle 2, \forall, \mathbf{L R B}\rangle$ problem is satisfied: If there exists \mathbf{s}, with $\mathbf{s} \in[\mathbf{l}, \mathbf{u}]$, such that $\mathbf{x}=\mathbf{s}$ is included in $\mathbf{C} \cdot \mathbf{x} \leq \mathbf{d}+\mathbf{M} \cdot \mathbf{r}$ (i.e., $\mathbf{C} \cdot \mathbf{s} \leq \mathbf{d}+\mathbf{M} \cdot \mathbf{r}$ is satisfied for $\mathbf{s} \in[\mathbf{l}, \mathbf{u}]$), then the corresponding \mathbf{F}-QLP will be satisfied as well. On the other hand, if the \mathbf{F}-QLP is satisfied, then since $\mathbf{x}=\mathbf{s}$ the corresponding implication will also be satisfied. The result follows.

We show that solving an instance of the problem $\langle 2, \forall, \mathbf{L R B}\rangle$ is equivalent to solving the corresponding instance of the problem $\langle 2, \forall, \mathbf{B R B}\rangle$.
Theorem 6.2 The validity problems for the classes of formulas $\langle 2, \forall, \mathbf{B R B}\rangle$ and $\langle 2, \forall, \mathbf{L R B}\rangle$ are polynomial-time reducible to each other.
Proof: Every instance of the form $\langle 2, \forall, \mathbf{L R B}\rangle$ is also in $\langle 2, \forall, \mathbf{B R B}\rangle$; that is, an instance of the form (5) can be rewritten as:
$\forall \mathbf{s} \exists \mathbf{r} \forall \mathbf{x}[\mathbf{A} \cdot \mathbf{x} \leq \mathbf{b}+\mathbf{N} \cdot \mathbf{s} \rightarrow \mathbf{C} \cdot \mathbf{x} \leq \mathbf{d}+\mathbf{M} \cdot \mathbf{r}+\mathbf{0} \cdot \mathbf{s}]$ which is clearly of the form $\langle 2, \forall, \mathbf{B R B}\rangle$.

On the other hand, consider a problem $\langle 2, \forall, \mathbf{B R B}\rangle$, i.e., a problem of the form:
$\forall \mathbf{s} \exists \mathbf{r} \forall \mathbf{x}[\mathbf{A} \cdot \mathbf{x} \leq \mathbf{b}+\mathbf{N} \cdot \mathbf{s} \rightarrow \mathbf{C} \cdot \mathbf{x} \leq \mathbf{d}+\mathbf{M} \cdot \mathbf{r}+\mathbf{P} \cdot \mathbf{s}]$

It is readily checked that it holds if and only if the following formula holds:
$\forall \mathbf{s} \exists \mathbf{r} \quad \forall \mathbf{x} \quad \forall \mathbf{x}^{\prime}$
$\left(\mathbf{A} \cdot \mathbf{x} \leq \mathbf{b}+\mathbf{N} \cdot \mathbf{s} \wedge \mathbf{x}^{\prime}=\mathbf{s}\right) \rightarrow \mathbf{C} \cdot \mathbf{x}-\mathbf{P} \cdot \mathbf{x}^{\prime} \leq \mathbf{d}+\mathbf{M} \cdot \mathbf{r}$
where the newly introduced variables included in vector \mathbf{x}^{\prime} are constrained to assume the values of the parameters in s. Since the formula above is of the form (5), and it is clearly obtained in linear time, we have that $\langle 2, \forall, \mathbf{B R B}\rangle$ reduces in polynomial time to $\langle 2, \forall, \mathbf{L R B}\rangle$.

6.1 A coNP-hard Special Case

A difference constraint is a constraint of the form $x_{i}-x_{j} \leq$ $b_{i j}$. We present a special case of problem $\langle 2, \forall, \mathbf{L R B}\rangle$ which is still coNP-hard, although the entailing polyhedral set consists only of difference constraints.
Theorem 6.3 Problem (5) is coNP-hard even if $\mathbf{A} \cdot \mathbf{x} \leq \mathbf{b}+\mathbf{N} \cdot \mathbf{s}$ is restricted to difference constraints.
Proof: Consider an instance of the F-QLP problem:

$$
\forall \mathbf{z} \in[\mathbf{l}, \mathbf{u}] \exists \mathbf{y} \mathbf{C} \cdot \mathbf{z} \leq \mathbf{d}+\mathbf{M} \cdot \mathbf{y}
$$

Recall that the problem of checking validity of such a class of formulas is coNP-complete (Subramani 2007). We can reduce this problem to an instance of the form (5) with $\mathbf{A} \cdot \mathbf{x} \leq \mathbf{b}+\mathbf{N} \cdot \mathbf{s}$ being restricted to difference constraints as follows:

1. Add the constraints $x_{1}-s_{1} \leq 0$ and $s_{1}-x_{1} \leq 0$ to $\mathbf{A} \cdot \mathbf{x} \leq \mathbf{b}+\mathbf{N} \cdot \mathbf{s}$.
2. For each element z_{i} of \mathbf{z}, add the constraints $x_{i+1}-$ $s_{i+1} \leq 0, s_{i+1}-x_{i+1} \leq 0, s_{i+1}-s_{1} \leq u_{i}$, and $s_{i+1}-s_{1} \geq l_{i}$ to $\mathbf{A} \cdot \mathbf{x} \leq \mathbf{b}+\mathbf{N} \cdot \mathbf{s}$.
3. Let vector \mathbf{x}^{\prime} be such that $x_{i}^{\prime}=x_{i+1}-x_{1}$.
4. Let vector \mathbf{s}^{\prime} be such that $s_{i}^{\prime}=s_{i+1}-s_{1}$.
5. Create the instance $\forall \mathbf{s} \exists \mathbf{r} \forall \mathbf{x}[\mathbf{A} \cdot \mathbf{x} \leq \mathbf{b}+\mathbf{N} \cdot \mathbf{s} \rightarrow$ $\left.\mathbf{C} \cdot \mathbf{x}^{\prime} \leq \mathbf{d}+\mathbf{M} \cdot \mathbf{r}\right]$.
In this instance, we have that $\mathbf{A} \cdot \mathbf{x} \leq \mathbf{b}+\mathbf{N} \cdot \mathbf{s}$ can only be satisfied if $\mathbf{x}=\mathbf{s}$ and $l_{i} \leq s_{i+1}-s_{1}=s_{i}^{\prime} \leq$ u_{i}. Thus, for the constructed instance to be satisfiable, $\mathbf{C} \cdot \mathbf{x}^{\prime} \leq \mathbf{d}+\mathbf{M} \cdot \mathbf{r}$ must also hold when $\mathbf{x}^{\prime}=\mathbf{s}^{\prime}$ and $l_{i} \leq$ $s_{i}^{\prime} \leq u_{i}$. By replacing \mathbf{x}^{\prime} with \mathbf{s}^{\prime} in this system of constraints, we get that $\forall \mathbf{s}^{\prime} \in[\mathbf{l}, \mathbf{u}] \exists \mathbf{r} \mathbf{C} \cdot \mathbf{s}^{\prime} \leq \mathbf{d}+\mathbf{M} \cdot \mathbf{r}$ must also be satisfiable.

Similarly, if the constructed instance is unsatisfiable, there must exist an s such that

$$
\forall \mathbf{r} \exists \mathbf{x}\left[\mathbf{A} \cdot \mathbf{x} \leq \mathbf{b}+\mathbf{N} \cdot \mathbf{s} \rightarrow \mathbf{C} \cdot \mathbf{x}^{\prime} \not \leq \mathbf{d}+\mathbf{M} \cdot \mathbf{r}\right]
$$

Recall that $l_{i} \leq s_{i}^{\prime} \leq u_{i}$ and the only value of \mathbf{x} which can satisfy $\mathbf{A} \cdot \mathbf{x} \leq \mathbf{b}+\mathbf{N} \cdot \mathbf{s}$ is $\mathbf{x}=\mathbf{s}$. Hence, we must have that $\forall \mathbf{r} \mathbf{C} \cdot \mathbf{s}^{\prime} \not \leq \mathbf{d}+\mathbf{M} \cdot \mathbf{r}$, which means that $\forall \mathbf{s}^{\prime} \in$ $[\mathbf{l}, \mathbf{u}] \exists \mathbf{r} \mathbf{C} \cdot \mathbf{s}^{\prime} \leq \mathbf{d}+\mathbf{M} \cdot \mathbf{r}$ is also unsatisfiable.

Thus we can reduce \mathbf{F}-QLP to an instance of this special case of $\langle 2, \forall, \mathbf{L R B}\rangle$, which means that even when $\mathbf{A} \cdot \mathbf{x} \leq \mathbf{b}+\mathbf{N} \cdot \mathbf{s}$ is restricted to difference constraints, $\langle 2, \forall, \mathbf{L R B}\rangle$ is still coNP-hard.

6.2 Polynomially Solvable Special Cases

The proof of Theorem 6.1 shows that problem (5) is intractable even for very restricted instances of the entailing polyhedral set, such as the case in which it is simply consisting of lower and upper bounds on parameters. On the other hand, Theorem 4.1 shows that if there is no parameter in the entailing polyhedral set, then the problem is in \mathbf{P}. It is then natural to concentrate on syntactic restrictions of the entailed polyhedral set. An immediate tractable case is when the entailed polyhedral set has no parameters at all, namely when \mathbf{r} is empty.
Lemma 6.1 Problem (5) is in \mathbf{P} if there is no constraint in the parameters of \mathbf{r}.
Proof: Under the hypothesis, problem (5) reduces to:

$$
\forall \mathbf{s} \forall \mathbf{x}[\mathbf{A} \cdot \mathbf{x} \leq \mathbf{b}+\mathbf{N} \cdot \mathbf{s} \rightarrow \mathbf{C} \cdot \mathbf{x} \leq \mathbf{d}]
$$

which turns out to be an instance of $\langle 0, \forall, \mathbf{B}\rangle$, which is in \mathbf{P} (Subramani 2009)

This result is generalized as follows.
Lemma 6.2 Problem (5) is in \mathbf{P} if no column of \mathbf{M} has both positive and negative values.
Proof: Let $c p_{1}$ denote the left-hand side and $c p_{2}$ the righthand side of the implication. Hence, $c p_{1}=\mathbf{A} \cdot \mathbf{x} \leq$ $\mathbf{b}+\mathbf{N} \cdot \mathbf{s}$ and $c p_{2}=\mathbf{C} \cdot \mathbf{x} \leq \mathbf{d}+\mathbf{M} \cdot \mathbf{r}+\mathbf{P} \cdot \mathbf{s}$.

Let \mathbf{M}^{\prime} be obtained by replacing every non-zero value in \mathbf{M} with 1 . We claim that (5) holds if and only if

$$
\begin{equation*}
\forall \mathbf{s} \exists \mathbf{r}^{\prime} \forall \mathbf{x}\left[\mathbf{A} \cdot \mathbf{x} \leq \mathbf{b}+\mathbf{N} \cdot \mathbf{s} \rightarrow \mathbf{C} \cdot \mathbf{x} \leq \mathbf{d}+\mathbf{M}^{\prime} \cdot \mathbf{r}^{\prime}\right] \tag{6}
\end{equation*}
$$

holds. For a column \mathbf{m}_{i} in \mathbf{M}, let m_{i}^{l} be the maximum nonzero value in \mathbf{m}_{i} and m_{i}^{s} be the minimum non-zero value in it (if \mathbf{m}_{i} contains only zero's, then the parameter \mathbf{r}_{i} never appears, hence \mathbf{m}_{i} can be discarded from \mathbf{M}). By assumption, $\operatorname{sgn}\left(m_{i}^{l}\right)=\operatorname{sgn}\left(m_{i}^{s}\right)$, where $\operatorname{sgn}()$ is the sign function.
(Only-if part) Fixed \mathbf{s}, let \mathbf{r} be such that (5) holds. We set $r_{i}^{\prime}=m_{i}^{l} r_{i}$ if $r_{i} \geq 0$ and $\operatorname{sgn}\left(m_{i}^{l}\right)=1 ; r_{i}^{\prime}=m_{i}^{s} r_{i}$ if $r_{i} \geq 0$ and $\operatorname{sgn}\left(m_{i}^{l}\right)=-1 ; r_{i}^{\prime}=m_{i}^{s} r_{i}$ if $r_{i}<0$ and $\operatorname{sgn}\left(m_{i}^{l}\right)=1$; $r_{i}^{\prime}=m_{i}^{l} r_{i}$ if $r_{i}<0$ and $\operatorname{sgn}\left(m_{i}^{l}\right)=-1$. With this settings, for every $a r_{i}$ appearing in $\mathbf{M} \cdot \mathbf{r}$, we have $a r_{i} \leq r_{i}^{\prime}$, hence $\mathbf{M} \cdot \mathbf{r} \leq \mathbf{M}^{\prime} \cdot \mathbf{r}^{\prime}$. This implies $\mathbf{C} \cdot \mathbf{x} \leq \mathbf{d}+\mathbf{M} \cdot \mathbf{r} \leq$ $\mathbf{d}+\mathbf{M}^{\prime} \cdot \mathbf{r}^{\prime}$, hence (6) holds as well.
(If part) Fixed \mathbf{s}, let \mathbf{r}^{\prime} be such that 6 holds. We set $r_{i}=r_{i}^{\prime} / m_{i}^{s}$ if $r_{i}^{\prime} \geq 0$ and $\operatorname{sgn}\left(m_{i}^{l}\right)=1 ; r_{i}=r_{i}^{\prime} / m_{i}^{l}$ if $r_{i}^{\prime} \geq 0$ and $\operatorname{sgn}\left(m_{i}^{l}\right)=-1 ; r_{i}=r_{i}^{\prime} / m_{i}^{l}$ if $r_{i}^{\prime}<0$ and $\operatorname{sgn}\left(m_{i}^{l}\right)=1 ; r_{i}=r_{i}^{\prime} / m_{i}^{s}$ if $r_{i}^{\prime}<0$ and $\operatorname{sgn}\left(m_{i}^{l}\right)=-1$. With this settings, for every r_{i}^{\prime} appearing in $\mathbf{M}^{\prime} \cdot \mathbf{r}^{\prime}$, we have $r_{i}^{\prime} \leq a r_{i}$ for any non-zero coefficient a appearing in $\mathbf{M} \cdot \mathbf{r}$, hence $\mathbf{M}^{\prime} \cdot \mathbf{r}^{\prime} \leq \mathbf{M} \cdot \mathbf{r}$. This implies $\mathbf{C} \cdot \mathbf{x} \leq \mathbf{d}+\mathbf{M}^{\prime} \cdot \mathbf{r}^{\prime} \leq$ $\mathbf{d}+\mathbf{M} \cdot \mathbf{r}$, hence (5) holds as well.

We now claim that (6) holds if and only if $\mathbf{A} \cdot \mathbf{x} \leq$ $\mathbf{b}+\mathbf{N} \cdot \mathbf{s}$ is unsatisfiable (as a linear system in \mathbf{x}, \mathbf{s}) or the following holds:

$$
\begin{equation*}
\exists \mathbf{r}^{\prime \prime} \forall \mathbf{x}\left[\mathbf{A} \cdot \mathbf{x} \leq \mathbf{0} \rightarrow \mathbf{C} \cdot \mathbf{x} \leq \mathbf{d}+\mathbf{M}^{\prime} \cdot \mathbf{r}^{\prime \prime}\right] \tag{7}
\end{equation*}
$$

(Only-if part) If $\mathbf{A} \cdot \mathbf{x} \leq \mathbf{b}+\mathbf{N} \cdot \mathbf{s}$ is unsatisfiable, we are done. Otherwise, let s_{0} be such that there exists \mathbf{x}_{0} with $\mathbf{A} \cdot \mathbf{x}_{\mathbf{0}} \leq \mathbf{b}+\mathbf{N} \cdot \mathbf{s}_{\mathbf{0}}$. By hypothesis, there exists \mathbf{r}^{\prime} such that $\forall \mathbf{x}\left[\mathbf{A} \cdot \mathbf{x} \leq \mathbf{b}+\mathbf{N} \cdot \mathbf{s}_{\mathbf{0}} \rightarrow \mathbf{C} \cdot \mathbf{x} \leq\right.$
$\left.\mathbf{d}+\mathbf{M}^{\prime} \cdot \mathbf{r}^{\prime}\right]$ holds. Due to the form of \mathbf{M}^{\prime} this is equivalent to $\mathbf{d}+\mathbf{M}^{\prime} \cdot \mathbf{r}^{\prime} \geq \max \left\{\mathbf{C} \cdot \mathbf{x} \mid \mathbf{A} \cdot \mathbf{x} \leq \mathbf{b}+\mathbf{N} \cdot \mathbf{s}_{\mathbf{0}}\right\}$. By well-known results on linear programs (see e.g., Corollary 3.1 from (Murty 1983), the property of (un)boundedness for the non-empty linear system $\mathbf{A} \cdot \mathbf{x} \leq \mathbf{b}+\mathbf{N} \cdot \mathbf{s}_{\mathbf{0}}$ holds iff it holds for its cone $\mathbf{A} \cdot \mathbf{x} \leq \mathbf{0}$. Hence, there exists $\mathbf{r}^{\prime \prime}$ such that $\mathbf{d}+\mathbf{M}^{\prime} \cdot \mathbf{r}^{\prime \prime} \geq \max \{\mathbf{C} \cdot \mathbf{x} \mid \mathbf{A} \cdot \mathbf{x} \leq \mathbf{0}\}$, i.e., (7) holds.
(If part) If $\mathbf{A} \cdot \mathbf{x} \leq \mathbf{b}+\mathbf{N} \cdot \mathbf{s}$ is unsatisfiable, (6) clearly holds. If it is satisfiable, let \mathbf{s}_{0} be such that $\mathbf{A} \cdot \mathbf{x} \leq$ $\mathbf{b}+\mathbf{N} \cdot \mathbf{s}_{\mathbf{0}}$ is satisfiable. Again by (Murty 1983) [Corollary 3.1], the assumption that there exists $\mathbf{r}^{\prime \prime}$ such that $\mathbf{d}+\mathbf{M}^{\prime} \cdot \mathbf{r}^{\prime \prime} \geq \max \{\mathbf{C} \cdot \mathbf{x} \mid \mathbf{A} \cdot \mathbf{x} \leq \mathbf{0}\}$ implies that for some $\mathbf{r}^{\prime}, \mathbf{d}+\overline{\mathbf{M}}^{\prime} \cdot \mathbf{r}^{\prime} \geq \max \left\{\mathbf{C} \cdot \mathbf{x} \mid \mathbf{A} \cdot \mathbf{x} \leq \mathbf{b}+\mathbf{N} \cdot \mathbf{s}_{\mathbf{0}}\right\}$, i.e. $\exists \mathbf{r}^{\prime} \forall \mathbf{x} \quad\left[\mathbf{A} \cdot \mathbf{x} \leq \mathbf{b}+\mathbf{N} \cdot \mathbf{s}_{\mathbf{0}} \rightarrow \mathbf{C} \cdot \mathbf{x} \leq \mathbf{d}+\mathbf{M}^{\prime} \cdot \mathbf{r}^{\prime}\right]$ holds. Since this is true for any \mathbf{s}_{0}, we conclude that (6) holds.

Summarizing, we have reduced our original problem to showing the feasibility of $\mathbf{A} \cdot \mathbf{x} \leq \mathbf{b}+\mathbf{N} \cdot \mathbf{s}$, which is a polynomial time problem, and (7), which is in \mathbf{P} by Theorem4.1. \square

An interval constraint on a variable x is a constraint of the form $l \leq x \leq u$. The case where the entailing polyhedral set includes only interval constraints is presented below.

Lemma 6.3 Problem (5) is in \mathbf{P} if each constraint in $\mathbf{A} \cdot \mathbf{x} \leq \mathbf{b}+\mathbf{N} \cdot \mathbf{s}$ is an interval constraint.

Proof: Note that if constraints in $\mathbf{A} \cdot \mathbf{x} \leq \mathbf{b}+\mathbf{N} \cdot \mathbf{s}$ contain only one variable or only one parameter, then constraints involving only parameters from s can be ignored; this is because there is no interaction between the vectors \mathbf{s} and x at all and, hence, the only influence such constraints can have on the problem is to make it trivially easy (if no s can satisfy $\mathbf{A} \cdot \mathbf{x} \leq \mathbf{b}+\mathbf{N} \cdot \mathbf{s}$.)

Thus we have that each element x_{i} of \mathbf{x} is simply bound by an interval $l_{i} \leq x_{i} \leq u_{i}$ which means that $\mathbf{A} \cdot \mathbf{x} \leq \mathbf{b}+\mathbf{N} \cdot \mathbf{s}$ is equivalent to $\mathbf{x} \in[\mathbf{l}, \mathbf{u}]$ and so $\forall \mathbf{s} \exists \mathbf{r} \forall \mathbf{x}[\mathbf{A} \cdot \mathbf{x} \leq \mathbf{b}+\mathbf{N} \cdot \mathbf{s} \rightarrow \mathbf{C} \cdot \mathbf{x} \leq \mathbf{d}+\mathbf{M} \cdot \mathbf{r}]$ is equivalent to saying $\exists \mathbf{r} \forall \mathbf{x} \in[\mathbf{l}, \mathbf{u}] \mathbf{C} \cdot \mathbf{x} \leq \mathbf{d}+\mathbf{M} \cdot \mathbf{r}$ which is in P .

Problem $\langle 2, \forall, \mathbf{L R B}\rangle$ also becomes tractable as soon as we prevent any connection between variables and parameters in the antecedent of the implication.

Lemma 6.4 Problem (5) is in \mathbf{P} if there is no constraint in the antecedent of the implication which includes both variables and parameters.

Proof: Let again $c p_{1}$ denote the left-hand side and $c p_{2}$ the right-hand side of the implication. Then, $c p_{1}=\mathbf{A} \cdot \mathbf{x} \leq$ $\mathbf{b}, \mathbf{N} \cdot \mathbf{s} \leq \mathbf{n}$ and $c p_{2}=\mathbf{C} \cdot \mathbf{x} \leq \mathbf{d}+\mathbf{M} \cdot \mathbf{r}$.

Hence, the problem consists of showing the validity of:

$\forall \mathbf{s} \exists \mathbf{r} \forall \mathbf{x}$

$$
\begin{equation*}
(\mathbf{N} \cdot \mathbf{s} \leq \mathbf{n} \wedge \mathbf{A} \cdot \mathbf{x} \leq \mathbf{b}) \rightarrow \mathbf{C} \cdot \mathbf{x} \leq \mathbf{d}+\mathbf{M} \cdot \mathbf{r} \tag{8}
\end{equation*}
$$

If $c p_{1}$ is unsatisfiable, the formula is always true. Hence, assume it is satisfiable. We build a linear program on \mathbf{r} as follows: For every row $\mathbf{c}_{\mathbf{i}}{ }^{T} \cdot \mathbf{x} \leq d_{i}+\mathbf{m}_{\mathbf{i}}{ }^{T} \cdot \mathbf{r}$ in $c p_{2}$, let d_{i}^{\prime}
be the solution of the linear program:

$$
\begin{aligned}
& \max \mathbf{c}_{\mathbf{i}}^{T} \mathbf{x} \\
& \mathbf{A} \cdot \mathbf{x} \leq \mathbf{b}
\end{aligned}
$$

If the linear system is unbounded (i.e., if at least one of the two sub-systems is unbounded), there cannot be any parameter instance \mathbf{u} of \mathbf{r} such that $\mathbf{c}_{\mathbf{i}}{ }^{T} \cdot \mathbf{x} \leq d_{i}+\mathbf{m}_{\mathbf{i}}{ }^{T} \cdot \mathbf{u}$ for every \mathbf{x} once \mathbf{s} has been fixed to any solution of $\mathbf{N} \cdot \mathbf{s} \leq \mathbf{n}$. Thus, (8) is false.

Assume now that all $d_{i}^{\prime} \mathbf{s}$ are finite, and let \mathbf{d}^{\prime} be the vector of all d_{i}^{\prime} s. We claim that 88 holds iff the following linear system on \mathbf{r} is feasible:

$$
\begin{equation*}
\mathbf{d}+\mathbf{M} \cdot \mathbf{r} \geq \mathbf{d}^{\prime} \tag{9}
\end{equation*}
$$

(If part) Let \mathbf{u} be such that $\mathbf{d}+\mathbf{M} \cdot \mathbf{u} \geq \mathbf{d}^{\prime}$. Since, by construction of \mathbf{d}^{\prime}, we have that $\forall \mathbf{x}[\mathbf{A} \cdot \mathbf{x} \leq \mathbf{b} \rightarrow \mathbf{C} \cdot \mathbf{x} \leq$ $\left.\mathbf{d}^{\prime}\right]$ holds, by transitivity the following also holds:

$$
\forall \mathbf{x}[\mathbf{A} \cdot \mathbf{x} \leq \mathbf{b} \rightarrow \mathbf{C} \cdot \mathbf{x} \leq \mathbf{d}+\mathbf{M} \cdot \mathbf{u}]
$$

By reintroducing existential quantifiers on \mathbf{r}, we have:

$$
\exists \mathbf{r} \forall \mathbf{x}[\mathbf{A} \cdot \mathbf{x} \leq \mathbf{b} \rightarrow \mathbf{C} \cdot \mathbf{x} \leq \mathbf{d}+\mathbf{M} \cdot \mathbf{r}]
$$

which implies (8).
(Only-if part) Since $c p_{1}$ is assumed to be satisfiable, there must exists \mathbf{s}_{0} such that $\mathbf{N} \cdot \mathbf{s}_{0} \leq \mathbf{n}$. By hypothesis, there exists \mathbf{r}_{0} such that

$$
\forall \mathbf{x}\left[\mathbf{A} \cdot \mathbf{x} \leq \mathbf{b} \wedge \mathbf{N} \cdot \mathbf{s}_{0} \leq \mathbf{n} \rightarrow \mathbf{C} \cdot \mathbf{x} \leq \mathbf{d}+\mathbf{M} \cdot \mathbf{r}_{0}\right]
$$

Since $\mathbf{N} \cdot \mathbf{s}_{0} \leq \mathbf{n}$ is true, this boils down to:

$$
\forall \mathbf{x}\left[\mathbf{A} \cdot \mathbf{x} \leq \mathbf{b} \rightarrow \mathbf{C} \cdot \mathbf{x} \leq \mathbf{d}+\mathbf{M} \cdot \mathbf{r}_{0}\right]
$$

Let us show that \mathbf{r}_{0} is a solution of 95. Consider a row $\mathbf{c}_{\mathbf{i}}{ }^{T}$. $\mathbf{x} \leq d_{i}+\mathbf{m}_{\mathbf{i}}^{T} \cdot \mathbf{r}$ of $c p_{2}$. By definition of \mathbf{r}_{0}, the following holds:

$$
\forall \mathbf{x}\left[\mathbf{A} \cdot \mathbf{x} \leq \mathbf{b} \rightarrow \mathbf{c}_{\mathbf{i}}^{T} \cdot \mathbf{x} \leq d_{i}+\mathbf{m}_{\mathbf{i}}^{T} \cdot \mathbf{r}_{0}\right]
$$

which implies:

$$
d+\mathbf{m}_{\mathbf{i}}^{T} \cdot \mathbf{r}_{0} \geq \max \left\{\mathbf{c}_{\mathbf{i}}^{T} \mathbf{x} \mid \mathbf{A} \cdot \mathbf{x} \leq \mathbf{b}\right\}
$$

By definition of \mathbf{d}^{\prime}, we conclude $\mathbf{d}+\mathbf{M} \cdot \mathbf{r}_{0} \geq \mathbf{d}^{\prime}$, hence (9) is satisfiable.

7 Conclusions

In this paper we introduced entailment for the class of parameterized linear constraints and studied its computational complexity. We focused on three different types of entailment, namely $\langle 1, \exists$, $\mathbf{R B}\rangle$ (which was shown in $\mathbf{P}),\langle 1, \exists, \mathbf{L B}\rangle$ (which was shown to be NP-hard), and $\langle 2, \forall, \mathbf{L R B}\rangle$ (which was shown to be coNP-hard). For the latter, we showed that it is reducible to the problem $\langle 2, \forall, \mathbf{B R B}\rangle$ (and vice versa). Also, we presented a special case which is still coNP-hard as well as several sub-classes for which the problem is in \mathbf{P}.

References

[Basu, Pollack, and Roy 1996] Basu, S.; Pollack, R.; and Roy, M.-F. 1996. On the combinatorial and algebraic complexity of quantifier elimination. Journal of the ACM 43(6):1002-1045.
[Borrelli, Bemporad, and Morari 2003] Borrelli, F.; Bemporad, A.; and Morari, M. 2003. Geometric algorithm for multiparametric linear programming. Journal of Optimization Theory and Applications 118(3):515-540.
[Brown 2003] Brown, C. W. 2003. QEPCAD B: A program for computing with semi-algebraic sets using CADs. ACM SIGSAM Bullettin 37(4):97-108.
[Cachera and Morin-Allory 2005] Cachera, D., and MorinAllory, K. 2005. Verification of safety properties for parameterized regular systems. ACM Transactions on Embedded Computing Systems 4(2):228-266.
[Cadoli and Schaerf 1996] Cadoli, M., and Schaerf, M. 1996. On the complexity of entailment in propositional multivalued logics. Annals of Mathematics and Artificial Intelligence 18(1):29-50.
[Collins and Hong 1991] Collins, G. E., and Hong, H. 1991. Partial cylindrical algebraic decomposition for quantifier elimination. Journal of Symbolic Computation 12(3):299328.
[Davenport and Heintz 1988] Davenport, J. H., and Heintz, J. 1988. Real quantifier elimination is doubly exponential. Journal of Symbolic Computation 5(1-2):29-35.
[Dolzmann and Sturm 1997] Dolzmann, A., and Sturm, T. 1997. REDLOG: Computer algebra meets computer logic. ACM SIGSAM Bullettin 31(2):2-9.
[Dolzmann, Sturm, and Weispfenning 1998a] Dolzmann, A.; Sturm, T.; and Weispfenning, V. 1998a. A new approach for automatic theorem proving in real geometry. Journal of Automated Reasoning 21(3):357-380.
[Dolzmann, Sturm, and Weispfenning 1998b] Dolzmann, A.; Sturm, T.; and Weispfenning, V. 1998b. Real quantifier elimination in practice. In Matzat, B. H.; Greuel, G.-M.; and Hiss, G., eds., Algorithmic Algebra and Number Theory. Springer. 221-248.
[Gal 1995] Gal, T. 1995. Postoptimal Analyses, Parametric Programming, and Related Topics. Berlin, Germany: de Gruyter and Co., 2nd edition.
[Gottlob, Greco, and Scarcello 2005] Gottlob, G.; Greco, G.; and Scarcello, F. 2005. The complexity of quantified constraint satisfaction problems under structural restrictions. In Kaelbling, L. P., and Saffiotti, A., eds., Proc. of Int. Joint Conf. on Artificial Intelligence (IJCAI 2005), 150-155. Professional Book Center.
[Greenberg 1996] Greenberg, H. J. 1996. Consistency, redundancy, and implied equalities in linear systems. Annals of Mathematics and Artificial Intelligence 17(1-2):37-83.
[Ioakimidis 2000] Ioakimidis, N. I. 2000. Derivation of feasibility conditions in engineering problems under parametric inequality constraints with classical fourier elimination. International Journal for Numerical Methods in Engineering 48(11):1583-1599.
[Karmarkar 1984] Karmarkar, N. K. 1984. A new polynomial-time algorithm for linear programming. Proceedings of the 16th Annual ACM Symposium on Theory of Computing 302-311.
[Khachiyan 1979] Khachiyan, L. G. 1979. A polynomial algorithm in linear programming. Doklady Akademiia Nauk SSSR 224:1093-1096. English Translation: Soviet Mathematics Doklady, Volume 20, pp. 1093-1096.
[Kvasnica et al. 2011] Kvasnica, M.; Grieder, P.; Baotic, M.; and Christophersen, F. 2011. Multi-Parametric Toolbox. Available at http://control.ee.ethz.ch/ mpt
[Kvasnica 2009] Kvasnica, M. 2009. Real-Time Model Predictive Control via Multi-Parametric Programming: Theory and Tools. VDM Verlag.
[Loechner and Wilde 1997] Loechner, V., and Wilde, D. K. 1997. Parameterized polyhedra and their vertices. International Journal of Parallel Programming 25:525-549.
[Loechner 2011] Loechner, V. 2011. Polylib: a library for manipulating parameterized polyhedra. Available at http://icps.u-strasbg.fr/polylib
[Murty 1980] Murty, K. G. 1980. Computational complexity of parametric linear programming. Mathematical Programming 19:213-219.
[Murty 1983] Murty, K. G. 1983. Linear Programming. Hoboken, NJ, USA: John Wiley \& Sons.
[Pistikopoulos, Georgiadis, and Dua 2007a] Pistikopoulos, E. N.; Georgiadis, M.; and Dua, V. 2007a. Multiparametric model-based control: Theory and applications, volume 2 of Process systems engineering series. Weinheim: Wiley-VCH.
[Pistikopoulos, Georgiadis, and Dua 2007b] Pistikopoulos, E. N.; Georgiadis, M.; and Dua, V. 2007b. Multi-parametric programming: Theory, algorithms and applications, volume 1 of Process systems engineering series. Weinheim: Wiley-VCH.
[Ratschan 2006] Ratschan, S. 2006. Efficient solving of quantified inequality constraints over the real numbers. ACM Transactions on Computational Logic 7(4):723-748.
[Ratschan 2011] Ratschan, S. 2011. Rsolver. Available at http://rsolver.sourceforge.net.
[Renegar 1992] Renegar, J. 1992. On the computational complexity and geometry of the first-order theory of the reals. Journal of Symbolic Computation 13(3):255-352.
[Ruggieri and Mesnard 2010] Ruggieri, S., and Mesnard, F. 2010. Typing linear constraints. ACM Transactions on Programming Languages and Systems 32(6).
[Schrijver 1987] Schrijver, A. 1987. Theory of Linear and Integer Programming. New York: John Wiley and Sons.
[Solares and Chaves 2008] Solares, C., and Chaves, E. W. V. 2008. Feasibility conditions in engineering problems involving a parametric system of linear inequalities. In Advances in Mathematical and Statistical Modeling, Statistics for Industry and Technology. Birkhuser Boston. 331-340.
[Subramani 2005] Subramani, K. 2005. Tractable fragments
of presburger arithmetic. Theory of Computing Systems 38(5):647-668.
[Subramani 2007] Subramani, K. 2007. On a decision procedure for quantified linear programs. Annals of Mathematics and Artificial Intelligence 51(1):55-77.
[Subramani 2009] Subramani, K. 2009. On the complexity of selected satisfiability and equivalence queries over boolean formulas and inclusion queries over hulls. Journal of Applied Mathematics and Decision Sciences (JAMDS) 2009:1-18.
[Vaidya 1987] Vaidya, P. M. 1987. An algorithm for linear programming which requires $O\left(\left((m+n) n^{2}+(m+\right.\right.$ $\left.n)^{1.5} n\right) L$) arithmetic operations. In Aho, A., ed., Proceedings of the 19th Annual ACM Symposium on Theory of Computing, 29-38. New York City, NY: ACM Press.
[Weispfenning 1988] Weispfenning, V. 1988. The complexity of linear problems in fields. Journal of Symbolic Computation 4(1-2):3-27.

[^0]: *This research was supported in part by the National Science Foundation through Award CCF-0827397 and Award CNS0849735.

