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Abstract A Quantified Linear Implication (QLI) is an inclusion query over
two polyhedral sets, with a quantifier string that specifies which variables are
existentially quantified and which are universally quantified. Equivalently, it
can be viewed as a quantified implication of two systems of linear inequalities.
In this paper, we provide a 2-person game semantics for the QLI problem,
which allows us to explore the computational complexities of several of its
classes. More specifically, we prove that the decision problem for QLIs with an
arbitrary number of quantifier alternations is PSPACE-hard. Furthermore,
we explore the computational complexities of several classes of 0, 1, and 2-
quantifier alternation QLIs. We observed that some classes are decidable in
polynomial time, some are NP-complete, some are coNP-hard and some
are ΠP

2 -hard. We also establish the hardness of QLIs with 2 or more quan-
tifier alternations with respect to the first quantifier in the quantifier string
and the number of quantifier alternations. All the proofs that we provide for
polynomially solvable problems are constructive, i.e., polynomial-time decision
algorithms are devised that utilize well-known procedures. QLIs can be uti-
lized as powerful modelling tools for real-life applications. Such applications
include reactive systems, real-time schedulers, and static program analyzers.
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1 Introduction

Quantified linear programming is the problem of checking whether a set of lin-
ear inequalities over the reals, i.e., a linear system, is satisfiable with respect
to a given quantifier string. In quantified linear programming all variables are
either existentially or universally quantified. Hence, it represents a general-
ization of linear programming, where all variables are existentially quantified.
The alternation of quantifiers in the quantifier string makes deciding a Quan-
tified Linear Program (QLP) a non-trivial problem. In this paper, we extend
the quantification of variables to implications over two linear systems of in-
equalities by exploring Quantified Linear Implications (QLIs). That is, QLIs
correspond to inclusion queries of polyhedral solution sets of two linear systems
with respect to a given quantifier string.

In order to facilitate the classification and analysis of QLIs, we provide
a nomenclature, which succinctly specifies (a hierarchy of) QLI classes. Fur-
thermore, we propose semantics for interpreting any QLI as a 2-person game.
Using these semantics, we prove that the decision problem for QLIs with an
arbitrary number of quantifier alternations is PSPACE-hard. Moreover, we
present several classes of 0, 1, and 2-quantifier alternation QLIs and study their
computational complexities. For all polynomially solvable problems, we pro-
vide proofs that are constructive, i.e., we design polynomial-time algorithms
that are based on well-known procedures. Moreover, we establish the hardness
of QLIs with 2 or more quantifier alternations with respect to the first quanti-
fier in the quantifier string and the number of quantifier alternations. Finally,
we characterize two interesting special cases of 2-quantifier alternation QLIs
with respect to the structure of the linear system of the left-hand side of the
implication.

The rest of this paper is organized as follows. Section 2 presents basic no-
tions that are used throughout the paper. Section 3 formally introduces quanti-
fied linear implications and their corresponding nomenclature. Section 4 details
the contributions of the paper. Motivations and related work are presented in
Section 5 and 6 respectively. Section 7 presents a 2-person game semantics for
QLIs. In Section 8, we explore the case of arbitrary quantifier alternations.
Sections 9 and 10 cover the case of 0-quantifier and 1-quantifier alternations
respectively, while Section 11 explores classes with 2 or more quantifier al-
ternations. Section 12 concludes the paper, by summarizing our contributions
and discussing avenues for future research.

2 Background

We use the standard notation of linear algebra (Schrijver, 1987) to formally
present the basic notions of this paper. < is the set of real numbers. Let
small bold letters (a,b, . . .) denote column vectors, while capital bold letters
(A,B, . . .) denote matrices. Let 0 and 1 be the column vectors with all ele-
ments equal to 0 and 1 respectively. Furthermore, let ai denote the ith element
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in a, while aT is the transposed vector of a. Also, let aT · b denote the inner
product of aT and b (it is used accordingly with matrices). Finally, we as-
sume that the dimensions of vectors and matrices in inner products are of the
appropriate size.

A primitive linear constraint (or inequality) is an expression of the form:
a1 · x1 + . . . + an · xn ≤ b, where a1, . . . , an and b are constants in < and
x1, . . . , xn are variables. The inner product form aT · x ≤ b can also be used
to express a primitive linear constraint. Special cases include: (a) difference
constraints, i.e., linear constraints of the form xi − xj ≤ bij ; and (b) interval
constraints, i.e., linear constraints of the form l ≤ x ≤ u, where l and u are
constants in < representing a lower bound and an upper bound for variable x
respectively.

A linear constraint is a conjunction of primitive linear constraints. Con-
junction is represented either by “∧” or by a comma. In terms of linear sys-
tems of inequalities, a linear constraint can also be denoted as A · x ≤ b,
so we will use the notions of linear constraints and linear systems inter-
changeably. A polyhedron is the set of solution points of a linear system:
Sol(A · x ≤ b) = {x0 ∈ <|x| | A · x0 ≤ b}. Polyhedra are convex sets
(Schrijver, 1987). Deciding an (unquantified) Linear Program (LP) consists of
checking satisfiability of a linear system in the domain of the reals:

∃x A · x ≤ b

or, equivalently, checking whether Sol(A · x ≤ b) 6= ∅.
Quantified Linear Programming was introduced in (Subramani, 2007) as an

extension of linear programming with arbitrary variable quantifications. In a
Quantified Linear Program, variables of a linear system are either existentially
or universally (with bounds) quantified:

∃x1 ∀y1 ∈ [l1,u1] . . . ∃xn ∀yn ∈ [ln,un] A · x + N · y ≤ b (1)

where x1 . . .xn is a partition of x with, possibly, x1 empty; y1 . . .yn is a
partition of y with, possibly, yn empty; and li, ui are lower and upper bounds
in < for yi, for i = 1, . . . , n.

An example of a QLP with three quantifier alternations is given below:

∀y1 ∈ [0, 1] ∃x2 ∀y2 ∈ [1, 3] ∃x3 2y1 − 2x2 − y2 + x3 ≥ 4

3x2 − 5y1 + y2 − x3 ≤ 1

3 Problem statement

Consider two linear systems P1 : A · x ≤ b and P2 : C · x ≤ d. We say that
P1 is included in P2 if every solution of P1 is also a solution of P2. This holds
if and only if the logic formula ∀x [A · x ≤ b → C · x ≤ d] is true in the
domain of the reals. We extend the notion of inclusion to arbitrary quantifiers
by introducing Quantified Linear Implications of two linear systems:

∃x1 ∀y1 . . . ∃xn ∀yn [A · x + N · y ≤ b→ C · x + M · y ≤ d] (2)
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x1

x2

P1 for s1 = r1 = 0

P2 for s1 = 0

Fig. 1 P1 is included in P2 for s1 = r1 = 0 (Example 1).

where x1 . . .xn and y1 . . .yn are partitions of x and y respectively, and where
x1 and/or yn may be empty. We say that a QLI holds if it is true as a first-
order formula over the domain of the reals. The decision problem for a QLI
consists of checking whether System (2) holds or not.

Let Q(x,y) denote the quantifier string, namely ∃x1 ∀y1 . . . ∃xn ∀yn in
System (2). We introduce a nomenclature to represent the different classes of
QLIs that we will be examining. Consider a triple 〈A,Q,R〉. Let A denote
the number of quantifier alternations in the quantifier string Q(x,y) and Q
the first quantifier of Q(x,y). Also, let R be an (A + 1)-character string,
specifying for each quantified set of variables in Q(x,y) whether they appear
on the Left, on the Right, or on Both sides of the implication. For instance,
〈1,∃,LB〉 indicates a problem described by:

∃x ∀y [A · x + N · y ≤ b→M · y ≤ d]

Note that this nomenclature was originally introduced in Eirinakis et al (2012).

Example 1 Consider the following QLI of the class 〈2,∀,RLB〉:

∀s1 ∃r1 ∀x1 ∀x2
x1 ≥ 0− 3r1
x1 ≤ 2− 5r1
x2 ≥ 0 + 2r1
x2 ≤ 1 + 3r1

→

x1 + x2 ≥ −1 + 3s1
x1 + x2 ≤ 1 + 4s1
x1 − x2 ≥ −1 + 5s1
x1 − 3x2 ≤ 3 + 7s1

Let P1 denote the left-hand side and P2 the right-hand side linear system of
the implication. Figure 1 presents P1 and P2 for specific values of s1 and r1,
i.e., s1 = r1 = 0. Note that for these values P1 is included in P2 (i.e., if both s1
and r1 were existentially quantified). However, in order for the above QLI to
hold, for all values of s1 there must exist a value of r1 such that every solution
(x1, x2) of P1 is also a solution of P2.
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4 Contributions

The principal contributions of the paper are as follows:

1. A 2-person game semantics for QLI is introduced. (Section 7).
2. The decision problem for QLIs with arbitrary number of quantifier alter-

nations is PSPACE-hard (Theorem 5).
3. The complexity of 0-quantifier alternation class 〈0,∃,B〉 is shown to be in

P (Theorem 6).
4. The complexities of all classes with 1-quantifier alternation starting with
∃ are analyzed:

a. Problems 〈1,∃,BB〉 and 〈1,∃,LB〉 are NP-complete (Theorem 8).
b. Problems 〈1,∃,RB〉 and 〈1,∃,BR〉 (and their sub-classes) are in P

(Theorems 9 and 10).
c. Problems 〈1,∃,BL〉 and 〈1,∃,LL〉 are in NP (end of Section 10.1), but

their hardness is unknown.

5. The complexities of all classes with 1-quantifier alternation starting with
∀ are analyzed:

a. Problems 〈1,∀,BB〉 and 〈1,∀,BR〉 are coNP-hard (Theorem 11).
b. Problems 〈1,∀,LB〉 and 〈1,∀,BL〉 (and their sub-classes) are in P (The-

orems 12 and 13).
c. Problems 〈1,∀,RB〉 and 〈1,∀,RR〉 are in coNP (end of Section 10.2),

but their hardness is unknown.

6. Problems 〈k, ∃,Bk+1〉 with k odd are shown to be ΣP
k -hard (Theorem 14).

7. Problems 〈k,∀,Bk+1〉 with k even are shown to be ΠP
k -hard (Theorem 15).

8. The complexities of the following representative classes with 2-quantifier
alternations starting with ∀ are analyzed:
a. Problems 〈2,∀,BBB〉 and 〈2,∀,LLB〉 are polynomial time reducible to

each other (Theorem 16), and both are ΠP
2 -hard (Corollary 3).

b. Problem 〈2,∀,LRB〉 is coNP-hard (Theorem 17).
c. Problem 〈2,∀,LRB〉 remains coNP-hard even if the left-hand side of

the implication is restricted to difference constraints (Lemma 2).
d. Problem 〈2,∀,LRB〉 is in P if the left-hand side of the implication is

restricted to interval constraints (Lemma 3).
e. Problems 〈2,∀,LRL〉 and 〈2,∀,LRR〉 are in P (Theorems 18 and 19).

5 Motivation

We mention three application areas of QLIs that motivate their study: reactive
systems, real-time scheduling, and type systems.

In many real-world applications, the input, which a system has to analyze
and respond to, is massive and unpredictable. The domain is not fixed but
keeps changing as a result of events that are initiated by the environment
and given as input to the system. Likewise, the responses of the system may
result in a change of the domain. Such a system is called reactive and its role
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is to maintain an ongoing interaction with its environment. In other words,
a reactive system alters its actions and outputs and conditions its response
to the actions of the environment. Reactive systems are used in several real-
world important applications and in various fields (see e.g., Koo et al, 1999;
Pfitzmann and Waidner, 2000, 2001; Kam et al, 2001; Hall, 2002; Harel, 2003).
QLIs can be used to model reactive systems, where the values of the universally
quantified variables represent the environmental input, while the values of the
existentially quantified variables represent the system’s response. QLIs offer
an important modeling tool for the design and implementation of reactive
systems.

In real-time scheduling, a dispatcher tries to determine whether a set of or-
dered, non-preemptive jobs can be scheduled within given time frames. Each
job has a variable start time as well as a variable execution time. QLPs have
been adopted to model such problems, representing the start times as exis-
tentially quantified variables and the execution times as universally quantified
variables. Linear constraints are used to express the relation between the start-
ing and ending times of different jobs (see e.g., Subramani, 2003, 2005). Now
consider a real-life scenario where the dispatcher has already obtained a sched-
ule (solution) but then some constraints are slightly altered. The question that
arises is whether the dispatcher needs to recompute a solution or whether it
can still use the current one. This problem can be formulated as a QLI with
the old set of constraints in the left-hand side and the new set of constraints
in the right-hand side of the implication.

Types in programming languages allow for program abstraction, static anal-
ysis, high-performance compilation, security enforcement, and many other ap-
plications (Pierce, 2002). Constraint logic programming provides an elegant
scheme for dynamically building complex constraints by exploiting recursion,
non-determinism and intertwined constraint generation and solving (Jaffar
and Maher, 1994; Jaffar et al, 1998). A type system for constraint logic pro-
gramming over the reals (Jaffar et al, 1992) has been proposed in (Ruggieri
and Mesnard, 2010) by relying on QLIs of the class 〈2,∀,LRB〉 for proving
assertions over the types of input-output variables.

6 Related work

In this section, we provide a brief overview of related work in the literature.
Consider two linear systems P1 : A · x ≤ b and P2 : C · x ≤ d. The problem
of checking whether P1 is included in P2 can also be expressed as a first-
order sentence. Hence, it is equivalent to deciding the problem ∀x [P1 → P2].
This decision problem can be solved in polynomial time (Subramani, 2009). It
suffices to show for every primitive constraint cTi ·x ≤ di in P2 (where cTi is the
vector corresponding to the ith row of C), the following linear programming
problem is either infeasible or its solution is bounded by di:

max cTi · x
A · x ≤ b
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The conclusion follows from the fact that linear programming problems are
solvable in polynomial time (Khachiyan, 1979) and there is a finite number of
primitive constraints in P2. More formally, the following result holds.

Theorem 1 The decision problem for a QLI of the class 〈0,∀,B〉, i.e., for
∀x [A · x ≤ b→ C · x ≤ d], is in P.

One could argue that the above approach can be utilized to decide any QLI
efficiently. However, this is not the case. Consider, for example, a problem of
the class 〈1,∃,LB〉, i.e., an instance described by:

∃y ∀x [A · x + N · y ≤ b→ C · x ≤ d]

Here, P1 is A · x + N · y ≤ b and P2 is C · x ≤ d. Thus, the corresponding
decision problem can be expressed as ∃y ∀x [P1 → P2]. The QLI holds if and
only if there exists a value y0 such that A · x+N · y0 ≤ b (i.e., P1 for y = y0)
is included in C · x ≤ d (i.e., in P2). Applying the above procedure requires
solving the following problem:

max cTi · x
A · x + N · y ≤ b

The solution of this problem is parametric in y. Hence, this problem belongs
to the class of parametric linear programming (Murty, 1980; Gal, 1995; Pis-
tikopoulos et al, 2007). Its solution is a piecewise affine function in y defined
over a polyhedral partition of the feasible parameters (Borrelli et al, 2003).
Such a function can be exponentially large in the size of the problem, even if
there is only one parameter (Murty, 1980). Hence, it cannot be adopted as a
building block for deciding a QLI in polynomial time.

In a landmark thesis, Tarski analyzed a number of properties of real fields
that make them amenable to the existence of decision procedures (Tarski,
1951). He showed, using quantifier elimination, that the language of reals with
universal quantifiers is decidable (Van Den Vries, 1988). The complexity of
quantifier elimination, in the worst case, is doubly exponential in the number of
quantifier alternation and exponential in the number of variables (Davenport
and Heintz, 1988; Weispfenning, 1988). Nevertheless, some approaches have
been proved efficient in practice, e.g., (Brown, 2003; Dolzmann and Sturm,
1997; Dolzmann et al, 1998; Ratschan, 2006). The Fourier-Motzkin existential
quantifier elimination method and a universal quantifier elimination method
have also been employed in the context of QLPs (Subramani, 2007) to establish
that deciding a QLP problem is in PSPACE. Also, they have been used to
establish that the special case of E-QLP problems, which are of the form
∃y ∀x ∈ [l,u] A · x+N ·y ≤ b, are solvable in polynomial time. The following
result was obtained.

Theorem 2 The decision problem for a QLP of the form ∃y ∀x ∈ [l,u] A · x+
N · y ≤ b is in P.
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Another special case that was characterized in (Subramani, 2007) is the F-
QLP problem. The corresponding result is presented next.

Theorem 3 The decision problem for a QLP of the form ∀y ∈ [l,u] ∃x A ·
x + N · y ≤ b is coNP-complete.

The relation between QLPs and QLIs is discussed in the following section,
with respect to the 2-person game semantics that are presented for QLIs.

7 Semantics

In this section, we interpret a quantified linear implication problem as a 2-
person game. Such a game includes an existential player X, who chooses values
for the existentially quantified variables, and a universal player Y, who chooses
values for the universally quantified variables. Consider the generic form of QLI
(System (2)), and assume, without loss of generality, that x1 and yn are not
empty (dummy variables can be added, if necessary). Let the initial board
configuration of the game be:

[A · x + N · y ≤ b → C · x + M · y ≤ d] (3)

The game is played in a sequence of 2 ·n rounds. Let i = 1, . . . , n. In round
(2 · i−1), X makes his ith move (by choosing values for the variables in the set
xi). Then, Y makes his ith move (by choosing values for the variables in the
set yi) in round 2 · i. Hence, X and Y make their moves by selecting values for
their respective variable sets. The moves are strictly alternating: X will make
his ith move, which will be followed by Y’s ith move, after which X will make
his (i+ 1)th move and so on.

Every move that X or Y make changes the board configuration of the
game by replacing variables (existentially quantified or universally quantified,
depending on the round of the game) with their given values. For instance,
assume that any xi consists of a single variable xi. In the first round, say that
the existential player X chooses to give to x1 the value x′1 ∈ <, i.e., X sets
x1 = x′1. Then, the board configuration will change from its initial state (see
(3)) to the following:

[A′ · x′ + N · y ≤ b− x′1a1 → C′ · x′ + M · y ≤ d− x′1c1] (4)

After X’s first move, (4) is the current board configuration of the game. In this
configuration, A′ and C′ are derived from A and C respectively by removing
the first column (corresponding to x1). Vector x′ is derived from x by removing
variable x1, that is, x′ = [x2, . . . , xn]T . Note also that x′1a1 and x′1c1 are
subtracted from b and d from the Left-Hand Side (LHS) and the Right-Hand
Side (RHS) of the implication respectively. Vectors a1 and c1 denote the first
column of A and C respectively, while recall that x′1 is a constant (since it
represents X’s choice for his first move).
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Each move made by X or Y depends on the current board configuration
and on the previous moves made by the opponent. Hence, the ith move made
by X, namely xi, may depend on the first (i − 1) moves made by Y and the
board configuration after round 2 · i− 2. Similarly, yi may depend on the first
i moves made by X and the board configuration after round 2 · i− 1.

In any game of this form, the goals of the players are the following: X
selects the values of the existentially quantified variables so as to violate the
constraints in the LHS or to satisfy the constraints in the RHS of the impli-
cation. On the other hand, Y selects the values of the universally quantified
variables so as to satisfy the constraints of the LHS and on the same time
to violate the constraints of the RHS of the implication. We say that X wins
the game if at the end of the game (i.e., after the 2 · n rounds) the board
configuration is such that its LHS is false (as a conjunction of inequalities) or
its RHS is true. Otherwise, we say that Y wins the game (i.e., if the LHS is
satisfied and the RHS is falsified).

It is important to note that the game as described above is non-deterministic
in nature, in that we have not specified how X and Y make their moves. We
say that X has a winning strategy if it is possible for X to win the game, i.e., if
there is a sequence of moves such that X wins the game. Otherwise, we say
that Y has a winning strategy. The QLI holds precisely when player X has a
winning strategy.

Remark 1 A QLI holds if and only if the existential player has a winning
strategy.

Let us now show that the proposed game is a conservative extension of the
game semantics of QLP problems (Subramani, 2007). There, an existential
player X and a universal player Y also choose their moves according to the
order of the variables in the corresponding quantifier string. If, at the end, the
instantiated linear system in the QLP is true, then X wins the game (and we
say that X has a winning strategy). Otherwise, Y wins the game. Based on
these semantics, we explore the relation between QLPs and QLIs. Consider a
generic QLP as described by System (1). Now consider the following QLI:

∃x1 ∀y1 . . . ∃xn ∀yn

l1 ≤ y1 ≤ u1

. . .
ln ≤ yn ≤ un

→ A · x + N · y ≤ b (5)

where l1, . . . , ln and u1, . . . ,un are partitions of l and u and correspond to the
lower and upper bounds respectively on the variables in y1, . . . ,yn of y that
appear in the quantifier string of System (1).

Theorem 4 The existential player has a winning strategy in System (5) if
and only if the existential player has a winning strategy in System (1).

Proof Note that the interval constraints on the universal variables that are in
the quantifier string of the QLP (see System (1)) have been placed within the
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LHS of (5). These bounds are restrictive for the universal player in System
(5) as well, although they are not within the quantifier string. Recall that the
universal player Y wants the implication not to hold in order to win the game.
Therefore, Y must choose values for the universally quantified variables so
that the LHS is satisfied (otherwise, the existential player X trivially wins the
game). Hence, we can safely assume that Y will satisfy the interval constraints
in the LHS (while also trying to falsify A · x + N · y ≤ b).

If part. Assume that X has a winning strategy for System (1). Let x0 be the
vector of Skolem functions that represent this strategy. Thus for any y0 ∈ [l,u]
of y, A · x0 + N · y0 ≤ b is true. But then, since the universally quantified
variables are restricted by y ∈ [l,u] due to the interval constraints in the LHS
of (5), the existential player can use the same functions from x0 and satisfy
the RHS of the implication, i.e., making System (5) hold and hence winning
the game.

Only-if part. Assume that X has a winning strategy for System (5) with x0

the vector of Skolem functions representing that strategy. Since the universal
player wants to satisfy the LHS in order to win, this means that y is instan-
tiated to y0 such that the LHS necessarily holds (i.e., y0 ∈ [l,u]). Hence, the
same vectors x0, y0 can be then used to make X win System (1). ut

Note that the quantifier string of QLPs restricts the possible moves of the
universal player through lower and upper bounds. The absence of such bounds
in the quantifier string of QLIs follows from the fact that the universal player
wants to satisfy the LHS of the implication. Hence, it is the satisfaction of
the LHS that restricts the moves of the universal player in QLIs. If explicit
interval constraints exist for the universal variables, these can also be placed
within the LHS of the implication.

8 Arbitrary quantifier alternations

We examine first the computational complexity of the generic class of QLIs
with an arbitrary number of quantifier alternations. These problems are de-
scribed by System (2).

Theorem 5 Problem (2) is PSPACE-hard.

Proof We will reduce the Q3SAT problem, which is PSPACE-complete, to
an instance described by (2). Consider a Q3SAT instance Q(x,y) φ(x,y),
where Q(x,y) represents the quantifier string, x is the set of existential vari-
ables, y is the set of universal variables, and φ is a conjunction of 3-literals
clauses. We will construct a QLI which holds if and only if Q(x,y) φ(x,y) is
satisfiable.

For each existential variable xi in the instance of Q3SAT, we introduce an
existential variable xi and a universal variable yxi . Also, we add constraints
yxi
≤ xi and yxi

≤ 1− xi to the LHS and constraints yxi
≤ 0 and 0 ≤ xi ≤ 1

to the RHS of the constructed QLI.
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For each universal variable yi in the instance of Q3SAT, we introduce a
universal variable yi and an existential variable xyi . We also add constraint
0 ≤ yi ≤ 1 to the LHS and constraints 0 ≤ xyi

≤ 1, 2yi − 1 ≤ xyi
, and

xyi
≤ 2yi to the RHS of the constructed QLI.
Moreover, for each clause φj in the instance of Q3SAT, we add a corre-

sponding constraint to the RHS of the constructed QLI. This constraint asks
for the sum of the existential variables corresponding to the literals of φj to
be greater than or equal to 1. Note that this constraint contains only existen-
tial variables. Even in the case of a universal variable yk in φj , the constraint
contains the existential variable xyk

of the QLI. Some indicative cases for the
constraint added for a clause φj are presented below:

1. If φj = (xi, yk, xl), we add the constraint xi + xyk
+ xl ≥ 1.

2. If φj = (xi, yk, x̄l), we add the constraint xi + xyk
+ (1− xl) ≥ 1.

3. If φj = (xi, ȳk, x̄l), we add the constraint xi + (1− xyk
) + (1− xl) ≥ 1.

4. If φj = (x̄i, ȳk, x̄l), we add the constraint (1−xi)+(1−xyk
)+(1−xl) ≥ 1.

The quantifier string of the QLI is constructed according to Q(x,y) of
the corresponding Q3SAT instance. For ∃xi in Q(x,y), we introduce ∃xi∀yxi.
For ∀yi in Q(x,y), we introduce ∀yi∃xyi. Let us call Q̂ the alternation of
quantifiers in Q(x,y). Then, we have that the alternation of quantifiers in the
constructed QLI is Q̂∀ if Q̂ ends with an existential quantifier, and Q̂∃ if Q̂
ends with a universal quantifier.

Note that the constructed QLI is of the form (2). To complete the proof,
we will show that this QLI holds if and only if Q(x,y) φ(x,y) is satisfiable.
We start by establishing that all variables that participate in the constraints
corresponding to the clauses of the Q3SAT instance are effectively restricted
to values 0 or 1. To do so, we utilize the semantics introduced in Section 7.

Consider the constraints added to the QLI for each existential variable xi
in the instance of Q3SAT. These constraints imply formula

∀yxi
[yxi
≤ min(xi, 1− xi)→ (yxi

≤ 0 ∧ 0 ≤ xi ≤ 1)] (6)

which leads to restricting xi ∈ {0, 1}. To better see this, note that if xi 6∈ [0, 1],
then constraint 0 ≤ xi ≤ 1 in the RHS would be violated. But then formula
(6) would not hold (hence the existential player X would lose the game), since
X cannot cause any constraint in the LHS to be violated as well. On the other
hand, if xi ∈ (0, 1), then Y could choose to set yxi = min(xi, 1 − xi) > 0,
which would cause constraint yxi ≤ 0 to be violated and hence formula (6)
not to hold (causing X to lose the game). To sum up, any choice of xi 6∈ {0, 1}
would cause the existential player to lose the game.

Now consider variables yi and xyi
added to the QLI for each universal

variable yi in the instance of Q3SAT. We want to show that xyi
is restricted

to values {0, 1}. Recall that xyi appears after yi in the quantifier string of the
constructed QLI. Hence, the value of xyi is constrained by the value of yi.
Therefore, we will examine xyi

with respect to yi. Firstly, note that yi ∈ [0, 1],
since otherwise constraint 0 ≤ yi ≤ 1 (which is in the LHS) would be violated
and the QLI would trivially hold (i.e., the universal player Y would lose the
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game). Secondly, note that if yi ∈ {0, 1}, the existential player X is forced to
set xyi = yi (and thus xyi ∈ {0, 1}). Any other choice of xyi would violate at
least one constraint of the RHS, causing X to lose the game.

Hence, we only need to show that the universal player Y will not choose
yi ∈ (0, 1). Suppose that Y can win by choosing yi = 0 (hence restricting
xyi

= 0). If, instead, yi ∈ (0, 12 ], then we have that xyi ∈ [0, 2yi], which
means that the set of possible responses of the existential player X expands
(and hence the result of the game may change as well). Therefore, Y has no
incentive to choose yi ∈ (0, 12 ] and not yi = 0. Similarly, Y has no incentive
to choose yi ∈ [ 12 , 1) instead of yi = 1. To sum up, since Y selects the values
of his variables so as to win the game (by the discussion in Section 7), Y will
choose yi ∈ {0, 1} and hence xyi ∈ {0, 1} with xyi = yi.

Let us now show that for the QLI obtained from a Q3SAT instance of the
form Q(x,y) φ(x,y), the existential player X has a winning strategy for the
QLI if and only if Q(x,y) φ(x,y) is satisfiable. Let values 0 and 1 in the QLI
correspond to false and true in the Q3SAT respectively.

If part. Assume that Q(x,y) φ(x,y) is satisfiable. Then there exists a
vector of Skolem functions

x′ = [c1, f1(y1), f2(y1, y2), . . . , fn−1(y1, y2, . . . , yn−1)]T

such that for any values y′ given to y, the Q3SAT expression is satisfied. Note
that fi() are Skolem functions and are used to represent that the values of the
elements of x′ depend on the values of the corresponding elements of y′. By
restricting the xi variables to the set {0, 1} (as discussed above), constraints
yxi ≤ xi and yxi ≤ 1−xi imply that yxi ≤ 0 (thus satisfying the corresponding
constraint of the RHS of the QLI) and 0 ≤ xi ≤ 1 is also satisfied. On the other
hand, by restricting yi variables to the set {0, 1} with xyi

= yi, constraints
0 ≤ yi ≤ 1, 0 ≤ xyi

≤ 1, 2yi − 1 ≤ xyi
, and xyi

≤ 2yi are all satisfied.
Now consider the constraints constructed from φj , and assume without loss
of generality that φj is of the form (xi, yk, xl). Since the Q3SAT expression is
satisfied (for x = x′), we must have that at least one of xi, yk, xl is true. This
means that at least one of xi, yk, xl is equal to 1, and since xyk

= yk if yk = 1,
we have that xi + xyk

+ xl ≥ 1 holds. The same can be safely argued for all
constraints corresponding to clauses, so the existential player has a winning
strategy for the corresponding QLI.

Only-if part. Assume X has a winning strategy U for the constructed QLI
(representable by a vector of Skolem functions). This means that for every
sequence of moves made by the universal player, the QLI holds. Recall that
variables xi and yi are restricted to {0, 1}. Consider the constraint constructed
from φj , and without loss of generality let that constraint be xi +xyk

+xl ≥ 1.
Since the QLI holds (for strategy U), at least one of xi, xyk

, xl will be equal to
1, while also xyk

= yk. Hence, at least one of the literals in the original clause
is true, causing φj to be true as well. The same can be argued for all clauses
of φ(x,y). Hence, Q(x,y) φ(x,y) is satisfiable. ut
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9 Classes with no quantifier alternations

We commence our analysis of the complexities of various classes of QLIs
by considering formulas with no quantifier alternations. Problem 〈0,∀,B〉 is
known to be in P (see Theorem 1). Here, we consider problem 〈0,∃,B〉 de-
scribed by:

∃x [A · x ≤ b→ C · x ≤ d] (7)

and show that it is trivially in P.

Theorem 6 Problem 〈0,∃,B〉 is in P.

Proof By Theorem 1, we can decide in polynomial time whether ∀x [0 = 0→
A · x ≤ b] holds, i.e., whether ∀x A · x ≤ b holds. If this is the case, System
(7) reduces to showing that ∃x C · x ≤ d holds, which is a problem in P
(Khachiyan, 1979). Otherwise, System (7) is trivially true. ut

10 Classes with 1-quantifier alternation

10.1 Problems starting with existential quantifier

Let us turn now our attention to 1-quantifier alternation classes. We start by
considering problems 〈1,∃,BB〉, described by:

∃r ∀x [A · x + N · r ≤ b→ C · x + M · r ≤ d] (8)

and problems 〈1,∃,LB〉 described by:

∃r ∀x [A · x + N · r ≤ b→ C · x ≤ d] (9)

Throughout this section, we will provide intuitions about the classes of formu-
las by resorting to parameterized linear systems, namely linear systems such
as A · x + N · r ≤ b where variables in r assume the role of parameters. The
set of solutions of a parameterized linear system is a parameterized polyhedron
(Loechner and Wilde, 1997), defined as the collection of polyhedra obtained
by fixing the values for parameters. With this intuition, formula (9) can be
interpreted as checking whether there exists a parameter instance r0 such that
the polyhedron of A ·x+N ·r0 ≤ d is included in the polyhedron of C ·x ≤ d.

Let us start showing that the two classes above are reducible to each other.

Theorem 7 Problems 〈1,∃,BB〉 and 〈1,∃,LB〉 are polynomial-time reducible
to each other.

Proof Every instance of the class 〈1,∃,LB〉 is clearly of the form (8), without
the need of any transformation. Conversely, a formula (8) can be rewritten in
linear time in the following equivalent form, which is in 〈1,∃,LB〉:

∃r ∀x,x′ [x′ = r ∧A · x + N · r ≤ b→ C · x + M · x′ ≤ d] (10)
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Notice that the newly introduced variables x′ are constrained to assume the
values of the variables in r; otherwise, the LHS is falsified and System (10) is
trivially true. ut

Let us now prove that the decision problem for the two classes is NP-
complete. First, we show hardness.

Lemma 1 Problem 〈1,∃,BB〉 is NP-hard.

Proof The proof of Theorem 5 for Q3SAT with only existential quantifiers
boils down to showing that 3SAT reduces in polynomial time to formula (8).
Since 3SAT is NP-complete, we have that 〈1,∃,BB〉 is NP-hard. ut

Example 2 Consider the following 3SAT instance.

∃x1 ∃x2 ∃x3 ∃x4 (x1, x2, x̄3), (x̄2, x3, x4)

We use the reduction introduced in the proof of Theorem 5 to reduce this
3SAT instance to the following 〈1,∃,BB〉 instance:

∃x1 ∃x2 ∃x3 ∃x4 ∀yx1
∀yx2

∀yx3
∀yx4

yx1
≤ x1, yx1

≤ 1− x1
yx2
≤ x2, yx2

≤ 1− x2
yx3 ≤ x3, yx3 ≤ 1− x3
yx4 ≤ x4, yx4 ≤ 1− x4

→


yx1
≤ 0, 0 ≤ x1 ≤ 1

yx2
≤ 0, 0 ≤ x2 ≤ 1

yx3 ≤ 0, 0 ≤ x3 ≤ 1
yx4 ≤ 0, 0 ≤ x4 ≤ 1
x1 + x2 + (1− x3) ≥ 1
(1− x2) + x3 + x4 ≥ 1

This 〈1,∃,BB〉 instance holds if and only if the above 3SAT instance is satis-
fiable.

The following theorem completes our claim.

Theorem 8 Problems 〈1,∃,BB〉 and 〈1,∃,LB〉 are NP-complete.

Proof By Theorem 7, we can restrict ourselves to considering only the 〈1,∃,LB〉
class.

Let P1 be A ·x + N · r ≤ b, and P2 be C ·x ≤ d in (9). Since deciding the
problem is NP-hard by Lemma 1, we only need to show that System (9) is
in NP. We will do that by proving that if there exists an r0 such that

∀x [A · x + N · r0 ≤ b→ C · x ≤ d] (11)

holds, then the representation of r0 is polynomial in the size of A,b,C,d, and
N. Since System (11) belongs to the class 〈0,∀,B〉, which can be solved in
polynomial time (Theorem 1), if such a polynomial sized r0 exists, then it is
a valid certificate for the problem (9).

Assume that there exists an r0 such that (11) holds. Consider the problem

∀r ∀x [A · x + N · r ≤ b→ C · x ≤ d] (12)
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This is an instance of 〈0,∀,B〉 which is in P. If this implication is true, then
(9) is true as well, and we are done. Assume it is false. Then there exists an
r2 such that:

∃x [A · x + N · r2 ≤ b,C · x 6≤ d]

Let Sr be the set of extreme points of A · x + N · r ≤ b. Thus we have that
Sr0 ⊆ Sol(C · x ≤ d) and Sr2 6⊆ Sol(C · x ≤ d). For a constraint cTi · x ≤ di
in C · x ≤ d, let d′i(r) be the solution of the linear program:

max cTi · x− di
A · x + N · r ≤ b

and let d′(r) = maxi(d
′
i(r)). By (11), we have d′(r0) ≤ 0. By (12), we have

d′(r2) > 0. Since A · x + N · r ≤ b is a convex set, there exists 0 ≤ α ≤ 1
such that d′(r′) = 0 when r′ = α · r0 + (1 − α) · r2. Thus, we have that
∀x [A ·x + N · r′ ≤ b→ C ·x ≤ d] and that for some i, d′i(r

′) = 0. Therefore,
for some x′ ∈ Sr′ , we have that C · x′ ≤ d and cTi ·x′ = di. We can now create
a linear system from the constraints in A · x + N · r ≤ b and C · x ≤ d for
which (x′, r′) is an extreme point as follows:

1. Add the constraint aT ·x + nT · r = b for each constraint aT ·x + nT · r ≤ b
of A · x + N · r ≤ b such that aT · x′ + nT · r′ = b.

2. Add the constraint cTi · x = di.
3. Add the remaining constraints from A · x + N · r ≤ b and C · x ≤ d.

Since r′ is part of an extreme point solution to this system, its representation
is polynomial in the size of A,b,C,d, and N. Therefore, we have our desired
polynomial sized r0 = r′ satisfying (11). ut

Let us turn now our attention to problems 〈1,∃,RB〉, described by:

∃r ∀x [A · x ≤ b→ C · x + M · r ≤ d] (13)

This implication can be read as whether there exist values r0 such that the
set of solutions of C ·x + M · r0 ≤ d includes the set of solutions to A ·x ≤ b.
(Eirinakis et al, 2012) firstly showed that problem (13) is in P. This result
is surprising in view of Theorem 8. By moving the set of existentially quanti-
fied variables from the RHS to the LHS of the implication, the corresponding
decision problem from P becomes NP-complete. For completeness of expo-
sition, we report here a (slightly revised) proof that will be useful later on for
reasoning on sub-classes of 〈1,∃,RB〉.

Theorem 9 Problem 〈1,∃,RB〉 is in P.

Proof Consider a quantified linear implication described by System (13). Let
P1 denote the LHS and P2 the RHS of the implication. The satisfiability of P1

can be checked in polynomial time (Khachiyan, 1979). If P1 is unsatisfiable,
(13) is always true. Assume now it is satisfiable. We build a linear program on
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P1

P2

di −mi · r1 < d′i

di −mi · r2 = d′i

di −mi · r3 > d′i

Fig. 2 Let P1 = A · x ≤ b and P2 = C · x + M · r ≤ d. Then, ∃r ∀x P1 → P2 if and only
if d−M · r ≥ d′, with d′i = max{cTi · x0|x0 ∈ Sol(A · x ≤ b)}.

r as follows. For every row cTi · x + mT
i · r ≤ di in P2, let d′i be the solution of

the linear program:

max cTi · x
A · x ≤ b

If the linear program is unbounded, there cannot be any variable instance r0
of r such that cTi · x + mT

i · r0 ≤ di for every x. Thus, (13) does not hold.
Assume now that all d′is are finite and let d′ be the vector of all d′is. We claim
that (13) holds if and only if the following linear system on r is feasible:

d−M · r ≥ d′ (14)

Intuitively, this means that there exists some value of r, say r0, for which each
hyperplane of C · x ≤ d −M · r0 is either incident to some extreme point of
A ·x ≤ b or not in Sol(A ·x ≤ b) (e.g., see Figure 2, where r1, r2, and r3 are
different values of r).

If part. Let r0 be such that d −M · r0 ≥ d′. Since by construction of d′,
we have that ∀x [A · x ≤ b→ C · x ≤ d′] holds, by transitivity the following
holds:

∀x [A · x ≤ b→ C · x + M · r0 ≤ d]

By re-introducing existential quantifiers on r, we have (13).
Only-if part. By hypothesis, there exists r0 such that

∀x [A · x ≤ b→ C · x + M · r0 ≤ d]

Let us show that r0 is a solution of (14). Consider a row cTi ·x+mT
i ·r ≤ di of P2.

By definition of r0, the following holds: ∀x [A · x ≤ b→ cTi ·x ≤ di−mT
i ·r0],

which implies:
di −mT

i · r0 ≥ max{cTi · x | A · x ≤ b}
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By definition of d′, we conclude d−M · r0 ≥ d′, hence (14) is satisfiable. ut
As an immediate consequence, the sub-classes 〈1,∃,RR〉 and 〈1,∃,RL〉

are also in P. In particular, problems from 〈1,∃,RR〉 allow for extending
Theorem 2 to the case of unbounded universal quantification.

Corollary 1 The decision problem for ∃y ∀x Ax + N · y ≤ b is in P.

Proof The formula can be rewritten into the equivalent form
∃y ∀x [0 = 0→ Ax + N · y ≤ b] which belongs to 〈1,∃,RR〉. ut

It is interesting to apply the procedure from the proof of Theorem 9 to the
formula ∃y ∀x [0 = 0 → Ax + N · y ≤ b]. First, we check whether A = 0.
If this is the case, the problem boils down to ∃y N · y ≤ b, which is in P.
Otherwise, the implication is false, since for some cT · x + mT · y ≤ b in the
RHS of the implication, we have that max{cT · x | 0 = 0} is unbounded.

An instance of 〈1,∃,BR〉 is described by:

∃r ∀x [N · r ≤ b→ C · x + M · r ≤ d] (15)

Such a class and, a fortiori, its sub-class 〈1,∃,LR〉 are decidable in polynomial
time.

Theorem 10 Problem 〈1,∃,BR〉 is in P.

Proof By Theorem 1, we can check in polynomial time whether ∀r [0 = 0 →
N · r ≤ b], i.e., whether ∀r N · r ≤ b holds. If it does not hold, then System
(15) trivially holds. If it holds, then System (15) reduces to the equivalent
form ∃r ∀x C · x + M · r ≤ d, which can be checked in polynomial time by
Corollary 1. ut

Finally, an instance of 〈1,∃,BL〉 is described by:

∃r ∀x [A · x + N · r ≤ b→M · r ≤ d] (16)

If ∃r M · r ≤ d holds, formula (16) is trivially true. Otherwise, the formula
boils down to ∃y ∀x [A · x + N · y ≤ b → 0 = 1], which is a formula
in 〈1,∃,LL〉. This formula can be rewritten as the negation of a QLP with
unbounded universal quantification, i.e., ¬∀r ∃x A · x + N · r ≤ b. A partial
extension of Theorem 3 to QLP with unbounded universal quantification is
reported next.

Corollary 2 The decision problem for a formula ∀y ∃x A · x + N · y ≤ b is
in coNP.

Proof The formula can be rewritten into the equivalent form ¬∃y ∀x [A · x +
N · y ≤ b → 0 = 1]. Its negation belongs to 〈1,∃,LL〉, which is in NP since
it is a subclass of the NP-complete class 〈1,∃,LB〉 (Theorem 8). Hence, the
decision problem for our formula is in coNP. ut

From the above reasoning, it follows that the classes 〈1,∃,BL〉 and 〈1,∃,LL〉
are reducible to each other in polynomial time. Both are in NP, since they are
sub-classes of the NP-complete class 〈1,∃,BB〉 (Theorem 8). Unfortunately,
their hardness is unknown.

Figure 3 summarizes our results for ∃ ∀ classes of QLIs.
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(P)
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(unknown)
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(NP-complete)

Fig. 3 Complexities of ∃ ∀ classes of QLIs. Arrows denote reducibilities. Classes labelled
(unknown) are in NP but their hardness is unknown.

10.2 Problems starting with universal quantifier

Let us turn our attention to 1-quantifier alternations that start with universal
quantification. Problems in 〈1,∀,BR〉 are described by:

∀r ∃x [N · r ≤ b→ C · x + M · r ≤ d] (17)

Such formulas can be intuitively interpreted as checking whether for every
parameter r0 in the space of solutions of N · r ≤ b the polyhedron of C · x +
M · r0 ≤ d is non-empty. The class 〈1,∀,BR〉 and its super-class 〈1,∀,BB〉
are coNP-hard.

Theorem 11 Problems 〈1,∀,BB〉 and 〈1,∀,BR〉 are coNP-hard.

Proof Consider an instance of the F-QLP problem: ∀r ∈ [l,u] ∃x C · x + M · r ≤
d. It can be rewritten into an equivalent formula (17) by elementary logic prop-
erties:

∀r ∃x [l ≤ r ≤ u→ C · x + M · r ≤ b]

Since F-QLP is coNP-complete (Theorem 3), the class of problems 〈1,∀,BR〉
is coNP-hard; a fortiori, its super-class 〈1,∀,BB〉 is coNP-hard as well. ut

The exact complexities of the above problems are open. Next, we explore
some ∀∃-QLI classes that are in P. Problems in 〈1,∀,LB〉 are described by:

∀r ∃x [A · x + N · r ≤ b→ C · x ≤ d] (18)

Theorem 12 Problem 〈1,∀,LB〉 is in P.
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Proof Consider any instance of System (18). In order to decide such a problem
we can first check in polynomial time (Khachiyan, 1979) whether ∃x C · x ≤ d
holds. If it holds, then System (18) also holds. Otherwise, the problem reduces
to deciding whether ∃r ∀x A · x + N · r ≤ b holds, which is also in P by
Corollary 1. If it holds, System (18) does not hold; otherwise, System (18)
holds. Summarizing, problem 〈1,∀,LB〉 is in P. ut

As an immediate consequence, the sub-classes 〈1,∀,LL〉 and 〈1,∀,LR〉 are
in P as well. The same result can be obtained for 〈1,∀,BL〉:

∀r ∃x [A · x + N · r ≤ b→M · r ≤ d] (19)

and, a fortiori, for its sub-class 〈1,∀,RL〉.

Theorem 13 Problem 〈1,∀,BL〉 is in P.

Proof We distinguish two cases. If A = 0, formula (19) boils down to a 〈0,∀,B〉
formula, whose decision problem is in P by Theorem 1. Assume now that
there is a row aT · x + nT · r ≤ b in the LHS of (19) such that a 6= 0. We
claim that (19) is always true. Let r0 be a fixed value for r. Since a 6= 0,
there exists some x0 such that aT · x0 + nT · r0 > b. Thus, the implication
A · x0 + N · r0 ≤ b→M · r0 ≤ d is true, since its LHS is false. ut

Problems in 〈1,∀,RB〉 are described by:

∀r ∃x [A · x ≤ b→ C · x + M · r ≤ d]

This formula can be reduced in polynomial time to a 〈1,∀,RR〉 formula as
follows. First, we check whether ∀x A · x ≤ b holds, which can be done in
polynomial time by Theorem 1. If it does not hold, then the formula above
is always true. If it holds, then the formula above reduces to the 〈1,∀,RR〉
formula:

∀r ∃x [0 = 0→ C · x + M · r ≤ d]

or, equivalently, to the unbounded QLP formula ∀r ∃x C · x + M · r ≤ d. By
Corollary 2, we know that deciding whether it holds is in coNP. However,
its hardness is unknown. Therefore, the hardness of problems 〈1,∀,RB〉 and
〈1,∀,RR〉 is unknown as well. Figure 4 summarizes our results for ∀ ∃ classes
of QLIs. The symmetry with ∃ ∀ classes (see Figure 3) is apparent.

11 Classes with 2-quantifier alternations and beyond

11.1 Problems 〈k, ∃,Bk+1〉 and 〈k, ∀,Bk+1〉

We generalize Lemma 1 to the case of k alternations of quantifiers, with k odd.
In the following, we write Bk+1 to denote the string B . . .B︸ ︷︷ ︸

k+1

.
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Fig. 4 Complexities of ∀ ∃ classes of QLIs. Arrows denote reducibilities. Classes labelled
(unknown) are in coNP but their hardness is unknown.

Theorem 14 Problem 〈k,∃,Bk+1〉 with k odd is ΣP
k -hard.

Proof Consider the class of Q3SAT formulas with k quantifiers starting with
an existential one, i.e., with the quantifier string of the form ∃∀ . . . ∃. Such a
class is ΣP

k -complete (the assumption that k is odd is essential) (Stockmeyer,
1977, Theorem 4.1). The proof of Theorem 5 reduces such a class to a QLI
with a quantifier string obtained by adding a universal quantifier at the end,
namely to a 〈k, ∃,Bk+1〉 formula. Hence, the result. ut

Similarly, we generalize Theorem 11.

Theorem 15 Problem 〈k, ∀,Bk+1〉 with k even is ΠP
k -hard.

Proof Consider the class of Q3SAT formulas with k quantifiers starting with a
universal one, i.e., with the quantifier string of the form ∀∃ . . . ∃. Such a class is
ΠP

k -complete (the assumption that k is even is essential) (Stockmeyer, 1977,
Theorem 4.1). The proof of Theorem 5 reduces such a class to a QLI with a
quantifier string obtained by adding a universal quantifier at the end, namely
to a 〈k,∀,Bk+1〉 formula. Hence, the result. ut

11.2 Problems 〈2,∀,BBB〉 and 〈2,∀,LLB〉

Let us focus now on some classes with 2-quantifier alternations with intu-
itive interpretations in terms of parameterized systems. Problem 〈2,∀,LLB〉
is described by:

∀s ∃r ∀x [A · x + P · s + N · r ≤ b→ C · x ≤ d] (20)
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This formula can be read as whether for every parameter values s (e.g., sensors
values in some reactive system) there exists at least a value of the remaining
parameters r (control factors) such that the set of solutions of the LHS system
(future states of the reactive system) is included in the set of solutions of the
non-parameterized RHS system (safe states of the reactive system). First, let
us show that the problem is equivalent to the general class 〈2,∀,BBB〉.

Theorem 16 Problems 〈2,∀,BBB〉 and 〈2,∀,LLB〉 are polynomial-time re-
ducible to each other.

Proof Every formula in 〈2,∀,LLB〉 is also a formula in 〈2,∀,BBB〉. For the
opposite, consider a formula of the form 〈2,∀,BBB〉:

∀s ∃r ∀x [A · x + P · s + N · r ≤ b→ C · x + T · s + M · r ≤ d]

It is readily checked that it holds if and only if the following formula holds:

∀s ∃r ∀x,x′,x′′

[x
′

= s ∧ x′′ = r ∧A · x + P · s + N · r ≤ b→ C · x + T · x′+M · x′′≤ d]

where the newly introduced variables x′ (resp., x′′) are constrained to assume
the values of s (resp., r). Since the formula above is of the form (20), and it is
obtained in linear time, 〈2,∀,BBB〉 reduces in polynomial time to 〈2,∀,LLB〉.

ut

The following is immediately derived by combining Theorem 15 for k = 2
and Theorem 16.

Corollary 3 Problems 〈2,∀,BBB〉 and 〈2,∀,LLB〉 are ΠP
2 -hard.

Example 3 Consider the following Q3SAT instance.

∀y1 ∀y2 ∃x1 ∃x2 (y1, y2, x2), (ȳ2, x1, x̄2)

We use the approach from the proof of Theorem 5 to reduce this Q3SAT
instance to the following 〈2,∀,BBB〉 instance:

∀y1 ∀y2 ∃xy1 ∃xy2 ∃x1 ∃x2 ∀yx1 ∀yx2

yx1 ≤ x1, yx1 ≤ 1− x1
yx2 ≤ x2, yx2 ≤ 1− x2

0 ≤ y1 ≤ 1
0 ≤ y2 ≤ 1

→



yx1
≤ 0, 0 ≤ x1 ≤ 1

yx2 ≤ 0, 0 ≤ x2 ≤ 1
0 ≤ xy1 ≤ 1
0 ≤ xy2

≤ 1
xy1
≥ 2y1 − 1, xy1

≤ 2y1
xy2
≥ 2y2 − 1, xy2

≤ sy2
xy1 + xy2 + x2 ≥ 1
(1− xy2) + x1 + (1− x2) ≥ 1

This 〈2,∀,BBB〉 instance holds if and only if the above Q3SAT instance is
satisfiable.
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11.3 Problem 〈2,∀,LRB〉

Problem 〈2,∀,LRB〉 is described by:

∀s ∃r ∀x [A · x ≤ b + N · s→ C · x ≤ d + M · r] (21)

This implication can be read as whether for all values s0 for parameters s
there exists values r0 for parameters r such that C · x ≤ d + M · r0 includes
A · x ≤ b + N · s0 – a form of inclusion of parameterized polyhedra. To stress
such an intuition, in this subsection we write s and r in the RHS of inequalities
of linear systems.

Theorem 17 Problem 〈2,∀,LRB〉 is coNP-hard.

Proof Consider an instance of the F-QLP problem:

∀s ∈ [l,u] ∃r C · s ≤ d + M · r

This problem (which is coNP-complete by Theorem 3) is reduced to a prob-
lem described by System (21) as follows. For each si of s, add xi such that
s = x. We create the following equivalent implication using elementary logical
properties:

∀s ∃r ∀x [(x = s ∧ l ≤ s ≤ u)→ C · x ≤ d + M · r]

Note that the interval constraints of the universally quantified variables that
appear in the quantifier string of the F-QLP problem are placed in the LHS
of the implication. It is easy to see that the initial F-QLP problem is satisfied
if and only if the resultant 〈2,∀,LRB〉 problem is satisfied: If there exists s,
with s ∈ [l,u], such that x = s is included in C · x ≤ d + M · r (i.e., C · s ≤
d + M · r is satisfied for s ∈ [l,u]), then the corresponding F-QLP will be
satisfied as well. On the other hand, if the F-QLP is satisfied, then since
x = s, the corresponding implication will also be satisfied. ut

Next, we present a special case of problem 〈2,∀,LRB〉 that is still coNP-
hard, although the LHS of the implication consists only of difference con-
straints. Recall that a difference constraint is a constraint of the form xi−xj ≤
bij (Section 2).

Lemma 2 Problem (21) is coNP-hard even if A · x ≤ b + N · s is restricted
to difference constraints with respect to variables in x and s.

Proof Consider an instance of the F-QLP problem:

∀s ∈ [l,u] ∃r C · s ≤ d + M · r (22)

Recall that this problem is coNP-complete (Theorem 3). We will reduce
this problem to an instance of (21) with its LHS being restricted to difference
constraints. The QLI of the form (21) is constructed as follows:
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1. We introduce variables x0 and s0 and add constraints x0 − s0 ≤ 0 and
s0 − x0 ≤ 0 to the LHS of the QLI (these constraints imply x0 = s0).

2. For each element si of s in (22), we introduce variables xi and si and add
constraints xi− si ≤ 0 and si−xi ≤ 0 (these constraints imply xi = si) as
well as si − s0 ≤ ui and si − s0 ≥ li to the LHS of the QLI .

3. In the constructed QLI, let vector x be the vector containing all xi variables
of the QLI (including x0) and x′ be such that x′i = xi − x0.

4. We introduce the constraints of (22) to the QLI by adding constraints
C · x′ ≤ d + M · r to the RHS of the QLI.

5. In the constructed QLI, let vector s be the vector containing all si variables
of the QLI (including s0) and s′ be such that s′i = si − s0.

6. We add ∀s ∃r ∀x,x′ as the quantifier string of the constructed QLI.

Hence, the constructed QLI instance has the form:

∀s ∃r ∀x,x′ [A · x ≤ b + N · s→ C · x′ ≤ d + M · r] (23)

Note that this is a QLI of the form (21) with its LHS consisting only of
difference constraints with respect to variables in x and s.

Let us show that (23) holds iff (22) holds.
Assume that (23) holds. Then, for A · x ≤ b + N · s to be satisfied, con-

straints x = s and li ≤ si − s0 = s′i ≤ ui must all be satisfied (otherwise, the
existential player trivially wins the game). Thus, for the constructed instance
to hold, C · x′ ≤ d + M · r must also hold when x′ = s′ and li ≤ s′i ≤ ui.
By replacing x′ with s′ in this system of constraints, we get that ∀s′ ∈
[l,u] ∃r C · s′ ≤ d + M · r (i.e., (22)) must holds as well.

Assume now that (23) does not hold. Then there must exist a vector of
values s̄ (and correspondingly a vector of values s̄′ such that s̄′i = s̄i − s̄0) for
which the following formula holds:

∀r ∃x A · x ≤ b + N · s̄
C · x′ 6≤ d + M · r

Recall that li ≤ s̄′i ≤ ui and that the only value of x which can satisfy
A · x ≤ b+ N · s̄ is x = s̄ (which also implies x′ = s̄′). Hence, we must have
that ∀r C · s̄′ 6≤ d + M · r, which means that ∀s′ ∈ [l,u] ∃r C · s′ ≤ d + M · r
(i.e., System (22)) does not hold.

Summarizing, we have reduced in polynomial time the coNP-complete
problem (22) to an instance of (21) with its LHS being restricted to difference
constraints. This implies our conclusion. ut

QLIs of the form (21) become tractable in the presence of interval con-
straints in the LHS of the implication. Recall that an interval constraint on a
variable x is of the form l ≤ x ≤ u (Section 2).

Lemma 3 Problem (21) is in P if each constraint in A · x ≤ b + N · s is an
interval constraint.
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Proof Note that if constraints in A · x ≤ b + N · s contain only one variable
of x or s, then constraints involving only variables of s can be ignored. This
is because variables of s exist only in the LHS of the implication. Hence,
their corresponding interval constraints are trivially satisfied (recall that the
universal player has to satisfy the LHS of the implication).

Thus, we have that each element xi of x is simply bound by an interval
li ≤ xi ≤ ui which means that A · x ≤ b + N · s is equivalent to l ≤ x ≤ u. So
∀s ∃r ∀x [A · x ≤ b + N · s→ C · x ≤ d + M · r] is equivalent to

∃r ∀x [l ≤ x ≤ u→ C · x ≤ d + M · r]

which corresponds to the E-QLP problem ∃r ∀x ∈ [l,u] C · x ≤ d + M · r.
The latter is in P by Theorem 2. ut

11.4 Problems 〈2,∀,LRL〉 and 〈2,∀,LRR〉

Finally, we explore the trivial sub-classes 〈2,∀,LRL〉 and 〈2,∀,LRR〉, showing
that both of them are in P. Problems in 〈2,∀,LRL〉 are described by:

∀s ∃r ∀x [A · x + P · s ≤ b→M · r ≤ d] (24)

Theorem 18 Problem 〈2,∀,LRL〉 is in P.

Proof Consider any instance of System (24). In order to decide such a problem,
we can first check whether ∃r M · r ≤ d holds. If it holds, then System (24)
also holds. Otherwise, the problem reduces to deciding whether ∃s ∃x A · x +
P · s ≤ b holds. If it holds, System (24) does not hold; otherwise, System (24)
holds. The result follows from the fact that both such checks can be done in
polynomial time (Khachiyan, 1979). ut

The same result can be obtained for 〈2,∀,LRR〉:

∀s ∃r ∀x [P · s ≤ b→ C · x + M · r ≤ d] (25)

Theorem 19 Problem 〈2,∀,LRR〉 is in P.

Proof To decide an instance of the form (25), we need to first decide problem
∃r ∀x C · x + M · r ≤ d, which is in P by Corollary 1. If it holds, then System
(25) holds. If not, then we need to decide problem ∃s P · s ≤ b, which is also
in P (Khachiyan, 1979). If it holds, then System (25) does not hold; otherwise,
System (25) holds. ut
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12 Conclusions

In this paper, we analyzed quantified linear implications from the perspective
of computational complexity . First, we provided a 2-person game semantics
for QLIs, which clarified how existentially and universally quantified variables
obtain their values. Using these 2-person game semantics, we showed that the
decision problem for QLIs with arbitrary number of quantifier alternations is
PSPACE-hard. This result is particularly interesting when contrasted with
the long-standing open problem of whether the class of QLPs is PSPACE-
hard. Moreover, we established the computational complexities of several QLI
classes. While 0-quantifier alternation QLIs are all in P, for 1-quantifier al-
ternation, some classes were shown to be NP-complete, while some others
were shown to be coNP-hard. For 2-quantifier alternations, the classes we
explored range from P to ΠP

2 -hard. We also extended our results to QLIs
with 2 or more quantifier alternations, where we established the hardness of
QLI classes with respect to the first quantifier in the quantifier string and
the number of quantifier alternations. Finally, we investigated the effect of the
structure of the LHS on the computational complexity of the corresponding
decision problem, for the QLI class 〈2,∀,LRB〉. While in the case of difference
constraints the decision problem remains coNP-hard, in the case of interval
constraints the decision problem is in P.

Future work includes establishing the exact computational complexities
of classes for which partial results were obtained. An important open issue
is establishing the exact computational complexity of deciding the feasibility
of a QLI with an arbitrary number of quantifier alternations. As discussed
above, the problem is PSPACE-hard, but not known to be in PSPACE.
Other open issues include showing completeness for the 1-quantifier alterna-
tion classes that are currently open. For instance it is not known whether the
class 〈1,∃,BL〉 is NP-complete, and whether the class 〈1,∀,BB〉 is coNP-
complete. It would also be desirable to characterize the exact complexity
hierarchy of classes with more than 2-quantifier alternations (since only hard-
ness results were established in this paper).
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