
Bounded Nondeterminism of

Logic Programs∗

Dino Pedreschi and Salvatore Ruggieri

Dipartimento di Informatica, Università di Pisa
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Abstract

We introduce the notion of bounded nondeterminism for logic programs and
queries. A program and a query have bounded nondeterminism if there are
finitely many refutations for them via any selection rule. We offer a declarative
characterization of the class of programs and queries that have bounded non-
determinism by defining bounded programs and queries. The characterization
is provided in terms of Herbrand interpretations and level mappings, in the
style of existing characterizations of universal termination.

A direct application of the theoretical framework is concerned with the
automatic generation of a terminating control. We present a transformational
approach that given a bounded program and a bounded query yields a termi-
nating program and query with the same set of refutations.

Concerning the issue of automating the approach, by means of an exam-
ple we sketch how an automatic method for proving left termination can be
adapted to the purpose of inferring boundedness. Such an adaption reveals
that the method does not scale up to medium/large sized programs due to
scarce modularity of the required proof obligations. We provide then a modu-
lar refinement of boundedness for the significant class of well-moded programs
and queries.

Keywords: Logic programming, universal termination, bounded nondetermin-
ism, strong termination.

∗A preliminary version of this paper appeared in Proceedings of the 16th International Confer-
ence on Logic Programming, [24].
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1 From Universal Termination to Bounded Nondeter-
minism

Logic programming is a declarative paradigm, where nondeterministic specifications
can be directly executed as programs and the generation of a complete control is
demanded to the underlying system. By a complete control, it is usually meant a
selection rule s such that every logical consequence of a program and a query has
a refutation via s. By Strong Completeness of SLD-resolution [1], any selection
rule is complete in this sense. However, a stronger form of completeness is usually
required for a selection rule to be useful in programming, namely termination. A
terminating control for a program P and a query Q is a selection rule s such that
every SLD-derivation of P and Q via s is finite. In the last decade, several classes
of programs and queries that have a terminating control have been characterized
declaratively. We refer the reader to [10, 25] for surveys of such characterizations,
including:

• recurrent programs and queries, introduced by Bezem [4], for which every
selection rule is a complete control (strong termination);

• acceptable programs and queries, introduced by Apt and Pedreschi [3], for
which the leftmost selection rule is a complete control (left termination);

• fair-bounded programs and queries, introduced by Ruggieri [28], for which
fair-selection rules are a complete control (∃-termination).

In particular, fair-boundedness precisely characterize the class of programs and
queries for which a terminating control exists, i.e. if a terminating control exists
for a program and a query then any fair-selection rule is a terminating control them.
In general, however, a terminating control in the sense above may not exist.

Example 1.1 The ODDEVEN program:

even(s(X)) ← odd(X).
even(0).

odd(s(X)) ← even(X).

defines the even and odd predicates, with the usual intuitive meaning. The query
even(X),odd(X) is intended to check whether the program defines a number that
is both even and odd.

Even though the program is recurrent in the sense of Bezem [4] (which implies
that every ground query strongly terminates), ODDEVEN and the (non ground) query
above do not have a terminating control, i.e. they have an infinite derivation via
any selection rule. Notice, however, that they have no refutation. 2
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Moreover, due to performance reasons, very few systems adopt fair selection rules.

Example 1.2 This variant of the well-known program PERMUTATION checks whether
two lists are permutations of each other.

(p1) perm([], []).
(p2) perm([X|Xs], Ys) ←

delete(X, Ys, Zs),
perm(Xs, Zs).

(d1) delete(X, [X|Y], Y).
(d2) delete(X, [H|Y], [H|Z]) ←

delete(X, Y, Z).

PERMUTATION and the query perm([a, b], Ys) have a terminating control, e.g.,
the rightmost or any fair selection rule. However, it may be the case that the
underlying system does not support that selection rule. Thus, we are still left with
the termination problem. Notice, however, that the program and the query above
have finitely many SLD-refutations via any selection rule. 2

In this paper, we introduce and investigate the notion of bounded nondeterminism
of (definite) logic programs and queries. We say that a program P and a query
Q have bounded nondeterminism if they have finitely many refutations w.r.t. any
selection rule. For instance, the programs and queries of the examples above have
bounded nondeterminism. The relation between this definition and the notion of
universal termination is tight. In fact, if P and Q have a terminating control, then
P and Q have bounded nondeterminism. Conversely, if P and Q have bounded non-
determinism then there exists an upper bound to the length of the SLD-refutations
of P and Q. If such an upper bound is known, then we can transform P and Q
into an equivalent program and query that strongly terminate, i.e. such that any
selection rule is a terminating control for them.

We will offer a declarative characterization of programs and queries that have
bounded nondeterminism, by introducing the class of bounded programs and queries.
The definition is given in terms of level mappings and Herbrand interpretations, in
the style of the already mentioned classes of terminating programs [3, 4, 28]. No-
tably, the definition is purely declarative in the sense that neither any procedural
notion is needed in order to prove a program bounded, nor the definition reflects
some fixed ordering of the atoms.

A direct application of the theoretical framework is concerned with the au-
tomatic generation of a terminating control for a given program and query. We
present a transformational approach that given a bounded program and a bounded
query yields a terminating program and query with the same set of refutations.
The transformational approach adds a counter to atoms that allows for cutting
derivations at an appropriate length, which is an upper bound for the length of
refutations.

3



We discuss the issue of inferring boundedness of programs and queries showing
that it is an undecidable problem. However, we argue that existing (sufficient)
methods for inferring left termination can be adapted to infer bounded nondeter-
minism. By means of an example, we outline how the method of Decorte, De
Schreye and Vandecasteele [13], originally designed for inferring left termination,
can be directly adapted to infer boundedness of programs and queries. Unfortu-
nately, such an adaption reveals that the method does not scale up to medium/large
sized programs due to scarce modularity of proof obligations. We provide then a
modular refinement of boundedness that is sound and complete for the significant
class of well-moded programs and queries.

Plan of the paper

In the next section we recall some background and notation on logic programs,
selection rules, level mappings and termination. In section 3 we introduce the notion
of bounded nondeterminism and characterize it by means of bounded programs and
queries. The characterization is shown to be sound and complete in section 4. In
section 5, we present a method for transforming bounded programs into terminating
ones. Also, we discuss the issue of automatically inferring boundedness in section
6. Related work and summarization of the contributions conclude the paper.

2 Background and Notation

We use the standard notation of Apt [1], when not otherwise specified. In particular,
throughout this paper we consider a fixed language L in which programs and queries
are written. All the results are parametric with respect to L, provided that L is rich
enough to contain the symbols of the programs and queries under consideration.
We denote with UL and BL the Herbrand universe and the Herbrand base on L,
and with ML

P the least Herbrand model of program P on L. Also, groundL(P ) and
groundL(Q) represent the set of ground instances on L of program P and query Q
respectively. We use typewriter font for logical variables, e.g. X, upper case letters
for arbitrary terms, e.g. Xs, and lower case letters for ground terms, e.g. x. N is
the set of naturals. For an atom A, rel(A) denotes the predicate symbol of A. We
write p ' q if p and q are mutually recursive predicates (w.r.t. a given program).

2.1 Selection Rules

Let INIT be the set of initial fragments of SLD-derivations in which the last query
is non-empty. The standard definition of selection rule is as follows: a selection
rule is a function that, when applied to an element in INIT , yields an occurrence
of an atom in its last query [1].

The classic leftmost selection rule always selects the leftmost atom in the last
query of an element in INIT . The rightmost selection rule always selects the
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rightmost atom. A selection rule s is fair if for every SLD-derivation ξ via s either
ξ is finite or for every atom A in ξ, (some further instantiated version of) A is
eventually selected.

2.2 Norms and Level Mappings

Most characterizations of terminating program and queries make use of the notions
of norm and level mapping [10, 25]. Here, we recall the definition of [26].

Definition 2.1 A norm is a function ‖.‖ : UL →N∞, where N∞ = N ∪ {∞}.
A level mapping is a function |.| : BL →N∞. For a ground atom A, |A| is called

the level of A. 2

Level mappings are used to measure the “size” of a query and show that this
size decreases along a derivation, hence showing termination. Level mappings are
usually defined as functions on norms of predicate arguments. One commonly used
norm is the term size, defined as:

size(f(t1 , . . . , tn )) = 1 + size(t1) + . . . + size(tn) if n > 0
size(a) = 0 if a is a constant.

Intuitively, the size size(t) of a ground term t is the number of function symbols
occurring in it, excluding constants. Another widely used norm is the list-length,
defined as follows:

|f(. . .)| = 0 if f 6= [.|.]
|[x|t]| = 1 + |t|. otherwise.

In particular, the list-length of a ground list [t1, ..., tn] is n.
In contrast to the more standard definition (see e.g. [10, 25]), Definition 2.1

includes ∞ in the codomain of level mappings. The rationale is to use ∞ as a
means to model uninteresting instances of program clauses and queries. The need
for reasoning on a subset of BL is motivated by the fact that logic programs are
untyped, and then queries may have instances that in the intended interpretation
of the programmer are unintended, or ill-typed. Another reason for introducing
∞ is the fact that a program may have some desired property (e.g., bounded non-
determinism or termination) for a proper subset of (ground) queries only. In this
case, ∞ allows for modelling the absence of the desired property. We report from
[26] the extension of the > order on naturals to a relation ¤ on N∞.

Definition 2.2 We define the relation n ¤ m for n,m ∈ N∞ as follows:

n ¤ m iff n = ∞ or n > m.

We write n ¥ m iff n ¤ m or n = m. 2

With this definition, ∞¤∞ and ∞¤ n for any n ∈ N hold.

5



2.3 Universal Termination

In general terms, the problem of universal termination of a program P and a query
Q w.r.t. a set of admissible selection rules consists of showing that every rule in the
set is a terminating control for P and Q.

Definition 2.3 A program P and a query Q universally terminate w.r.t. a set of
selection rules S if every SLD-derivation of P and Q via any selection rule from S
is finite. 2

Note that, since SLD-trees are finitely branching, by König’s Lemma, “every SLD-
derivation for P and Q via a selection rule s is finite” is equivalent to stating that
the SLD-tree of P and Q via s is finite.

We refer the reader to [10, 25] for surveys of proposed declarative characteriza-
tions of universal terminating programs and queries. Among the others, we recall
the class of recurrent programs and queries, introduced by Bezem [4], that models
universal termination w.r.t. all selection rules, a notion called strong termination.
Intuitively, a program is recurrent if for every ground instance of a clause, the level
of the body-atoms is smaller than the level of the head.

Definition 2.4 Let |.| : BL →N be a level mapping into naturals. A program P
is recurrent by |.| iff for every A←B1 , . . . , Bn in groundL(P ) :

for i ∈ [1, n] |A| > |Bi|.

A query Q is recurrent by |.| iff there exists k ∈ N such that for every (A1 , . . . , An ) ∈
groundL(Q) :

for i ∈ [1, n] k > |Ai|. 2

Termination soundness of recurrent programs is summarized in the next theorem.

Theorem 2.5 ([4]) If a program P and a query Q are both recurrent by a level
mapping |.|, then they universally terminate w.r.t. the set of all selection rules. 2

A form of completeness holds as well, yet in a restricted sense due to the use of
level mappings into naturals, which are functions that must specify a value for
every ground atom. As pointed out in [25], by using level mappings with ∞ in
the codomain and the ¤ relation instead of >, one can achieve full completeness.
However, in this paper we will be only interested in termination soundness.
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3 Bounded Programs

3.1 Bounded Nondeterminism

First, we formally introduce the notion of bounded nondeterminism of logic pro-
grams and queries, which turns out to be a weakening of universal termination.

Definition 3.1 A program P and a query Q have bounded nondeterminism if for
every selection rule s there are finitely many SLD-refutations of P and Q via s. 2

It is readily checked that if P and Q universally terminate w.r.t. any non-empty set
of selection rules then they have bounded nondeterminism. As a consequence, any
existing (possibly automatic) characterization of universally terminating programs
and queries is a sufficient method to show bounded nondeterminism. On the other
side, Example 1.1 shows that the class of programs and queries with bounded
nondeterminism strictly include any universally terminating class of programs and
queries.

Also, note that, by Strong Completeness of SLD-resolution [1], the definition
above is equivalent to require that there exists a selection rule s such that there are
finitely many SLD-refutations of P and Q via s.

3.2 Bounded Programs

Let us now define a class of programs and queries that will be shown to be a sound
and complete characterization of bounded nondeterminism.

Definition 3.2 Let |.| be a level mapping, and I a Herbrand interpretation. A
logic program P is bounded by |.| and I iff I is a model of P such that for every
A←B1 , . . . , Bn in groundL(P ) :

I |= B1 , . . . , Bn implies for i ∈ [1, n] |A| ¤ |Bi|.
2

Intuitively, the definition of boundedness only requires the decreasing of the level
mapping when the body atoms are true in some model of the program, i.e. they
might have a refutation. Notice that the notion of boundedness is purely declarative,
in the sense that neither any procedural notion is needed in proof obligations1, nor
the definition reflects some fixed ordering of the atoms. Also, observe that the well-
studied classes of recurrent [4], acceptable [3] and fair-bounded [28] logic programs
are readily checked to be subclasses of bounded programs (this is the declarative
counterpart of the fact that if a program and a query have a terminating control then
they have bounded nondeterminism). The next definition extends boundedness to
queries.

1In the program verification terminology, the term proof obligation is a synonymous for any
condition required to be shown.
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Definition 3.3 Let |.| be a level mapping, and I a Herbrand interpretation. A
query Q is bounded by |.| and I iff there exists k ∈ N such that for every (A1 , . . . , An )
∈ groundL(Q) :

I |= A1, . . . , An implies for i ∈ [1, n] k ¤ |Ai|. 2

In the above definition, the proof obligations for a query Q are derived from those
for the program {p←Q}, where p is a fresh predicate symbol such that |p| ∈ N .
This is justified by the fact that P and Q have bounded nondeterminism iff the
program P ∪ {p←Q} and the query p have it. Also, it is quite intuitive that |p|
must be in N , since it plays the role of an upper bound. Therefore, in Definition 3.3,
k is the equivalent of |p| in the proof obligations of clause p←Q.

Example 3.4 Consider again the ODDEVEN program. We write sn(0) as a short-
hand for s(s(...s(0)...)), where s is repeated n ∈ N times. It is readily checked
that ODDEVEN is bounded by defining:

|even(t)| = |odd(t)| = size(t)
I = { even(s2·i(0)), odd(s2·i+1(0)) | i ≥ 0 }.

The query even(X), odd(X) is bounded by |.| and I. In fact, since no ground
instance of this query is true in I, Definition 3.3 imposes no requirement. 2

More generally, for a query that has no instance in a model of the program (it is
unsolvable), the value k in Definition 3.2 can be chosen as 0. An automatic method
to check whether a query (at a node of an SLD-tree) is unsolvable has been proposed
in [7]. Of course, the example is somewhat a limit case, since one does not even
need to run a query if it has been shown to be unsolvable. The next example shows
a program and a satisfiable query that do not terminate via any selection rule but
have bounded nondeterminism.

Example 3.5 We now define the predicate all such that the query all(n0,n1,Xs)
collects in Xs the answers of a query q(m,A) for values m ranging from n0 to n1.

all(N,N,[A]) ← q(N,A).
all(N,N1,[A|As]) ← q(N,A), all(s(N),N1,As).
q(Y, Y). %just as an example

For any selection rule s, the program and the query all(0,s(s(0)),As) have an
infinite derivation via s. However, the query is satisfiable, and in fact there exists
a refutation via s with computed answer As = [0,s(0),s(s(0))]. The program
and the query are bounded by defining:

|all(n, m, x)| = max{size(m)− size(n), 0}+ 1
|q(x,y)| = 0

I = { all(n, m, x) | size(n) ≤ size(m) } ∪ {q(x,y)}.
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The only non-trivial proof obligation concerns the second clause. Let

all(n,n′,[a|as])← q(n,a), all(s(n),n′,as).

be a ground instance of that clause such that I |= q(n,a), all(s(n),n′,as).
|all(n, n′, [a|as])|¤ 0 = |q(n,a)| shows the decreasing from the head to the
first body atom. Moreover, I |= all(s(n),n′,as) means size(s(n)) = size(n) +
1 ≤ size(n′), which implies:

|all(n, n′, [a|as])| = size(n′)− size(n) + 1
¤ size(n′)− size(s(n)) + 1 = |all(s(n),n′,as)|,

which shows the decreasing from the head to the second body atom, and size(n)
≤ size(n′), i.e. all(n, n′, [a|as]) ∈ I, which, in turn, shows that I is a model
of the instance. 2

Example 3.6 Consider again the PERMUTATION program and the query perm([a,
b], Ys). Let us show they are bounded by |.| and I, where:

|perm(xs, ys)| = |xs|
|delete(x, xs, ys)| = |ys|,

I = { perm(xs, ys) | |xs| = |ys| } ∪
{ delete(x, xs, ys) | |xs| = |ys|+ 1 }.

We recall that |t| is the list-length of the ground term t. The only non-trivial proof
obligations are those regarding clause (p2). Let

perm([x|xs], ys) ← delete(x, ys, zs), perm(xs, zs).

be a ground instance of that clause. If the body is true in I, then |xs| = |zs| and
|ys| = |zs|+ 1. This implies:

(a) |perm([x|xs], ys)| = |xs|+ 1
¤ { |xs| = |zs| }

|zs| = |delete(x, ys, zs)|,

(b) |perm([x|xs], ys)| = |xs|+ 1
¤ |xs| = |perm(xs, zs)|.

(c) perm([x|xs], ys) ∈ I iff |xs|+ 1 = |ys|
iff { |ys| = |zs|+ 1 }

|xs| = |zs|
iff { |xs| = |zs| }

true.
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(a,b) show the decreasing of the level mapping as required in Definition 3.2, while
(c) shows that I is a model of the clause.

Finally, by fixing k = | perm([a, b], Ys) |+ 1 = | [a,b] |+ 1 = 3, the proof
obligations of Definition 3.3 are satisfied.

More generally, every query perm(Xs, Ys) is bounded by |.| and I when Xs is
a list. Also, this is the case for queries perm(Ys, Xs) when Xs is a list. 2

Next, we report an example showing the role of ∞, which allows for excluding
some unintended atoms from the proof of boundedness. Such atoms include badly-
typed ones, such as perm(a, b), and, more importantly, atoms for which bounded
nondeterminism does not hold.

Example 3.7 The following program TRANSP models the computation of the tran-
sitive closure of a graph.

trans(X,Y,E) ←
member(arc(X,Y),E).

trans(X,Y,E) ←
trans(Z,Y,E),
member(arc(X,Z),E).

member(X,[X|Xs]).

member(X,[Y|Xs]) ←
member(X,Xs).

In the intended meaning of the program, trans(x,y,e) succeeds iff x ;e y, i.e. if
arc(x,y) is in the transitive closure of a direct acyclic graph (DAG) e, which is
represented as a list of arcs. It is readily checked that if e is a graph that contains
a cycle, infinitely many refutations may occur. On the contrary, if e is acyclic the
program and the query have bounded nondeterminism. Let us show that TRANSP
is bounded. We define:

|trans(x,y,e)| =

{
|e|+ 1 + Card{v | x ;e v} if e is a DAG
∞ otherwise

|member(x,e)| = |e|
I = {trans(x,y,e) | true} ∪

{member(x,e) | x is in the list e}.

where Card is the set cardinality operator. It is easy to check that TRANSP is
bounded by |.| and I. In particular, consider a ground instance of the second
clause:

trans(x,y,e)← trans(z,y,e), member(arc(x,z),e).
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It is immediate to see that I is a model of it. In addition, we have the proof
obligations:

(i) arc(x,z) is in e ⇒ |trans(x,y,e)|¤ |trans(z,y,e)|
(ii) |trans(x,y,e)|¤ |member(arc(x,z),e)|.

The second one is easy to show since |trans(x,y,e)|¤ |e|. Considering the first
one, we distinguish two cases. If e is not a DAG, the conclusion is immediate.
Otherwise, arc(x,z) in e implies Card{v | x ;e v} > Card{v | z ;e v}, and so:

|trans(x,y,e)| = |e|+ 1 + Card{v | x ;e v}
¤ |e|+ 1 + Card{v | z ;e v} = |trans(z,y,e)|.

Finally, observe that for a DAG e, the queries trans(x,Y,e) and trans(X,Y,e)
are bounded by |.| and I. The first one is intended to compute all nodes y such
that x ;e y, while the second one computes the binary relation ;e. Therefore,
the TRANSP program and those queries have bounded nondeterminism. As a final
observation, note that they do not left-terminate (unless body atoms in the recursive
clause of trans are switched). 2

4 Soundness and Completeness

4.1 Soundness

The notion of boundedness is persistent along SLD-derivations.

Lemma 4.1 (Persistency) Let P be a program and Q a query both bounded by
|.| and I. Every SLD-resolvent Q′ of P and Q is bounded by |.| and I.

Proof. Let k ∈ N be such that Definition 3.3 of boundedness of Q is satisfied.
Let θ be the mgu of the selected atom in Q and the head of the (renamed apart)

input clause c. Assume that Qθ = A1 , . . . , An , and that cθ = Ak ← B1, . . . , Bm.
The SLD-resolvent Q′ is then:

A1, . . . , Ak−1, B1 , . . . , Bm , Ak+1, . . . , An.

Let us show the proof obligation of Definition 3.3 for Q′.
Let Q′γ = A′1, . . . , A′k−1, B

′
1 , . . . , B′

m , A′k+1, . . . , A
′
n be a ground instance of Q′.

For any A′k ground instance of Akγ, it turns out that A′1, . . . , A′n is a ground instance
of Qθ (and then of Q), and A′k ←B′

1 , . . . , B′
m is a ground instance of cθ (and then

of c). Suppose that I |= Q′γ. Then I |= B′
1 , . . . , B′

m and, since I is a model of
P , I |= A′1 , . . . , A′n . By Definition 3.3, this implies k ¤ |A′i| for every i ∈ [1, n].
Moreover, since I |= B′

1 , . . . , B′
m and P is bounded, we have that k ¤ |A′k|¤ |B′

i|
for i ∈ [1,m]. 2
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To show that bounded programs and queries have bounded nondeterminism, we
follow an approach that relies on properties of multisets over well-founded orderings
(see e.g., [14]).

Let (W,>) be a pair where > ⊆W ×W is an irreflexive and transitive relation
(i.e., a strict partial order). (W,>) is well-founded if there is no infinite descending
chain, i.e. no infinite sequence a0, . . . , an, . . . such that a0 > a1 > . . . > an > . . .

A multiset on (W,>) is a pair (bag(W ),Âm) where bag(W ) is the set of un-
ordered sequences of elements from W , which we call multisets. We denote a
multiset of elements a1 , . . . , an by bag(a1 , . . . , an ). Relation Âm is induced by >
as the transitive closure of Â, where x Â y if y can be obtained from x by replacing
an element a of x by finitely many (possibly zero) elements b ∈ W such that a > b.
Also, we denote by ºm the reflexive closure of Âm .

In particular, we associate a multiset over naturals to bounded queries.

Definition 4.2 Let Q = A1 , . . . , An be a query bounded by |.| and I. We define
the sets |Q|Ii for i ∈ [1, n] as follows:

|Q|Ii = {|A′i| | (A′1 , . . . , A′n ) ∈ groundL(Q) ∧ I |= A′1 , . . . , A′n }.

We define |Q|I as the finite multiset

|Q|I = bag(max|Q|I1, . . . ,max|Q|In),

if I |= ∃ (A1 , . . . , An ), and |Q|I = bag() if I 6|= ∃ (A1 , . . . , An ). 2

Note that for i ∈ [1, n], max|Q|Ii exists since Q is assumed to be bounded by |.| and
I. The next Lemma states that the multiset associated to queries decreases along
refutations. This derives from the fact that every query in a refutation is satisfiable
in any model of the program.

Lemma 4.3 Let P be a program and Q a query both bounded by |.| and I. For
every SLD-resolvent Q′ of P and Q, we have:

(i) |Q|I ºm |Q′|I , and

(ii) if I |= ∃ Q′ then |Q|I Âm |Q′|I .

Proof. Let θ be the mgu of the selected atom in Q and the head of the (renamed
apart) input clause c. Assume that Qθ = A1 , . . . , An , and that cθ = Ak ←
B1, . . . , Bm. Then Q′ is

A1, . . . , Ak−1, B1 , . . . , Bm , Ak+1, . . . , An.

First, suppose that I 6|= ∃Q′. Then we have to show only (i), which is immediate
by observing that |Q|I ºm bag() = |Q′|I .
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Suppose now that I |= ∃ Q′. This implies that for every i ∈ [1, n + m− 1]:

|Q′|Ii 6= ∅. (1)

Let Q′γ = A′1, . . . , A′k−1, B
′
1 , . . . , B′

m , A′k+1, . . . , A
′
n be a ground instance of Q′. For

any A′k ground instance of Akγ, it turns out that A′1, . . . , A′n is a ground instance of
Qθ (and then of Q), and A′k ←B′

1 , . . . , B′
m is a ground instance of cθ (and then of

c). As a consequence for every i ∈ [1, n], i 6= k, we have |A′i| ∈ |Q|Ii . This implies:

for i ∈ [1, k − 1] max|Q′|Ii ≤ max|Q|Ii , (2)
for i ∈ [k + 1, n] max|Q′|Ii+m−1 ≤ max|Q|Ii . (3)

Moreover, since I |= B′
1 , . . . , B′

m and P is bounded, we have that |A′k|¤ |B′
i| for

every i ∈ [1,m]. By the assumption that Q is bounded, we have that max|Q|Ik
exists, and then max|Q|Ik ≥ |A′k| > |B′

i| for every i ∈ [1,m]. Summarizing:

for i ∈ [1,m] ∀ x ∈ |Q′|Ik+i−1 x < max|Q|Ik. (4)

In conclusion, we calculate:

|Q|I = { Definition 3.3 }
bag(max|Q|I1, . . . ,max|Q|Ik, . . . ,max|Qθ|In)

Âm { (1− 4) and the fact that
∀ x ∈ S 6= ∅ x < y implies max S < y }

bag(max|Q′|I1, . . . , max|Q′|In+m−1)
= { Definition 3.3 }

|Q′|I

which implies (i-ii). 2

Next, we introduce a sub-relation of Âm , which is parametric in a natural number
v. This value denotes the maximum number of elements that may replace an
element in a bag. In our context, v will denote the maximum number of atoms in
the body of a clause of a given program.

Definition 4.4 Given a pair (W,>) and v ∈ N , we define Âv
m ⊆ bag(W )×bag(W )

as the transitive closure of the relation Âv ⊆ bag(W ) × bag(W ) in which x Âv y
if y can be obtained from x by replacing an element a of x by at most v (possibly
zero) elements b ∈ N such that a > b. 2

Relation Âv
m enjoys the useful property that there are finitely many bags lower

than a given one if the same property holds for >.

Definition 4.5 We say that (W,>) is finitely founded if for every x ∈ W the set
down>(x) = { y ∈ W | x > y } is finite.
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The set down>(x) is known in the literature on orders and algebras as the down-set
of x [9]. Also, finitely founded orders are sometimes called past-finite.

Lemma 4.6 If (W,>) is finitely founded and v ∈ N , then (bag(W ), Âv
m ) is finitely

founded.

Proof. First, observe that (W,>) is well-founded, since finitely foundedness clearly
implies well-foundedness. It is well-known that if (W,>) is well-founded then
(bag(W ), Âm ) is well-founded as well (see e.g., [14]). Since Âv

m ⊆ Âm , we have
that (bag(W ), Âv

m ) is well-founded as well.
Let us show that (bag(W ), Âv

m ) is finitely founded. The proof is by induction
on the well-founded ordering Âv

m .
The bottom element is the empty bag bag(), for which the conclusion is im-

mediate. Consider now a = bag(x1 , . . . , xn ) with n > 0. First, we observe that
there are finitely many a′ such that a Âv a′. In fact, a′ is obtained by replacing
some xi with at most v elements from down>(xi). Since such a set is finite, there
is a finite number of possible a′’s. Let us show now that there are finitely many
b ∈ bag(W ) such that aÂv

m b. In fact, either a Âv b or for some a′, a Âv a′ Âv
m b.

In the former case, we have already showed the conclusion. In the latter case, by
inductive hypothesis on a′, there are finitely many bags b such that a′ Âv

m b. Since
there are finitely many a′’s, we also conclude that there are finitely many bags b
such that a Âv a′ Âv

m b. 2

We are now in the position to show that bounded programs and queries have
bounded nondeterminism.

Theorem 4.7 (Soundness) Let P be a program and Q a query both bounded by
|.| and I. Then P and Q have bounded nondeterminism.

Proof. Consider an SLD-refutation Q,Q1, . . . , Qn of P and Q via a selection rule
s. By Soundness of SLD-resolution, for every i ∈ [1, n], I |= ∃ Qi. Moreover,
by Lemma 4.1 for every i ∈ [1, n], Qi is bounded by |.| and I. By Lemma 4.3
(ii), |Q|I Âm |Q1|I Âm . . . Âm |Qn|I is a descending chain of bags over naturals.
Let v be the maximum number of atoms in the body of a clause from P . Since
SLD-resolution replaces an atom by at most v atoms, the stronger statement:

|Q|I Âv
m |Q1|I Âv

m . . . Âv
m |Qn|I

holds. Since (N, >) is finitely founded, by Lemma 4.6 (bag(N), Âv
m ) is finitely

founded, and, in particular, there are finitely many bags lower than |Q|I , say k.
Since it must necessarily be k ≥ n, then the maximum length of a derivation of P
and Q via s is bounded by k. Since SLD-trees are finitely branching, by Köning’s
Lemma there are finitely many SLD-refutations for P and Q via s. 2

Example 4.8 The ODDEVEN program and the query even(X), odd(X) have bound-
ed nondeterminism, since they are both bounded. The same conclusion holds for
PERMUTATION and the query perm([a, b], Ys). 2
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4.2 Completeness

In this section we show that boundedness is a complete characterization of bounded
nondeterminism. First, we introduce a function that measures the maximum refu-
tation length.

Definition 4.9 We define rlengthP
s (Q) as ∞ if there exist infinitely many SLD-

refutations of P and Q via the selection rule s, and as the maximum length of an
SLD-refutation of P and Q via s otherwise. 2

Note that rlengthP
s (Q) is well-defined since SLD-trees are finitely branching,

and then the maximum length of an SLD-refutation of P and Q is finite iff there
are finitely many of them.

Lemma 4.10 Let P be a program, Q a query and s a selection rule. Then:

(i) for every Q′ SLD-resolvent of P and Q via s

rlengthP
s (Q) ¤ rlengthP

s (Q′),

(ii) for every Q′ instance of Q, rlengthP
s (Q) ¥ rlengthP

s (Q′).

Proof. (i) Let ξ′ be an SLD-refutation of P and Q′ via s whose length is l. Since Q′

is an SLD-resolvent of P and Q, there exists an SLD-refutation ξ of P and Q that
first selects the atom selected in Q by s, then selects according to the selections of
ξ′ . By the Independence Lemma [1, Theorem 3.33], there exists an SLD-refutation
of P and Q via s whose length is equal to the length of ξ, namely to l + 1.

Consider now two cases.
Suppose that there exist infinitely many SLD-refutations of P and Q′ via s.

Since SLD-trees are finitely branching, by König’s Lemma lengths are unbounded,
and then by reasoning as above we can find infinitely many SLD-refutations of P
and Q via s. Summarizing, (i) holds.

Suppose that there exist finitely many SLD-refutations of P and Q′ via s. By
reasoning as above in the case that ξ′ is the longest SLD-refutation, we get that
there exists an SLD-refutations of P and Q via s longer than ξ′, which implies (i).

(ii). Consider an SLD-refutation ξ′ of P and Q′ via s. By the Lifting Theorem
[1, Theorem 3.22] there exists an SLD-refutation ξ′ of P and Q which is of the
same length of ξ. By the Independence Lemma [1, Theorem 3.33] there exists
an SLD-refutation of P and Q via s using the same clauses of ξ′. Therefore,
rlengthP

s (Q) ¥ rlengthP
s (Q′). 2

The next lemma states that every program is bounded by a level mapping defined
in terms of the length of SLD-refutations.

Lemma 4.11 Let P be a program and s a selection rule. Then there exist a level
mapping |.| and a Herbrand interpretation I such that:
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(i) P is bounded by |.| and I, and

(ii) for every A ∈ BL, |A| ∈ N iff there are finitely many SLD-refutations of P
and A via s.

Proof. We define I = ML
P and |A| = rlengthP

s (A).
First, we observe that (ii) is immediate by definition of | |. Let us now consider

(i). We show the proof obligations of Definition 3.2. Obviously, I is a model of
P . Consider now A←B1 , . . . , Bn in groundL(P ) . Suppose that I |= B1, . . . , Bn.
Since I = ML

P , by Strong Completeness of SLD-resolution there exists an SLD-
refutation ξ of P and B1, . . . , Bn via s. We claim that for i ∈ [1, n]:

rlengthP
s (B1, . . . , Bn) ¥ rlengthP

s (Bi). (5)

In fact, consider an SLD-refutation ξ′ of P and Bi via s. Since ξ is successful,
there exists an SLD-refutation of P and B1, . . . , Bn via s where all the atoms in ξ′

are eventually selected, and the other selections are made accordingly to ξ. Thus,
we obtain an SLD-refutation of P and B1, . . . , Bn via s whose length is greater or
equal than the length of ξ′, i.e. (5) holds. Observing that B1, . . . , Bn is an instance
of an SLD-resolvent Q of P and A, we calculate for i ∈ [1, n]:

|A| = rlengthP
s (A)

¤ { Lemma 4.10 (i) }
rlengthP

s (Q)
¥ { Lemma 4.10 (ii) }

rlengthP
s (B1, . . . , Bn)

¥ { (5) }
rlengthP

s (Bi) = |Bi|.
2

Let us show the completeness result. It is worth noting that the result states that,
for a program P , there exists |.| and I such that they make bounded every query
Q such that P and Q have bounded nondeterminism. Boundedness of P and Q
by such |.| and I turns out then to be the precise characterization of bounded
nondeterminism.

Theorem 4.12 (Completeness) Let P be a program. Then there exist |.| and I
such that P is bounded by |.| and I. Moreover, for every query Q such that P and
Q have bounded nondeterminism, Q is bounded by |.| and I.

Proof. Let s be any selection rule. Consider now the program P ′ = P ∪ { new←Q },
on the language L′ = L ∪ {new}, where new is a fresh predicate symbol. By Lemma
4.11 (i), P ′ is bounded by some |.|′ and I ′.
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Let |.| and I be the restrictions of |.|′ and I ′ on BL.
Obviously, P is bounded by |.| and I since the predicate symbol new is fresh.
Consider now Q. Since there are finitely many SLD-refutations of P and Q via s,

the same holds for P ′ and new via s. By Lemma 4.11 (ii), |new|′ ∈ N . Since new←Q
is bounded by |.|′ and I ′, we have that for every ground instance A1 , . . . , An of Q, if
I |= A1 , . . . , An then I ′ |= A1 , . . . , An and then for i ∈ [1, n], |new|′ ¤ |Ai|′ = |Ai|.
In conclusion Q is bounded by |.| and I, by fixing k = |new|′ in Definition 3.3. 2

Example 4.13 Reconsider the TRANSP program of Example 3.7. Let e be a graph
containing a cycle a1 → a2 → . . . → an = a1, with n > 1, where x→ y means there
is an arc from x to y. Let us show that TRANSP and the query trans(a1,a1,e)
cannot be both bounded by the same |.| and I, and then they cannot have bounded
nondeterminism. Let i be in {1, . . . , n − 1}. Since I must be a model of TRANSP,
it can be easily shown by induction on n that trans(ai+1,an,e) ∈ I. Also,
member(arc(ai,ai+1),e) ∈ I since e is defined as a list of arcs. Consider now
a ground instance of the second clause of TRANSP:

trans(ai,an,e)← trans(ai+1,an,e), member(arc(ai,ai+1),e).

Since the body of the clause is true in I, by boundedness of TRANSP, we have
trans(ai,an,e) ¤ trans(ai+1,an,e), for i ∈ {1, . . . , n − 1}. As a consequence,
trans(a1,a1,e) = trans(a1,an,e) ¤ trans(a2,an,e) ¤ . . . ¤ trans(an,an,e)
= trans(a1,a1,e). This implies trans(a1,a1,e) = ∞, i.e. it cannot be bounded
by |.| and I. 2

5 From Bounded Nondeterminism to Strong Termina-
tion

So far, we have developed a theoretical framework for the characterization of the
class of programs and queries that have the bounded nondeterminism property.
The definition of bounded programs and queries can be readily used for paper
& pencil proofs of bounded nondeterminism. We will see in the next section how
automatic techniques proposed for inferring left termination can be adapted to infer
boundedness. In this section, we show how a proof (paper & pencil or automatic) of
boundedness can be useful in order to generate a terminating control for programs
and queries.

We propose a simple syntactic transformation that prunes SLD-derivations in
such a way that the SLD-tree is cut at a level that includes all refutations. Such
a transformation provides us with a strong terminating program and query that
retain the set of refutations of the original program and query. In order to cut
derivations at an appropriate level, it is necessary to provide an upper bound k
satisfying the proof obligations of boundedness of the query under consideration.
Such a k should be readily available with the proof of boundedness of the query.
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In the next definition, we introduce a syntactic transformational approach that
prunes SLD-derivations at a certain length. For notational convenience, we denote
by T a sequence T1 , . . . , Tn of terms, with n ≥ 0.

Definition 5.1 Let P be a program and Q a query both bounded by |.| and I,
and let k ∈ N . We define Ter(P ) as the program such that:

• for every clause in P

p0(T0) ← p1(T1), ..., pn(Tn).

with n > 0, the clause

p0(T0, s(D) ) ← p1(T1, D), ..., pn(Tn, D).

is in Ter(P ), where D is a fresh variable,

• and, for every clause in P
p0(T0).

the clause
p0(T0, D).

is in Ter(P ), where D is a fresh variable.

Also, for Q = p1(T1), ..., pn(Tn), with n ≥ 0, define Ter(Q, k) as the query:

p1(T1, sk(0)), ..., pn(Tn, sk(0)).
2

The next result shows that the transformation yields strongly terminating programs
and queries. Also, the definition of boundedness for queries provides us with an
upper bound for cutting derivations without loosing any refutation.

Theorem 5.2 Let P be a program and Q a query both bounded by |.| and I, and
let k be a given natural number satisfying Definition 3.3.

Then, for every b ∈ N , Ter(P ) and Ter(Q, b) universally terminate via every
selection rule.

Moreover, there is a bijection between SLD-refutations of P and Q via a selection
rule s and SLD-refutations of Ter(P ) and Ter(Q, k − 1) via s.

Proof. It is readily checked that Ter(P ) and Ter(Q, b) are recurrent by a level
mapping |.| such that |p(t, n)| = size(n). Therefore, universal termination follows
from Theorem 2.5. Consider now the second part of the Theorem.
First, assume that s is the leftmost selection rule. We define a mapping ψ as follows.
Consider an SLD-refutation ξ′ for Ter(P ) and Ter(Q, k − 1) via s. ψ maps ξ′ into
the derivation obtained by removing the rightmost term in every atom in ξ′. Since s
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is the leftmost selection rule, such a derivation is readily checked to be a refutation
for P and Q via s. Consider now an SLD-refutation ξ = Q0, Q1 , . . . , Qn for P
and Q via s. It can be obtained as ψ(ξ′) for ξ′ = Q′

0, Q
′
1 , . . . , Q′

n SLD-refutation
for Ter(P ) and Ter(Q, b) for some b ∈ N . Let us show that for b = k− 1. Observe
that, by Lemma 4.3 (ii),

|Q0|I Âm |Q1|I Âm . . . Âm |Qn|I .

Called bag(Q′
i) the bag with elements the rightmost terms in Q′

i, we claim that
bag(Q′

i)ºm |Qi|I for i ∈ [0 : n]. In fact, bag(Q′
0) = bag(k−1, . . . , k−1)ºm |Q0|I =

|Q|I since Q is bounded using k. Moreover, bag(Q′
i+1) is obtained from bag(Q′

i) by
replacing an element a with a number v of elements a− 1. On the contrary, |Qi+1|
is obtained from |Qi| by replacing an element a with a number v of elements lower
or equal than a − 1. Summarizing, bag(Q′

i)ºm |Qi|I for i ∈ [0 : n] implies that ξ′

cannot fail due to unification of the rightmost term in the selected atom, i.e. ξ′ is a
refutation. Therefore, by fixing b = k− 1 the refutation ξ can be obtained as ψ(ξ′)
for some refutation ξ′ of Ter(P ) and Ter(Q, b).

We have shown that ψ is a bijection (modulo renaming apart) when s is the
leftmost selection rule. Consider now the case that the selection rule s is arbitrary.
By Strong Completeness of SLD-resolution there is a bijection φ mapping SLD-
refutations via s to SLD-derivations via the leftmost selection rule. Therefore, the
conclusion of the Theorem follows by considering the bijection φ ◦ ψ ◦ φ−1. 2

It is worth noting that no assumption is made on the selection rule s, i.e. any
selection rule is a terminating control for the transformed program and query.

Example 5.3 Reconsider the program PERMUTATION and the query perm([a, b],
Ys) of Example 1.2. The transformed program Ter(PERMUTATION) is:

perm([], [], D).
perm([X|Xs], Ys, s(D)) ←

delete(X, Ys, Zs, D),
perm(Xs, Zs, D).

delete(X, [X|Y], Y, D).
delete(X, [H|Y], [H|Z], s(D)) ←

delete(X, Y, Z, D).

and the transformed query for k = 3 is perm([a,b], Ys, s2(0)). By Theorem 5.2,
the transformed program and query provide us with a terminating control for the
original program and query independently of the selection rule adopted, modulo
the extra argument added to each predicate. 2

The transformations Ter(P ) and Ter(Q, k) are of purely theoretical interest. In
practice, one would implement these counters directly into the compiler/interpreter.
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Also, the compiler/interpreter should include a module that infers an upper bound
k automatically. The issue of the automatic inference of level mappings and models
is discussed in the next section.

6 On the Automatic Inference of Boundedness

6.1 An undecidable problem

On the theoretical level, the problem of deciding whether a program is bounded is
undecidable.

Theorem 6.1 It is undecidable whether there exist |.| and I such that a program
P and a query Q are both bounded by |.| and I.

Proof. Devienne et al. [16, Theorem 8] showed that it is undecidable whether
given a program consisting of only one clause of the form:

p(T1 , . . . , Tn ) ← p(S1 , . . . , Sn ). (6)

and a query p(V1 , . . . , Vn ), the SLD-resolution stops. The particular form (6) im-
plies that there is only one SLD-derivation for the program and the goal. Consider
now for every program P of the form (6), the program P ′ obtained by adding the
fact p(X1, . . . , Xn), where X1, . . . , Xn are distinct variables. Due to their particular
form, we observe that P and the query p(V1 , . . . , Vn ) have a finite derivation iff
P ′ and p(V1 , . . . , Vn ) have bounded nondeterminism, i.e. they are bounded by
some |.| and I. Therefore, if it were decidable whether a given program and query
are bounded by some level mapping and Herbrand interpretation, then it would be
decidable whether the SLD-resolution stops for programs and queries of the form
(6). 2

6.2 Insights on automation

On the practical level, many approaches are currently available to automatically
infer sufficient conditions for termination – usually left termination.

On the one hand, we observe that any of the existing automated methods for
proving termination via any selection rule is actually a sufficient method for proving
bounded nondeterminism. When, in addition, the automated method can provide
us with an upper bound on the length of derivations of a program P and a query Q
then such an upper bound is, obviously, an upper bound for the length of refutations
of P and Q.

On the other hand, we argue that some of the approaches can be directly
adapted for proving the proof obligations of boundedness, since they closely resem-
bles the ones for acceptability (the characterization of left terminating programs
[3]). In the following, we outline the adaptation of the constraint-based method of
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Decorte et al. [13] to the case of an example program. First of all, however, we
need to recall some standard notions concerning modes.

For a predicate p/n, a mode is an atom p(m1, . . . , mn), where mi ∈ {I ,O}
for i ∈ [1, n]. Positions with I are called input positions, and positions with O
are called output positions of p. To simplify the notation, an atom written as
p(s, t) means: s is the vector of terms filling in the input positions, and t is the
vector of terms filling in the output positions. Intuitively, a mode specifies the use
of predicate arguments of p, with the intended meaning that terms occurring in
output positions are determined from the computation of the terms occurring in
input positions. We now define level mappings where the dependency on the modes
is made explicit [17].

Definition 6.2 A moded level mapping |.| is a level mapping such that for any
ground s, t and u, |p(s, t)| = |p(s,u)|.

The condition |p(s, t)| = |p(s,u)| states that the level of an atom is independent
from the terms in its output positions.

Example 6.3 Let us consider again PERMUTATION, and the query perm([a, b],
Ys). Consider now the problem to infer that PERMUTATION and the query above are
bounded by a level mapping |.| and a Herbrand interpretation I. Here, we make
the following assumptions:

(Assumption A1). Every n-ary predicate symbol p is annotated with exactly
one mode. As an example, the following are intuitive modes for the predicates of
PERMUTATION:

perm(I, O) delete(I, O, I).

(Assumption A2). |.| is a moded level mapping defined as a linear combina-
tion of the list-length of the predicate arguments which occur in input positions,
i.e.:

|perm(xs, ys)| = p0 + p1|xs|
|delete(x, xs, ys)| = d0 + d1|x|+ d2|ys|,

where p0, p1, d0, d1, d2 denote natural numbers that need to be determined. Strictly
speaking, the formulas above do not define a single level mapping, but a set of level
mappings parametric in p0, p1, d0, d1, d2.

(Assumption A3) I is characterized as the set of atoms whose predicate ar-
guments satisfy a linear inequation, such as:

I = { perm(xs, ys) | p′0 + p′1|xs| ≥ p′2|ys| } ∪
{ delete(x, xs, ys) | d′0 + d′1|x|+ d′3|ys| ≥ d′2|xs| }
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where p′0, p′1, p′2, d′0, d′1, d′2, d′3 denote natural numbers that need to be determined.
Observe that the linear inequations are syntactically derived by fixing the arguments
occurring in input positions to the left hand side of the inequation, and those
occurring in output positions to the right hand side. As in (Assumption A2),
note that formula above actually defines a set of models. Intuitively, the sets of
level mappings and models represent our search space for a level mapping and a
model that satisfy the proof obligations of boundedness.

Let us write the proof obligations of Definition 3.2 for clauses of PERMUTATION.

(p1) For clause (p1), we have only to show that I is a model of it, i .e. perm([],
[]) is in I. This leads us to the symbolic constraint p′0 + p′1 · 0 ≥ p′2 · 0, i.e.:

c1. p′0 ≥ 0.

(p2) Consider a ground instance of (p2):

perm([x|xs], ys) ← delete(x, ys, zs), perm(xs, zs).

The body is true in I iff φ holds, where:

φ ≡ d′0 + d′1|x|+ d′3|zs| − d′2|ys| ≥ 0 ∧ p′0 + p′1|xs| − p′2|zs| ≥ 0.

Therefore, the decreasing of the level mapping from the head to the leftmost atom
in the body imposes the constraint:

∀ x, xs, ys, zs φ ⇒ p0 + p1|xs|+ p1 > d0 + d1|x|+ d2|zs|

which after some rearrangement, can be written as:

c2. ∀ x, xs, ys, zs φ ⇒ p1|xs| − d1|x| − d2|zs|+ (p0 + p1 − d0) > 0.

Note that have used > instead of ¤ , as required in the definition of boundedness.
This is due to the form of level mappings of (Assumption A2), which can never
map into ∞. The decreasing from the head to the second body atom, and the
requirement that I must be a model of the clause lead to:

c3. ∀ x, xs, ys, zs φ ⇒ p1 > 0.

c4. ∀ x, xs, ys, zs φ ⇒ p′1|xs| − p′2|ys|+ (p′1 + p′0) ≥ 0.

(d1) We have only to show that I is a model of it, i.e.

c5. ∀ x, y, (d′3 − d′2)|y|+ d′1|x|+ (d′0 − d′2) ≥ 0.

(d2) The decreasing from the head to the body atom, and the requirement that
I must be a model of the clause yield:
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c6. ∀ x, y, z d′1|x|+ d′3|z| − d′2|y|+ d′0 ≥ 0 ⇒ d2 > 0.

c7. ∀ x, y, z d′1|x|+d′3|z|−d′2|y|+d′0 ≥ 0⇒ d′1|x|+d′3|z|−d′2|y|+(d′3+d′0−d′2) ≥ 0.

A general method to solve conditional constraints c1 − c7 of the form above is
not known. However, Decorte et al. [13] propose a method that reduces those
constraints to a set of linear constraints over the variables p0, p1, p2, p

′
0, p

′
1, . . .. The

basic idea consists of observing that c1 − c7 are solvable by imposing that all the
coefficients appearing in the inequations at the right of the implications are non-
negative2. However, since this sufficient condition is in many cases too strong, they
propose to apply first a rule3 that nondeterministically selects a constraint of the
form ∀ . . . e ≥ 0 ∧ . . . ⇒ e′ ≥ 0 (resp., > 0) and rewrites it into:

∀ . . . e ≥ 0 ∧ . . . ⇒ e′ − e ≥ 0 (resp., > 0).

For instance, when applied to c2 and the second conjunct in φ, this rule yields:

c2′. ∀ x, xs, ys, zs φ ⇒
−d1|x|+ (p1 − p′1)|xs|+ (−d2 + p′2)|zs|+ (p0 + p1 − d0 − p′0) > 0.

A sufficient condition to satisfy this constraint is then to require:

−d1 ≥ 0, p1 − p′1 ≥ 0
−d2 + p′2 ≥ 0, p0 + p1 − d0 − p′0 > 0.

With the same approach, we derive the following constraints from c1, c3− c7:

p1 > 0, −d′1 ≥ 0,
p′2 − d′3 ≥ 0, d′2 − p′2 ≥ 0,
p′1 − d′0 ≥ 0, d′3 − d′2 ≥ 0,
d′0 − d′2 ≥ 0, d2 > 0,

where variables range over naturals. Such constraints are directly solvable by a
constraint solver over finite domains – and often over boolean suffices. A solution
of those constraints is the following:

p1 = d2 = p′1 = p′2 = d′0 = d′2 = d′3 = 1
p0 = d0 = d1 = d′1 = p′0 = d′0 = a1 = 0,

2More precisely, since |.| maps ground terms into naturals, the right hand side of implications
is of the form c0 + c1x1 + . . . + cnxn ≥ 0 or c0 + c1x1 + . . . + cnxn > 0. These inequalities are
satisfied if ci ≥ 0 for all i ∈ [0, n], or if (ci ≥ 0 for all i ∈ [1, n] and c0 > 0) respectively.

3In addition to the rewrite rule we consider in this paper, [13] proposes also a substitution rule
that is meaningful in presence of the equality predicate.
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which leads to the level mapping and the interpretation:

|perm(xs, ys)| = |xs|
|delete(x, xs, ys)| = |ys|,

I = { perm(xs, ys) | |xs| ≥ |ys| } ∪
{ delete(x, xs, ys) | 1 + |ys| ≥ |xs| }.

Notice how |.| and I closely resemble the level mapping and the interpretation of
Example 3.6. Let us see now the proof obligations of Definition 3.3. Consider a
ground instance perm(xs, ys) of an atomic query. We have to find out a natural
k such that:

I |= perm(xs, ys) ⇒ k > |perm(xs, ys)|,
which by definition of |.| and I, can be rewritten as: |xs| ≥ |ys| ⇒ k > |xs|. In
the case of the query perm([a,b], Ys), we have then the constraint:

∀ ys 2 ≥ |ys| ⇒ k > 2.

It is worth noting that it is of the same form as the constraints derived from program
clauses. Therefore, it can be solved by the same approach, which yields the solution
k = 3, which coincides with the k used in Example 3.6.

Finally, we observe that, even though the assumptions (A2) and (A3) use a
predefined function on terms, namely the list-length, the approach can be defined
in general terms, i.e. with also the construction of those functions involved in the
termination analysis. This is actually the approach of Decorte et al. [13]. 2

6.3 Discussion and the modularity issue

The example of the last section reports on the adaption of an existing method for
left termination to infer boundedness. In general, for a clause A←B1 , . . . , Bn

there are n+1 symbolic constraints to satisfy, one about showing that the symbolic
interpretation is a model of the clause and n about showing the decreasing of the
symbolic level mapping from the head to each body atom. The proposed sufficient
condition to satisfy the symbolic constraints is to solve a set of linear inequations
over the coefficients of variables in the symbolic constraints.

Assume that solving such a set of inequations requires an acceptably low cost.
Since the proposed condition is only sufficient, it can happens that one or more
weakening steps are required. Performing a weakening step represents, in such a
context, searching the space of solutions. It is then legitimate to ask ourselves how
large is such a space. A weakening step nondeterministically selects a symbolic con-
straint (over n+1 available) and a conjunct at its left hand side (over n available).
In total, there are n · (n + 1) possible choices. Therefore, we can see our search
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space as an (infinite) tree where at each node we can follow one out of n · (n + 1)
weakening steps. Realistically, this means that we can explore at most the top few
levels of such a tree (e.g., for n = 3 there are 144 nodes at level 3, 1728 at level 4,
and 20736 at level 5).

To better understand the problem, let us consider what differentiates the ap-
proach of Decorte et al. [13] from ours. In their approach, proof obligations (for
the left termination problem) of the following form are considered:

for i ∈ [1, n] I |= B1 , . . . , Bi−1 ∧ rel(A) ' rel(Bi) implies |A| > |Bi|,
where rel(A) ' rel(B) if the predicate symbols of A and B are mutually recursive.
On the one hand, such proof obligations yield fewer symbolic constraints, i.e. one
for every mutually recursive body atom, against one for every body atom in our
approach. On the other hand, they yield symbolic constraints with fewer conjuncts,
i.e. i− 1 against n in our approach.

As an example, considering the collection of definite programs of the Apt book
[1, page xiii], we have calculated that 19.6% of clauses with non-empty body have
zero mutually recursive calls, 69.1% have only one mutually recursive call, and
11.3% have more than one mutually recursive call. For such a collection of programs,
we have that:

• in 19.6% of clauses, the approach of Decorte et al. yields no symbolic con-
straint at all – i.e., an empty search tree;

• in 69.1% of clauses it yields one symbolic constraint with at most n − 1
conjuncts, i.e. a search tree whose branching degree is linear in the number n
of body atoms;

• and in the remaining 11.3% it yields at most n symbolic constraints for a total
of at most n · (n − 1)/2 conjuncts, i.e. a search tree whose branching degree
is in the worst case in the same order of our approach.

Even more importantly, since the proof obligations of the approach of Decorte
et al. are modular (i.e., they do not take into account predicates defined in lower
modules), the method scales up to large programs made up of many small modules.
In this context, a module is the set of program clauses defining predicates mutually
recursive among them. Each module is analyzed apart by the proof method.

On the contrary, our approach must consider the (large) program as a whole,
since the weakening of a symbolic constraint in a lower module can affect solvability
of symbolic constraints at higher modules. In other words, the search space for a
program is the cartesian product of the search spaces for each clause in the program.
As a consequence, except for tiny programs, the search space is dramatically large,
and the approach results infeasible in the general case.

Summarizing, while we are confident that automatic approaches for left ter-
mination can be adapted to infer boundedness, it is first necessary to investigate
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on a refinement of the proof obligations of boundedness that takes into account
modularity. In fact, since the modularity issue is originated from the definition of
boundedness itself, we expect that it will arise independently of the approach used
to automate the inference of boundedness. As a first step towards tackling the
modularity issue, we propose a refinement that mimics the approach of Bossi et al.
[17] in making acceptability modular for a restricted class of programs.

Definition 6.4 Let |.| be a level mapping, and I a Herbrand interpretation. A
logic program P is well-bounded by |.| and I iff I is a model of P such that for every
A←B1 , . . . , Bn in groundL(P ) :

I |= B1 , . . . , Bn implies for i ∈ [1, n] if rel(A) ' rel(Bi) then |A| ¤ |Bi|.
2

Well-boundedness requires the decreasing for mutually recursive calls only. As one
could expect, some additional requirements must hold on a given program and
query in order to conclude bounded nondeterminism. Intuitively, since there can
be finitely many non-mutually recursive calls between two mutually recursive ones,
a sufficient condition is to impose that non-mutually recursive calls introduce atoms
whose level (of its ground instances) is bounded by some natural number. In this
way, there can be finitely many recursive calls only (by well-boundedness), each of
them introduces finitely many non-recursive calls (since the number of predicates
in P is finite) and the level of each of these calls is bounded (by some sufficient
condition to be determined). In order to achieve this, we first recall the notion of
well-modedness [1].

Definition 6.5 A query Q = p1(s1, t1), . . . , pn(sn, tn) is well-moded if for all i ∈
[1, n] and K = 1

vars(si) ⊆
i−1⋃

j=K

vars(tj) (7)

The clause p(t0, sn+1) ← Q is well-moded if (7) holds for all i ∈ [1, n+1] and K = 0.
A program is well-moded if all of its clauses are well-moded.

A query (clause, program) is permutation well-moded if it is well-moded modulo
reordering of the atoms of the query (each clause body).

Well-modedness of P and Q is a persistent property. It ensures that atoms selected
in a derivation of P and Q via the leftmost selection rule are ground in their
input positions. Permutation well-modedness is a weakening implying groundness
of terms in input positions of at least one atom in every query of any derivation of
P and Q.

Lemma 6.6 [2, 29] Let P and Q be a (permutation) well-moded program and
query. Then:
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(i) every SLD-resolvent of them is (permutation) well-moded;

(ii) every computed instance Q′ of them is ground. 2

(ii) reveals that the class of well-moded programs and queries is quite restricted,
since they admit ground computed instances only.

If, in addition to (permutation) well-modedness, we assume a moded level map-
ping into naturals, we can conclude that the level of atoms in a refutation is
bounded, which is precisely the sufficient condition we are looking for.

Theorem 6.7 Let P be a (permutation) well-moded program, |.| : BL →N a moded
level mapping into naturals and I a Herbrand interpretation.

If P is well-bounded by |.| and I then P and any (permutation) well-moded query
Q have bounded nondeterminism.

Proof. We assume that P and Q are well-moded. The reasoning for permutation
well-modedness follows in a similar way.

Let LD be the leftmost selection rule, and an LD-refutation an SLD-refutation
via LD. Let S be a subset of predicates of L. We denote by PS the clauses in
P defining the predicates in S. We show by induction on S (with the subset
ordering) that PS and any well-moded query Q have finitely many LD-refutations.
By Strong Completeness of SLD-resolution, this implies that P (which is PS for S
including all predicates appearing in P ) and any well-moded query have bounded
nondeterminism.

Base case. Since PS = P∅ = ∅ the conclusion is immediate.
Inductive step. Let Q = A1 , . . . , Am . The proof is trivial for m = 0. Consider

m > 0. Suppose for the moment that PS and (the well-moded atom) A1 have
finitely many LD-refutations. This means that PS and Q have finitely many partial
derivations via LD that end with a resolvent of the form Q′ = (A2, . . . , Am)θ. By
Lemma 6.6 (i) Q′ is well-moded. Therefore, we can apply inductive hypothesis
(on the length of the query) to conclude that PS and Q′ have finitely many LD-
refutations. A fortiori, PS and Q have finitely many LD-refutations.

Let us show now that PS and a well-moded atom A have finitely many LD-
refutations (since A is well-moded and |.| is moded, with a little abuse of notation
we write |A| to denote the constant value |A′| for any A′ ground instance of A.)

Consider a refutation ξ = A,Q1, . . . , Qn of PS and A via a selection rule s that
always selects first atoms B such that rel(A) ' rel(B) and then behaves as the LD
selection rule.

Let θ1, . . . , θn be the mgu’s used in the refutation, and θ = θ1 ◦ . . . ◦ θn. By
Lemma 6.6 (ii), Aθ and Qiθ, for i ∈ [1, n], are ground. Moreover, by Soundness of
SLD-resolution I |= Aθ and I |= Qiθ. Since P is well-bounded and |.| is moded,
the number of calls to predicates mutually recursive with rel(A) are at most |Aθ| =
|A|. As a consequence, there are finitely many Q′ such that A,Q1, . . . , Q′ is a
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prefix of a refutation of PS and A via s, and Q′ contains only atoms B with
rel(A) 6= rel(B). Since each Q′ is well-moded (by Lemma 6.6 (i)), we can apply the
inductive hypothesis (on S) to conclude that there are finitely many LD-refutations
for PS\{rel(A)} and Q′. By definition of s, PS and A have finitely many refutations
via s. By Strong Completeness of SLD-resolution, PS and A have finitely many
LD-refutations. 2

Example 6.8 Let us consider again PERMUTATION and the symbolic constraint
solving approach of Example 6.3. First, observe that PERMUTATION is well-moded
with the moding:

perm(I, O) delete(I, O, I)

given in Example 6.3.
In order to show well-boundedness we start considering clauses defining delete.

The symbolic constraints imposed by well-boundedness are the same of bounded-
ness, i.e. (c5-c7) of Example 6.3. However, since the level mapping for delete-
atoms cannot influence the one for perm-atoms, we can now solve (c5-c7) indepen-
dently from the symbolic constraints for clauses defining perm. The same approach
of Example 6.3, yields:

|delete(x, xs, ys)| = |ys|,
I = { delete(x, xs, ys) | 1 + |ys| ≥ |xs| }.

Using this partial information, we can write down the symbolic constraints for
clauses defining perm.

(p1) We have only to show that the symbolic interpretation is a model of it, i.e.

c1. p′0 ≥ 0.

(p2) Consider a ground instance of (p2):

perm([x|xs], ys) ← delete(x, ys, zs), perm(xs, zs).

The body is true in I if φ′ holds, where:

φ′ ≡ 1 + |zs| − |ys| ≥ 0 ∧ p′0 + p′1|xs| − p′2|zs| ≥ 0,

is now the equivalent of φ where parameters for delete are replaced with the partial
solution computed so far. The decreasing of the level mapping is now required only
from the head to the rightmost atom in the body:

c2. ∀ x, xs, ys, zs φ′ ⇒ p1 > 0.

The requirement that the symbolic interpretation must be a model of the clause
leads to:
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c3. ∀ x, xs, ys, zs φ′ ⇒ p′1|xs| − p′2|ys|+ (p′1 + p′0) ≥ 0.

Solving (c1-c3) is now (computationally) simpler, and yields solutions including
the one of Example 6.3:

|perm(xs, ys)| = |xs|
I = { perm(xs, ys) | |xs| ≥ |ys| }.

By Theorem 6.7, we conclude that PERMUTATION and any query perm(xs, Ys),
with xs ground, have bounded nondeterminism. Due to the requirement of well-
modedness, such a conclusion is weaker than the one of Example 6.3, where xs can
be any (not necessarily ground) term. 2

Finally, observe that assuming level mapping into naturals is essential to achieve
the result of Theorem 6.7.

Example 6.9 The program below and the query p does not have bounded nonde-
terminism.

p ← q.
q ← q.
q.

However, the program and p are well-bounded by defining |p| = 0 and |q| = ∞. 2

7 Conclusions

7.1 Related Work

Universal termination

A survey on termination of logic programs can be found in the paper by De Schr-
eye and Decorte [10], covering both theoretical characterizations and automation
issues. A more recent survey on the characterizations of classes of programs ter-
minating with respect to different selection rules is due to Pedreschi et al. [25].
In particular, the survey covers bounded programs by citing some results from the
conference version ([24]) of the present paper. [25] points out that acceptability
proof obligations (that characterize left termination [3]) imply boundedness ones,
and that fair-boundedness proof obligations (that characterize termination via fair
selection rules [28]) imply boundedness ones as well.

Pruning SLD-derivations

The idea of pruning SLD-derivations is common to the research area of loop checking
(see e.g., [5]). While a run-time analysis is potentially able to cut more unsuccess-
ful branches, the evaluation of a pruning condition at run-time, such as for loop
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checks, involves a considerably high computational overhead. On the contrary, our
approach combines both the advantages of a static analysis (termination) method,
i.e. the analysis is conducted once and no run-time overhead is added, with those
of pruning mechanisms, i.e. not being restricted to terminating derivations. In
particular, observe that, by the Completeness Theorem 4.12, bounded programs
and queries are the largest class such that a pruning mechanism can find out all
refutations in a finite time.

Martin and King [22] showed a transformation for Gödel programs, that shares with
the transformation Ter, the idea of not following derivations longer than a certain
length. However, compared with our approach, they rely on sufficient conditions
for evaluating an upper bound on the length of refutations, namely termination via
a class of selection rules called semilocal. Obviously, if we can show that a program
and a query universally terminate via some selection rule s then no refutation can
be longer than the maximum derivation via s. Also, their transformation adds
run-time overhead, since the maximum length is computed at run time.

Estimating the number of computed instances

Sufficient (semi-)automatic methods to approximate the number of computed in-
stances by means of lower and upper bounds have been studied in the context of
cost analysis of logic programs [11, 12] and of cardinality analysis of Prolog pro-
grams [6]. As an example, cost analysis is exploited in the Ciao-Prolog system [8].
Of course, if ∞ is a lower bound to the number of computed instances of P and
Q then they cannot have bounded nondeterminism. Dually, if n ∈ N is an upper
bound then P and Q have bounded nondeterminism. In this case, however, we are
still left with the problem of determining a level of the SLD-tree that includes all
the refutations.

Decidability and testing

The class of bounded logic programs was investigated by Ruggieri [27] in the context
of decidability ofM, C and S-semantics. That paper shows that for a given program
P bounded by a given and computable level mapping, the semantics sets of P (w.r.t.
the M, C and S-semantics) are decidable. As a consequence, it is decidable whether
a query is a correct or a computed instance of another one (in software engineering
words, this is testing a program).

Automatic inference

Let us briefly discuss on the adaptation of the approach of Decorte and De Schreye
[13] to infer acceptability. On the one hand, we have replaced the generation of proof
obligations for acceptability with those for boundedness. On the other hand, their
notion of acceptability reasons at non-ground level (i.e., considers not necessarily
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ground instances of clauses and queries). This implies a further proof obligation,
known as rigidity of level mappings, that is tackled separately. In our approach,
the equivalent of rigidity is represented by the requirements on queries, which are
tackled in the same constraint satisfaction framework of the other requirements.

Among other possible approaches on proving termination that could be ex-
tended to infer boundedness, we mention the TermiLog system of Lindenstrauss
et al. [15, 20, 21], the implementation of the static termination analysis algorithm
of the Mercury system [30], and the LPTP system of Stärk [31] to prove both
termination and partial correctness at a time.

Also, other works that could provide insights in automation concern inference
of left-termination, i.e. finding a (as large as possible) set of queries that terminate
with respect to a given program. In this field, Codish et al. [18] makes a link
between backward analysis [19] and termination analysis, and Mesnard [23] presents
a constraint-based Termination Inference (cTI) for left termination.

7.2 Conclusion

We have introduced the notion of bounded nondeterminism for logic programs and
queries. On the one hand, bounded nondeterminism is an extension of the vari-
ous notions of universal termination extensively studied in the literature. On the
other hand, programs and queries that have bounded nondeterminism can be trans-
formed, under determinate conditions, into programs and queries that universally
terminate.

We have offered a declarative characterization of bounded nondeterminism in
terms of bounded programs and queries. The characterization uses the well-known
notions of level mapping and Herbrand model and it results simple and easy to apply
in paper & pencil proofs. Our effort in adapting an existing automatic approach
for left-termination to infer boundedness revealed a weakness of the definition of
bounded programs, namely modularity. As a partial answer to such a weakness,
we have presented a modular refinement of boundedness, called well-boundedness,
that is sound for the class of well-moded programs.

Further work is needed in order to find larger classes for which a modular
refinement exists. This is particularly relevant since automation is a prerequisite
for the effective implementation of the approach based on the transformation Ter().
By adding a derivation length counter, Ter() transforms a bounded program and
query into a program and query that universally terminate via any selection rule,
yet retaining the same set of refutations.
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