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Abstract

In this paper we discuss the computational complexities
of procedures for inclusion queries over polyhedral sets.
The polyhedral sets that we consider occur in a wide
range of applications, ranging from logistics to program
verification. The goal of our study is to establish bound-
aries between hard and easy problems in this context.

1 Introduction
Extending linear constraints by admitting parameters allows
for more abstract problem modelling and reasoning. How-
ever, how does the basic notion of constraint entailment ex-
tend in the presence of parameters? Does its computational
complexity become harder or intractable? In this paper, we
define entailment of parametric linear constraints and inves-
tigate its computational complexity.

Let us provide some intuition. We adhere to standard no-
tation of linear algebra (Schrijver 1987). < is the set of real
numbers. Small capital letters (a, b, . . . ) denote column vec-
tors, while capital letters (A, B, . . . ) denote matrices. 0 is
the column vector with all elements equal to 0. ai denotes
the ith element in a. aT denotes the transposed vector of a.
· denotes the inner product.

Consider two linear constraints (or, equivalently, two lin-
ear systems of inequalities) over the reals c1 = A · x ≤ b
and c2 = C · x ≤ d. c1 entails c2 if every solution of c1 is a
solution of c2, or, in logic formula, if ∀x [c1 → c2] is true
in the domain of the reals. Entailment for linear constraints
is a polynomial time decision problem (Subramani 2009).

A parameterized linear constraint over the reals is a sys-
tem of linear inequalities A · x ≤ b + N · s where vari-
ables in s are called parameters. We say that a parameter-
ized linear constraint cp1 = A · x ≤ b + N · s entails
cp2 = C · x ≤ d + M · r if for every parameter instance
s0 of s there exists an instance r0 of r such that the linear
system A · x ≤ b + N · s0 entails C · x ≤ d + M · r0.
Note that cp1 will be referred to as the entailing polyhedral
set, while cp2 as the entailed polyhedral set.

The rest of the paper is organized as follows. Section 2
discusses basic notions that will be used and the contribu-
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tion of the paper. Section 3 details the motivation and related
work. The complexities of different classes of entailment is
investigated in Sections 4, 5, and 6. Section 7 concludes the
paper.

2 Background and Contribution
A simple (unquantified) linear system is denoted as:

∃x ∈ < A · x ≤ b (1)

We assume that the dimensions of vectors and matrices in
inner products and linear systems are of the appropriate size.
Observe that System (1) represents a convex, polyhedral set
(Schrijver 1987).

An equivalent formulation of linear systems is provided
in terms of logic formulas over the reals. A primitive linear
constraint is an expression a1 ·x1 + . . . an ·xn ≤ a0, where
a0, . . . , an are constants in < and x1, . . . , xn are variables.
We will also use the inner product form by rewriting it as
cT ·x ≤ α. A linear constraint c is a conjunction of primitive
constraints. Conjunction is syntactically represented either
by “∧” or by a comma. Inequalities cT ·x ≥ α and equalities
cT · x = α can be reduced to linear constraints.

A system of linear inequalities A · x ≤ b + B · s is a pa-
rameterized linear system over <; variables in s are referred
to as parameters. The semantics of a parameterized linear
system is then a collection of linear systems over variables
in x, each obtained by instantiating the parameters s. The
solutions of parameterized linear systems are modeled by
the notion of parameterized polyhedra (Loechner and Wilde
1997).

Quantified Linear Programming (QLP) was introduced in
(Subramani 2007). A quantified linear program is a linear
system in which the program variables can be either existen-
tially quantified or universally quantified. A typical quanti-
fied linear program will have the form:

∃x1 ∀y1 ∈ [l1, u1] . . . ∃xn ∀yn ∈ [ln, un]

A · x + N · y ≤ b

where, possibly, x1 and/or yn are empty, and li, ui are lower
and upper bounds in the reals for yi, i = 1, . . . , n. An exam-
ple of a quantified linear program is the following:

∃x1 ∀y1 ∈ [1, 4] ∃x2 x1 + y1 + x2 ≥ 4

3x1 − 5y1 ≤ −5



Two special cases of the QLP problem have also been
studied in (Subramani 2007). In particular, the E-QLP prob-
lem, which is of the form ∃x ∀y ∈ [l,u] Ax ≤ b (shown
to be in P), and the F-QLP problem, which is of the form
∀y ∈ [l,u] ∃x A[x y] ≤ b (shown to be coNP-complete).
Note that y ∈ [l,u] denotes li ≤ yi ≤ ui,∀i = 1, . . . , n.

We extend the quantification to implications of linear sys-
tems. A typical quantified linear implication has the follow-
ing form:

∃x1 ∀y1 ∃x2 ∀y2 . . . ∃xn ∀yn
A · x + N · y ≤ b → C · x + M · y ≤ d

where, possibly, x1 and/or yn are empty. Let us introduce a
nomenclature to succinctly specify the problems under con-
sideration. We use a triple 〈A,Q,R〉 to denote the number
A of quantifier alternations, the first quantifier Q , and an
(A+ 1)-character string which specifies for each quantified
set of variables whether they possibly appears Left, Right,
or on Both sides of the implication. For instance, 〈1,∃,RB〉
indicates a problem of the form:

∃y ∀x [A · x ≤ b→ C · x + M · y ≤ d]

A quantified linear implication is said to hold if it is true
as a first-order sentence over the real numbers.

The principal contributions of this paper are briefly pre-
sented below:

• Problem 〈1, ∃, RB〉 is in P (Section 4).

• Problem 〈1, ∃, LB〉 is NP-hard (Section 5).

• Problem 〈2, ∀, LRB〉 is coNP-hard (Section 6).

• Problem 〈2, ∀, LRB〉 is reducible to problem
〈2, ∀, BRB〉 and vice versa (Section 6).

• A special case of problem 〈2, ∀, LRB〉 is presented
which is still coNP-hard (Section 6.1).

• Several sub-classes of problem 〈2, ∀, LRB〉 are shown
to be in P (Section 6.2).

3 Motivation and Related Work
Parameterized linear systems are an extension of linear sys-
tems that trace back to late 60’s in the context of (multi-
)parametric linear programming, where the objective is to
optimize a parameterized linear or quadratic function over
the solutions of a parameterized linear system. Parametric
linear programming differentiates from sensitivity analysis,
which provides solutions in the neighborhood of the nom-
inal value of the varying parameters, by providing a com-
plete map of the optimal solution in the space of the vary-
ing parameters. Parametric linear programming has a solid
theoretical basis (see (Gal 1995; Pistikopoulos, Georgiadis,
and Dua 2007b)), and a wide range of applications, includ-
ing hybrid parametric/stocastic programming, process plan-
ning under uncertainty, material design under uncertainty,
model based control, multi-processor scheduling (see (Kvas-
nica 2009; Pistikopoulos, Georgiadis, and Dua 2007a)).

Besides linear programming problems, parameterized
systems are recently gaining interest from several other

research communities. They have been adopted for: sym-
bolic dependence analysis in computing a parallel schedule
((Loechner and Wilde 1997)); fracture mechanics and engi-
neering ((Ioakimidis 2000; Solares and Chaves 2008)); hard-
ware verification ((Cachera and Morin-Allory 2005)); type
systems for constraint programming ((Ruggieri and Mes-
nard 2010)).

The explicit calculation of the solutions of a parameter-
ized system of inequalities, represented in a Minkowski’s
sum of rays and parameterized vertices, can be computed
by a generalization of the double description method, as de-
scribed in (Loechner and Wilde 1997). The polylib li-
brary (Loechner 2011) implements the approach, and it pro-
vides basic set-oriented primitives for manipulating the so-
lutions of parameterized linear systems. In the context of
parametric linear programming, The Multi-Parametric Tool-
box ((Kvasnica 2009; Kvasnica et al. 2011)) solves paramet-
ric linear and quadratic programming problems by explicitly
computing the optimization function over the solutions of a
parameterized linear system.

While the above research and tools demonstrate the use-
fulness of parameterized linear systems, to the best of our
knowledge, there is no approach that consider primitives
for reasonings over them, and in particular entailment. As
an example, linear constraint-based languages and systems
(such as constraint logic programming systems CLP(R),
ECLiPSe, Sictus Prolog, SWI Prolog) could be readily ex-
tended to reason on parameterized linear systems by using
satisfiability and entailment as building blocks. It is then of
outermost importance to understand and characterize com-
putational complexity of the entailment problem for param-
eterized linear constraints. This basic issue motivates our
work.

Polynomial time complexity for the satisfiability of linear
systems was firstly achieved by (Khachiyan 1979), with fur-
ther improvements by (Karmarkar 1984) and (Vaidya 1987).
Entailment of non-parameterized linear systems is in P. A
formal proof of the intuition provided in the introduction is
due to (Subramani 2009). Unfortunately, a direct extension
of the procedure to parameterized linear system by using
parametric linear programming does not work. In fact, the
optimal solution of a parametric linear programming prob-
lem is a piecewise affine function defined over a polyhedral
partition of the feasible parameters (Borrelli, Bemporad, and
Morari 2003). Such a function can be exponentially large in
the size of the linear program, even if there is only one pa-
rameter (Murty 1980).

Computational complexity of satisfiability and entailment
has been considered also in close domains (without param-
eters). Satisfiability of quantified linear systems is covered
by (Subramani 2007). The integer case is detailed in (Subra-
mani 2005). Quantified constraint satisfaction problems are
investigated by (Gottlob, Greco, and Scarcello 2005). Entail-
ment of binary and multi-valued propositional logics is in-
vestigated by (Cadoli and Schaerf 1996). (Subramani 2005)
covers entailment of linear systems over integers.

Quantified logic formulas over the reals can be solved
by quantifier elimination methods (see (Dolzmann, Sturm,
and Weispfenning 1998b; Weispfenning 1988)). Although



its complexity has been improved several times ((Renegar
1992; Basu, Pollack, and Roy 1996)), in the worst case
quantifier elimination is doubly exponential in the number
of quantifier alternation and exponential in the number of
variables (see (Davenport and Heintz 1988; Weispfenning
1988)). Nevertheless, efficient-in-practice approaches have
been proposed and successfully applied to theorem prov-
ing and program verification. We mention partial cylindri-
cal algebraic decomposition by (Collins and Hong 1991)
and provided in the QEPCAD/QEPCAD-B systems ((Brown
2003)); virtual substitution of test terms by (Dolzmann,
Sturm, and Weispfenning 1998a) provided in the REDLOG
system ((Dolzmann and Sturm 1997)), which is specialized
for low-degree polynomials; and, finally, the RSolver algo-
rithm by (Ratschan 2006) whose implementation is publicly
available ((Ratschan 2011)).

4 Problem 〈1, ∃, RB〉
First, we analyze the complexity of a quantified linear impli-
cation of the form 〈1, ∃, RB〉, i.e., problems of the form:

∃r ∀x [A · x ≤ b→ C · x ≤ d + M · r] (2)

This implication can be read as whether there exist param-
eter instances r such that the instance of the parameterized
polyhedron C·x ≤ d+M·r includes the non-parameterized
one A · x ≤ b. We will show that this problem is in P. The
following observation is crucial to our proof.
Lemma 4.1 The set R = {r : ∀ x [A · x ≤ b → C · x ≤
d + M · r]} is convex.
Proof: Assume otherwise and consider the set H = {x :
A · x ≤ b}, and the set Kr = {x : C · x ≤ d + M · r}.
Let r1, r2 ∈ R and let r3 be a convex combination of r1
and r2, i.e., for some 0 ≤ α ≤ 1, r3 = αr1 + (1 − α)r2.
Further, assume that r3 6∈ R, thus we have that H ⊆ Kr1
and H ⊆ Kr2 but H 6⊆ Kr3 . Thus there exists an x0 such
that x0 ∈ H (which also implies that x0 ∈ Kr1 and x0 ∈
Kr2 ), while x0 6∈ Kr3 .

Let us consider the linear program (LP): C · x0 ≤
d + M · r with respect to r. Since x0 ∈ Kr1 and x0 ∈ Kr2
we have that r1 and r2 must satisfy this LP. However, since
the solution space to an LP is convex, r3 must also solve this
LP, which contradicts the assumption that r 6∈ R. Hence, R
is convex. 2

The next theorem completes our proof.
Theorem 4.1 The problem 〈1, ∃, RB〉 is in P.
Proof: We want to show that quantified linear implications
of the form (2) are in P.

First, note that if A · x ≤ b is infeasible, the formula is
always true.

Otherwise, we build an LP on r as follows. For every row
ci of C, let d′i be the solution to the LP:

max ci
T · x

A · x ≤ b

Let di be the ith element of d. Then, if d′i is infinite, there is
no value of r for which

ci
T · x ≤ di + mi

T · r

is true for all x that satisfy A · x ≤ b. Thus, if any of the d′i
are infinite, System (2) is infeasible.

Consider now the case in which all the d′i are finite; let
vector g = d′ − d. We create the following LP:

M · r ≥ g (3)

If this LP is feasible, there exists a vector r′ such that
M · r′ + d ≥ d′. Consider the ith constraint in this system,
i.e., mi

T · r′ + di ≥ d′i. By construction

∀x [A · x ≤ b→ ci
T · x ≤ d′i]

Thus, we have that

∀x [A · x ≤ b→ ci
T · x ≤mi

T · r′ + di]

Since this holds for each constraint, we have that

∀x [A · x ≤ b→ C · x ≤M · r′ + d]

Hence, System (2) holds if System (3) is feasible.
We will show that if all d′is are finite, System (3) is always

feasible (and thus System (2) holds). Recall that for system
(2) to hold, either A · x ≤ b is infeasible or we can construct
vector d′ and there exists a vector r′ such that

∀x [A · x ≤ b→ C · x ≤M · r′ + d]

Let us consider the ith constraint of C · x ≤M · r′ + d,
namely ci

T · x ≤mi
T · r′ + d. Then we have that

∀x [A · x ≤ b→ ci
T · x ≤mi

T · r′ + d]

Thus
max
A·x≤b

(ci
T · x) ≤mi

T · r′ + di

But, by construction, d′i = maxA·x≤b(ci
T · x) and so d′i ≤

mi
T · r′ + di. Since this holds for every constraint, System

(3) is always satisfiable.
To complete the proof, note that in order to decide Sys-

tem (2), we first solve A · x ≤ b (which is in P). If it is
infeasible, System (2) holds. If it is feasible, we then solve
at most n LPs maxA·x≤b ci

T · x, i = 1, 2, ..., n, where n is
the number of constraints in C · x ≤ d + M · r. If all such
LPs have a finite solution, System (2) holds; otherwise, it
does not hold. Since n is finite and each LP is solvable in P,
this part is also in P. The result follows. 2

5 Problem 〈1, ∃, LB〉
Next, we examine quantified linear implications of the form
〈1, ∃, LB〉, i.e., problems of the form:

∃r ∀x [A · x ≤ b + N · r→ C · x ≤ d] (4)

We will show that such implications are NP-Hard by prov-
ing that 3SAT can be reduced to it.

Theorem 5.1 The problem 〈1, ∃, LB〉 is NP-Hard
Proof: We want to show that quantified linear implications
of the form (4) are NP-hard.

Given a 3SAT instance φ, we wish to produce a corre-
sponding implication of the form 〈1, ∃, LB〉 which holds
if and only if φ is satisfiable. Let E represent the set of



constraints A · x ≤ b + N · r and F the set of constraints
C · x ≤ d. Consider an instance of 3SAT in Conjunc-
tive Normal Form with n variables yi, i ∈ {1, ..., n} and
m clauses φj , j = {1, ...,m}, i.e., a 3SAT formula φ =
φ1 ∧ φ2 ∧ ...∧ φm on the literals {y1, ȳ1, y2, ȳ2, ..., yn, ȳn}.
We reduce it to an implication of the form 〈1, ∃, LB〉 as
follows:

For each variable xi in the instance of 3SAT we add an
existentially quantified variable ri and a universally quan-
tified variable xi. We also add the constraints xi ≤ ri and
xi ≤ 1 − ri to E and the constraint xi ≤ 0 to F . These
constraints are equivalent to x ≤ min(ri, 1− ri)→ xi ≤ 0.
This forces ri ≥ 1 or ri ≤ 0.

For each clause φj in the instance of 3SAT, we add
the universally quantified variable xn+j and the constraint
xn+j ≥ 1 to F . Then, depending on the form of the clause
φj , we do one of the following:

1. If φj = (yi, yk, yl), we add the constraint xn+j ≥ ri +
rk + rl to E.

2. If φj = (yi, yk, ȳl), we add the constraint xn+j ≥ ri +
rk + (1− rl) to E.

3. If φj = (yi, ȳk, ȳl), we add the constraint xn+j ≥ ri +
(1− rk) + (1− rl) to E.

4. If φj = (ȳi, ȳk, ȳl), we add the constraint xn+j ≥ (1 −
ri) + (1− rk) + (1− rl) to E.

It is obvious that the resultant implication is of the form
〈1, ∃, LB〉. For example, the following instance of 3SAT

(x1, x2, x̄3), (x̄2, x3, x̄4)

becomes

∃r1 ∃r2 ∃r3 ∃r4 ∀x1 ∀x2 ∀x3 ∀x4 ∀x5 ∀x6
x1 ≤ r1, x1 ≤ 1− r1 x1 ≤ 0

x2 ≤ r2, x2 ≤ 1− r2 x2 ≤ 0

x3 ≤ r3, x3 ≤ 1− r3 → x3 ≤ 0

x4 ≤ r4, x4 ≤ 1− r4 x4 ≤ 0

x5 ≥ r1 + r2 + (1− r3) x5 ≥ 1

x6 ≥ (1− r2) + r3 + (1− r4) x6 ≥ 1

Consider an assignment y to the clause set φ which sat-
isfies φj for each j ∈ 1, ...,m. This means that at least one
of the literals in each φj is true. Without loss of general-
ity, assume that yk is in φj and yk = true. In the resultant
〈1, ∃, LB〉 instance, we set rk = 1. This forces xn+j to be
at least 1, in order to satisfy its corresponding constraint (see
1-4 above); for example, xn+j ≥ ri + rk + (1− rl). Hence,
whenever an assignment satisfies φj , then also xn+j ≥ 1,
thus satisfying the corresponding constraint of the set of con-
straints F. Moreover, since ri ∈ {0, 1}, we have xi ≤ 0
for all i ∈ {1, ..., n}, thus satisfying the corresponding con-
straint of F (xi ≤ 0). Therefore, if φ is satisfiable, the resul-
tant 〈1, ∃, LB〉 implication holds.

On the other hand, consider an assignment y′ to the clause
set φ which does not satisfy φj (and hence φ). This means
that the constraint corresponding to φj , for example xn+j ≥
ri + rk + (1− rl), will set xn+j ≥ 0. But then the resultant

〈1, ∃, LB〉 implication does not hold, since there exists
xn+j , with 0 ≤ xn+j < 1, such that E is feasible and F is
infeasible.

Now consider the case that the resultant 〈1, ∃, LB〉 im-
plication holds. Since each ri satisfies ri ≥ 1 or ri ≤ 0,
the constraints 1-4 given above on xn+j are equivalent to
forcing each one of the ri ≥ 1 (thereby setting yi to true)
and thus the φj clauses to be true, and hence φ to be true.
If, on the other hand, the implication does not hold, then at
least one of the constraints 1-4 sets xn+j ≥ 0, allowing all
literals of clause φj to be false, which also makes φj (and
hence φ) false.

Thus, the 3SAT problem can be reduced to the resultant
implication, which is of the form 〈1, ∃, LB〉. 2

6 Problem 〈2, ∀, LRB〉
We will now focus on the problems of the form
〈2, ∀, LRB〉, i.e., problems of the form:

∀s ∃r ∀x [A · x ≤ b + N · s→ C · x ≤ d + M · r] (5)

Theorem 6.1 The problem 〈2, ∀, LRB〉 is coNP-hard.

Proof: We want to show that quantified linear implications
of the form (5) are coNP-hard.

Consider an instance of the F-QLP problem:

∀s ∈ [l,u] ∃r C · s−M · r ≤ d

The problem of checking validity of such a class of formulas
is coNP-complete (Subramani 2007). This problem will be
reduced to a problem of the form (5) as follows: For each si
of s, add xi such that s = x. We create the following equiv-
alent implication using elementary logical properties:

∀s ∃r ∀x [(x = s ∧G · s ≤ h)→ C · x ≤ d + M · r]

where G · s ≤ h captures s ∈ [l,u]. It is easy to see that the
initial F-QLP problem is satisfied if and only if the resultant
〈2, ∀, LRB〉 problem is satisfied: If there exists s, with
s ∈ [l,u], such that x = s is included in C · x ≤ d + M · r
(i.e., C · s ≤ d + M · r is satisfied for s ∈ [l,u]), then the
corresponding F-QLP will be satisfied as well. On the other
hand, if the F-QLP is satisfied, then since x = s the corre-
sponding implication will also be satisfied. The result fol-
lows. 2

We show that solving an instance of the problem
〈2, ∀, LRB〉 is equivalent to solving the corresponding
instance of the problem 〈2, ∀, BRB〉.
Theorem 6.2 The validity problems for the classes of for-
mulas 〈2,∀,BRB〉 and 〈2,∀,LRB〉 are polynomial-time
reducible to each other.

Proof: Every instance of the form 〈2,∀,LRB〉 is also in
〈2,∀,BRB〉; that is, an instance of the form (5) can be
rewritten as:

∀s ∃r ∀x [A · x ≤ b + N · s→ C · x ≤ d + M · r + 0 · s]
which is clearly of the form 〈2,∀,BRB〉.

On the other hand, consider a problem 〈2,∀,BRB〉, i.e.,
a problem of the form:

∀s ∃r ∀x [A · x ≤ b + N · s→ C · x ≤ d + M · r + P · s]



It is readily checked that it holds if and only if the following
formula holds:

∀s ∃r ∀x ∀x′

(A · x ≤ b + N · s ∧ x′ = s)→ C · x−P · x′ ≤ d + M · r

where the newly introduced variables included in vector x′
are constrained to assume the values of the parameters in s.
Since the formula above is of the form (5), and it is clearly
obtained in linear time, we have that 〈2,∀,BRB〉 reduces
in polynomial time to 〈2,∀,LRB〉. 2

6.1 A coNP-hard Special Case
A difference constraint is a constraint of the form xi−xj ≤
bij . We present a special case of problem 〈2,∀,LRB〉which
is still coNP-hard, although the entailing polyhedral set
consists only of difference constraints.
Theorem 6.3 Problem (5) is coNP-hard even if
A · x ≤ b + N · s is restricted to difference constraints.

Proof: Consider an instance of the F-QLP problem:

∀z ∈ [l,u] ∃y C · z ≤ d + M · y

Recall that the problem of checking validity of such a class
of formulas is coNP-complete (Subramani 2007). We can
reduce this problem to an instance of the form (5) with
A · x ≤ b + N · s being restricted to difference constraints
as follows:

1. Add the constraints x1 − s1 ≤ 0 and s1 − x1 ≤ 0 to
A · x ≤ b + N · s.

2. For each element zi of z, add the constraints xi+1 −
si+1 ≤ 0, si+1 − xi+1 ≤ 0, si+1 − s1 ≤ ui, and
si+1 − s1 ≥ li to A · x ≤ b + N · s.

3. Let vector x′ be such that x′i = xi+1 − x1.
4. Let vector s′ be such that s′i = si+1 − s1.
5. Create the instance ∀s ∃r ∀x [A · x ≤ b + N · s →

C · x′ ≤ d + M · r].
In this instance, we have that A · x ≤ b + N · s can

only be satisfied if x = s and li ≤ si+1 − s1 = s′i ≤
ui. Thus, for the constructed instance to be satisfiable,
C · x′ ≤ d + M · r must also hold when x′ = s′ and li ≤
s′i ≤ ui. By replacing x′ with s′ in this system of constraints,
we get that ∀s′ ∈ [l,u] ∃r C · s′ ≤ d + M · r must also be
satisfiable.

Similarly, if the constructed instance is unsatisfiable, there
must exist an s such that

∀r ∃x [A · x ≤ b + N · s→ C · x′ 6≤ d + M · r]

Recall that li ≤ s′i ≤ ui and the only value of x which
can satisfy A · x ≤ b + N · s is x = s. Hence, we must
have that ∀r C · s′ 6≤ d + M · r, which means that ∀s′ ∈
[l,u] ∃r C · s′ ≤ d + M · r is also unsatisfiable.

Thus we can reduce F-QLP to an instance of this spe-
cial case of 〈2,∀,LRB〉, which means that even when
A · x ≤ b + N · s is restricted to difference constraints,
〈2,∀,LRB〉 is still coNP-hard. 2

6.2 Polynomially Solvable Special Cases
The proof of Theorem 6.1 shows that problem (5) is in-
tractable even for very restricted instances of the entailing
polyhedral set, such as the case in which it is simply con-
sisting of lower and upper bounds on parameters. On the
other hand, Theorem 4.1 shows that if there is no parameter
in the entailing polyhedral set, then the problem is in P. It
is then natural to concentrate on syntactic restrictions of the
entailed polyhedral set. An immediate tractable case is when
the entailed polyhedral set has no parameters at all, namely
when r is empty.

Lemma 6.1 Problem (5) is in P if there is no constraint in
the parameters of r.

Proof: Under the hypothesis, problem (5) reduces to:

∀s ∀x [A · x ≤ b + N · s→ C · x ≤ d]

which turns out to be an instance of 〈0, ∀,B〉, which is in P
(Subramani 2009). 2

This result is generalized as follows.

Lemma 6.2 Problem (5) is in P if no column of M has both
positive and negative values.

Proof: Let cp1 denote the left-hand side and cp2 the right-
hand side of the implication. Hence, cp1 = A · x ≤
b + N · s and cp2 = C · x ≤ d + M · r + P · s.

Let M′ be obtained by replacing every non-zero value in
M with 1. We claim that (5) holds if and only if

∀s ∃r′ ∀x [A · x ≤ b + N · s→ C · x ≤ d + M′ · r′] (6)

holds. For a column mi in M, let ml
i be the maximum non-

zero value in mi and ms
i be the minimum non-zero value in

it (if mi contains only zero’s, then the parameter ri never ap-
pears, hence mi can be discarded from M). By assumption,
sgn(ml

i) = sgn(ms
i ), where sgn() is the sign function.

(Only-if part) Fixed s, let r be such that (5) holds. We set
r′i = ml

iri if ri ≥ 0 and sgn(ml
i) = 1; r′i = ms

i ri if ri ≥ 0
and sgn(ml

i) = −1; r′i = ms
i ri if ri < 0 and sgn(ml

i) = 1;
r′i = ml

iri if ri < 0 and sgn(ml
i) = −1. With this set-

tings, for every ari appearing in M · r, we have ari ≤ r′i,
hence M · r ≤M′ · r′. This implies C · x ≤ d + M · r ≤
d + M′ · r′, hence (6) holds as well.

(If part) Fixed s, let r′ be such that (6) holds. We set
ri = r′i/m

s
i if r′i ≥ 0 and sgn(ml

i) = 1; ri = r′i/m
l
i if

r′i ≥ 0 and sgn(ml
i) = −1; ri = r′i/m

l
i if r′i < 0 and

sgn(ml
i) = 1; ri = r′i/m

s
i if r′i < 0 and sgn(ml

i) = −1.
With this settings, for every r′i appearing in M′ · r′, we have
r′i ≤ ari for any non-zero coefficient a appearing in M · r,
hence M′ · r′ ≤M · r. This implies C · x ≤ d + M′ · r′ ≤
d + M · r, hence (5) holds as well.

We now claim that (6) holds if and only if A · x ≤
b + N · s is unsatisfiable (as a linear system in x, s) or the
following holds:

∃r′′ ∀x [A · x ≤ 0→ C · x ≤ d + M′ · r′′] (7)

(Only-if part) If A · x ≤ b + N · s is unsatisfiable,
we are done. Otherwise, let s0 be such that there exists
x0 with A · x0 ≤ b + N · s0. By hypothesis, there ex-
ists r′ such that ∀x [A · x ≤ b + N · s0 → C · x ≤



d + M′ · r′] holds. Due to the form of M′ this is equivalent
to d + M′ · r′ ≥ max{C · x | A · x ≤ b + N · s0}. By
well-known results on linear programs (see e.g., Corollary
3.1 from (Murty 1983)), the property of (un)boundedness
for the non-empty linear system A · x ≤ b + N · s0 holds
iff it holds for its cone A · x ≤ 0. Hence, there exists r′′

such that d + M′ · r′′ ≥ max{C · x | A · x ≤ 0}, i.e., (7)
holds.

(If part) If A · x ≤ b + N · s is unsatisfiable, (6) clearly
holds. If it is satisfiable, let s0 be such that A · x ≤
b + N · s0 is satisfiable. Again by (Murty 1983)[Corol-
lary 3.1], the assumption that there exists r′′ such that
d + M′ · r′′ ≥ max{C · x | A · x ≤ 0} implies that for
some r′, d + M′ · r′ ≥ max{C · x | A · x ≤ b + N · s0},
i.e. ∃r′ ∀x [A · x ≤ b + N · s0 → C · x ≤ d + M′ · r′]
holds. Since this is true for any s0, we conclude that (6)
holds.

Summarizing, we have reduced our original problem to
showing the feasibility of A · x ≤ b + N · s, which is a
polynomial time problem, and (7), which is in P by Theo-
rem 4.1. 2

An interval constraint on a variable x is a constraint of the
form l ≤ x ≤ u. The case where the entailing polyhedral set
includes only interval constraints is presented below.

Lemma 6.3 Problem (5) is in P if each constraint in
A · x ≤ b + N · s is an interval constraint.

Proof: Note that if constraints in A · x ≤ b + N · s con-
tain only one variable or only one parameter, then con-
straints involving only parameters from s can be ignored;
this is because there is no interaction between the vectors s
and x at all and, hence, the only influence such constraints
can have on the problem is to make it trivially easy (if no s
can satisfy A · x ≤ b + N · s.)

Thus we have that each element xi of x is simply
bound by an interval li ≤ xi ≤ ui which means that
A · x ≤ b + N · s is equivalent to x ∈ [l,u] and so
∀s ∃r ∀x [A · x ≤ b + N · s → C · x ≤ d + M · r] is
equivalent to saying ∃r ∀x ∈ [l,u] C · x ≤ d + M · r
which is in P. 2

Problem 〈2, ∀, LRB〉 also becomes tractable as soon as
we prevent any connection between variables and parame-
ters in the antecedent of the implication.

Lemma 6.4 Problem (5) is in P if there is no constraint in
the antecedent of the implication which includes both vari-
ables and parameters.

Proof: Let again cp1 denote the left-hand side and cp2 the
right-hand side of the implication. Then, cp1 = A · x ≤
b,N · s ≤ n and cp2 = C · x ≤ d + M · r.

Hence, the problem consists of showing the validity of:

∀s ∃r ∀x
(N · s ≤ n ∧ A · x ≤ b) → C · x ≤ d + M · r (8)

If cp1 is unsatisfiable, the formula is always true. Hence,
assume it is satisfiable. We build a linear program on r as
follows: For every row ci

T · x ≤ di + mi
T · r in cp2, let d′i

be the solution of the linear program:

max ci
Tx

A · x ≤ b

If the linear system is unbounded (i.e., if at least one of the
two sub-systems is unbounded), there cannot be any param-
eter instance u of r such that ciT · x ≤ di + mi

T · u for
every x once s has been fixed to any solution of N · s ≤ n.
Thus, (8) is false.

Assume now that all d′is are finite, and let d′ be the vector
of all d′is. We claim that (8) holds iff the following linear
system on r is feasible:

d + M · r ≥ d′ (9)

(If part) Let u be such that d + M · u ≥ d′. Since, by
construction of d′, we have that ∀x [A · x ≤ b→ C · x ≤
d′] holds, by transitivity the following also holds:

∀x [A · x ≤ b→ C · x ≤ d + M · u]

By reintroducing existential quantifiers on r, we have:

∃r ∀x [A · x ≤ b→ C · x ≤ d + M · r]

which implies (8).
(Only-if part) Since cp1 is assumed to be satisfiable, there

must exists s0 such that N · s0 ≤ n. By hypothesis, there
exists r0 such that

∀x [A · x ≤ b ∧N · s0 ≤ n→ C · x ≤ d + M · r0]

Since N · s0 ≤ n is true, this boils down to:

∀x [A · x ≤ b→ C · x ≤ d + M · r0]

Let us show that r0 is a solution of (9). Consider a row ci
T ·

x ≤ di + mi
T · r of cp2. By definition of r0, the following

holds:

∀x [A · x ≤ b→ ci
T · x ≤ di + mi

T · r0]

which implies:

d+ mi
T · r0 ≥ max{ciTx |A · x ≤ b}

By definition of d′, we conclude d+M · r0 ≥ d′, hence (9)
is satisfiable. 2

7 Conclusions
In this paper we introduced entailment for the class of
parameterized linear constraints and studied its computa-
tional complexity. We focused on three different types of
entailment, namely 〈1, ∃, RB〉 (which was shown in
P), 〈1, ∃, LB〉 (which was shown to be NP-hard), and
〈2, ∀, LRB〉 (which was shown to be coNP-hard). For
the latter, we showed that it is reducible to the problem
〈2, ∀, BRB〉 (and vice versa). Also, we presented a special
case which is still coNP-hard as well as several sub-classes
for which the problem is in P.
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