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Abstract. We introduce a framework for a data-driven analysis of seg-
regation of minority groups in social networks, and challenge it on a com-
plex scenario. The framework builds on quantitative measures of segrega-
tion, called segregation indexes, proposed in the social science literature.
The segregation discovery problem consists of searching sub-graphs and
sub-groups for which a reference segregation index is above a minimum
threshold. A search algorithm is devised that solves the segregation prob-
lem. The framework is challenged on the analysis of segregation of social
groups in the boards of directors of the real and large network of Italian
companies connected through shared directors.

1 Introduction

Social networking services record our connections to friends, colleagues, collab-
orators. The analysis of those digital traces can create new comprehensive pic-
tures of individual and group behaviour, through the discovery of patterns and
models, with the potential to transform the understanding of our lives, orga-
nizations, and societies. In this paper, we will consider the social problem of
group segregation in social networks [8], which is an unjustified separation or
distance in social environments (physical, working, or on-line) of individuals on
the basis of any physical or cultural trait. We present theory and tools, based
on data mining and network science, for data-driven segregation discovery, with
two main goals. First, we aim at providing a deeper understanding of segre-
gation phenomena through the design of analytical processes that proactively
support policy makers and control authorities in discovering and in anticipating
potential segregation problems. Second, we aim at studying the applicability of
proposed methodology in a complex scenario through the analysis of segregation
of minority groups in the network of Italian companies linked through shared
directors in their boards.

The paper is structured as follows. Section 2 provides an overview of segrega-
tion indexes from the social science literature. Section 3 introduces the problem
of segregation discovery and provides a solution using concepts from itemset
mining. Section 4 challenges the solution on the network of Italian companies
by tackling a few issues arising from the case study. Section 5 concludes and
presents directions for future work.
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Fig. 1. Racial spatial segregation in New York City, based on Census 2000 data [7].
One dot for each 500 residents. Red dots are Whites, blue dots are Blacks, green dots
are Asian, orange dots are Hispanic, and yellow dots are other races.

2 Segregation Indexes

2.1 On the Notion of Segregation

The term segregation refers to restrictions on the access of people to each other.
People are partitioned into two or more groups on the grounds of personal or
cultural traits that can foster discrimination, such as gender, age, ethnicity, in-
come, skin color, language, religion, political opinion, membership of a national
minority, etc. Contact, communication, or interaction among groups are lim-
ited by their physical, working or socio-economic distance. Members of a group
tend to cluster together when dissecting the society into organizational units
(neighborhoods, schools, job types).

In spatial segregation, groups are set apart in neighborhoods where they live
in, in schools they attend to, or in companies they work at. As sharply pointed
out in Fig. 1, racial segregation very often emerges in most cities characterized by
ethnic diversity. Schelling’s segregation model [19] shows that there is a natural
tendency to spatial segregation, as a collective phenomenon, even if each indi-
vidual is relatively tolerant – in his famous abstract simulation model, Schelling
assumed that a person changes residence only if less than 30% of the neighbors
are of his/her own race.

Recently, [13] argued that segregation is shifting from ancient forms on the
grounds of racial, ethnic and gender traits to modern socio-economic and cul-
tural segregation on the basis of income, job position, and political-religious
opinions. For instance, it has been warned that the personalization of online
social networks may foster segregation and lack of consensus between different
social groups, because people are only reinforced in what they already believe
and lack exposure to alternative viewpoints and information [16] or because they
are led to self-censorship acts [6] for fear of public opinion on personal thoughts.
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2.2 Segregation Indexes

A segregation index provides a quantitative measure of the degree of segrega-
tion of social groups (e.g., Blacks and Whites) among units of social organization
(e.g., schools). Many indexes have been proposed in the literature. [10] represents
the earliest attempt to categorize them. Afterward, the survey [12] provided a
shared classification with reference to five key dimensions: evenness, exposure,
concentration, centralization, and clustering. We restrict ourselves to binary in-
dexes, which assume a partitioning of people into two groups, say majority and
minority (but could be Blacks/Whites, women/men, etc.). Let T be size of the
total population, M be the size of the minority group, and P = M/T be the
overall fraction of the minority group. Assume that there are n units, and that
for i ∈ [1, n], ti is the population in unit i, mi is the minority population in unit
i, and pi = mi/ti is the fraction of the minority group in unit i.

Evenness indexes. Evenness indexes measure the difference in the distri-
butions of social groups among the units. They are widely adopted in the social
science literature on segregation. The mostly referenced indexes are dissimilarity
and entropy. The dissimilarity index D is the weighted mean absolute deviation
of every unit’s minority proportion from the global minority proportion:

D =
1

2 · P · (1− P )

n∑
i=1

ti
T
· |pi − P | (1)

The normalization factor 2 · P · (1 − P ) is to obtain values in the range [0, 1].
Since D measures dispersion of minorities over the units, higher values of the
index mean higher segregation. Dissimilarity is minimum when for all i ∈ [1, n],
pi = P , namely the distribution of the minority group is uniform over units. It
is maximum when for all i ∈ [1, n], either pi = 1 or pi = 0, namely every unit
includes members of only one group (complete segregation).

A second widely adopted index is the information index, also called the Theil
index [15] in social science, and normalized mutual information in machine learn-
ing. Let the population entropy be: E = −P · logP − (1− P ) · log (1− P ), and
the entropy of unit i be: Ei = −pi · log pi− (1−pi) · log (1− pi). The information
index is the weighted mean fractional deviation of every unit’s entropy from the
population entropy:

H =

n∑
i=1

ti
T
· (E − Ei)

E
(2)

Information index ranges in [0, 1]. Since it denotes a relative reduction in uncer-
tainty in the distribution of groups after considering units, higher values mean
higher segregation of groups over the units. Information index reaches the min-
imum when all the units respect the global entropy (full integration) and the
maximum when all units contain only one group (complete segregation).

Exposure indexes. Exposure indexes measure the degree of potential con-
tact, or possibility of interaction, between members of different groups.

The most used measure of exposure is the isolation index [4], defined as the
likelihood that a member of the minority group is exposed to another member
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of the same group in a unit. For a unit i, this can be estimated as the product of
the likelihood that a member of the minority group is in the unit (mi/M) by the
likelihood that she is exposed to another minority member in the unit (mi/ti,
or pi) – assuming that the two events are independent. In formula:

I =
1

M
·

n∑
i=1

mi · pi (3)

The isolation index ranges over [P, 1], with higher values denoting higher seg-
regation. The minimum value is reached when for i ∈ [1, n], pi = P , namely
the distribution of the minority group is uniform over the units. The maximum
value is reached in the same conditions of the previous two indexes. The differ-
ences between indexes are the following: (a) H and I are insensitive to units i
where mi = 0, whilst D is not; (b) D and H are symmetric, i.e., by inverting the
minority and majority groups the index remains unchanged, whilst I is not.

Other indexes. The other three classes of indexes are specifically concerned
with spatial notions of segregation. Concentration measures the relative amount
of physical space occupied by social groups in an urban area. Centralization
measures the degree to which a group is spatially located near the center of an
urban area. Finally, clustering measures the degree to which group members live
disproportionately in contiguous areas. We refer the reader to [12] for details.

3 Segregation Discovery

Traditional data analysis approaches from social science typically rely on for-
mulating an hypothesis, i.e., a possible context of segregation against a certain
social group, and then in empirically testing such an hypothesis. For instance, a
suspect case of segregation of black female students in high schools from NYC is
studied first by collecting data on race and gender of all high school students in
NYC (reference population), and then by computing and analysing segregation
indexes over black females (minority group). The formulation of the hypothesis,
however, is not straightforward, and it is potentially biased by the expectations
of the data analyst of finding segregation in a certain context. In this process,
one may overlook cases where segregation is present but undetected. We propose
a data-driven approach, which complements hypothesis testing, by driving the
search (the “discovery”) of contexts and social groups where a-priori unknown
segregation factors are quantitatively prominent. Recall the previous example.
The analyst has to collect data on gender, age, race of students (called segrega-
tion attributes), and on city location, school type, and annual fees (called context
attributes). Although no segregation may be apparent in the overall data, it may
turn out that for a specific combination of context attributes (e.g., high schools
located in NYC), a specific minority group denoted by a combination of segrega-
tion attributes (e.g., black women) is at risk of segregation. We quantify such a
risk through a reference segregation index, and assume that a value of the index
above a given threshold denotes a situation worth for further scrutiny.
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We call the problem of discovering a-priori unknown minority groups and
reference populations for which segregation indexes are above a given threshold,
the segregation discovery problem. The problem statement will be formalized
using notation and concepts from itemset mining [9]. This allows for re-using
methods and tools from this widely investigated research area. In particular,
itemsets will serve to define the search space of segregation discovery. Let R be
a relational table (or, simply, a table or a dataset). Tuples in the table denote
individuals, and attribute values denote information about individuals and units
they belong to. Attributes are partitioned into segregation attributes (SA), such
as sex, age, and race, which denote minority groups potentially exposed to
segregation; context attributes (CA) attributes, such as city and job type,
which denote contexts where segregation may appear; and an attribute unit,
which is an ID of the unit the tuple/individual belongs to. For a discrete attribute
A, an A-item is a term A = v, where v ∈ dom(A), the domain of A. We assume
that continuous attributes are discretized into bins [11]. An itemset X is a set
of items. As usual in the literature, we write X,Y for X∪Y. A tuple σ from R
supports X if for every A = v in X, we have σ[A] = v, where σ[A] is the value of
the attribute A in the tuple σ. The cover of X is the set of tuples that support
X: coverR(X) = {σ ∈ R | σ supports X}. We omit the subscript R if it is clear
from the context. E.g., cover(sex=female, age=[20-29]) is the set of women
in their 20s included in the dataset. The (absolute) support of X is the size of
its cover, namely supp(X) = |cover(X)|.

We write A,B to denote an itemset where A is non-empty and it includes
only SA-items, and B includes only CA-items. We call A a non-empty SA-
itemset, and B a CA-itemset. We are now in the position to extend the notation
of the segregation indexes to a reference population, which is the cover of B,
and to a reference minority group, which is the cover of A.

Definition 1. Let s() be a segregation index. For an itemset A,B we denote by
s(A,B) the segregation index calculated for the population in cover(B) consid-
ering as minority population those in cover(A,B).

As an example, D(A,B) is the dissimilarity index, where T = supp(B),
M = supp(A,B), ti = supp(B, unit=i), and mi = supp(A,B, unit=i). Recon-
sidering the example above, we would fix A as race=black,sex=female and B
as city=NYC. D((race=black,sex=female), city=NYC) is then the dissimilarity
index of segregation of black females in the high schools of NYC.

We introduce now the problem of segregation discovery.

Definition 2. Let s() be a segregation index, and α a fixed threshold.
An itemset A,B is α-integrative w.r.t. s() if cover(B) = ∅ or s(A,B) ≤ α.

Otherwise, A,B is α-segregative. The problem of segregation discovery consists
of computing the set of α-segregative itemsets.

Intuitively, we are interested in finding itemsets A,B denoting a minority
sub-group (non-empty A) and a non-trivial context (B with non-empty cover)
where the segregation index s() is above the α threshold.
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Input: relational table R with context attributes (CA), segregation attributes
(SA), unit attribute unit with a total of n units.

Output: segregation index values s(A,B).
1 foreach B CA-itemset do
2 T = 0;
3 foreach i ∈ [1, n] do
4 ti = supp(B, unit=i);
5 T += ti
6 end
7 foreach A non-empty SA-itemset do
8 M = 0;
9 foreach i ∈ [1, n] with ti > 0 do

10 mi = supp(A,B, unit=i);
11 M += mi

12 end
13 sum = 0
14 foreach i ∈ [1, n] with ti > 0 do
15 sum += fs(mi, ti, M, T)
16 end
17 s(A,B) = gs(sum, M, T)

18 end

19 end
Algorithm 1: Segregation index computation.

Algorithm 1 is a solution to the problem of computing s(A,B) for a segrega-
tion index s() and all itemsets A,B. It can readily solve the segregation problem
by filtering itemsets whose index is lower or equal than the threshold α. We as-
sumes that the support counting function supp() is available. We implemented
it by storing the subset of R at each unit as an array of bitmaps, one bitmap per
each CA and SA item. Position i of a bitmap is set to 1 iff the ith tuple of the
unit supports the item associated to the bitmap. Support counting consists then
of bitmap and-operations. An alternative way of implementing supp() is through
the construction of an FP-tree, a compressed representation of a dataset used
for frequent itemset mining [9]. The outer loop (lines 1-19) of the algorithm it-
erates over all CA-itemsets B. For each of them, the total population size T is
calculated at lines 3–6. The inner loop (lines 7–18) iterates over all non-empty
SA-itemsets A. First, the size M of the minority is calculated at lines 9–12. We
accumulate the results of a function fs() over each unit, and then pass it to the
normalization function gs(). These two functions depend on the segregation in-
dex s(). For the information index, we observe that H = 1−(

∑n
i=1 ti ·Ei)/(T ·E).

Hence, fs(mi, ti,M, T ) = ti ·Ei and gs(sum,M, T ) = 1− sum/(T ·E), where Ei

and E are clearly calculable from mi, ti and from M,T respectively.

Let δ =
∑

A |dom(A)| be the sum of the sizes of domains of context and
segregation attributes, and π =

∏
A |dom(A)| be their product. Algorithm 1 has

worst-case time complexity of O(π|R|). Our bitmap-based implementation has
space complexity of Θ(δ|R|). We will present actual performances on a large
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dataset later on. Notice that Apriori-like optimizations in the index calculations
are not possible since D and H are not anti-monotonic, and I is monotonic only
w.r.t A – i.e., I(A ∪A′,B) ≤ I(A,B).

4 Segregation Discovery in Social Networks of Companies

We will challenge the framework for segregation discovery in a complex scenario
with a real and large dataset. We are interested in studying segregation of minor-
ity groups (youngsters, seniors, females) in the boards of companies. The social
segregation question we intend to study is: which minority groups are segregated
in the boards of companies and for which type of companies? A possible an-
swer may lead to the discovery that, e.g., for IT companies, females in a certain
age-range appear frequently together in boards and rarely with members of the
majority group (men or individuals in other age-ranges). In the following, we
first introduce the notion of social network of companies, then report some basic
facts on the running case study of the network of Italian companies, and finally
challenge the segregation discovery framework on such a case study.

4.1 Social Networks of Companies

The board of directors (BoD) is a body of elected or appointed members who
jointly oversee the activities of the company. The presence of a director is the
number of BoDs the director belongs to. If presence is two or higher, the director
is called a bridge director. As an example, the board of a controlled company
typically includes directors from the board of the controlling company. Other
reasons for multiple presence include partnership consolidation, collusion, coop-
tation, monitoring, political influence, friendship, kinship, etc. The presence of a
same director in the boards of two companies (interlocking directorate) can then
be considered a signal of business, personal, or other forms of relationship and
information exchange between the two companies [14]. Under this “social tie”
assumption, we model a social network of companies by linking those companies
that share at least one director [3].

Let N = {1, . . . , N} be a set of company IDs, and for i ∈ N , let BoD(i) ⊆
D be the board of directors of company i, whereD = {1, . . . , D} is the set of
directors IDs. A social network of companies is a weighted undirected graph
G = 〈N , E〉 where a weighted edge (i, j, w) is in E ⊆ N ×N×R iff w = |BoD(i)∩
BoD(j)| > 0, i.e., if companies i and j share at least one director. Intuitively,
w is a measure of the strength of ties between the boards of directors of i and
j. We write eij = 1 if (i, j, w) ∈ E , and ei j = 0 otherwise. We denote by L the

number of edges, i.e., L = |E|, and by ki the degree of node i, i.e., ki =
∑N

j=1 eij .
A node is called isolated if its degree is 0. A connected component (CC) is a
maximally connected subgraph of G.
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Fig. 2. Distrib.: BoD size (left), director presence (center), node degree (right).

4.2 The Social Network of Italian Companies

The Italian Business Register records information on all Italian companies and
directors. We had a unique access to a complete 2012 snapshot of the registry.
A company can be structured as a partnership, a corporation, or other national
forms. For corporations, the BoD is elected by shareholders, while for a partner-
ship the BoD includes all partners.

There is a total of N ' 2.2 · 106 registered companies, and D ' 3.7 · 106

directors. The network has L ' 5.9 × 106 edges. Around 0.7 · 106 nodes are
isolated (i.e., degree is 0). This amounts at 35.2 % of the total number of nodes,
and it is quite representative of the Italian scenario, where tiny/family businesses
are widespread. Fig. 2 reports the distributions of BoD size, director presence,
and node degree. Distributions are heavily tailed (notice the log-log plot), but
only for director presence there is a good fit by a truncated powerlaw (we used
the software from [2]). A few directors appear in hundreds of boards (one of
them appears in as many as 404 boards). We investigated the reasons of such
impressively high numbers, and found two explanations. First, when a company
is winding-up because of bankruptcy, an official receiver is appointed by the
court as an interim receiver and manager of the company. Such directors are
independent experts appointed in many boards and for a possibly long period.
Second, there are groups of companies with a pyramidal structure [1] sharing the
same directors. An example is the outlier in Fig. 2 (right), representing a clique
of 250 companies having a same person as the unique director in their boards.
In order to reduce the impact of the two special cases above on the density of
the social network of companies, we removed from the set of directors the 0.01%
with the highest presence. The age distribution of directors is shown in Fig. 3
(left). The plot sadly highlights the glass-ceiling reality for women, who suffer
from a under-proportional representativeness in top-level job positions.

4.3 Segregation Discovery

We aim at exploiting the segregation discovery framework and algorithm of
Section 3 to the case study of the social network of Italian companies. The dataset
under analysis will contain one tuple for each director. Available segregation
attributes include: gender, age (discretized into 5 equal-frequency bins). Context
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Fig. 3. Left: age distribution. Center: distribution of size of CCs before (center, without
the giant component) and after (right) splitting the giant component.

attributes include the company sector (the top level of a hierarchical classification
used by the Italian official statistics institute), with 21 possible values, and the
region of residence of the director (north-east, north-west, center, south, islands,
abroad). In this section, we discuss three issues that challenge the framework of
Section 3, and devise solutions for overcoming them.

Segregation index definitions assume a partitioning of individuals into units
of social organization (schools, neighborhoods, communities). The first challenge
in the context of social networks of companies is then to define how such units
are defined. Intuitively, a unit is a set of companies within which directors can
get in contact, either directly (because they belong to a same BoD) or indirectly
(e.g., through a bridge director connecting two BoDs).

Our approach is to consider a structural decomposition of the social network
graph into groups of companies, i.e., sub-graphs, each one representing a unit.
A natural candidate is to consider the decomposition based on connected com-
ponents (CCs). The distribution of the size of CCs, shown in Fig. 3 (center),
is fitted by a truncated powerlaw. In addition to the isolated nodes, there are
251 · 103 other CCs with size in the range [2-99], and one giant component con-
sisting of 642 · 103 nodes (not shown in the figure). The number of directors in
the giant component amounts at 20% of the total. This means that the giant
component weights 20% in the calculation of dissimilarity and information gain
segregation indexes (for the isolation index, the weight depends also on the size
of minority mi). This may prevent segregation from being discovered, because
the giant component may hide segregated finer-grained units within it. We claim
that the giant component need to be further split. Observe that our assumption
that bridge directors represent signals of relationships between two companies
does not account for the strength of such signals. We exploit this intuition to
split the giant component into components by removing edges in it that repre-
sent “weaker ties”. Recall that the weight of an edge between nodes i and j is
w = |BoD(i) ∩ BoD(j)|, i.e., the number of shared directors. We remove edges
from the giant component whose weight is lower or equal than a threshold. The
selected threshold (w ≤ 3) is the lowest that leads to no giant component. The
resulting distribution of CCs, shown in Fig. 3 (right), is fitted by a powerlaw
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with exponent close the the original distribution without the giant component.
The total number of CCs is now ' 1.6 · 106.

The second challenge in segregation discovery originates by the splitting of
the giant component. In fact, a side effect of any splitting is that in the resulting
network a bridge director may appear in two or more units. This is not accounted
for in the framework of Section 3, which assumes that an individual belongs to
only one unit. We will consider multiple instances of bridge directors in different
units as distinct individuals. With reference to the notation of Sect. 2.2, we
revise the definitions of the size of population T and minority group M by
setting T =

∑n
i ti and M =

∑n
i mi, i.e., by counting every occurrence of an

individual in any unit, not every individual. Algorithm 1 remains unchanged
because it already computes T and M as above.

The third challenge is motivated by the need of including characteristics of
companies among the context attributes, so that segregation, e.g., in the subnet-
work of IT companies, can be discovered. However, bridge directors may appear
in BoDs of companies with different characteristics. How do we model this in our
framework? We use multi-valued attributes, by admitting that, for an attribute
A and a tuple σ, σ[A] ⊆ dom(A) (instead of simply, σ[A] ∈ dom(A)). As an ex-
ample, the industry sector of a director is defined as the set of industry sectors
of companies where the director appears, e.g., σ[sector] = { IT, Banks }. Our
framework can be extended to admit multi-valued tuples by simply extending
the notion of support as follows: a tuple σ supports X if for every A = v in X, we
have v ∈ σ[A] if A is multi-valued, and σ[A] = v otherwise. On the implementa-
tion side, this extension does not require drastic changes. The support counting
method has to be initialized with a set of transaction items A = v1, . . . , A = vk
for {v1, . . . , vk} = σ[A] instead of simply with A = v for v = σ[A]. In our bitmap
based implementation, for a multi-valued attribute A, a tuple σ will lead to set
to 1 all the bitmaps of the values in σ[A].

4.4 Segregation Discovery: Findings

The dataset processed as described in the previous section consists of 4.6 ·106 tu-
ples, 2 context attributes (residence, sector), 2 segregation attributes (age, sex),
and the unit attribute. We have applied Algorithm 1 on the dataset to calculate
the D, H, and I segregation indexes. The total running time of the algorithm
was of 110 seconds, on a commodity PC with Intel Core i5-2410@2.30GHz with
16 Gb of RAM, Windows 7 OS, and Java 8 as programming language.

The affordable running time allows for more advanced data analysis than the
one stated by the definition of segregation discovery, namely selecting/ranking
itemsets A,B whose index is above a given threshold. We are in the position
of providing the segregation analyst with a data cube of indexes for exploratory
analysis in the style of OLAP cubes. Here, indexes play the role of metrics,
and context and segregation attributes play the role of dimensions. Also, con-
straints on the sizes T (resp., M) of the population (resp., minority group) can
be provided to guide the analysis.
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Let us present here three real cases. By setting a minimum M ≥ 103, the
itemset with the highest dissimilarity index:

sector=‘agriculture’, age=‘<=38’, sex=‘F’ (D = 0.916, H = 0.605, I = 0.431)

regards the population of directors of in the agriculture sector, with women up to
38 years old as minority population. Segregation in agriculture is a well-known
phenomenon. Excluding such a sector, the highest information index is for:

residence=‘abroad’, age=‘>=53’ (D = 0.75, H = 0.675, I = 0.805)

the population of directors with residence abroad, and for the minority of di-
rectors with age of 53 years or more. Finally, excluding foreign directors, the
highest isolation index is for:

sector=‘electricity’, sex=‘M’ (D = 0.625, H = 0.411, I = 0.907)

directors of companies producing or supplying electric power or gas, with minor-
ity population the male directors. In this case, segregation of males means they
have 90.7% of likelihood of getting in contact with other males in their board or
through bridge directors.

5 Conclusions and Future Work

We have formulated the problem of segregation discovery in social networks, de-
vised a solution that provides the data analyst with a data cube of segregation
indexes for exploratory analysis, and challenged the approach on a complex sce-
nario with a real and large dataset regarding segregation in boards of directors.

Several issues remain open for future investigation.

First, relations with research streams that appear closely linked must be ex-
plored. One related field is community discovery in attributed graphs [5], where
graph clustering algorithms exploit both the structural dimension of the social
graphs as well as a compositional dimension represented by features of nodes.
Another related field is discrimination discovery [18], where the objective is to
search for contexts with a disproportionate distribution of socially sensitive deci-
sions (granting of a loan, admission to school, hiring, etc.) among social groups.

Second, the proposed framework need to be further validated, e.g., on whether
it is able to cover more complex segregation index definitions and application
scenarios, and on whether Algorithm 1 scales to a large number of attributes. The
impact of different segregation indexes on the top segregative itemsets should
also be evaluated, as done in [17] for discrimination indexes. The final objec-
tive will be a complete framework and working system for OLAP analysis of
segregation in social networks.

Finally, we argue that segregation discovery is half way towards the more
challenging objective of segregation-aware data mining and social network analy-
sis. The objective here is the development of segregation-aware data analysis and
data mining models that, by design, can provide a guarantee about the impact
of computer-supported decisions (e.g., link predictions, group recommendation)
on individuals and social groups, about the possibilities of interaction between
them, and about the increase of social cohesion of society at large.
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