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Fairness

Increasingly sophisticated algorithms from Artificial Intelligence (AI) and Machine
Learning (ML) support knowledge discovery from big data of human activity.

They enable the extraction of patterns and profiles of human behavior which
are able to make extremely accurate predictions. Decisions are then being partly
or fully delegated to such algorithms for a wide range of socially sensitive tasks:
personnel selection and wages, credit scoring, criminal justice, assisted diagnosis
in medicine, personalization in schooling, sentiment analysis in texts and images,
people monitoring through facial recognition, news recommendation, community
bulding in social networks, dynamic pricing of services and products.

The benefits of algorithmic-based decision making cannot be neglected, e.g., pro-
cedural regularity – same procedure applied to each data subject. However, au-
tomated decisions based on profiling or social sorting may be biased1 for several
reasons. Historical data may contain human (cognitive) bias and discriminatory
practices that are endemic, to which the algorithms assign the status of general
rules. Also, the usage of AI/ML models reinforces such practices because data about
model’s decisions become inputs in subsequent model construction (feedback loops).

Algorithms may wrongly interpret spurious correlations in data as causation,
making predictions based on ungrounded reasons. Moreover, algorithms pursue the
optimization of quality metrics, such as accuracy of predictions, that favor precision
over the majority of people against small groups. Finally, the technical process of
designing and deploying algorithms is not yet mature and standardized. Rather, it
is full of small and big decisions (sometimes, trial and error steps) that may hide
bias, such as selecting non-representative data, performing overspecialization of the
models, ignoring socio-technical impacts, or using models in deployment contexts
they are not tested for. These risks are exacerbated by the fact that the AI/ML models
are complex for human understanding, or not even intelligible, sometimes they are
based on randomness or time-dependent non-reproducible conditions.2

Algorithmic fairness is the absence of bias in automated decision making. The
1Eirini Ntoutsi et al. ‘Bias in data-driven Artificial Intelligence systems - An introductory survey’.

In: Wiley Interdiscip. Rev. Data Min. Knowl. Discov. 10.3, 2020.
2Joshua A. Kroll et al. ‘Accountable Algorithms’. In: U. of Penn. Law Review 165, 2017, pp. 633–

705.
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most relevant case of bias is discrimination against protected-by-law social groups
in decision making (see book entry Discrimination data analysis).

Fair algorithms are designed with the purpose of preventing biased decisions in
algorithmic decision making. The naı̈ve approach of deleting attributes that denote
protected groups from the original dataset (fairness through unawareness) does not
prevent a model from indirectly learning discriminatory decisions, since other at-
tributes (called redundant encodings) that are strongly correlated with them could
be used as proxies by the AI/ML algorithms. Restrictions on automated decision-
making are provided by the EU General Data Protection Regulation, which states
(article 22) “the right not to be subject to a decision based solely on automated pro-
cessing”.

Moreover, (recital 71) “in order to ensure fair and transparent processing in re-
spect of the data subject [...] the controller should use appropriate mathematical
or statistical procedures [...] to prevent, inter alia, discriminatory effects on natural
persons”. Several initiatives have started to audit, standardize and certify algorith-
mic fairness, such as the ICO Draft on AI Auditing Framework3, the draft IEEE
P7003TM Standard on Algorithmic Bias Considerations4, and the IEEE Ethics Cer-
tification Program for Autonomous and Intelligent Systems5.

Fairness measures

The design of algorithms assumes requirements on the expected functionalities (what
the system is supposed to do) and qualities (what the system is supposed to be). Fair-
ness is a non-functional requirement on algorithms. In order to enforce fairness, or
even test it, designers need a measurable definition of fairness. Quantitative defini-
tions have been introduced in philosophy, economics, and machine learning in the
last 50 years,6,7 with more than 20 different definitions of fairness appeared thus far
in the computer science literature.8,9

3https://ico.org.uk/about-the-ico/ico-and-stakeholder-consultations/ico-consultation-on-the-draft-
ai-auditing-framework-guidance-for-organisations

4https://standards.ieee.org/project/7003.html
5https://standards.ieee.org/industry-connections/ecpais.html
6Ben Hutchinson, Margaret Mitchell. ‘50 Years of Test (Un)fairness: Lessons for Machine Learn-

ing’. In: FAT. ACM, 2019, pp. 49–58.
7Reuben Binns. ‘Fairness in Machine Learning: Lessons from Political Philosophy’. In: FAT.

vol. 81. Proceedings of Machine Learning Research. PMLR, 2018, pp. 149–159.
8Ninareh Mehrabi et al. ‘A Survey on Bias and Fairness in Machine Learning’. In: CoRR

abs/1908.09635, 2019.
9Indre Zliobaite. ‘Measuring discrimination in algorithmic decision making’. In: Data Min. Knowl.
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Existing fairness definitions can be categorized10 into: (i) “predicted outcome”,
(ii) “predicted and actual outcome”, (iii) “predicted probabilities and actual out-
come”, (iv) “similarity based”, and (v) “causal reasoning”. We present them by
using a statistical notation. Let G be a protected ground (or sensitive attribute), say
gender, with values f (protected group) and m (unprotected group). Let d be the de-
cision of the algorithm, with values + (positive) and − (negative). Such a decision
may come with a score S, a number between 0 and 1 stating the confidence in the
prediction. Finally, let T be the ground-truth decision, if available (we will discuss
this concept later on).

“Predicted outcome” definitions solely rely on an algorithm’s decisions. For ex-
ample, group fairness (also called, demographic parity or statistical parity) requires
the probabilities of positive decisions for protected and unprotected groups to be the
same, or, in formula P (d = + | G = f) = P (d = + | G = m). If it is less likely
that females are assigned a positive decision than male, this is interpreted as unfair-
ness. This measure originates from studies on disparate impact discrimination.11

“Predicted and actual outcome” definitions combine an algorithm’s decision with
the true decision. For instance, predictive parity requires the probability of correct
positive predictions to be the same for both groups, namely P (T = + | d = +, G =

f) = P (T = + | d = +, G = m).
“Predicted probabilities and actual outcome” definitions refer to the predicted

probabilities instead of the predicted outcomes. For example, well calibration re-
quires the probability of positive predictions to be equally calibrated for both groups,
namely P (T = + | S = s, G = f) = P (T = + | S = s, G = m) = s. Calibration
is a desirable property of scoring algorithms, meaning that the probability of positive
decision is proportional to the scoring value, i.e., P (T = + | S = s).

The previous definitions do not consider attributes used by algorithms in decision
making, except G. This may hide unfairness if the data distribution differs among
groups, e.g., if male applicants are less qualified than females in the available data.

“Similarity based” definitions (or individual fairness) instead employ other at-
tributes which are relevant for decision making. They originate from the formal
equality principle to “treat like cases as like”, also known, in its negative form, as
disparate treatment discrimination. They assume a distance function d(x,y) which

Discov. 31.4, 2017, pp. 1060–1089.
10Sahil Verma, Julia Rubin. ‘Fairness definitions explained’. In: FairWare@ICSE. ACM, 2018,

pp. 1–7.
11Andrea Romei, Salvatore Ruggieri. ‘A multidisciplinary survey on discrimination analysis’. In:

Knowledge Eng. Review 29.5, 2014, pp. 582–638.
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measures the dissimilarity between vector of individuals’ characteristics x and y,
except G. It consists of a non-negative real number, close to 0 when the two in-
dividuals are highly similar or ‘near’ each other’s, and becoming larger the more
they differ. Fairness through awareness states that d(x,y) bounds the distance be-
tween decisions Yx and Yy (or between scores Sx and Sy) for individuals x and
y. For instance, if two individuals are equally qualified for obtaining a loan (zero
distance), then there should be no difference between their predictions or scores –
independently from their protected attribute G.

Finally, “causal reasoning” definitions are based on statistical models of cause-
effect, such as directed acyclic graphs which capture relations between attributes
and their impact on the decision outcomes. For example, counterfactual fairness
verifies whether the decision d in the causal graph is not affected by a change of the
protected attribute G. Causal graphs can be (partially) inferred from data but need
domain expert interventions for their validation.

Despite the many definitions of fairness proposed, the choice of the most ap-
propriate measure in a given application context is left open,12 and it can only be
made as the result of involving humans in the loop.13 For instance, which individ-
ual’s characteristics should be considered in the similarity-based measures? And,
how should the distance measure be defined beyond blindly choosing one offered by
the tool at hand? Another critical point for measures which rely on the true deci-
sion T , is how to collect ground-truth. Very few datasets have such an information.
The COMPAS dataset14 for the analysis of recidivism risk scoring approximates the
ground-truth by a 2-year look-ahead of the behavior of a defendant. In most cases,
however, there is no counterfactual to look at. We do not know, for instance, if an
applicant with rejected loan request would have repaid the loan. Practitioners may
be tempted to use data on past loans as ground-truth. But such data is biased, as only
accepted loans are monitored. Hence, the risk is to reinforce the bias already present
in past data.

Fair algorithms

Four non-mutually exclusive strategies can be devised for fairness-by-design of AI/ML
12Alexandra Chouldechova, Aaron Roth. ‘A snapshot of the frontiers of fairness in machine learn-

ing’. In: Commun. ACM 63.5, 2020, pp. 82–89.
13Nripsuta Ani Saxena et al. ‘How do fairness definitions fare? Testing public attitudes towards three

algorithmic definitions of fairness in loan allocations’. In: Artif. Intell. 283, 2020, p. 103238.
14https://www.propublica.org/datastore/dataset/compas-recidivism-risk-score-data-and-analysis
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models.
Pre-processing approaches. The first strategy consists of a controlled sanitiza-

tion of the data used to train an AI/ML model with respect to specific biases. The
methodologies are similar to the ones used for preserving privacy in data release.
They include changing historical decision outcomes to correct biased decisions, re-
weighting or sampling data to balance data distributions, or abstracting values to
ranges to mask bias in some specific contexts. Pre-processing approaches allow for
obtaining less biased data, which can be released (as in the case of official statis-
tics) or used for training AI/ML models. The latter case alleviates for the lack of
ground-truth availability (the true decision T ). Another advantage of pre-processing
approaches is that they are independent of the AI/ML model and algorithm at hand.
A pertinent legal question is whether modifications of data could be considered law-
ful, especially in the case of personal data.

In-processing approaches. The second strategy is to modify the AI/ML algo-
rithm, by incorporating fairness criteria in model construction, such as regularizing
the optimization objective with a fairness measure. Impossibility results,15 however,
state that any two statistical fairness measures cannot be satisfied at the same time.
Hence, the strategy must be specific of a given fairness measure. There is a fast
growing adoption of in-processing approaches in many AI/ML problems other than
in the original setting of classification, including ranking, clustering, community
detection, influence maximization, distribution/allocation of goods, and models on
non-structured data such as natural language texts and images. In dynamic settings
such as online learning, bandit learning, and reinforcement learning, the actions of
the fair algorithms feed back into the data it observes subsequently, thus taking into
account feedback loops. In causal fairness, the decision-making model is trained to
exploit causal dependencies between people’s characteristics and decisions, instead
of correlations.

An area somehow in the middle between pre-processing and in-processing ap-
proaches is fair representation learning, where the model inferred from data is not
used directly for decision making, but rather as intermediate knowledge. For exam-
ple, fair variational auto encoders map texts into a latent space (which can be used
for text classification or machine translation) by constraining the mapping not to be
subject to a sensitive attribute. This could be done by adversarial de-biasing: train at
the same time a representation model and an adversarial model that tries and recon-
struct from the representation a sensitive attribute, in such a way that the adversarial

15Alexandra Chouldechova. ‘Fair Prediction with Disparate Impact: A Study of Bias in Recidivism
Prediction Instruments’. In: Big Data 5.2, 2017, pp. 153–163.
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model fails its goal.
Post-processing approaches. The third strategy is to post-process the AI/ML

model once it has been computed, so to identify and remove unfair decision paths.
This can be achieved also by involving human experts (human-in-the-loop16) in the
exploration and interpretation of the model (if it is interpretable) or of the model’s
decisions. Post-processing approaches consist of altering the model’s internals, for
instance by correcting the confidence of classification rules, or the probabilities of
Bayesian models, or by simply re-training the model with adjusted parameters. Post-
processing becomes necessary for tasks for which there is no in-processing approach
explicitly designed for the fairness requirement at hand.

Prediction-time approaches. The last strategy assumes no change in the con-
struction of AI/ML models, but rather correcting their predictions at run-time. Pro-
posed approaches include promoting, demoting or rejecting predictions close to the
decision boundary, differentiating the decision boundary itself over different social
groups, or wrapping a fair classifier on top of a black-box base classifier. Such ap-
proaches may be applied to legacy software, including non-AI/ML algorithms, that
cannot be replaced by in-processing or changed by post-processing approaches.

Fairness auditing, discrimination discovery, explainability

The goal of auditing AI/ML models is to test fairness of their decisions. Approaches
can vary widely on the basis of the information available. On one extreme, there are
mathematical proofs of fairness using formal methods.17

This requires the disclosure of the AI/ML model and its representability in some
formal language. If any of the two is not possible, but the model can be queried
at will, inferences on the model decision distribution can be made. This line of
research share methods with the area of explainability18,19 of AI/ML black boxes
(see book entry Explainability). Both provide surrogate models, feature importance
weights, decisions rules, or other outputs that describe the behavior of the AI/ML

16Bettina Berendt, Sören Preibusch. ‘Toward Accountable Discrimination-Aware Data Mining: The
Importance of Keeping the Human in the Loop - and Under the Looking Glass’. In: Big Data 5.2,
2017, pp. 135–152.

17Aws Albarghouthi. ‘Fairness: A Formal-Methods Perspective’. In: SAS. vol. 11002. Lecture
Notes in Computer Science. Springer, 2018, pp. 1–4.

18Riccardo Guidotti et al. ‘A Survey of Methods for Explaining Black Box Models’. In: ACM
Comput. Surv. 51.5, 2019, 93:1–93:42.

19Alejandro Barredo Arrieta et al. ‘Explainable Artificial Intelligence (XAI): Concepts, taxonomies,
opportunities and challenges toward responsible AI’. in: Inf. Fusion 58, 2020, pp. 82–115.
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model globally, at the decision boundary, or for a specific input instances.
Here, the interest is in detecting the influence of protected attributes on a model

decision. Finally, there are cases when the algorithm cannot be accessed at all
(such as in criminal justice or in tax assessment or in web user profiling), but its
input/outputs can be collected. Here, the approaches for discrimination discovery
from data20 can be applied.

An intriguing question is how to compare the relative (un)fairness of two com-
peting AI/ML models, in particular, when they refer to different fairness measures.
A possible answer relies on using inequality indices from economics and social wel-
fare.21

20Andrea Romei, Salvatore Ruggieri. Ibid.
21Till Speicher et al. ‘A Unified Approach to Quantifying Algorithmic Unfairness: Measuring Indi-

vidual & Group Unfairness via Inequality Indices’. In: KDD. ACM, 2018, pp. 2239–2248.
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