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Abstract Extending linear constraints by admitting parameters allows for
more abstract problem modeling and reasoning. A lot of focus has been given
to conducting research that demonstrates the usefulness of parameterized lin-
ear constraints and implementing tools that utilize their modeling strength.
However, there is no approach that considers basic theoretical tools related to
such constraints that allow for reasoning over them. Hence, in this paper we
introduce satisfiability with respect to polyhedral sets and entailment for the
class of parameterized linear constraints. In order to study the computational
complexities of these problems, we relate them to classes of quantified linear
implications. The problem of satisfiability with respect to polyhedral sets is
then shown to be co-NP hard. The entailment problem is also shown to be
co-NP hard in its general form. Nevertheless, we characterize some subclasses
for which this problem is in P. Furthermore, we examine a weakening and a
strengthening extension of the entailment problem. The weak entailment prob-
lem is proved to be NP complete. On the other hand, the strong entailment
problem is shown to be co-NP hard.

1 Introduction

Linear constraints can be extended by admitting parameters, which allow for
more abstract problem modeling and reasoning. As an example, the points
belonging to a rectangle of length 2 and height 3 can be described as the
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Email: ruggieri@di.unipi.it

mailto:peir@aueb.gr;ksmani@csee.wvu.edu;pwojciec@mix.wvu.edu
mailto:ruggieri@di.unipi.it


2 Eirinakis et al.

solutions (x1 x2) of the inequalities 0 ≤ x1 ≤ 2, 0 ≤ x2 ≤ 3. More abstractly,
the points belonging to a rectangle of length a and height b can be described
as the solutions (x1 x2) of the inequalities 0 ≤ x1 ≤ a, 0 ≤ x2 ≤ b. However,
how do the basic notions of constraint satisfiability and entailment extend
in the presence of parameters? Do their computational complexities become
harder or intractable? In this paper, we answer precisely those two questions.
We define satisfiability and entailment of parameterized linear constraints and
investigate their computational complexities.

Let us provide some basic intuitions. Consider two linear constraints (or,
equivalently, two linear systems of inequalities) over the reals c1 = A · x ≤ b
and c2 = C ·x ≤ d. We say that c1 entails c2 if every solution of c1 is a solution
of c2. In formal logic, c1 entails c2 if ∀x [c1 → c2] is true in the domain of the
reals. Entailment for linear constraints is a polynomial time decision problem.
It reduces to showing that for every inequality cT · x ≤ d in c2, the linear
programming problem:

max cT · x
A · x ≤ b

is either infeasible or its solution is bounded by d. Since linear programming
problems are solvable in polynomial time, as shown first by Khachiyan (1979),
the conclusion readily follows.

A parameterized linear constraint over the reals is a system of linear in-
equalities A · x ≤ b + N · s where variables in s are parameters. The intended
meaning of a parameterized linear constraint is a collection of linear con-
straints over variables in x, each obtained by instantiating the parameters s.
We say that a parameterized linear constraint cp1 = A · x ≤ b + N · s entails
cp2 = C · x ≤ d + M · r + P · s if for every parameter instance s0 of s there
exists an instance r0 of r such that the (non-parameterized) linear system
A ·x ≤ b + N · s0 entails C ·x ≤ d + M · r0 + P · s0. Notice that r occurs only
in cp2, while s may occur in both. Intuitively, entailment is a generalization of
inclusion: for every instance of cp1 obtained by fixing s to s0, we can find at
least one instance of cp2, obtained by possibly fixing additional parameters r
to r0, that admits at least the same set of solutions.

As an example, consider the two parameterized linear systems:

0 ≤ x1 ≤ a
0 ≤ x2 ≤ b

c ≤ x3 ≤ c+ 2

(cp1)

x1 + x2 ≤ d
0 ≤ x1
0 ≤ x2

c ≤ x3 ≤ c+ 2

(cp2)

In cp1, x1 and x2 vary from 0 to a and b respectively, while x3 assumes
any value in a range of width 2 (delimited by c and c + 2). For fixed a and
b, every solution (x1, x2, x3) of cp1 is such that x1 + x2 ≤ a + b. By setting
d = a+b, we have that any instance of cp1 entails some instance of cp2. Notice
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that parameters in cp1, namely a, b and c, are universally quantified over, while
parameters that appear only in cp2, namely d, are existentially quantified over.
Hence, this entailment problem is equivalent to the following implication:

∀a ∀b ∀c ∃d ∀x1 ∀x2 ∀x3 [cp1 → cp2]

In this paper, we introduce entailment and a notion of satisfiability with
respect to polyhedral sets as basic tools for reasoning over parameterized linear
constraints. In their general formulation, both problems are shown to be co-
NP hard. We characterize some tractable instances constructively, namely by
providing algorithms for checking satisfiability and entailment. A weakening
and a strengthening variant of the entailment problem are also investigated.

The rest of this paper is organized as follows. Section 2 discusses the pre-
liminaries and notations that will be used for the rest of the paper. Section
3 details the motivation for our work, our contributions, and related work.
Satisfiability is dealt with in Section 4. Entailment is defined in Section 5, and
its complexity investigated in Section 6. Some tractable instances are char-
acterized in Section 7. Extensions of entailment are considered in Section 8,
including a weaker and a stronger notion of entailment. Finally, we summarize
our contributions and discuss avenues for future research in Section 9.

2 Background and Notation

2.1 Linear Systems and Constraints

We adhere to standard notation of linear algebra (Schrijver, 1987). < is the
set of real numbers. Small bold letters (a, b, . . . ) denote column vectors, while
capital bold letters (A, B, . . . ) denote matrices. 0 is the column vector with
all elements equal to 0 and 1 is the column vector with all elements equal to
1. Also, ai denotes the ith element in a, while the transposed vector of a is
denoted by aT . The inner product is denoted by aT · b.

A·x ≤ b denotes a system of linear inequalities over the variables in x, also
called a linear system. We assume that the dimensions of vectors and matrices
in inner products and linear systems are of the appropriate size. A polyhedron
is the set of solution points of a linear system: Sol(A · x ≤ b) = {x0 ∈
<|x| | A · x0 ≤ b}. Polyhedra are convex sets. A linear system is satisfiable if
its polyhedron is non-empty. A linear program:

max cT · x
A · x ≤ b

is the problem of finding max{cT ·x0 | x0 ∈ Sol(A ·x ≤ b)}. If the polyhedron
Sol(A · x ≤ b) is empty, the problem is said to be infeasible. If the linear
function cT · x is unbounded, the problem is said to be unbounded.

An equivalent formulation of linear systems is provided in terms of logic
formulas over the reals. A primitive linear constraint is an expression a1 x1 +
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. . .+ an xn ≤ a0, where a0, . . . , an are constants in < and x1, . . . , xn are vari-
ables. We will also use the inner product form by rewriting it as cT · x ≤ α.
A linear constraint c is a conjunction of primitive constraints. Conjunction is
syntactically represented either by “∧” or by a comma. Inequalities cT ·x ≥ α
and equalities cT · x = α can be reduced to linear constraints. Any linear
system can be represented as a linear constraint and vice-versa. So, we will
use the two notions interchangeably throughout the paper. A difference con-
straint is a primitive linear constraint of the form xi−xj ≤ aij , while a linear
system which consists only of difference constraints is referred to as difference
constraints system.

2.2 Parameterized Linear Constraints

A parameterized linear system over the reals is a system cp of linear inequalities
A · x ≤ b+N·s where variables in s are parameters. A parameterized primitive
linear constraint is an expression a1 x1 + . . . + ai xi ≤ a0 + n1s1 + . . . + njsj
where a0, . . . , ai and n1, . . . , nj are constants in <, x1, . . . , xi are variables and
s1, . . . , sj are parameters. A parameterized linear constraint cp is a conjunc-
tion of parameterized primitive linear constraints. The intended meaning of a
parameterized linear system is then a collection of linear systems over variables
in x, each obtained by instantiating the parameters s. The notion of param-
eterized polyhedra from Loechner and Wilde (1997) models the solutions of
parameterized linear systems and is presented below.

Definition 1 A parameterized polyhedron is a collection of polyhedra defined
by fixing the value for parameters in a parameterized system of linear inequal-
ities: Sol(A · x ≤ b + N · s, s0) = {x0 ∈ <|x| | A · x0 ≤ b + N · s0}, where
s0 ∈ <|s| is an instance of the parameters s.

Note that Sol() now corresponds to the set of solution points of a param-
eterized linear system with respect to a specific assignment to parameters.

2.3 Quantified Linear Programs

A quantified linear program, introduced by Subramani (2007), is a linear con-
straint in which variables can be either existentially or universally quantified.
The general form is an alternation of existential and universal quantifiers:

∃x1 ∀x2 ∈ [l2,u2] . . . ∃xn−1 ∀xn ∈ [ln,un] A · x ≤ b

where x1 . . .xn is a partition of x with, possibly, x1 and/or xn empty, and
l2i, u2i are lower and upper bounds in the reals for x2i, i = 1, . . . , n/2. Note
that existentially quantified variables are not bounded in the quantifier string;
this is because any such bounds can be placed within the linear constraint.
However, this is not the case for universally quantified variables, since their
values are only restricted by the bounds on the quantifier string. Hence, if
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those bounds were to be put in the linear constraint, the query would then be
trivially falsified.

We will make use of the following result from (Subramani, 2007), where
from now on validity and satisfiability of a formula is to be intended in the
domain of the reals. In particular, a linear system A · x ≤ b is satisfiable if and
only if its existential closure ∃x A · x ≤ b holds in the domain of the reals.

Theorem 1 The validity problem for the class of quantified linear programs
of the form ∀x1 ∈ [l1,u1] ∃x2 A1 · x1 + A2 · x2 ≤ b is co-NP complete.

2.4 Quantified Linear Implications

The notion of quantified linear implications was introduced in (Eirinakis et al,
2012). Quantified linear implications extend quantifications to implications of
linear constraints by considering formulas of the form:

∃x1 ∀x2 . . . ∃xn−1 ∀xn [A · x ≤ b→ C · x ≤ d]

where x1 . . .xn is a partition of x with, possibly, x1 and/or xn empty.
Let us introduce a nomenclature to succinctly specify the problems under

consideration. We use a triple 〈T,Q,R〉 to denote the number T of quantifier
alternations, the first quantifier Q, and a (T + 1)-character string R, which
specifies for each quantified set of variables (in the order they appear in the
quantifier string) whether they may participate in the Left, in the Right, or
in Both sides of the implication. For instance, 〈1,∃,RB〉 indicates a problem
of the form:

∃x1 ∀x2 [A · x2 ≤ b→ C1 · x1 + C2 · x2 ≤ d]

We will make use of the following result from Subramani (2009), which
formalizes the decision procedure for entailment of non-parameterized linear
constraints provided in the introduction.

Theorem 2 The validity problem for the class of quantified linear implica-
tions of the form ∀x [Ax ≤ b→ C · x ≤ d], i.e., for 〈0,∀,B〉, is in P.

3 Motivation, Contributions and Related Work

3.1 Motivation

Parameterized linear constraints are an extension of linear systems that can
be traced back to the late 60’s in the context of (multi-)parametric linear
programming, where the objective is to optimize a parameterized linear or
quadratic function over the solutions of a parameterized linear system. Para-
metric linear programming is closely related to sensitivity analysis of linear
programs, where one is interested in determining how “sensitive” the optimal
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solution is to changes in variable values. Parametric linear programming, in-
stead, provides a complete map of the optimal solution in the space of the
parameter values. Parametric linear programming has a solid theoretical basis
(Willner, 1967; Murty, 1980; Gal, 1995; Pistikopoulos et al, 2007b) and a wide
range of applications, including hybrid parametric/stochastic programming,
process planning under uncertainty, material design under uncertainty, model
based control, multi-processor scheduling (Kvasnica, 2009; Pistikopoulos et al,
2007a).

Besides linear programming problems, parameterized linear systems are
recently gaining interest from several research communities. They have been
adopted for: symbolic dependence analysis in computing a parallel schedule
(Loechner and Wilde, 1997), fracture mechanics and engineering (Ioakimidis,
2000; Solares and Chaves, 2008), hardware verification (Cachera and Morin-
Allory, 2005), type systems for constraint programming (Ruggieri and Mes-
nard, 2010), real-time scheduling (Subramani, 2002, 2005a), and loop invariant
inference in program verification (Colón and Sankaranarayanan, 2011).

The explicit calculation of the solutions of a parameterized system of in-
equalities, represented in a Minkowski’s sum of rays and parameterized ver-
tices, can be computed by a generalization of the double description method,
as described in Loechner and Wilde (1997). The polylib library (Loechner,
2011) implements the approach and provides basic set-oriented primitives for
manipulating the solutions of parameterized linear systems. In the context
of parametric linear programming, the Multi-Parametric Toolbox (Kvasnica,
2009; Kvasnica et al, 2011) solves parametric linear and quadratic program-
ming problems by explicitly computing the optimization function over the
solutions of a parameterized linear system.

While the above research and tools demonstrate the usefulness of param-
eterized linear constraints, to the best of our knowledge, there is no approach
that considers basic tools for reasoning over them, and in particular entail-
ment. As an example, linear constraint-based languages and systems (such as
the constraint logic programming systems CLP(R), ECLiPSe, Sictus Prolog,
SWI Prolog) could be readily extended to reason about parameterized linear
constraints by using satisfiability and entailment as building blocks. It is then
of utmost importance to understand and characterize the computational com-
plexities of the satisfiability and entailment problems for parameterized linear
constraints. This basic issue motivates our work.

3.2 Contributions

The entailment problem for parameterized linear constraints is equivalent to
the validity problem for the 〈2,∀,BRB〉 class, namely to formulas:

∀s ∃r ∀x [A · x ≤ b + N · s→ C · x ≤ d + M · r + P · s] (1)

The principal contributions of the paper are briefly presented below:
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1. The validity problem for the 〈2,∀,BRB〉 class is polynomial-time reducible
to the validity problem for the 〈2,∀,LRB〉 class and vice-versa (Lemma 2).

2. Query (1) (and hence the entailment problem) is co-NP hard (Theorem 4).
3. Query (1) is co-NP hard even if A ·x ≤ b + N · s is a difference constraints

system (Corollary 2).
4. Query (1) is co-NP hard even if the set of variables x is empty (Theorem

5).
5. Query (1) is in P under any of the following restrictions:

(a) no primitive linear constraint contains both variables x and parameters
s (Theorem 6). This includes the case in which there are no parameters
s, or, stated otherwise, the class 〈1,∃,RB〉 (Corollary 3),

(b) for every parameter in r, its coefficients in M are all non-negative or
all non-positive (Lemma 4),

(c) C · x ≤ d + M · r + P · s consists of a single equality (Lemma 5),
(d) C · x ≤ d + M · r + P · s can be partitioned into two systems for which

entailment is in P and with no overlapping parameters in r (Lemma 6).

A weakening and a strengthening extension of the entailment problem are dis-
cussed in Section 8. The weak entailment problem is equivalent to the validity
problem for the 〈1,∃,BB〉 class, while the strong entailment problem is defined
by replacing implication with equivalence in query (1). We show that:

6. The weak entailment problem is NP complete (Theorem 7 and Theorem 8);
7. The strong entailment problem is at least as hard as the entailment prob-

lem, and therefore co-NP hard (Theorem 9).

3.3 Related Work

Polynomial time complexity for the satisfiability of linear systems was firstly
achieved by Khachiyan (1979), with further improvements by Karmarkar (1984)
and Vaidya (1987). Entailment of non-parameterized linear systems is in P, as
discussed intuitively in the introduction; the formal proof is due to Subramani
(2009). Unfortunately, a direct extension of that procedure to parameterized
linear systems by using parametric linear programming does not work. This is
because the optimal solution of a parametric linear programming problem is
a piecewise affine function defined over a polyhedral partition of the feasible
parameters (Borrelli et al, 2003). Such a function can be exponentially large
in the size of the linear program, even if there is only one parameter (Murty,
1980). The notion of quantified linear implications was first discussed in (Eiri-
nakis et al, 2012). The general class of quantified propositional combinations of
linear inequalities is known as the theory of real numbers with addition. Sontag
(1985) shown that the sub-class of such formulas starting with an existential
quantifier and with k − 1 quantifier alternations is log-complete in ΣP

k .
Quantified formulas over the reals can be solved by quantifier elimination

methods (Dolzmann et al, 1998b; Weispfenning, 1988). Although its complex-
ity has been improved several times (Renegar, 1992; Basu et al, 1996), in



8 Eirinakis et al.

the worst case, quantifier elimination is doubly exponential in the number
of quantifier alternations and exponential in the number of variables (Daven-
port and Heintz, 1988; Weispfenning, 1988). Nevertheless, approaches efficient-
in-practice have been proposed and successfully applied to theorem proving
and program verification. We mention partial cylindrical algebraic decomposi-
tion by Collins and Hong (1991), provided in the QEPCAD/QEPCAD-B sys-
tems (Brown, 2003), and virtual substitution of test terms by Dolzmann et al
(1998a), provided in the REDLOG system (Dolzmann and Sturm, 1997), which
is specialized for low-degree polynomials. Finally, we mention the RSolver
algorithm by Ratschan (2006), whose implementation is publicly available
(Ratschan, 2011).

The computational complexities of satisfiability and entailment in presence
of quantifiers have been considered also in related domains (without param-
eters). Efficient solvers have been proposed for quantified boolean formulas
(Le Berre et al, 2004; Giunchiglia et al, 2004; Pulina and Tacchella, 2009;
Egly et al, 2009). Satisfiability of quantified linear systems is covered by Sub-
ramani (2007). The integer case is detailed in (Subramani, 2005b). The use
of quantifiers has also been extended in the context of constraint satisfaction
problems (Bodirsky and Chen, 2009; Stynes and Brown, 2009), with Gottlob
et al (2005) investigating computatonal complexity. A framework for solving
constraint satisfaction problems is presented by Goldsztejn et al (2009). An
extension of satisfiability with preferences is examined in Di Rosa et al (2010).
Entailment of binary and multi-valued propositional logics is investigated by
Cadoli and Schaerf (1996). Subramani (2005b) covers entailment of linear sys-
tems over integers.

4 The Satisfiability Problem

Let us introduce the definition of satisfiability for parameterized linear con-
straints, which, intuitively, holds when there is an instance of the parameters
with a non-empty set of solutions.

Definition 2 A parameterized linear constraint cp = A · x ≤ b + N · s is
satisfiable if there exists s0 ∈ <|s| such that Sol(cp, s0) 6= ∅.

Stated otherwise, cp is satisfiable if there exists a parameter instance s0
such that cp[s ← s0] is satisfiable, where cp[s ← s0] is the linear constraint
obtained by instantiating the parameters s with real values s0. Satisfiability in
presence of parameters can be reduced to satisfiability of (non-parameterized)
linear constraints. Such a reduction is well-known in the context of parametric
linear programming (Gal, 1995).

Lemma 1 The problem of checking the satisfiability of parameterized linear
constraints is in P.

Proof It is readily checked that cp = A · x ≤ b + N · s is satisfiable if and
only if ∃s ∃x cp holds in the domain of the reals. That is, if and only if cp
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is satisfiable as a linear constraint over the space of variables plus parameters
(x, s). The conclusion follows since the satisfiability of linear constraints is in
P (Khachiyan, 1979). ut

Example 1 Consider variables x1, x2 and parameters s1, s2, and the following
parameterized linear constraint:

cp = (x1 + x2 ≤ s1) ∧ (x1 − x2 ≥ s2) ∧ (s1 ≤ 1) ∧ (s2 ≥ 0)

A solution of cp as a non-parameterized linear system over the space of vari-
ables plus parameters is: s1 = s2 = x1 = x2 = 0. Hence, there is an instance of
the parameters (s1 = s2 = 0) with a non-empty set of solutions (x1 = x2 = 0).

The space of parameter instances s with Sol(cp, s) 6= ∅ is called feasibility
domain. It turns out to be a polyhedron; in fact, it can be obtained by simply
eliminating all variables x from cp. A strengthening of satisfiability consists
then of checking whether every parameter in a given polyhedral set admits a
solution, i.e., whether the polyhedral set is included in the feasibility domain.
Let us introduce satisfiability with respect to polyhedral sets of parameters.

Definition 3 A parameterized linear constraint cp = A · x ≤ b + N · s is
satisfiable with respect to (the solutions of) P·s ≤ d if for every s0 ∈ Sol(P·s ≤
d) we have Sol(cp, s0) 6= ∅.

That is, satisfiability with respect to polyhedral sets can be expressed in
terms of quantified linear implications as follows:

∀s ∃x [P · s ≤ d→ A · x ≤ b + N · s]

Remark 1 The class of problems of satisfiability with respect to polyhedral
sets is equivalent to the validity problem for the class of formulas 〈1,∀,BR〉.

Satisfiability with respect to polyhedral sets is a co-NP hard problem.

Theorem 3 The problem of checking satisfiability with respect to polyhedral
sets of parameters is co-NP hard.

Proof We reduce a co-NP complete problem to the problem of satisfiability
with respect to polyhedral sets of parameters. Let P · s ≤ d be l ≤ s ≤ h,
where l,u ∈ <|s|. Definition 3 reduces to showing:

∀s ∃x [l ≤ s ≤ h→ A · x ≤ b + N · s]

which, in turn, is equivalent to: ∀s ∈ [l,h] ∃x A ·x−N ·s ≤ b. By Theorem 1,
the validity problem for this class of formulas is co-NP complete. ut

Example 2 Consider Example 1. By Fourier-Motzkin elimination of x1 and x2,
cp is equivalent to the system (s2+x2 ≤ x1 ≤ s1−x2) ∧ (2x2 ≤ s1−s2) ∧ (s1 ≤
1) ∧ (s2 ≥ 0). Hence, the feasibility domain of cp is (s1 ≤ 1) ∧ (s2 ≥ 0).
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5 The Entailment Problem

The entailment problem for parameterized linear constraints is formulated
next.

Definition 4 We say that cp1 = A · x ≤ b + N · s entails cp2 = C · x ≤
d + M · r + P · s if for every s0 ∈ <|s| there exists r0 ∈ <|r| such that
Sol(cp1, s0) ⊆ Sol(cp2, (s0 r0)).

We call cp1 the entailing constraint and cp2 the entailed constraint. Intu-
itively, parameters in s may occur both in cp1 and in cp2, and are universally
quantified. Parameters in r occur only in cp2 and they are existentially quan-
tified.

Example 3 Let x be a variable and r a parameter. The problem of deciding
whether cp1 entails cp2 : (x = r) consists of deciding whether x is equal to
a constant value once the parameters in cp1 are fixed. Similarly, cp1 entails
cp2 : (x ≤ r) means that x is upper bounded once the parameters in cp1 are
fixed, while cp1 entails cp2 : (r ≤ x ≤ r + 1) means that x has a variability
range of width at most 1. These observations allow for reasoning over problems
with uncertainty or imprecision. As an example, assume that a Celsius tem-
perature (represented by variable xc) is known with an approximation of at
most ±2 degrees, and that we are interested in checking its approximation in
Fahrenheit scale (the Fahrenheit temperature is represented by variable xf ).
The constraint cp1 : (s − 2 ≤ xc ≤ s + 2) ∧ (xf = 9/5xc + 32) models the
approximation (s−2 ≤ xc ≤ s+ 2) and the conversion rule (xf = 9/5xc + 32).
Then, cp1 entails cp2 : (r − 3.6 ≤ xf ≤ r + 3.6) if the approximation on the
Fahrenheit scale is at most ±3.6 degrees, where s and r are the parameters of
the entailing and the entailed constraint respectively.

An equivalent formulation in terms of quantified linear implications follows
immediately.

Remark 2 The class of entailment problems is equivalent to the validity prob-
lem for the class of formulas 〈2,∀,BRB〉.

Stated otherwise, proving that cp1 = A·x ≤ b + N · s entails cp2 = C · x ≤
d + M · r + P · s is equivalent to showing the validity of the formula:

∀s ∃r ∀x [A · x ≤ b + N · s→ C · x ≤ d + M · r + P · s] (2)

Example 4 Consider the following parameterized linear constraints:

cp1 : (−1 + s1 ≤ x1 + x2 ≤ 1 + 2s1) ∧ (−1 + s1 ≤ x1 − x2 ≤ 1 + 3s1)

cp2 : (−1− s1 ≤ x1 ≤ 1 + 2r1 + s1) ∧ (−1− r1 ≤ x2 ≤ 1 + r1 + 2s1)

Figure 1 presents the entailing (cp1) and the entailed constraint (cp2) for
parameter values s1 = r1 = 0. Note that for these specific values cp1 is included
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x1

x2

cp2 for s1 = r1 = 0

cp1 for s1 = 0

Fig. 1 cp1 entails cp2 from Example 4.

in cp2. However, in order to check whether cp1 entails cp2, we need to check
the validity of the following 〈2,∀,BRB〉 instance:

∀s1 ∃r1 ∀x1 ∀x2
x1 + x2 ≥ −1 + s1 x1 ≥ −1− s1
x1 + x2 ≤ 1 + 2s1 → x1 ≤ 1 + 2r1 + s1

x1 − x2 ≥ −1 + s1 x2 ≥ −1− r1
x1 − x2 ≤ 1 + 3s1 x2 ≤ 1 + r1 + 2s1

Formulating the entailment problem as a quantified linear implication prob-
lem is very useful in proofs. For instance, the following result shows that, as
one would expect, entailing an always false constraint boils down to unsatisfi-
ability. We code the always false logic predicate as 0 = 1.

Corollary 1 Let cp = A · x ≤ b + N · s. Then cp entails 0 = 1 if and only if
cp is unsatisfiable.

Proof By Remark 2, cp entails 0 = 1 if and only if ∀s ∀x [cp → 0 = 1]. The
latter can be rewritten as ¬∃s ∃x cp, i.e., as the complement of the satisfiability
of cp. ut

The next result shows that, when considering the computational com-
plexity of the entailment problem, we can restrict ourselves to entailed con-
straints cp2 without any parameter appearing in cp1, namely cp2 of the form
C · x ≤ d + M · r, i.e., with P = 0. Stated otherwise, we can restrict ourselves
to the validity problem for formulas in the class 〈2,∀,LRB〉:

∀s ∃r ∀x [A · x ≤ b + N · s→ C · x ≤ d + M · r] (3)

Lemma 2 The validity problems for the classes of formulas 〈2,∀,BRB〉 and
〈2,∀,LRB〉 are polynomial-time reducible to each other.
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Proof Every formula in 〈2,∀,LRB〉 is also in 〈2,∀,BRB〉. To show the oppo-
site, note that formula (2) holds if and only if the following holds:

∀s ∃r ∀x′,x [x′ = s ∧A · x ≤ b + N · s→ C · x−P · x′ ≤ d + M · r] (4)

More specifically, note that s has been replaced by the newly introduced x′

in the right hand side of formula (4). Nevertheless, the variables in x′ are
constrained to assume the values of the parameters in s, since x′ = s has
been added in the left hand side of formula (4) (note that the existence of
x′ = s only restricts the values of x′ and not of s). Hence, although s has
been removed from the right hand side, the entailed constraint still depends
on the values of s exactly as in (2). Therefore, if formula (2) holds, then the
corresponding formula (4) also holds. The opposite is shown similarly.

Since formula (4) is of the form (3), and it is clearly obtained from formula
(2) in linear time, we have that 〈2,∀,BRB〉 reduces in polynomial time to
〈2,∀,LRB〉. ut

Example 5 Recall the 〈2,∀,BRB〉 instance of Example 4. It can be trans-
formed into an equivalent 〈2,∀,LRB〉 instance by introducing variable x′1,
which replaces parameter s1 in the entailed constraint:

∀s1 ∃r1 ∀x1 ∀x2 ∀x′1
x1 + x2 ≥ −1 + s1 x1 + x′1 ≥ −1

x1 + x2 ≤ 1 + 2s1 x1 − x′1 ≤ 1 + 2r1

x1 − x2 ≥ −1 + s1 → x2 ≥ −1− r1
x1 − x2 ≤ 1 + 3s1 x2 − 2x′1 ≤ 1 + r1

x′1 = s1

6 Complexity of Entailment

The entailment problem is, in general, at least as hard as any problem in
co-NP.

Theorem 4 The entailment problem for parameterized linear constraints is
co-NP hard.

Proof We reduce a co-NP complete problem to the validity problem for 〈2,∀,LRB〉
formulas. The result then follows by Remark 2 and Lemma 2. Let l,u ∈ <|s|.
By setting A · x ≤ b + N · s in (3) to x = s∧ l ≤ s ≤ h, we have the following
instance:

∀s ∃r ∀x [x = s ∧ l ≤ s ≤ h→ C · x ≤ d + M · r]

which is equivalent to: ∀s ∈ [l,h] ∃r C · s−M · r ≤ d. By Theorem 1, the
validity problem for this class of formulas is co-NP complete. ut
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It is worth noting from the proof of the above theorem that hardness for
the entailment problem holds even under rather restrictive conditions on the
entailing constraint cp1, namely that for every parameter instance s:

◦ Sol(cp1, s) is non-empty if and only if s belongs to a hypercube (l ≤ s ≤ h),
and,

◦ if Sol(cp1, s) is non-empty, then it is singleton (since x = s).

Next, we examine a special case of the entailment problem in which the
entailing constraint consists only of difference constraints. This case will also
be shown to be co-NP hard. Its importance lies in the interesting structural
properties of difference constraints systems and in their applicability in various
fields, e.g., program verification.

Corollary 2 The entailment problem is co-NP hard, even if the entailing con-
straint is a system of difference constraints.

Proof Consider a quantified linear program of the form

∀z ∈ [l,u] ∃y C · z ≤ d + M · y (5)

Recall that the problem of checking the validity of such a class of formulas is
co-NP complete (Theorem 1). We reduce this problem to an instance of the
form (3) with A · x ≤ b + N · s being restricted to a difference constraints
system as follows:

1. Add the constraints x1 − s1 ≤ 0 and s1 − x1 ≤ 0 to A · x ≤ b + N · s.
2. For each element zi of z, add the constraints:
◦ xi+1 − si+1 ≤ 0,
◦ si+1 − xi+1 ≤ 0,
◦ si+1 − s1 ≤ ui, and
◦ si+1 − s1 ≥ li

to A · x ≤ b + N · s.
3. Let vector x′ be such that x′i = xi+1 − x1.
4. Let vector s′ be such that s′i = si+1 − s1.
5. Create the instance ∀s ∃r ∀x [A · x ≤ b + N · s→ C · x′ ≤ d + M · r].

In this instance we have that A · x ≤ b + N · s can only be satisfied if
x = s and li ≤ si+1 − s1 = s′i ≤ ui. Thus, for the constructed instance to
hold, C · x′ ≤ d + M · r must also hold when x′ = s′ and li ≤ s′i ≤ ui.
By replacing x′ with s′ in this system of primitive constraints, we get that
∀s′ ∈ [l,u] ∃r C · s′ ≤ d + M · r must also hold.

Similarly, if the constructed instance does not hold, there must exist an s′

such that the following implication holds:

∀r ∃x A · x ≤ b + N · s′

C · x′ 6≤ d + M · r

Recall that li ≤ s′i ≤ ui and that the only value of x which can satisfy
A · x ≤ b+ N · s′ is x = s′. Hence, we must have that ∀r C · s′ 6≤ d + M · r,
which means that ∀s′ ∈ [l,u] ∃r C · s′ ≤ d + M · r does not hold.
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Thus, we can reduce the quantified linear program (5) to an instance of
(3), where A · x ≤ b + N · s is restricted to difference constraints. The co-NP
hardness result follows by Remark 2 and Theorem 1. ut

In the proofs of the previous two results, the entailed constraint cp2 is
restricted not to contain parameters that appear in cp1, namely parameters
in s. If this restriction is relaxed, the following case of co-NP hardness can be
established.

Theorem 5 The entailment problem is co-NP hard even if the set of variables
x is empty.

Proof For x empty, formula (2) reduces to:

∀s ∃r [−N · s ≤ b→ −M · r ≤ d + P · s]

which is a 〈1,∀,BR〉 formula. By Remark 1 and Theorem 3, the validity
problem for this class of formulas is a co-NP hard problem. ut

Intuitively, the proof consists of observing that, in absence of variables x,
the entailment problem boils down to the problem of satisfiability with respect
to polyhedral sets, where parameters r in the entailed constraint play the role
of variables.

7 Tractable Instances

In this section we study sufficient conditions for tractability of the entailment
problem. The results of Section 6 show that deciding whether cp1 entails cp2
is intractable even for very restricted instances of cp1. The problem becomes
tractable as soon as we prevent any connection between variables x and pa-
rameters s in cp1 and cp2.

Theorem 6 Let cp1 = A·x ≤ b,N·s ≤ n and cp2 = C·x ≤ d+M·r,P·s ≤m.
The problem of deciding whether cp1 entails cp2 is in P.

Proof By Remark 2, the problem consists of showing the validity of:

∀s ∃r ∀x [A · x ≤ b ∧N · s ≤ n→ C · x ≤ d + M · r ∧P · s ≤m] (6)

By Lemma 1, the satisfiability of cp1 can be checked in polynomial time. If cp1
is unsatisfiable, (6) is always true. Assume now it is satisfiable. The validity
of:

∀s [N · s ≤ n→ P · s ≤m]

can be checked in polynomial time by Theorem 2, since it consists of entailment
of non-parameterized constraints over the variables s. If the formula above is
false, then (6) is false (simply consider any solution of A ·x ≤ b together with
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cp′1

cp′2

di + mi · r1 < d′i

di + mi · r2 = d′i

di + mi · r3 > d′i

Fig. 2 Let cp′1 = A · x ≤ b and cp′2 = C · x ≤ d + M · r. cp′1 entails cp′2 if and only if
d + M · r ≥ d′, with d′i = max{cTi · x0|x0 ∈ Sol(A · x ≤ b)}

the instance of s that falsifies the formula). Assume that the formula above is
true. Then (6) clearly reduces to:

∃r ∀x [A · x ≤ b→ C · x ≤ d + M · r] (7)

Let cp′2 be the implied system C ·x ≤ d + M · r. We build a linear program on
r as follows. For every row cTi · x ≤ di + mT

i · r in cp′2, let d′i be the solution
of the linear program:

max cTi · x
A · x ≤ b

If the linear program is unbounded, there cannot be any parameter instance
r0 of r such that cTi · x ≤ di + mT

i · r0 for every x. Thus, (7) is false.
Assume now that all d′is are finite and let d′ be the vector of all d′is. We

claim that (7) holds if and only if the following linear system on r is feasible:

d + M · r ≥ d′ (8)

Intuitively, this means that there exists some value of r, say r0, for which each
hyperplane of C · x ≤ d + M · r0 is either incident to some extreme point of
A ·x ≤ b or not in Sol(A ·x ≤ b) (e.g., see Figure 2, where r1, r2, and r3 are
different values of r).

If part. Let r0 be such that d + M · r0 ≥ d′. Since by construction of d′,
we have that ∀x [A · x ≤ b→ C · x ≤ d′] holds, by transitivity the following
holds:

∀x [A · x ≤ b→ C · x ≤ d + M · r0]
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By re-introducing existential quantifiers on r, we have (7).
Only-if part. By hypothesis, there exists r0 such that

∀x [A · x ≤ b→ C · x ≤ d + M · r0]

Let us show that r0 is a solution of (8). Consider a row cTi ·x ≤ di+mT
i ·r of cp′2.

By definition of r0, the following holds: ∀x [A · x ≤ b→ cTi ·x ≤ di+mT
i ·r0],

which implies:

di + mT
i · r0 ≥ max{cTi x | A · x ≤ b}

By definition of d′, we conclude d + M · r0 ≥ d′, hence (8) is satisfiable. ut

As a special case of this result, if s is empty, i.e., if cp1 has no parameter,
then the resulting problem is in P. By Remark 2, this can be re-stated as the
fact that 〈1,∃,RB〉 is in P.

Corollary 3 Let cp1 = A · x ≤ b and cp2 = C · x ≤ d + M · r. The problem
of deciding whether cp1 entails cp2 is in P.

Example 6 Consider the linear system cp1 which has no parameters:

cp1 : (x1 ≤ 2) ∧ (x1 + x2 ≤ 3) ∧ (x2 ≤ 5)

and the parameterized linear constraint cp2:

cp2 : (x1 ≤ r1) ∧ (x1 − 3x2 ≤ 1− 2r1) ∧ (7x1 + 4x2 ≤ −5 + 3r1)

To check whether cp1 entails cp2, we first solve the following three linear
programs:

max x1 = d′1 max x1 − 3x2 = d′2 max 7x1 + 4x2 = d′3
x1 ≤ 2 x1 ≤ 2 x1 ≤ 2
x1 + x2 ≤ 3 x1 + x2 ≤ 3 x1 + x2 ≤ 3
x2 ≤ 5 x2 ≤ 5 x2 ≤ 5

If any of these linear programs is unbounded, then cp1 does not entail cp2.
On the other hand, cp1 entails cp2 if and only if the following system is feasible:

r1 ≥ d′1
1− 2r1 ≥ d′2
−5 + 3r1 ≥ d′3

It is worth noting that the solution of such a system provides us with the
instances r0 for which cp1 entails cp2[r← r0] as non-parameterized constraints.

An interval constraint on a parameter s is a constraint of the form ls ≤
s ≤ us. By Theorem 6, the case where the parameters s in the entailing and
in the entailed constraints appear only in interval constraints is also in P.
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Example 7 Consider the following parameterized linear systems:

cp1 : (0 ≤ x1 + x2 ≤ 3) ∧ (1 ≤ s1 ≤ 4)

cp2 : (x1 ≥ 1 + 2r1) ∧ (x1 + x2 ≤ r1) ∧ (0 ≤ s1 ≤ 5)

In both of them, the parameter s1 appears only in interval constraints. By
Theorem 6, checking whether cp1 entails cp2 can be reduced to checking the
validity of a 〈0,∀,B〉 formula:

∀s1 [1 ≤ s1 ≤ 4→ 0 ≤ s1 ≤ 5]

and a 〈1,∃,RB〉 formula:

∃r1 ∀x1 ∀x2 [0 ≤ x1 + x2 ≤ 3→ x1 ≥ 1 + 2r1 ∧ x1 + x2 ≤ r1]

Let us concentrate now on syntactic restrictions on cp2. The next result
shows tractability when cp2 has no additional parameters compared to cp1,
namely when r is empty.

Lemma 3 Let cp1 = A · x ≤ b + N · s and cp2 = C · x ≤ d + P · s. The
problem of deciding whether cp1 entails cp2 is in P.

Proof By Remark 2, the problem consists of checking the validity of:

∀s ∀x [A · x ≤ b + N · s→ C · x ≤ d + P · s]

This is an instance of 〈0,∀,B〉 over the space of variables plus parameters
(x, s). By Theorem 2, it can be checked in polynomial time. ut

Example 8 Consider the following parameterized linear constraints:

cp1 : (x1 ≥ 3− s1) ∧ (x1 + 2x2 ≤ s1 + s2) ∧ (x2 − 5x1 ≥ 3− s1 + 3s2)

cp2 : (2x1 + 3x2 ≥ 3) ∧ (3x1 − 4x2 ≤ s2 − 2s1) ∧ (x1 + 6x2 ≤ 7 + 2s1)

To check whether cp1 entails cp2, it suffices to check whether the following
〈0,∀,B〉 instance holds over the space of variables plus parameters:

∀s1 ∀s2 ∀x1 ∀x2
x1 + s1 ≥ 3 2x1 + 3x2 ≥ 3

x1 + 2x2 − s1 − s2 ≤ 0 → 3x1 − 4x2 − s2 + 2s1 ≤ 0

x2 − 5x1 + s1 − 3s2 ≥ 3 x1 + 6x2 − 2s1 ≤ 7

Lemma 3 generalizes as follows.

Lemma 4 Let cp1 = A · x ≤ b + N · s and cp2 = C · x ≤ d + M · r + P · s. If
every column of M has only non-negative values or only non-positive values,
the problem of deciding whether cp1 entails cp2 is in P.
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Proof By Lemma 2, we can assume, without loss of generality, that P = 0.
Hence, the entailment problem consists of showing the validity of (3) in the case
where M has only non-negative values or only non-positive values. Also, we
can assume that every inequality in cp2 contains at least a non-zero coefficient
for a parameter in r, or, stated otherwise, that no row in M is 0. In fact, if
such a row cTi · x ≤ di exists, the validity of the implication:

∀s ∀x [A · x ≤ b + N · s→ cTi · x ≤ di]

can be checked in polynomial time by Theorem 2, hence such a row can be
removed from cp2. We will reduce our problem into an equivalent polynomial-
time solvable problem in two steps.

The first step of the reduction is the following. Let M′ be obtained by
replacing every non-zero value in M with 1. We claim that (3) holds if and
only if

∀s ∃r′ ∀x [A · x ≤ b + N · s→ C · x ≤ d + M′ · r′] (9)

holds. For a column mi in M, let ml
i be the maximum non-zero value in mi

and ms
i be the minimum non-zero value in it (if mi contains only zeros, then

the parameter ri never appears, hence mi can be discarded from M). By
assumption, sgn(ml

i) = sgn(ms
i ), where sgn() is the sign function.

Only-if part. For fixed s, let r be such that (3) holds. We set r′i = ml
iri if

ri ≥ 0 and sgn(ml
i) = 1; r′i = ms

i ri if ri ≥ 0 and sgn(ml
i) = −1; r′i = ms

i ri
if ri < 0 and sgn(ml

i) = 1; r′i = ml
iri if ri < 0 and sgn(ml

i) = −1. With this
settings, for every a ri appearing in M·r, we have a ri ≤ r′i, hence M·r ≤M′·r′.
This implies C · x ≤ d + M · r ≤ d + M′ · r′, hence (9) holds.

If part. For fixed s, let r′ be such that (9) holds. We set ri = r′i/m
s
i if r′i ≥ 0

and sgn(ml
i) = 1; ri = r′i/m

l
i if r′i ≥ 0 and sgn(ml

i) = −1; ri = r′i/m
l
i if r′i < 0

and sgn(ml
i) = 1; ri = r′i/m

s
i if r′i < 0 and sgn(ml

i) = −1. With this settings,
for every r′i appearing in M′ · r′, we have r′i ≤ ari for any non-zero coefficient
a appearing in M · r, hence M′ · r′ ≤M · r. This implies C ·x ≤ d + M′ · r′ ≤
d + M · r, hence (3) holds as well.

We have shown that the problem can be reduced to an equivalent problem
of the form (9). The second step of the reduction follows.

We will show that (9) holds if and only if A · x ≤ b + N · s is unsatisfiable
or the following holds:

∃r′′ ∀x [A · x ≤ 0→ C · x ≤ d + M′ · r′′] (10)

Only-if part. If A · x ≤ b + N · s is unsatisfiable, we are done. Otherwise,
let s0 be such that there exists x0 with A · x0 ≤ b + N · s0. By hypothesis,
there exists r′ such that ∀x [A · x ≤ b + N · s0 → C · x ≤ d + M′ · r′] holds.
This implies (actually, it is equivalent to) d + M′ · r′ ≥ max{C · x | A · x ≤
b + N · s0}. By well-known results on linear programs (see, e.g., Corollary 3.1
from Murty (1983)), the property of (un)boundedness for the satisfiable linear
system A·x ≤ b+N·s0 holds if and only if it holds for its cone A·x ≤ 0. Hence
there exists k ≥ 0 such that d + M′ · r′ + k1 ≥ max{C · x | A · x ≤ 0}, where
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k is an appropriate bounding constant. Due to the form of M′ (namely, all
coefficients are either 0 or 1, and no row is 0), this implies that for r′′ = r′+k1,
we can conclude d + M′ · r′′ ≥ d + M′ · r′ + k1 ≥ max{C · x | A · x ≤ 0},
i.e., that (10) holds.

If part. If A·x ≤ b+N·s is unsatisfiable, (9) clearly holds. Otherwise, let s0
be such that A ·x ≤ b + N · s0 is satisfiable. Again by Murty (1983)[Corollary
3.1], the assumption that there exists r′′ such that d + M′ · r′′ ≥ max{C · x
| A · x ≤ 0} implies that, for some k ≥ 0, we have d + M′ · r′′ + k1 ≥
max{C ·x | A ·x ≤ b+N ·s0}. Due to the form of M′ (namely, all coefficients
are either 0 or 1, and no row is 0), this implies that for r′ = r′′ + k1, we can
conclude d + M′ · r′ ≥ d + M′ · r′′ + k1 ≥ max{C · x | A · x ≤ b + N · s0},
i.e., ∃r′ ∀x [A ·x ≤ b + N · s0 → C ·x ≤ d + M′ · r′] holds. Since this is true
for any s0, we conclude that (9) holds.

Summarizing, we have reduced our original problem to showing the feasi-
bility of cp1, which is in P by Lemma 1, and to checking the validity of (10),
which is in P by Corollary 3. ut

Example 9 Consider the following parameterized linear constraints:

cp1 : (x1 + 3x2 ≤ 1− s1) ∧ (2x1 − x2 ≤ 2s1)

cp2 : (2x1 ≤ 3 + 5r1) ∧ (3x1 − 4x2 ≤ 2r1 − 5r2 − s1)

By Lemma 2, the problem of checking whether cp1 entails cp2 is equivalent to
the validity problem for the following 〈2,∀,LRB〉 formula:

∀s1 ∃r1 ∃r2 ∀x1 ∀x2 ∀x3
x1 + 3x2 ≤ 1− s1 2x1 ≤ 3 + 5r1

2x1 − x2 ≤ 2s1 → 3x1 − 4x2 + x3 ≤ 2r1 − 5r2

x3 = s1

Note that r1 has only non-negative coefficients and r2 has only non-positive
coefficients in the right hand side linear system. Therefore, we can replace all
the (non-zero) coefficients of r1 and r2 with 1 and solve the equivalent problem:

∀s1 ∃r1 ∃r2 ∀x1 ∀x2 ∀x3
x1 + 3x2 ≤ 1− s1 2x1 ≤ 3 + r1

2x1 − x2 ≤ 2s1 → 3x1 − 4x2 + x3 ≤ r1 + r2

x3 = s1

This instance will hold if and only if either cp1 is unsatisfiable or if the following
〈1,∃,RB〉 formula holds:

∃r1 ∃r2 ∀x1 ∀x2 ∀x3
x1 + 3x2 ≤ 0 2x1 ≤ 3 + r1

2x1 − x2 ≤ 0 → 3x1 − 4x2 + x3 ≤ r1 + r2

x3 = 0
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Notice that the occurrence of the parameter s1 in the entailed constraint could
have been removed at once, since it is first replaced by the new variable x3,
which is then assumed equal to 0.

The previous result states tractability when existentially quantified param-
eters play the role of upper or lower bounds, but not both. As a consequence,
equalities involving them are not admitted. The next result shows that entail-
ing single equalities can be checked in polynomial time.

Lemma 5 If cp2 consists of a single equality, the problem of deciding whether
cp1 entails cp2 is in P.

Proof By Lemma 2, we can assume, without loss of generality, that no param-
eter of cp1 appears in cp2. The entailment problem consists of showing the
validity of (3). Let cp1 = A · x ≤ b + N · s, and cp2 be cT · x = d+ mT · r.

If m = 0, then the result follows by Lemma 3.
By Lemma 1, the satisfiability of cp1 can be checked in polynomial time.

If it is unsatisfiable, the entailment is always true. Assume now that cp1 is
satisfiable. It can be transformed in polynomial time (see Greenberg, 1996)
into an equivalent system A= ·x = b= +N= ·s,A+ ·x ≤ b+ +N+ ·s such that
there exist s0 and x0 with A= ·x0 ≤ b= +N= · s0 and A+ ·x0 < b+ +N+ · s0.
The system cp=1 , defined as A= · x = b= + N= · s, is called the set of implicit
equalities of cp1, and (x0 s0) is called an inner point (over the space of variables
plus parameters). We claim that cp1 entails cp2 if and only if cp=1 entails cp2.

The if part is immediate. As for the only-if part, we first observe that, due
to the form of cp2, we have that cp1 entails cp2 if and only if for every s1,
the set {cT · x′ | x′ ∈ Sol(cp1, s1)} is either empty or a singleton. A similar
observation holds for cp=1 in the place of cp1. We show the only-if part by
contraposition. Assume that there exist s1 and x1,x2 ∈ Sol(cp=1 , s1) with cT ·
x1 6= cT ·x2. By convexity of cp1 as a linear system over the space of variables
plus parameters, we can consider the segments between the inner point (x0 s0),
and the external points (x1 s1) and (x2 s1). There exists 0 < δ ≤ 1 such that,
for x′1 = x1δ + x0(1− δ), x′2 = x2δ + x0(1− δ), and s′1 = s1δ + s0(1− δ), we
have x′1,x

′
2 ∈ Sol(cp1, s′1). Since cT ·x1 6= cT ·x2 implies cT ·x′1 6= cT ·x′2 (due

to δ > 0), we have that cp1 does not entail cp2.
Our conclusion then follows since proving whether cp=1 entails cp2 is solv-

able in polynomial time by applying Gauss-Jordan elimination of variables in
x from cp=1 and then checking that the resulting expression cT · x contains no
free variable. ut

Example 10 Consider cp1 : (x1 ≤ x2 ≤ s1) ∧ (x1 ≥ s1) and cp2 : (2x2 =
5 + r1). The set of implicit equalities of cp1 is represented by cp=1 : (x1 =
x2) ∧ (x1 = s1) (other equivalent systems are possible, of course). By Gauss-
Jordan elimination of x1 and x2, we obtain 2x2 = 2s1, namely the left hand side
of the equality contains no free variables. Therefore, cp1 entails cp2. Moreover,
by equating 2s1 = 5 + r1, we can constructively find a parameter instance
r1 = 2s1 − 5 for which the entailment holds.
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The entailment problem can be divided into two or more parts by splitting
the entailed constraint cp2 under the assumption that the two or more parts
do not share parameters not appearing in cp1.

Lemma 6 Let cp1 = A ·x ≤ b + N · s and cp2 = C ·x ≤ d1 +M1 ·r1 +P1 ·s,
and cp3 = C · x ≤ d2 + M2 · r2 + P2 · s, where r1 and r2 share no parameter.
We have that cp1 entails cp2∧ cp3 if and only if cp1 entails cp2 and cp1 entails
cp3.

Proof Since r1 and r2 share no parameter, by basic logical equivalence, the
characterization of Remark 2:

∀s ∃r1, r2 ∀x [cp1 → cp2 ∧ cp3]

holds if and only if both ∀s ∃r1 ∀x [cp1 → cp2], and ∀s ∃r2 ∀x [cp1 → cp3]
hold. ut

Notice that partitioning the parameterized primitive linear constraints in
cp2 on the basis of the parameters in r can be done in polynomial time. If each
of the sub-problems obtained by partitioning cp2 can be shown to be in P, we
can conclude that the overall problem is in P.

Example 11 Consider cp1 and cp2 from Example 10, and cp3 = (x1 +x2 ≤ r2).
Since r2 has only non-negative coefficients in cp3, we can apply the procedure
from the proof of Lemma 4 to conclude that cp1 entails cp3, e.g., by setting
r2 = 2s1. This fact together with Lemma 6 and the conclusion of Example 10
allow for stating that cp1 entails cp2 ∧ cp3.

8 Variants of Entailment

In this section, we consider weaker and stronger variants of entailment and
establish their computational complexities.

8.1 Weak Entailment

In the problem “cp1 entails cp2” we have considered whether for every param-
eter instance of cp1 one can find an instance of cp2 including it. A weakening
of the problem consists of asking whether for at least one parameter instance
of cp1 one can find an instance of cp2 including it.

Definition 5 We say that cp1 = A · x ≤ b + N · s weakly entails cp2 =
C · x ≤ d + M · r + P · s if there exist s0 ∈ <|s| and r0 ∈ <|r| such that
Sol(cp1, s0) ⊆ Sol(cp2, (s0 r0)).

Proving that cp1 = A · x ≤ b + N · s weakly entails cp2 = C · x ≤ d + M ·
r + P · s is equivalent to showing the validity of the 〈1,∃,BB〉 formula:

∃s, r ∀x [A · x ≤ b + N · s→ C · x ≤ d + M · r + P · s] (11)
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cp2 for s1 = s2 = r1 = 0

cp1 for s1 = s2 = 0

Fig. 3 cp1 weakly entails cp2 from Example 12.

Example 12 Consider the following parameterized linear constraints:

cp1 : (x1 ≥ 2s1) ∧ (x1 − x2 ≤ s1 + s2) ∧ (x1 + x2 ≤ 4− s1 − s2)

cp2 : (x1 ≥ s1 + r1) ∧ (x2 ≥ s1 + s2 + 2r1) ∧ (x1 + x2 ≤ 5− s2 + r1)

The problem of checking whether cp1 weakly entails cp2 is equivalent to check-
ing the validity of the following 〈1,∃,BB〉 instance:

∃s1 ∃s2 ∃r1 ∀x1 ∀x2
x1 ≥ 2s1 x1 ≥ s1 + r1

x1 − x2 ≤ s1 + s2 → x2 ≥ s1 + s2 + 2r1

x1 + x2 ≤ 4− s1 − s2 x1 + x2 ≤ 5− s2 + r1

Note that for s1 = s2 = r1 = 0, cp1 entails cp2 (see Figure 3).

Theorem 7 The weak entailment problem for parameterized linear constraints
is NP hard.

Proof Every formula in 〈1,∃,LB〉 is also a formula in 〈1,∃,BB〉. Hence, let us
reduce the NP complete problem 3SAT to the validity problem for 〈1,∃,LB〉
formulas:

∃s ∀x [A · x ≤ b + N · s→ C · x ≤ d] (12)

Consider a 3SAT formula φ = φ1∧φ2∧ ...∧φm on the literals {y1, ȳ1, y2, ȳ2,
. . . , yn, ȳn}. We reduce the satisfiability of φ to the validity problem for a
formula as in (12) as follows. Let cp1 be A ·x ≤ b+N ·s, and cp2 be C ·x ≤ d.
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For each variable yi, we set a (existentially quantified) parameter si and a
(universally quantified) variable xi. We also add the constraints xi ≤ si and
xi ≤ 1− si to cp1 and the constraint xi ≤ 0 to cp2. For each clause φj in φ, we
set a (universally quantified) variable xn+j and add the constraint xn+j ≥ 1
to cp2. Then, depending on the form number of negative literals in the clause
φj , we do one of the following:

1. If φj = (yi, yk, yl), we add xn+j = si + sk + sl to cp1.
2. If φj = (yi, yk, ȳl), we add xn+j = si + sk + (1− sl) to cp1.
3. If φj = (yi, ȳk, ȳl), we add xn+j = si + (1− sk) + (1− sl) to cp1.
4. If φj = (ȳi, ȳk, ȳl), we add xn+j = (1− si) + (1− sk) + (1− sl) to cp1.

We claim that φ is satisfiable if and only if the formula ∃s ∀x [cp1 → cp2] is
true.

Only-if part. Consider an assignment y1, . . . , yn which satisfies φj for each
j ∈ 1, ...,m. We claim that by setting si = 1 when yi = true and si = 0
otherwise, we have that ∀x [cp1 → cp2] is true. Let x be such that cp1 holds.
Since φj is satisfiable, at least one of the literals in each φj is true. By the
definition of si and the constraints (1-4) above, cp1 forces xn+j ≥ 1. Also,
since si ∈ {0, 1}, the constraints xi ≤ si and xi ≤ 1 − si in cp1 clearly imply
xi ≤ 0. Summarizing, all constraints in cp2 are satisfied.

If part. Let s be such that ∀x [cp1 → cp2] is true. We claim that for all
i ∈ [1, n], either si ≥ 1 or si ≤ 0. Otherwise, by choosing xi = min(si, 1− si),
we have that the constraints xi ≤ si and xi ≤ 1− si in cp1 are satisfied, while
xi ≤ 0 in cp2 is not, which contradicts the assumption on s. We define an
assignment by setting yi = true if and only if si ≥ 1. Let us show that such
an assignment satisfies φj for each j ∈ [1,m], hence φ is satisfied. Let x be
such that cp1 holds (notice that cp1 is satisfiable by construction). Assume
φj = (yi, yk, ȳl) (for the other clauses the reasoning is similar). Due to the
constraint xn+j ≥ 1 in cp2 and the constraints (1-4) above, we have that
si ≥ 1 or sk ≥ 1 or sl ≤ 0. By definition of our assignment, at least one literal
among yi, yk and ȳl is true, i.e., φj is satisfied. ut

Notice that the proof of the theorem actually shows that it is NP hard
to check whether there is some parameter instance of a parameterized con-
straint that entails a non-parameterized constraint. Stated otherwise, the va-
lidity problem for the class of formulas (12), i.e., for 〈1,∃,LB〉, is NP hard.

Example 13 Consider the 3SAT instance:

(x1, x2, x̄3), (x̄2, x3, x̄4)
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This instance can be reduced into the following 〈1,∃,LB〉 problem (which is
also a formula in 〈1,∃,BB〉):

∃s1 ∃s2 ∃s3 ∃s4 ∀x1 ∀x2 ∀x3 ∀x4 ∀x5 ∀x6
x1 ≤ s1, x1 ≤ 1− s1 x1 ≤ 0

x2 ≤ s2, x2 ≤ 1− s2 x2 ≤ 0

x3 ≤ s3, x3 ≤ 1− s3 → x3 ≤ 0

x4 ≤ s4, x4 ≤ 1− s4 x4 ≤ 0

x5 = s1 + s2 + (1− s3) x5 ≥ 1

x6 = (1− s2) + s3 + (1− s4) x6 ≥ 1

We present next the NP completeness of weak entailment.

Theorem 8 The problem of deciding whether cp1 weakly entails cp2 is NP
complete.

Proof Since NP hardness holds by Theorem 7, we have to show that the prob-
lem is in NP. First of all, we can assume that cp2 has no parameter. In fact, by
adopting the same strategy of Lemma 2, we can transform the formula (11)
into:

∃s, r ∀x,x′,x′′ [A · x ≤ b + N · s ∧ x′ = s ∧ x′′ = r→ C · x−P · x′ −M · x′′ ≤ d]

which is of the form (12).
Let now cp1 = A · x ≤ b + N · s and cp2 = C · x ≤ d. We will show that

the problem (12) is in NP by proving that if there exists an s0 such that

∀x [A · x ≤ b + N · s0 → C · x ≤ d] (13)

then there exists such an s0 whose representation is polynomial in the size
of A,b,C,d, and N. Since (13) belongs to the class 〈0,∀,B〉, which can be
solved in polynomial time, if such a polynomial s0 exists, then it is a valid
certificate for the problem (12). Assume that there exists an s0 such that (13)
holds. Consider the problem

∀s ∀x [A · x ≤ b + N · s→ C · x ≤ d] (14)

This is an instance of 〈0,∀,B〉 which is in P. If this implication is true, then
(12) is true as well, and we are done. Assume it is false. Then there exists an
s2 such that:

∃x [A · x ≤ b + N · s2,C · x 6≤ d]

Let Ss be the set of extreme points of A · x ≤ b + N · s. Thus we have that
Ss0 ⊆ Sol(C · x ≤ d) and Ss2 6⊆ Sol(C · x ≤ d). For a constraint cTi · x ≤ di
in C · x ≤ d, let d′i(s) be the solution of the linear program:

max cTi · x− di
A · x ≤ b + N · s
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and let d′(s) = maxi(d
′
i(s)). By (13), we have d′(s0) ≤ 0. By (14), we have

d′(s2) > 0. Since A · x ≤ b + N · s is a convex set, there exists 0 ≤ α ≤ 1 such
that d′(s′) = 0 when s′ = αs0 + (1 − α)s2. Thus, we have that ∀x [A · x ≤
b + N · s′ → C · x ≤ d] and that for some i, d′i(s

′) = 0. Therefore, for some
x′ ∈ Ss′ , we have that C · x′ ≤ d and cTi · x′ = di. We can now create a linear
system from the constraints in A ·x ≤ b+N ·s and C ·x ≤ d for which (x′, s′)
is an extreme point as follows:

1. For each constraint aT · x ≤ b + nT · s of A · x ≤ b + N · s such that
aT · x′ = b+ nT · s′, add the constraint aT · x = b+ nT · s.

2. Add the constraint cTi · x = di
3. Add the remaining constraints from A · x ≤ b + N · s and C · x ≤ d.

Since s′ is part of an extreme point solution to this system, its representation
is polynomial in the size of A,b,C,d, and N. Therefore, we have our desired
polynomial sized s0 = s′ such that (13) holds. ut

8.2 Strong Entailment

A strengthening of entailment is obtained by requiring that for every parameter
instance, the set of solutions of the entailing constraint is the same (rather than
it is included) as the set of solutions of the entailed constraint.

Definition 6 We say that cp1 = A · x ≤ b + N · s strongly entails cp2 =
C · x ≤ d + M · r + P · s if for all s0 ∈ <|s| there exists r0 ∈ <|r| such that
Sol(cp1, s0) = Sol(cp2, (s0 r0)).

Proving that cp1 = A · x ≤ b + N · s strongly entails cp2 = C · x ≤
d + M · r + P · s is equivalent to showing the validity of the formula:

∀s ∃r ∀x [A · x ≤ b + N · s↔ C · x ≤ d + M · r + P · s] (15)

Example 14 Consider the parameterized linear constraints of Example 4. The
problem of checking whether cp1 strongly entails cp2 is equivalent to checking
the validity of the following formula:

∀s1 ∃r1 ∀x1 ∀x2
x1 + x2 ≥ −1 + s1 x1 ≥ −1− s1
x1 + x2 ≤ 1 + 2s1 ↔ x1 ≤ 1 + 2r1 + s1

x1 − x2 ≥ −1 + s1 x2 ≥ −1− r1
x1 − x2 ≤ 1 + 3s1 x2 ≤ 1 + r1 + 2s1

Fix s1 = 0. The left hand side of the equivalence is shown in Figure 1. The
right hand side is (−1 ≤ x1 ≤ 1+2r1)∧ (−1−r1 ≤ x2 ≤ 1+r1), with Figure 1
showing the case r1 = 0. It is readily checked that for no r1 the right hand
side constraint has the same set of solutions as the left hand side constraint.



26 Eirinakis et al.

The entailment problem can be reduced to the strong entailment problem.
Hence, strong entailment is co-NP hard.

Theorem 9 The strong entailment problem for parameterized linear constraints
is co-NP hard.

Proof The entailment problem can be reduced in polynomial time to the strong
entailment problem. In fact, (3) holds if and only if the following holds:

∀s ∃r ∀x [A · x ≤ b + N · s↔ A · x ≤ b + N · s ∧C · x ≤ d + M · r + P · s]

Since proving the validity of (3) is co-NP hard by Theorem 4, and the formula
above is of the form (15), our conclusion follows. ut

9 Conclusion

In this paper, we introduced satisfiability and entailment as basic tools for
reasoning over parameterized linear constraints. In order to study their com-
putational complexities, satisfiability with respect to polyhedral sets and en-
tailment were related to classes of quantified linear implications.

Although satisfiability of parameterized linear constraints is in P, every
instance of satisfiability with respect to polyhedral sets is equivalent to a
corresponding problem of the 〈1,∀,BR〉 class, which was shown to be co-
NP hard. On the other hand, every entailment instance is equivalent to a
corresponding problem of the 〈2,∀,BRB〉 class, which in turn is polynomial-
time reducible to a problem of the 〈2,∀,LRB〉 class (also shown to be co-NP
hard). Hence, both satisfiability with respect to polyhedral sets and entailment
were proved to be co-NP hard.

A weakening and a strengthening extension of the entailment problem were
also examined. The weak entailment problem was shown to be NP complete,
using the fact that every weak entailment instance is equivalent to a problem
of the 〈1,∃,LB〉 class and the fact that the decision problem for this class in
NP complete. The strong entailment problem was shown to be co-NP hard.

Further, we characterized some tractable instances of the entailment prob-
lem. More specifically, we proved that the entailment problem is in P if:

◦ no primitive constraint contains both variables and universally quantified
parameters (this includes the 〈1,∃,RB〉 class),

◦ the coefficients of each parameter included only in the entailed constraint
are either all non-negative or all non-positive,

◦ the entailed constraint consists of only one equality, or
◦ the entailed constraint can be partitioned into two or more systems for

which validity is in P and with no overlapping existentially quantified pa-
rameter.

Finally, it is worth noting that the proofs of the tractability results are
constructive, i.e., they provide algorithms for checking entailment which rely
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on well-known tools (linear programs, implicit equalities, Gauss-Jordan elim-
ination).

Future work includes establishing the exact computational complexities of
the entailment and strong entailment problem. In that regard, the study of
the corresponding quantified linear implications may be an important tool.
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