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Abstract—We investigate the relation between t¢-closeness, a
well-known model of data anonymization, and «-protection, a
model of data discrimination. We show that ¢-closeness implies
bd(t)-protection, for a bound function bd() depending on the dis-
crimination measure at hand. This allows us to adapt an inference
control method, the Mondrian multidimensional generalization
technique, to the purpose of non-discrimination data protection.
The parallel between the two analytical models raises intriguing
issues on the interplay between data anonymization and non-
discrimination research in data mining.

I. INTRODUCTION

Several inference control methods have been proposed in
privacy-preserving data mining for protecting micro-data from
the risk of revealing confidential information, such as identities
and sensitive attribute values [1]. Ultimately, private data pro-
tection consists of data transformations, such as perturbations,
generalizations, or suppressions, that achieve a measurable
level of privacy, according to some formal model, such as
k-anonymity [2] or t-closeness [3]. The challenge here is to
trade-off the achieved level of privacy with an unavoidable
data utility loss. Conceptually, a similar problem occurs in the
blooming field of discrimination-aware data mining [4]. Dis-
crimination refers to an unjustified distinction of individuals
based on their membership, or perceived membership, in a
certain group or category. Some groups, traditionally subject
to discrimination, are explicitly listed as “protected” groups by
human rights laws, including women, black people, immigrant
workers, minority ethnic groups, and so on. As for data privacy,
the release of micro-data can be subject to discrimination
threats. Consider the following examples:

e An employer may notice from public census data that
the race or sex of workers act as proxy of the work-
ers’ productivity in his specific industry segment and
geographical region. The employer may then use those
visible traits of individuals, rather than their unobservable
productivity, for driving (discriminatory) decisions in job
interviews.

e A data mining model used to profile applicants to a
bank loan may learn from past application records some
patterns of traditional prejudices that led to negative de-
cisions on applications of members of a minority group.
The profiles assigned by the model to new applicants
may then be biased against that minority group.

Privacy preserving data publishing techniques based on group
anonymization tackle similar problems, where individuals are
partitioned into groups and each group must ensure some
property such as k-anonymity or ¢-closeness. In this paper, we
investigate whether data anonymization techniques for privacy
protection can be adapted to sanitize a dataset of historical

decisions with regard to discrimination threats before releas-
ing the data publicly (non-discrimination data publishing) or
before using them for training a classifier (discrimination-
free classification). In the first example above, the employer
should not be able to derive (for his industry sector and region)
any signal stronger than some maximal threshold of different
productivity among groups of workers of different race or sex.
In the second example, the learning algorithm should not find
out any condition based on an applicant’s membership to a
minority group denoting past discriminatory practices. Using a
common notation based on itemset mining, we investigate the
relation between the model of a-protection for discrimination
(which is parametric in a discrimination measure) [5] and
the model of ¢-closeness for data anonymization [3]. Both
approaches are based on the key idea of contrasting pro-
portions on subsets of data. However, t-closeness considers
the distribution of a sensitive attribute (e.g., proportions of
diseases), while a-protection considers the joint distribution
of a discriminatory attribute and a decision (e.g., proportions
of denied loans for women and men). We formally prove
that t-closeness implies bd(t)-protection, for an appropriate
bound function bd() depending on the reference discrimination
measure. The converse does not hold, due to a form of the
Simpson’s paradox on proportions that prevents a-protection
from having the generalization property of ¢-closeness. We
exploit the implication result above to devise a generalization-
based algorithm, called dMondrian, that is a variant of a well-
known generalization approach for k-anonymity [6]. This data
transformation technique can provide a formal guarantee on
the maximum level of discrimination present in a sanitized
dataset before it is released.

II. PRELIMINARIES

We recall notation and concepts from itemset mining.
They allow us to express in a common framework basic
definitions of data anonymity and discrimination analysis. Let
‘R be a relational table (or, simply, a table or a dataset) with
attributes Vi, ..., Vy. Tuples in the table denote individuals,
and attribute values denote information about individuals. A V-
item is a term V = v, where V is an attribute and v € dom(V'),
the domain of V. We assume that dom (V') is categorial (hence
finite) for every attribute V. An item is any V'-item. We denote
by Z the set of all items. An itemset X is a subset of Z. As
usual in the literature, we write X,Y for X UY. A tuple
t from R supports X if for every V = v in X, we have
t[V] = v, where t[V] is the value of the attribute V' in the
tuple t. The cover of X is the set of tuples that support X:
cover(X) = {t € R | t supports X}. The support of X is the
number of tuples |cover(X)]| in its cover. The relative support
of X is supp(X) = |cover(X)|/|R|. X is a frequent itemset
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Fig. 1. Discrimination measures.

if supp(X) > minsupp, where minsupp is a given threshold.
X is closed if there is no Y D X such that cover(Y) =
cover(X). A closed itemset is a representative member of the
class of equivalence of itemsets with a same cover.

In privacy-aware data mining, attributes of a disclosed
table are partitioned into quasi-identifiers (QIs) and sensitive
attributes. Quasi-identifiers, such as ZIP code, gender, and
birth-date, can potentially identify an individual when joined
with some external knowledge. We restrict here to the case
that Vi,...,Vy_1 are the QIs and Vj is the only sensitive
attribute. Let us introduce the notion of QI itemset.

Definition 2.1: A QI itemset QQ is an itemset containing
one and only one V-item for every QI attribute V', and no
V-item for sensitive attributes V.

With our restriction, Q has the form Vi = vy, ..., Vy_1 =
vn—1. The g-block (also known as the equivalence class) of
Q is the cover of Q.

In discrimination-aware data mining, attributes of a table
of historical decisions are partitioned into potentially discrim-
inatory (PD) attributes, such as sex and race; potentially'
non-discriminatory (PND) attributes, such as education and
skills; and decision attributes, such as hired. We restrict here
to the case of only one PD attribute, say Vi, with binary
values “protected” and “unprotected”, and of only one decision
attribute, say Vy_1, with binary values “+” (positive decsion)
and “-” (negative decision). Thus, Vi,..., Vy_o is the set of
PND attributes.

Definition 2.2: A PND itemset B as an itemset containing
at most one V -item for every PND attribute V', and no V-item
for PD or decision attributes V.

With our restriction, B has the form V;, = vy, ..., Vi, = v
where 71, ..., are distinct numbers from {1, ..., N — 2}.
The context of possible discrimination denoted by B is the
cover of B. Notice that QI itemsets contain exactly one item
for every QI attribute, whilst PND itemsets contain at most
one item for every PND attribute.

III. DISCRIMINATION ANALYSIS

A. Discrimination measures

Consider a dataset of historical decisions about granting a
benefit (e.g., a loan, a job, a wage increase, a school admis-
sion). A common tool for statistical analysis is provided by a

'The use of PD (resp., PND) attributes in decision making does
not necessarily lead to (or exclude) discriminatory decisions [5], [7].
This motivates the adjective “potentially”.

2x 2, or 4-fold, contingency table, as shown in Fig. 1. Different
outcomes between two groups are measured in terms of the
proportion of people in each group with a specific outcome.
The proportions of negative decisions for the protected-by-
law group (p1), the unprotected-by-law group (p3) and the
overall dataset (p) are considered. A general legal principle is
then to consider group proportional representation in decision
outcomes as a quantitative measure of discrimination against a
protected-by-law (briefly, protected) group. Group proportional
representation can be measured as differences or rates of
these proportions. In this paper, we mainly consider measures
defined as differences of proportions, including:

e risk difference (RD = p; — p2), also known as absolute
risk reduction, measures the difference in the proportion
of negative decisions between the protected and the
unprotected group;

o and extended difference (ED = p; —p), measures the dif-
ference in the proportion of negative decisions between
the protected group and the whole population.

The terminology is borrowed from bio-statistics and epidemio-
logical comparative studies between two dichotomous groups,
yet other terms are also used in data mining [5], [8]. Let us
formalize a further measure, which has not been considered so
far in data mining. The selection difference SD is the difference
between the fraction of people of the protected group in the
overall dataset (n1/n) and in the subset of positive decisions
(b/ms2). This measure is well-known in the legal domain?.
The degree of observed disproportionate burden suffered by
the protected group is monotonic increasing for RD, ED, and
SD. Since one is interested in contexts with a larger proportion
of negative decisions for the protected group compared to the
unprotected group or to the average, the values of interest for
such measures are those greater than 0. Finally, observe that
RD = 0 iff ED = 0 iff SD = 0 iff ad = bc. The last condition
describes a situation of statistical parity, with equal chances of
obtaining a negative (resp., positive) decision for the protected
group, the unprotected group, and the whole population.

B. Discrimination protection

The actual discovery of discriminatory situations and prac-
tices may be an extremely difficult task. A huge number
of possible contexts may, or may not, be the theater for
discrimination. To see this point, consider the case of gender
discrimination in credit approval. Although an analyst may
observe that no discrimination occurs in general, i.e., when
considering the whole available decision records, it may turn
out that it is extremely difficult for women to obtain credit
for a particular purpose, e.g., in the case of car loans. Using
the itemset notation, we would then be interested in checking
the value of discrimination measures over the context of
possible discrimination denoted by the cover of the PND
itemset purpose=car, where the protected group is sex=female.
Many small or large such contexts may exist that conceal
discrimination, and therefore all possible specific situations

2The Castaneda rule (named after the Castadena vs. Partida U.S.
law case, 1977, concerning jury selection in a Texas county) states that
the selected fraction of the protected group cannot exceed 3 standard
deviations (w.r.t. a random selection) the fraction of the group in the
overall population.



should be considered as candidates, consisting of all possible
combinations of variables and variable values, i.e., in our
words, of all PND itemsets. This problem has been tackled
first in [5] by extracting and ranking classification rules on the
basis of a discrimination measure. We restate here the analysis
framework using PND itemsets and measures defined over the
4-fold contingency table of their cover. Let us start introducing
some notation.

Definition 3.1: For a PND itemset B, we denote by f(B)
the value of a measure f() over the 4-fold contingency table
of the set cover(B).

The discrimination measures in Fig. 1 extend then to a
generic PND itemset B by restricting to only the tuples in
the cover of B. Once provided with a quantitative measure of
discrimination and a threshold between “legal” and “illegal”
degree, we are in the position to isolate contexts of possible
discrimination where the measure is above such a threshold.

Definition 3.2: [5] Let f() be a measure defined over a
contingency table, and o € R a fixed threshold. A PND itemset
B is a-protective w.r.t. f() if cover(B) = 0 or f(B) < a.
Otherwise, c is a-discriminatory.

With this approach, the problem of discrimination dis-
covery consists of extracting PND itemsets that are a-
discriminatory, i.e., having a non-empty cover and a measure
value greater than the threshold «. Such itemsets denote con-
texts that need further consideration and evaluation by a legal
expert. In actual implementation, [9] resorts to frequent itemset
mining, thus restricting to PND itemsets with a minimum
support rather than with a non-empty cover. From a legal
perspective, this is reasonable, since it leaves out cases where
numbers do not provide sufficient statistical confidence. Let us
now extend the notion of a-protection to a whole dataset.

Definition 3.3: A relational table is a-protective w.r.t. a
measure f() if every closed PND itemset is «-protective

w.rt. f().

Since the context of possible discrimination of a PND item-
set corresponds to the individuals sharing the characteristics
stated by the itemset, this definition amounts at checking the
proportional representation principle, as measured by f(), for
all such contexts. We can restrict to consider closed PND item-
sets, since they are representative itemsets. The cover of a non-
closed PND itemset is checked when considering the closed
itemset in its class of equivalence. This observation, which
follows from the adoption of the itemset mining notation,
has two main advantages over the original definition of [5],
which considers every PND itemset. First, there is no duplicate
analysis of the same context of possible discrimination, since
the covers of two distinct closed itemsets denote different
groups of individuals. Second, discrimination discovery is sped
up, since the search for a-discriminatory PND itemsets is
restricted to closed PND itemsets only.

C. Tokenism and discrimination measures

Due to a division by zero in the discrimination measure, o-
protection may be undefined: this occurs for RD when n; =0
or ny = 0; for ED when n,; = 0; and for SD when my = 0.
Such cases are unlikely for the whole dataset, but they can

readily occur for (small) covers of PND itemsets®. Let us
discuss here the legal interpretation of those conditions. First,
consider the SD measure. When ms = 0, all decisions for
individuals in the cover are negative. Is that a discriminatory
practice? It may be so. If in the context there are a = 999
individuals of the protected group and ¢ = 1 individuals of
the unprotected group, then the protected group suffers from
a higher burden of the always-negative decision. The single
individual of the unprotected group, called a foken, may have
been assigned a negative decision to create the false appearance
of equality and prevent charges of discrimination. This illegal
practice is known as reverse tokenism (whereas tokenism [10]
consists of granting a benefit to a few members of a minority
group to create the false appearance of inclusiveness). A
measure of the burden suffered by the protected group is the
difference a/mi —p,r, between the proportion of the protected
group among the individuals with negative decision (a/m;)
and the proportion p,,, of the protected group in the overall
dataset (i.e., ppro 18 supp(Vyn = protected)). The ratio a/m;
coincides with ny /n, since my = 0. Thus, SD can be extended
as follows:

ifm2:0

SD — nl/n — Ppro -
otherwise

ny/n —b/ms

This looks intuitive: when the proportion b/ms of individuals
from the protected group among the selected ones is undefined,
we simply consider the expected proportion p;,,. With a simi-
lar reasoning, ED is extended to contexts with only individuals
of the unprotected group:

ED:{ pb-—D
pP1—p

if ny = 0
otherwise

where p_ is the proportion of negative decisions in the overall
dataset (i.e., p— is supp(Vy—1 = —)). Finally, the extension
of RD deals with contexts of only unprotected people (when
n1 = 0) and of only protected people (when ny = 0):

p——p2 ifng =0
RD=< pp—p_ ifny=0
p1 — p2  otherwise

In addition to covering relevant legal cases, such extensions
will be crucial in linking a-protection to t-closeness.

IV. DATA ANONYMIZATION AND NON-DISCRIMINATION

Several partition-based schemes of privacy in data disclo-
sure are defined by proof conditions over the g-blocks of a
released dataset. k-anonymity [2] requires that the support of
any non-empty g-block is at least k. t-closeness [3] requires
that the distribution of the sensitive values in a non-empty g-
block is close to the distribution in the overall dataset (accord-
ing to some distance between distributions). We concentrate on
t-closeness, making the further assumption that the sensitive
attribute is binary, with values x and e. This assumption will
be needed later on, when mapping PD and decision attributes

3The original definition of a-protection (w.r.t. ED) is stated for
the contingency table of a classification rule [5], assuming that the
support of the rule is non-zero. This means that @ > 0 in the 4-fold
contingency table, hence nq > 0 and then ED is well-defined. The
problem of discovering discrimination in contexts with only members
of the protected group, is ignored in [5].



(which are binary) to sensitive attributes. Moreover, under this
assumption, known distance measures between distributions
collapse to variational distance. Let us recall the notion of ¢-
closeness from [3].

Definition 4.1: Let p, be the fraction of tuples in a rela-
tional table with sensitive value x. A g-block is t-close if it is
empty or, called p the fraction of tuples in it having sensitive
value *, if |p — pi| < t. A relational table is ¢-close if all
g-blocks are t-close.

The proof conditions required by ¢-closeness closely re-
semble those of a-protection. QI itemsets and PND itemsets
play similar roles, partitioning individuals/tuples into groups
(g-blocks and contexts of possible discrimination) for which
some bounds must be satisfied. However, QI itemsets fix
all of the values of QI attributes, whilst PND itemsets fix
some of the values of PND attributes. This occurs because
a generalization property holds for ¢-closeness but not for a-
protection — as it will be shown in Sect. IV-A. Another analogy
is that both t-closeness and a-protection impose a maximum
difference between two proportions computed over a group of
individuals. However, the proportions compared in ¢-closeness
regard the distribution of the sensitive attribute only, whilst
the proportions in a-protection regard the joint distribution of
the PD and the decision attributes. The proof conditions of ¢-
closeness are stronger. Because they impose that the proportion
of a (sensitive) value is bounded in each g-block, one can
derive bounds on the relative proportions of the value in any
two given g-blocks (in particular, two g-blocks which differ
only in the value of the PD attribute). This is precisely the
idea exploited in Sect. IV-B to show that ¢-closeness imply
bd(t)-protection, for some bounding function bd().

A. On the generalization property

We have observed that ¢-closeness proof conditions are
restricted to QI itemsets and need not to consider explicitly
their subsets. This is a consequence of the generalization
property of t-closeness ([3], [11]), for which generalizing two
or more values of a QI attribute to a common value (or
removing completely the attribute from the dataset) leads to a
dataset that is t'-close with ¢/ < t.

Lemma 4.2: Consider a t-close relational table. The cover
of any subset of a QI itemset is ¢-close.

The generalization property does not hold instead for a-
protection, due to a form of the Simpson’s paradox when
comparing (by difference or ratios) two proportions.

Example 4.3: A real life example of the Simpson’s para-
dox occurred in a legal case [12] regarding bias against women
in a university admission exam. Fig. 2 shows a table with the
university department, sex of applicant, and the exam outcome
for a fictious set of individuas. Here, dept is a PND attribute,
sex 1s the PD attribute, and admitted is the decision attribute.
There are 7 applicants admitted to department A, 2 women
out of 4, and 5 men out of 6. The selection difference SD
is then 4/10 — 2/7 = 0.11. When considering applicants to
department B, SD is 6/10 — 1/2 = 0.10. Then, for all PND
itemsets with exactly one item, i.e., dept=A and dept=B, the
SD measure is bounded by 0.11. However, for the empty PND
itemset (denoting applicants to any department), the selection
difference is higher, since it amounts at 10/20 — 3/9 = 0.17.

[ dept | sex [ admitted | [ dept [ sex | admitted |
A female no B female no
A female no B female no
A female yes B female no
A female yes B female no
A male no B female no
A male yes B female yes
A male yes B male no
A male yes B male no
A male yes B male no
A male yes B male yes

PND itemset dept=A PND itemset dept=B
SD =4/10—-2/7=0.11 SD =6/10—-1/2=0.10
PND itemset empty

(both departments)
SD =10/20 —3/9 =0.17

Fig. 2. Example of the Simpson’s paradox.

B. From t-closeness to a-protection

We have observed that t-closeness proof conditions are
stronger than the ones of «a-protection. This motivates looking
for some implication between the two analytical methods.
Assume a given relational table, with fixed PND, PD and
decision attributes. The problem we will investigate is: does
there exists a partition of the attributes into Qls and sensitive
attributes, such that t-closeness of the table implies its -
protection for some «? We answer affirmatively by showing
that a t-close table is bd(t)-protective for an appropriate bound
function bd(). Let us start with the SD measure (as extended
in Sect. III-C).

Theorem 4.4: Fix as QIs the set of PND attributes plus the
decision attribute, and as sensitive attribute the PD attribute.
Let p,r be the fraction of the protected group in a relational
table. If the table is ¢-close then it is bd()-protective w.r.t. SD,
where bd(t) = min{2t, ppro + t}.

Intuitively, this result states that a dataset does not contain
discrimination (more than a threshold bd(t)) if it is not possible
to be more confident on the membership of an individual to
the protected group (more than a threshold ?) in a privacy
attack assuming as QIs the set of PND attributes plus the
decision attribute. Notice that the role of an attacker here is
played by the anti-discrimination analyst, whose objective is to
unveil from data, a context where negative decisions are biased
against the protected group when compared to the proportion
of the group in the overall dataset.

The upper bound bd(t) provided by Thm. 4.4 is sharp.

Example 4.5: Consider a dataset with uniform distribution
of the PD attribute, i.e., pyr, = 0.5. Following Thm. 4.4, we
fix such an attribute as sensitive. The dataset is clearly ¢-close
for t = 0.5. Consider now a PND itemset having the following
contingency table:

decision
group - +
protected a 0 a
unprotected | 0 1 1
c 1 a+1

SD =a/(a+ 1) —0/1 is arbitrarily close to the bound 1 =
bd(t) = min{2-0.5,0.5 4+ 0.5} for a sufficiently large a.



[ dept | admitted | sex | [ dept [ admitted | sex |

A no female B no female
A no female B no female
A no male B no female
A yes female B no female
A yes female B no female
A yes male B no male
A yes male B no male
A yes male B no male
A yes male B yes female
A yes male B yes male

dept=A, admitted=no
|2/3 —1/2| =0.17

dept=B, admitted=no
|5/8 —1/2] =0.125
dept=A, admitted=yes dept=B, admitted=yes
|2/7—1/2] =0.21 |1/2—-1/2| =0.0
Fig. 3. Variational distance for q-blocks of the table in Fig. 2, with dept and
admitted as QI attributes and sex as sensitive attribute.

Later on, in Sect. VI we will discuss the case of real
datasets. The converse of Thm. 4.4 does not hold in general. A
counter-example is provided by the Simpson’s paradox table
from Example 4.3.

Example 4.6: The table in Fig. 3 is a rearranging of the
rows and columns in Fig. 2. The distribution of the PD attribute
in the overall dataset is uniform: 10 men and 10 women, hence
Ppro = 0.5. From Example 4.3, we know that the dataset is
0.17-protective w.r.t. the SD measure, since the maximal value
of SD over PND itemsets is 0.17. Fix now as QIs the attributes
dept and decision, and as sensitive the attribute sex. The dataset
is not 0.085-close, where 0.085 = bd~1(0.17) = max{0.17/2,
0.17 — 0.5}. The g-block of the QI itemset depr=A, admit-
ted=yes includes 2 women and 5 men, with a variational
distance of |2/7 — 10/20| = 0.21. As shown in Fig. 3, the
dataset is t-close only for ¢ > 0.21.

The conclusion of Thm. 4.4 extends to the other difference
measures: ED and RD. The role of the sensitive attribute is
now taken by the decision attribute.

Theorem 4.7: Fix as QIs the set of PND attributes plus the
PD attribute, and as sensitive attribute the decision attribute.
Let p_ be the fraction of the negative decision in a relational
table. If the table is t-close then it is bd(t)-protective w.r.t. ED
and RD, where bd(t) = min{2t,p_ +t}.

The intuitive interpretation of this result is that a dataset
does not contain discrimination (more than a threshold bd(t))
if it is not possible to be more confident (than a threshold ¢) on
the decision assigned to an individual (decision is the sensitive
attribute here) by exploiting the differences in the fraction of
positive and negative decisions between the protected and the
unprotected group.

V. DISCRIMINATION DATA PROTECTION: DMONDRIAN

As an application of Thms. 4.4,4.7, we can resort to
inference control methods for ¢-closeness to the purpose of
controlling the degree of a-protection of a dataset. This
provides us with a means to prevent discrimination inference
attacks, such as in the examples from the introduction. We
consider non-perturbative methods which rely on partial re-
ductions in details of data. In particular, generalization (also
called recoding) maps domain values to less specific values,

Algorithm 1 dMondrian. Anonymize(P)

1: if no d-allowable cut for P then

return PND_ranges(P)
else

V < choose_PND_dimension()

v < find_median(P, V)

P+ {teP|tV]<v}

Py {teP|tlV]>v}

return Anonymize(P;) U Anonymize(Ps)
end if

»

0D R W

according to a user defined hierarchy for categorial domains,
or by grouping values into ranges in an ordered or continuous
domain. A well-known multidimensional recoding model for
k-anonymity was proposed in [6], together with a simple and
efficient greedy algorithm called Mondrian. Alg. 1 reports
an adaption of the algorithm, called dMondrian, for data
protection against discrimination inference. For lack of space,
we report and describe only the method Anonymize() dealing
with the assumptions of Thm. 4.7, namely when the role of
QIs is played by PND and PD attributes, and the role of the
sensitive attribute is played by the decision attribute.

dMondrian follows a divide & conquer pattern common
to space partition algorithms, such as in kd-tree construction
and in decision tree induction. Starting from a set of tuples
P (initially the whole table to be sanitized), the procedure
computes, if exists, an axis-parallel cut along a PND attribute
that partitions P into subsets P; and P on which the proce-
dure is recursively applied. If no such cut exists for P, then
the values of every PND attribute are replaced by the range
“Imin, max]” of such an attribute in 7. This substitution is
performed by the PND_ranges() function in Alg. 1. Differently
from what would occur by a direct application of the Mondrian
algorithm, we prevent cutting on the PD attribute, which
in Thms. 4.7 plays the role of a QI. Moreover, notice that
the PND_ranges() function changes only the values of PND
attributes. The combined effect is that PD values are left
unchanged by dMondrian. The motivation for this is that
collapsing protected and unprotected individuals into a single
group, would make 4-fold contingency tables and, a fortiori,
discrimination measures undefined.

Let us now discuss how cuts are defined, starting from their
definition in the original Mondrian algorithm [6]. We assume
that the domain dom(V') of any PND attribute V' is ordered.
This is immediate for continuous attributes, while it requires
an additional input from the user for categorial attributes. A
(multidimensional) cut V' < v is allowable [6] if it partitions
a k-anonymous set of tuples into two sets (respectively, tuples
t with ¢[V] < v and tuples with ¢[V] > v) that are both k-
anonymous. Notice that a cut V' < v is allowable iff the cut
V < w,, is allowable, where v,, is the median value of V in
the set P. Since the median value leads to the most balanced
partitions, the Mondrian algorithm adopts median-partitioning.
Its extension to t-closeness, called tMondrian [3], simply
requires that each partition resulting from a cut is t-close,
instead of (or in addition to being) k-anonymous. We extend
the notion of allowable cuts to non-discrimination protection
by introducing d-allowable (for “discrimination allowable’)
cuts, which check the ?-closeness proof condition (where



the sensitive attribute is now the decision attribute) for the
subsets of the protected and unprotected groups in the resulting
partitions. The need for checking fwo subsets is motivated
by the fact that generalizations over the PD attribute are not
permitted, hence cuts must explicitly check ¢-closeness over
the two PD attribute values.

Definition 5.1: Let p_ be the fraction of the negative
decision in a relational table. Let P be a subset of tuples. A
cut V < v is d-allowable for P, where V is a PND attribute
and v € dom(V), if called P, = {t € P | t[V] < v} and
Py = {t € P | t[V] > v}, the 4-fold contingency tables of P,
and P, (see Fig. 1) satisfy both |p; —p_| < t and |[ps—p_| < t.

Differently from k-anonymity, if V' < v is d-allowable,
then V < w,, is not necessarily d-allowable. However, we
keep using the heuristics of Mondrian of testing cuts only
at median values (see find_median() in Alg. 1) because it
has two main advantages. First, dMondrian can be used to
control both a-protection and k-anonymity at the same time.
Second, the search space of the algorithm, namely the number
of subsets of tuples to be checked for d-allowable cuts, is a
tractable O(|R|log|R]|), where R is the input table. Finally,
when more than one PND attribute has a d-allowable cut, we
adhere to the Mondrian heuristics of choosing the attribute
with the widest (normalized) range of values (see function
choose_PND_dimension() in Alg. 1).

Summarizing, for an input table R the call Anonymize(R)
returns a t-close dataset, hence bd(t)-protective, obtained by
generalizing PND attributes. Actually, in the limit case that
there is no d-allowable cut for the whole R, the proce-
dure returns PND_ranges(R), which is tp-close where ty =
max{|p1 —p—|, |p2 — p—|} where p;,ps are computed for the
contingency table of the whole R. Therefore, for ¢ < t; we
can only conclude that Anonymize(R) is bd(to)-protective.

VI. EXPERIMENTS

We have implemented the dMondrian algorithm in Java,
adopting some optimizations well-suited for divide & conquer
algorithms. In particular, the input relational table is stored by
columns; each column stores integer indexes to actual values;
and integer indexes respect the ordered of values in the domain
of the column attribute. Moreover, the calculation of medians
adopts a counting sort rather than a quicksort when the domain
of values of an attribute is small. The experiments reported in
this section consider two classical datasets available from the
UCI Machine Learning repository.* The German credit dataset
consists of 1000 records over bank account holders. We set
7 PND attributes: credit_history, purpose, credit_amount, em-
ployment, other_payment_plans, housing, and existing_credits.
The PD attribute is personal_status with not-single women as
the protected group. The decision attribute is the bad/good
credit rating assigned to the bank account holder. The Adult
dataset contains census information on 48848 individuals. We
set 6 PND attributes: age, workclass, education, marital-status,
occupation, and relationship. The PD attribute is race, with
non-white individuals as the protected group. The decision
attribute is income, which can be <50K or >50K dollars.

Fig. 4 reports scatter plots for the German credit dataset
computed as follows. A point refers to a closed PND itemset

4“http://archive.ics.uci.edu/ml

with minimum support of 20 (or 2%), i.e., such that n > 20 in
the 4-fold contingency table of its cover. The y-axis is simply
the value of a discrimination measure (RD and SD) for that
cover. The x-axis is the maximum variational distance T for
the protected and the unprotected group, where:

T =maz{|p1 —p_|, |p2 — p_|}

for RD. For the SD measure, 7 = maz{|a/m1—ppro|, |b/ma—
Dpro|}. The bounds on discrimination measures imposed by
variational distance as stated in Thm. 4.4, 4.7 are also shown
in Fig. 4 — now including both lower and upper bounds.
The scatter plots highlight that those bounds are not of
theoretical interest only, but they can be reached in practice.
When comparing proportions of the protected group vs the
unprotected group (as in RD), there are contexts reaching the
bounds even for high values of 7. When comparing proportions
of the protected group vs the general population (as in SD)
the bounds are reached for low values of 7, or when looking
at contexts with very low minimum support (this case is not
shown for lack of space). Intuitively, this is due to the fact that
variation of the protected group from the average is always
lower or equal than variation from the unprotected group.

Fig. 4 (right) shows the scatter plot for the RD measure
after the German credit dataset has been sanitized by dMon-
drian for the input parameter ¢ = 0.20. As expected, there is
no closed PND itemset with maximum variational distance
7 > 0.20 nor with RD > 2 -0.20 = 0.40. Actually, the
maximum RD turns out to be 0.287. Fig. 5 (left and center)
shows the minimum and maximum RD values present in the
German credit and Adult datasets after being sanitized by
dMondrian for a given parameter ¢. Whilst the RD measure
in the original dataset can be as high as 1 (see Fig. 4 left), in
the processed dataset, RD is at most bd(t), where bd() is the
bound function in Thm. 4.7.

Let us now measure the utility of sanitized datasets by
means of the standard discernibility metric’. Fig. 5 (right)
shows the utility loss due to data sanitization by dMondrian at
the variation of the input parameter ¢. Most of the degradation
occurs for very high values of ¢, in particular for ¢ > 0.65.
Then, for ¢t € [0.3,0.6], the discernibility metric degrades
more slowly. For low values of ¢, namely ¢ < 0.3, the
degradation is maximum. In summary, the analyst has to trade-
off the benefits of a formal bound on discrimination measures
achieved by data sanitization (see Fig. 5 (left and center))
with the loss of data quality that generalization introduces
(see Fig. 5 (right)). This is analogous to what occurs in
data sanitization for privacy protection. Our approach provides
the necessary tools for applying the trade-off analysis in the
scenario of discrimination data sanitization. Some options can
help improving the trade-off. Fig. 5 also shows the utility
metrics of the variants of German credit and Adult where
the PND attributes credit_amount and age respectively are not
discretized a-priori. Rather, it is dMondrian that provides a
“discrimination-oriented” supervised discretization. This ap-
proach yields a visible improvement of dataset utility.

5Some literature on discrimination prevention (e.g., [7], [13]) measures the
degree of discrimination in a dataset of predictions made by a classifier trained
from a sanitized dataset. This approach, however, does not provide a measure
of the utility of the sanitized dataset, but rather a measure of the reduction of
the bias of a classification algorithm in “learning to discriminate”.
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Regarding efficiency, because d-allowable cuts are more
restrictive than allowable cuts, the search space of dMondrian
is in the worst case the same of the tMondrian algorithm
for privacy data sanitization. Moreover, checking d-allowable
cuts requires a single pass over the subset P to compute the
required 4-fold contingency tables. This is the same complexity
as for checking whether a cut is allowable. Fig. 6 (left) shows
the elapsed execution times of dMondrian for the experimental
datasets on a commodity PC with Intel Core i5-2410 @
2.30 GHz running Windows 7. The search space, and hence
the elapsed time, is readily monotonic increasing with the
parameter ¢, and with the size of the dataset (Adult is 42 the
size of German credit). Letting the discretization of continuous
attributes to be done at sanitization time may require up to
1.2x the time of a-priori discretized attributes.

The overall affordable elapsed times allow for conducting
a thorough trade-off analysis given the plots on protection and
utility of sanitized datasets for the full (or, for a large) range
of ¢ values. Fix a discrimination measure, say RD. For a value
«, the plots in Fig. 5 (left and center) can be used to find
out the largest ¢ such that the maximum RD value for the
dataset processed by dMondrian with parameter ¢ is at most
«. Then the plots in Fig. 5 (right) can be used to calculate
the quality metrics of such processed dataset. The plots in
Fig. 6 (center and right) show the result of this procedure,
namely the quality of the anonymized dataset at the variation
of its maximum RD and SD values. The better utility of SD
compared to RD is a direct consequence of the observed fact
that the distance of proportions between the protected group
and the whole population is lower or equal than between the
protected and the unprotected group — see Fig. 4 (left, center).

VII. RELATED WORK

Approaches for building classifiers that do not make dis-
criminatory decisions may be based on data sanitization of the
training set [4]. Existing techniques for data sanitization adopt
perturbative approaches by changing values of the PD attribute
or of the decision attribute. The approaches in [13], [14]
massage the dataset by promoting (from - to + decision value)
some individuals of the protected group and/or demoting (from
+ to - decision value) individuals of the unprotected group
using some heuristics. [13] adopts the prediction confidence
of a classifier for ranking individuals in the protected and in
the unprotected groups. [14] ranks individuals on the basis of
the number of contexts of possible discrimination they appear
in. None of the approaches provides a formal guarantee on the
level of a-protection of the sanitized dataset, as in the bounds
of Thms. 4.4,4.7. As additional limitations, [13] considers the
RD measure only at the grain of the whole dataset, i.e., only
a single context of possible discrimination is guaranteed to be
sanitized; and [14] deals with nominal attributes only, because
it heavily relies on association rule mining. However, because
of the intrinsic limitations of non-perturbative methods, we
think that an hybrid approach trading off massaging with
generalization is a promising future work.

[15] discusses how data anonymization techniques that im-
prove k-anonymity affect the degree of a-protection w.r.t. the
RR (called sliff) and ER (called elift) measures. The techniques
of global and local recoding generalizations, and of cell,
record, and value suppressions are considered. For instance, it
is found that subtree generalization may lead an a-protective
dataset to be non a«-protective anymore. This result may
seem in contrast with our findings. Two observations clarify
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this. First, [15] assumes that the (equivalent of the) PND-
itemset B in Def. 3.2 has a minimum support, rather than
a non-empty cover. As a consequence of generalization, some
infrequent PND itemsets may become frequent, and then their
discrimination measure value becomes relevant, whilst in the
original dataset it was not accounted for. Second, and more
importantly, if the original dataset is a-protective, and the
transformed dataset is only o'-protective with o’/ > «, then
this is still consistent with the fact that the original dataset is
t-close and o < o < bd(t), where bd(t) is the bound from
Thms. 4.4, 4.7.

[16] proposes a methodology for achieving both
anonymization (k-anonymity) and non-discrimination (a-
protection w.r.t. RR) in knowledge disclosure, specifically in
the disclosure of frequent itemsets. The approach consists
of first applying privacy additive sanitization and then a
form of anti-discrimination additive sanitization to control
the degree of a-protection. The second step does not affect
k-anonymity since it adds tuples to the dataset. In contrast,
our approach can tackle both anonymization (the stronger
model of t-closeness) and a-protection in a single step. Since
we establish ¢-closeness to ensure bd(¢)-protection, we have
that the dataset sanitized by dMondrian is at the same time
t-close and bd(t)-protective.

VIII. CONCLUSIONS

The contribution of this paper was twofold. First, we
related the analytical tools of ¢-closeness in privacy data
anonymization and of a-protection in non-discrimination data
analysis by showing that ¢-closeness implies bd(t)-protection
for a bound function bd() depending on the reference discrim-
ination measure. Second, the discovered implication allowed
us for adapting the Mondrian multidimensional generalization
algorithm to discrimination data sanitization with a formal
bound on the a-protection of the sanitized dataset. No previous
approach on discrimination-aware data mining can provide
such a guarantee. These results represent a first step towards
a more general understanding of the interplay between data
anonymization and non-discrimination research in data mining.
A promising research line follows from the parallel between
the role of an anti-discrimination analyst and the one of an
attacker. It is then natural to investigate whether attack models
considered in the privacy literature can be translated into
helpful, legally-grounded, methodologies for discrimination
analysis in the hands of anti-discrimination authorities.
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