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ABSTRACT
Inverted indexes are usually represented by dividing posting
lists into constant-sized blocks and representing them with
an encoder for sequences of integers. Different encoders yield
a different point in the space-time trade-off curve, with the
fastest being several times larger than the most space-efficient.
An important design decision for an index is thus the choice
of the fastest encoding method such that the index fits in
the available memory.

However, a better usage of the space budget could be
obtained by using faster encoders for frequently accessed
blocks, and more space-efficient ones those that are rarely
accessed. To perform this choice optimally, we introduce a
linear time algorithm that, given a query distribution and
a set of encoders, selects the best encoder for each index
block to obtain the lowest expected query processing time
respecting a given space constraint.

To demonstrate the effectiveness of this approach we per-
form an extensive experimental analysis, which shows that
our algorithm produces indexes which are significantly faster
than single-encoder indexes under several query processing
strategies, while respecting the same space constraints.

Categories and Subject Descriptors
H.3.2 [Information Storage and Retrieval]: Information
Storage; E.4 [Coding and Information Theory]: Data
Compaction and Compression

Keywords
Compression; Knapsack Problems; Inverted Indexes

1. INTRODUCTION
Web search engines need to carefully organize billions of

documents into efficient data structures to timely answer
queries submitted by their users. The most central of such
data structures is the inverted index, which, in its most
basic and popular form, is a collection of sorted sequences
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Figure 1: Access counts of 20 of the top 30 most ac-
cessed lists, plotted along a Hilbert curve (log scale).

of integers [5, 17,29,33]. An inverted index has to fulfill two
goals: it must be able to efficiently process users’ queries,
and it must be able to compactly store large collections of
documents, in order to fit in the available memory.

The main ingredient to achieve the second goal is the
compression of the sequences of integers that constitute the
index. This is however at odds with the first goal, since more
space-efficient sequence encoders have usually more complex,
and hence slower, decoding. For this reason, a large amount
of literature has focused on devising fast and space-efficient
compression techniques, producing a multitude of encoders
with different characteristics [15,18,20,22,26,31].

While state-of-the-art encoders obtain very good space-
time tradeoffs, we argue that using a single encoder for the
entire index is wasteful: with typical query distributions
some terms are more frequent than others, and even within
the same posting list the skipping performed by most query
processing algorithms produces regions of the list that are
rarely accessed. We can visualize this effect in Figure 1, which
shows the number of accesses for each posting in the 30 most
accessed lists in an index, mapped to a square through a
Hilbert curve so that list intervals are mapped to areas; the
noisy appearance and the presence of darker spots indicate



a large variability in access frequencies (details on how this
statistics were computed can be found in Section 6).

In this scenario, it is clear that we can improve the effi-
ciency of an index by compressing frequently accessed regions
with faster but less space-efficient encoders, and rarely ac-
cessed regions with a compact but slow encoder. This can
be done without incurring any overhead with the popular
representation of posting lists which divides each list into
constant-sized blocks (e.g., 128 postings) and encodes them
independently, since we can just choose a different encoder
for each block.

However, it is not obvious how to perform this choice, as
it depends on the space-time characteristics of the encoders
and on the distribution of the values in the block. This issue
is even more severe for encoders that offer a space-time
tradeoff parameter, such as PForDelta, because choosing the
parameter independently for each block could be suboptimal
in global sense. For these reasons, we introduce the Space-
Constrained Expected Time Minimization problem: given
a query distribution and a set of encoders, our goal is to
select an encoder for each block of the index to minimize
the expected query processing time, subject to a given space
constraint. To perform this choice optimally we describe a
linear time greedy algorithm that is guaranteed to find a
solution which is at least as fast as the optimal one but may
exceed the space budget by no more than few bytes, which is
a negligible overhead for a typical index of several gigabytes.

An early version of this problem has been proposed in [31],
where the authors describe an hybrid index organization ap-
plying different encoders to different posting lists. Our result
has three fundamental differences. First, we select the best
encoders for each block inside posting lists while they work
at a posting list granularity, thus failing to exploit the skew
in access frequencies within the same posting list. Second,
we use a radically different technique to assess the decoding
time for each decoder, which reduces the measurement time
while improving accuracy. Finally, they describe a heuristic
algorithm with no approximation guarantees; the algorithm
is only sketched and lacks many important details that would
allow to analyze its complexity, which is at least quadratic
in the number of encoders. On the other hand, our optimiza-
tion algorithm is provably optimal modulo a negligible space
overhead, and its complexity is linear in both the number of
blocks and encoders.

Our Contributions. We list here our main contributions.

1. We define the Space-Constrained Expected Time Min-
imization problem, a refined and formalized version
of a problem introduced in [31]. We then propose an
algorithm which produces an exact solution for this
problem in Θ(m2 logm) time, where m is the total
number of postings, thus disproving the NP-Hardness
claim stated in [31].

2. Since the quadratic nature of the above algorithm
makes it unfeasible in any practical scenario, we design
a linear time solution derived from a greedy algorithm
presented in [25] with additive approximation guaran-
tees: it finds a solution with expected query time at
least as low as the optimal one which may exceed the
space budget by no more than the size of a single block.
Thus, the introduced additive approximation is com-
pletely negligible in practice: a typical budget of several

billions of bytes is exceeded only by a few hundreds of
bytes.

3. We introduce a technique to obtain fast and accurate
estimates of the expected decoding time of a block for
each decoder, based on their features, circumventing
the limitations in resolution and noise of CPU timers.
We obtain that the overall predicted query processing
times are within 4% of the actual ones.

4. We test the effectiveness of our approach on realistic
datasets and queries with an extensive experimental
analysis. We obtain indexes that follow a smooth space-
time curve, dominating state-of-the-art methods such
as OptPFD and Partitioned Elias-Fano on almost all
query processing strategies. For instance, we are able to
obtain indexes that are up to 2.16 times smaller than
those obtained with the fastest encoder, while being no
more than 14% slower.

2. BACKGROUND AND RELATED WORK

Index Organization. Given a collection D of documents,
the inverted index of D is a collection of posting list, one
for each term t appearing at least once in any document
of the collection. Each document in D is represented by
a natural number called document identifier, or docid. A
posting list is the list of all the docids of documents that
contain the term t. The set of such terms is usually called
the dictionary or the lexicon. Posting lists often includes
additional information about each document, so each docid
appearing in a posting list may include, for example, the
number of occurrences of the term in the document (the
term frequency in the document), and/or the set of positions
where the term occurs in the document (the term positions
in the document) [5, 17,33].

In this work, we consider document-sorted inverted indices,
as used by at least one major search engine [8]; this en-
ables fast query processing and efficient compression. Other
efficient retrieval techniques such as frequency-sorted [27]
or impact-sorted indices [1] are possible. However, there is
no evidence of such index layouts in common use within
commercial search engines [19].

In our experiments we focus our attention on posting lists
storing docids and frequencies; we do not store positions
or other additional data, since they have different nature
and often require specialized compression techniques [30],
thus they are outside of the scope of this paper. We also
ignore additional per-document or per-term information, such
as the mappings between docids and URLs, or between
term identifiers and actual terms, as their space is negligible
compared to the index size.

Index Compression. Inverted indexes resort to compres-
sion to reduce their space occupancy. Index compression
ultimately reduces to the problem of representing sequences
of integers for both docids and frequencies, specifically strictly
monotone sequences for docids, and positive sequences for
the frequencies. The two are equivalent: a strictly monotone
sequence can be turned into a positive sequence by subtract-
ing from each element the one that precedes it (also known
as delta encoding), the other direction can be achieved by
computing prefix sums. For this reason most of the work



assumes that the posting lists are delta-encoded and focuses
on the representation of sequences of positive integers.

Representing such sequences of integers in compressed
space is a crucial problem, studied since the 1950s with ap-
plications going beyond inverted indexes. A classical solution
is to assign to each integer an uniquely-decodable variable
length binary code code; examples are unary codes, Elias
Gamma/Delta codes, and Golomb/Rice codes [22].

Bit-aligned codes can be inefficient to decode as they re-
quire several bitwise operations, so byte-aligned or word-
aligned codes are usually preferred if speed is a main concern.
Variable byte [22] or VByte is the most popular byte-aligned
code. In VByte the binary representation of a non-negative
integer x is split into groups of bytes, whose length depends
on the value of the integer to be encoded. Stepanov et al. [26]
present a variant of variable byte (called Varint-G8IU) which
exploits SIMD operations of modern CPUs to further speed
up decoding.

A different approach is to encode simultaneously blocks
of integers in order to improve both compression ratio and
decoding speed. The underlying idea is to partition the se-
quence of integers into blocks of fixed or variable length
and to encode each block separately. The integers in each
block are all encoded with the same number of bits h, which
must be large enough to accommodate all the values in the
block. This technique, also called binary packing or packed
binary [3, 15], is usually applied with blocks of constant size
(e.g., b = 128 integers). There are several variants of this
approach which differentiate themselves for their encoding or
partitioning strategies [9, 15,24]. For example, Simple-9 and
Simple-16 [2, 3, 31] are two popular variants of this approach.

A major space inefficiency of binary packing is the fact
that the presence of few large values in the block forces
the algorithm to encode all its integers with a large h, thus
affecting the overall compression performance. To address
this issue, PForDelta (PFD) [34] introduces the concept of
patching. In PFD, h is an arbitrary parameter; all the values
that fit in h bits are binary packed, while those that do
not fit are called exceptions, and encoded separately with a
different encoder; we refer to PFD as the family of encoders
PFD(h) depending on the value width h. Variants of PFD
use different strategies to encode the exceptions and their
positions; we use the variant described in Yan et al. [31],
using Simple-16 for both. They also describe two strategies,
namely NewPFD and OptPFD, to select the value of h for
a given block. In particular, OptPFD chooses the one that
minimizes the space occupancy.

A completely different approach is taken by Binary Inter-
polative Coding [18], which skips the delta-encoding step and
directly encodes monotone sequences. This method recur-
sively splits the sequence of integers in two halves, encoding at
each split the middle element and recursively the two halves.
At each recursive step the range that encloses the middle
element is reduced, and so is the number of bits needed to
encode it. Experiments [20,24,29,31] have shown that Binary
Interpolative Coding is the best encoding method for highly
clustered sequence of integers. However, this space efficiency
is paid at the cost of a very slow decoding algorithm.

The Elias-Fano representation of monotone sequences [11,
12] has been recently applied to the compression of inverted
indexes [28], showing excellent query performance thanks to
its efficient random access and search operations. Its space
occupancy is competitive with some state-of-the-art methods

such as γ-δ-Golomb codes and PForDelta. However, it fails
to exploit the local clustering that inverted lists usually
exhibit, namely the presence of long subsequences of close
identifiers. Recently, Ottaviano and Venturini [20] describe a
new representation based on partitioning the list into chunks
and encoding both the chunks and their endpoints with
Elias-Fano, hence forming a two-level data structure. This
partitioning enables the encoding to better adapt to the
local statistics of the chunk, thus exploiting clustering and
improving compression. They also show how to minimize
the space occupancy of this representation by setting up the
partitioning as an instance of an optimization problem, for
which they present a linear time algorithm that is guaranteed
to find a solution at most (1+ε) times larger than the optimal
one, for any given ε ∈ (0, 1).

Query Processing. Given a term query as a (multi-)set of
terms, the basic query operations are the boolean conjunctive
(AND) and disjunctive (OR) queries, retrieving the docu-
ments that contain respectively all the terms or at least one
of them. In many scenarios the query-document pairs can be
associated with a relevance score which is usually a function
of the term frequencies in the query and in the document,
and other global statistics. Instead of the full set of matches,
for scored queries it is often sufficient to retrieve the k high-
est scored documents for a given k. A widely used relevance
score is BM25 [21], which we will use in our experiments.

The classical query processing strategies to match docu-
ments to a query fall in two categories: in a term-at-a-time
(TAAT) strategy, the posting lists of query terms are pro-
cessed and scored sequentially to build the result set, while,
in a document-at-a-time (DAAT) strategy, the query term
postings lists are processed in parallel, keeping them aligned
them by docid. We will focus on the DAAT strategy as it is
the most natural for docid-sorted indexes.

The alignment of the posting lists during DAAT processing
can be achieved by means of the NextGEQ(d) operator, which
returns the smallest docid in the posting list that is greater
than or equal to d. A efficient implementation of the func-
tion NextGEQ(d) is crucial to obtain the typical subsecond
response times of Web search engines. The trivial implemen-
tation that scans and checks sequentially the whole posting
lists is usually too slow; typically, skipping strategies are
employed. The basic idea is to divide the lists in small blocks
that are compressed independently, and to store additional
information about each block, in particular the maximum
docid present in the block. This allows to find and decode
only the block that may contain the sought docid by scan-
ning the list of maximum docids, thus skipping a potentially
large number of useless blocks. This basic approach can be
improved also by exploiting query log information [7].

Solving scored disjunctive queries with DAAT can be very
inefficient. Various techniques to enhance retrieval efficiency
have been proposed, by dynamically pruning docids that are
unlikely to be retrieved. Among them, the most popular are
MaxScore [27] and WAND [4]. Both strategies augments the
index by storing for each term its maximum score contribu-
tion, thus allowing to skip large segments of posting lists if
they only contain terms whose sum of maximum impacts is
smaller than the scores of the top-k documents found up to
that point.



3. PROBLEM DEFINITION
In this section we introduce the Space-Constrained Ex-

pected Time Minimization problem as follows: given a query
distribution Q and an arbitrary set E of k encoders, select
an encoder for each index block to minimize the expected
time to process queries drawn according to the distribution,
subject to a given space constraint B. The problem is more
formally defined in the following.

We assume that each posting list is split into blocks of size
b, except the last block of each list which may contain fewer
than b postings. We use n to denote the total number of
blocks in the inverted index. Since each block can be encoded
with any encoder in E , an assignment of encoders to blocks
can be modeled as a assignment ϕ from the n blocks to
encoders in E , hence ϕ ∈ En. Given an assignment ϕ, ϕi is
thus the encoder assigned to the ith block. We denote with
si,j the size of the encoding of the ith block with the jth
encoder, and with ti,j its decoding time.

We aim at finding an assignment ϕ that minimizes the
expected processing time of queries drawn from a probability
distribution Q, subject to a total space budget B, as follows:

minimize
ϕ∈En

E
q∼Q

[
T (q, ϕ)

]
subject to

n∑
i=1

si,ϕi ≤ B,
(1)

where we denote with T (q, ϕ) the time to process the query
q with a predetermined query processing strategy, such as
Ranked AND or WAND. We assume that the processing time
can be decomposed into a component Tp independent from
the assignment ϕ, plus a component Td which only accounts
for the decoding time of the blocks, and thus depends only
on the set of the blocks that the processing algorithm needs
to decode, which we denote with A(q). The processing time
can thus be written as T (q, ϕ) = Tp(q) + Td(A(q), ϕ). Since
Tp(q) does not depend on the encoders choice, we can safely
ignore it in the optimization.

We assume that we do not have access to the query dis-
tribution, but we can obtain a sample from it, namely a
query log Q. The expected decompression time can thus be
estimated with the empirical mean over Q; since Td(A(q), ϕ)
is just the sum of the decoding times for all the blocks de-
coded during the query q, by linearity we can reformulate
the problem as follows:

minimize
ϕ∈En

n∑
i=1

fiti,ϕi =

n∑
i=1

t̂i,ϕi

subject to

n∑
i=1

si,ϕi ≤ B,
(2)

where fi is the number of times the block the ith block was
decoded while processing the query log Q, and t̂i,j = fiti,j
represents the overall decoding time of the ith block when
encoded with the jth encoder. The counts fi can be computed
exactly just by processing all the queries in the query log and
counting the number of decodings of each block. We defer to
Section 5 the description of how to obtain the numbers si,j
and ti,j .

4. LINEAR TIME ALGORITHM
In the following we describe a linear-time algorithm that

finds an additive approximation to the solution of the Space-
Constrained Expected Time Minimization problem defined in
the previous section. The solution adopts a greedy strategy,
which is guaranteed to find an assignment which is at least
as good as the optimal one with respect to its expected
processing time but exceeds the space budget constraint by
no more than Smax bits, where Smax denotes the size in bits
of the largest encoding of a block. Since a block can be always
encoded plain within b log d bits, we have Smax ≤ b log d bits,
where d denotes the number of documents in D. In a typical
instance, the block size b is 128 postings and log d ≤ 32 bits,
so that Smax is at most 4,096 bits. Thus, the introduced
additive approximation is completely negligible in practice:
the budget B of several billions of bits is exceeded only
by a few thousands of bits. This approximated solution is
computed in linear time, namely, Θ(nk), which is linear in
the number of blocks in the index.

We start by reducing our problem to the so-called Multiple-
Choice Knapsack Problem (MCKP) [25]. In this problem, we
are given a set of n classes of items. Each class contains at
most k different items. Each item has its own weight and
penalty. The goal is that of choosing exactly one item for each
class so that the sum of the penalties is minimized, subject
to a given knapsack capacity B.

In our setting, the classes correspond to the blocks to
be encoded: each item in class i corresponds to a possible
encoder j for the block i, so that the item’s weight is the
space occupancy si,j and item’s penalty is the expected
decoding time t̂i,j . The goal is to minimize the expected
query processing time subject to the space budget B. The
integer linear programming formulation of the problem is as
follows.

minimize

n∑
i=1

k∑
j=1

xi,j t̂i,j

subject to

n∑
i=1

k∑
j=1

xi,jsi,j ≤ B, (3)

k∑
j=1

xi,j = 1, i ∈ {1, . . . , n}

xi,j ∈ {0, 1}, i ∈ {1, . . . , n}, j ∈ {1, . . . , k}

The optimization variable xi,j represents the choice of the
encoder for block i, and is 1 if the chosen encoder is j and 0
otherwise (in our notation, xi,j = 1 if and only if ϕi = j).

In its general formulation the Multiple-Choice Knapsack
Problem is NP-Hard [25]. There exists, however, a pseudo-
polynomial time algorithm based on a standard Dynamic
Programming approach, which requires Θ(nB) time and
space. Thus, this immediately implies the existence of a
polynomial time algorithm that finds an optimal assignment
for any instance in our index compression scenario. Indeed,
the complexity of this algorithm becomes O(m2 logm) time
and space, where m is the total number of postings, since
n ≤ m and B is at most m logm+O(m) bits, since at worst
each posting can be represented with logm+O(1) bits. Due
to its quadratic nature, this solution is clearly unfeasible
in any practical scenario, and only serves to disprove the
NP-Hardness claim stated in Yan et al. [30].



Our linear-time approximated algorithm proceeds by find-
ing the exact solution of the Continuous Multiple-Choice
Knapsack Problem (CMCKP). This is the relaxation of the
original problem in which any variable xi,j can take any
real value in [0, 1] instead of being forced to be either 0 or
1. Obviously, since CMCKP is less restrictive than MCKP,
an optimal solution for the former is at least as good as an
optimal solution for the latter, whenever both are subject to
the same space budget. It is known that an optimal solution
for CMCKP has the following important property [25]. There
exists an optimal solution for CMCKP in which the assign-
ment of the variables xi,j is such that there are either n or
n + 1 non-zero variables. If there are n non-zero variables,
then there is a non-zero variable for each of the n possible
classes and these are all set to 1. Thus, this is also a feasible
and optimal solution for MCKP. If there are n+ 1 non-zero
variables, then n− 1 classes have their non-zero variables set
to 1. The remaining class, say i, has exactly two fractional
non-zero variables, say xi,p and xi,q. Thus, this solution is
almost a feasible solution for MCKP. This can be turned into
an approximated solution for MCKP by setting one of these
variables to 1 and the other to 0. If we set to 1 the variable of
the item with the smallest decode time, say p, the obtained
solution is such that (1) it is at least as good as the original
one; (2) its space budget B may be exceeded, but, in any
case, by no more than si,p ≤ Smax bits.

Interestingly, an optimal solution for CMCKP can be found
with a greedy strategy which works in two phases. In the first
phase, the algorithm applies two fundamental dominance
criteria in order to discard items that are not necessary to
find an optimal solution. In the second phase, the algorithm
starts choosing items according to a criterion that favors
items introducing a larger marginal improvement of the
penalty/weight tradeoff.

The first phase discards all the items dominated by other
items according to the following two dominance criteria.

Dominance criterion 1 Let p and q be two items in
same class i. Item q is dominated by item p if and only if
si,p ≤ si,q and t̂i,p < t̂i,q.

Dominance criterion 2 Let p, q and r be three items in
the same class i such that si,p < si,q < si,r and t̂i,p ≥ t̂i,q ≥
t̂i,r. Item q is dominated by items p and q if and only if the

following condition holds
t̂i,p−t̂i,q
si,p−si,q

≥ t̂i,q−t̂i,r
si,q−si,r

.

If item q in class i is dominated according to at least one
of the above criteria, then there exists an optimal solution
for CMCKP which does not select item q (i.e., xi,q = 0) [25].
This implies that the algorithm can safely discard all these
dominated items without affecting the optimality result. This
phase is essential for the correctness of the next phase.

Once the dominated items have been discarded, the al-
gorithm sorts items within each class increasingly by their
weights. With a little abuse of notation, from now on we refer
to item j in class i as the jth smallest item within this ordered
sequence. By the absence of dominated items, the penalties
give a non increasing sequence. Thus, if there are ` ≤ k items
in class i, we have si,1 < si,2 < . . . < si,` and t̂i,1 ≥
t̂i,2 ≥ . . . ≥ t̂i,`.

The algorithm starts the next phase by constructing a base
solution which contains the first item of each class. Observe
that this solution is the one with the smallest possible space
occupancy. This base solution is subsequently refined in order
to improve the processing time by exploiting the available

space budget. This is done by employing a greedy strategy
that selects items in non increasing order of the ratio λi,j =
t̂i,j−t̂i,j−1

si,j−1−si,j
. This ratio measures the marginal penalty decrease

per unit weight that we can obtain by replacing item j − 1
with item j in class i. This is done by sorting all the items
according to their ratio and by scanning this sorted sequence
of items. When the algorithm processes the item j in class
i, it replaces item j − 1 with j in class i within the current
solution (i.e., it sets xi,j−1 to 0 and xi,j to 1). The algorithm
stops as soon as the space budget is exceeded. The last two
modified variables xi,j−1 and xi,j can be adjusted and made
fractional to match the budget. This is guaranteed to be an
optimal solution for CMCKP [25].

Note that a single run of this algorithm is able to find
all the optimal solutions for any possible budget constraint.
Indeed, any step of the algorithm finds a solution which is
optimal for its space occupancy. Moreover, all the possible
space budgets are found in this way.

The time complexity of the algorithm is dominated by the
time required to sort the items (i.e., Θ(nk log(nk)) time).
This time complexity can be improved to Θ(nk) by replacing
the sorting step with a (modified) linear time median selection
algorithm [32]. Due to space limitations, we omit the details
of this faster solution; furthermore, in practice we can use off-
the-shelf optimized sorting implementations, so the sorting
step does not dominate the running time. Hence, the last
improvement is only of theoretical interest.

5. DECODING TIME PREDICTION
The optimization algorithm requires the knowledge of the

space occupancy si,j and of the decoding time ti,j , for each
block i and each encoder j. While the space occupancy can
be computed deterministically and exactly just by encoding
the block, the decoding times span from tens to hundreds of
nanoseconds, hence it is hard to assess them reliably, due to
the low resolution and high noise of CPU timers. In order to
quantify these times with sufficient accuracy, a direct solution
could be to measure the time to decode the block several
times and divide by the number of runs; however this would
make the measuring algorithm prohibitively slow. Moreover,
any attempt to make the measurements faster by running
several threads in parallel would further increase the noise.

We propose to quantify the decoding times by splitting
the measurement in two steps. First, a profiling step running
in a controlled single-threaded environment is carried out, by
averaging several runs of decoding on a large random sample
of the index blocks, in order to cover accurately the distribu-
tion of different blocks. Second, from these measurements we
learn predictors that use features extracted from the block
values to predict the decoding time for each decoder. Then,
the each predictor is used in the optimization algorithm to
estimate ti,j for each block and decoder.

We model the predictor as a linear combination of features
of the values in the block with non-negative weights. Being
non-negative, the weight of a feature can be interpreted as
the contribution of that feature to the decoding time. Given
a block i we call xi its feature vector; the predictor is thus
ti,j = xi

Twj + bj where wj is the weights vector and bj the
bias learned for the decoder j.

To obtain a robust learned model we use an L1 loss func-
tion rather than the more popular L2 loss, and we add an
L1 regularization component which is known to make the



solutions sparse [13]. Given a multiset set Tj = {(x, t)} of
block features and their respective measured decoding times
with decoder j we thus compute wj, bj as the solution of the
minimization problem:

min
wj,bj≥0

∑
(x,t)∈Tj

|xTwj + bj − t|+ µ|Tj |‖w‖1

where µ is the regularization parameter. The problem can be
written as a linear program and solved with standard convex
optimization algorithms; however, we found that it is faster
to use a smooth approximation of the absolute value, namely
the Huber loss function [14], and use a quasi-Newton solver,
specifically L-BFGS [6], without compromising the accuracy
of the solution.

6. EXPERIMENTAL ANALYSIS
The effectiveness of our approach in a practical setting

relies on several hypotheses. First, that the different space-
time characteristics of different encoders can be exploited
successfully, and that their decoding times can be accurately
estimated. Second, that our query processing time model
fits the measured data. Finally, that block access statistics
induced by a typical query log exhibit a skew that makes it
convenient to use different encoders for different blocks.

In this section we validate our hypotheses with an exten-
sive experimental evaluation in a realistic and reproducible
setting, using state-of-the-art encoders, standard benchmark
text collections and a large query log.

6.1 Experimental setup

Encoders. In our experiments the set E of encoders is com-
posed as follows. First, we use PFD(h) for all the values of h
as different encoders; this way the assignment of h to each
block is optimized globally rather than on a per-block basis as
in strategies like OptPFD. We then add two encoders which
represent the best space occupancy and the best decoding
time. For the former we choose Binary Interpolative Coding,
which consistently outperforms every other encoder both in
the literature and in our own experiments. For the latter
we adopt Varint-G8IU, which according to the experiments
in [15] is the fastest among those that support small block
sizes and unaligned reads, which are needed because blocks
with different alignments are concatenated together.

The encoder type chosen for each block is written by
prepending one byte to the encoding of the block, which
adds a negligible overhead to the overall space. The last
block of each list may have fewer than b postings, in which
case we call it a partial block and always compress it with
Interpolative. Since it is accessed at most once per query, its
decoding time is negligible, and the vast majority of partial
blocks belongs to the single-block lists of rare terms. For
these reasons we also focus our analysis only on blocks with
exactly b postings, which we call full.

We compare the indexes obtained with our algorithm,
which we call hybrid, against single-encoder indexes using
Interpolative, OptPFD, and Varint-G8IU; again, we always
compress partial blocks with Interpolative. We also compare
against the recently introduced Partitioned Elias-Fano in-
dexes [20]. We remark that Elias-Fano is not included in
the set of encoders E because its characteristics are not suit-
able for our model. Indeed, Elias-Fano is faster than other

encoders to decode single postings but slower to decode an
entire block. However, the latter is the key operation at the
basis of our model.

Datasets. We performed our experiments on the following
datasets.

• ClueWeb09 is the ClueWeb 2009 TREC Category B
collection, consisting of 50 million English web pages
crawled between January and February 2009.

• Gov2 is the TREC 2004 Terabyte Track test collection,
consisting of 25 million .gov sites crawled in early 2004;
the documents are truncated to 256 kB.

ClueWeb09 Gov2

Documents 50,131,015 24,622,347
Terms 92,094,694 35,636,425
Postings 15,857,983,641 5,742,630,292

Table 1: Basic statistics for the test collections

For each document in the collection the body text was
extracted using Apache Tika.1, and the words lowercased
and stemmed using the Porter2 stemmer; no stopwords were
removed. The docids were assigned according to the lexico-
graphic order of their URLs [23] Table 1 reports the basic
statistics for the two collections.

The results on Gov2 and ClueWeb09 are very similar, hence
in the following we focus most of our analysis on the larger
dataset ClueWeb09.

Queries. The queries used in our experiments are taken
from the MSN Search query log from 2006,2 comprising 15
million queries sampled over the month of May and submitted
from the US. We filter out all the queries which contain terms
not present in the index, and all single-term queries, as their
results can be precomputed separately.

We select the first million queries in chronological order
as a training set to compute the counts fi, and measure
the query times on a sample of 5000 queries taken from the
remaining queries, to simulate a realistic scenario where the
index is optimized based on past queries.

Processing strategies. To test the performance on query
strategies that make use of both the docids and the occur-
rence frequencies we perform BM25 top-10 queries using 3
different algorithms: Ranked AND, which scores the results
of a conjunctive query, WAND [4], and MaxScore [27].

Estimation of the access counts. The block access counts
fi must be computed using the query processing strategies
that will be used at query time; rather than building different
index optimized for each query processing strategy we test,
we assume a realistic scenario in which the index is optimized
once and queried with different query strategies. For this
reason we process each query in the training set with all the
three processing strategies, and add up the counts. Figure 1
in the introduction shows the result of this counting on the

1
http://tika.apache.org/

2
http://research.microsoft.com/en-us/um/people/nickcr/

wscd09/

http://tika.apache.org/
http://research.microsoft.com/en-us/um/people/nickcr/wscd09/
http://research.microsoft.com/en-us/um/people/nickcr/wscd09/


ClueWeb09 dataset using the query training set for 20 of the
top 30 most accessed posting lists.

Blocks never accessed with the training set would have zero
overall time t̂i,j = fiti,j , thus the algorithm would force them
to be compressed with Interpolative regardless of the budget;
to avoid this we use Laplace smoothing when estimating the
counts fi, i.e., we add 1 to each access count. In our model
this is equivalent to estimating the block access probability
with maximum a posteriori with a Dirichlet prior, rather than
with maximum likelihood. This does not make a measurable
difference in practice, since our training set is large enough to
access the vast majority of the index: the fraction of unseen
full blocks is less than 9%.

Testing details. All the algorithms are implemented in
C++11 and compiled with GCC 4.9 with the highest op-
timization settings. The tests are performed on a machine
with 8 Intel Core i7-4770K Haswell cores clocked at 3.50GHz,
with 32GiB RAM, running Linux 3.13.0. The indexes are
saved to disk after construction, and memory-mapped to be
queried, so that there are no hidden space costs due to load-
ing of additional data structures in memory. Before timing
the queries we ensure that the required posting lists are fully
loaded in memory.

The source code is available at https://github.com/ot/

ds2i/tree/WSDM15 for the reader interested in further imple-
mentation details or in replicating the experiments.

6.2 Results

Decoding time prediction. To predict the decoding time
we use the following features: size of the compressed block
(size), bit length of the largest integer (max_h), number of
non-zero values (nonzeros), and sum of the logarithms of the
values (sum_of_logs). For PFD(h) we also add the number of
exceptions (pfor_exceptions). We found that the decoding
time of PFD is fairly insensitive on the value width h, so we
use the same predictor for all the PFD decoders.

To evaluate the performance of the predictors we perform
an usual 80-20 split of the data into a training set and a test
set, and measure the average absolute error. As a baseline,
we compare against a constant predictor which returns the
median of the decoding times regardless of the features.

Decoder Time C. Err L. Err HWF

Interpolative 640.8 73.3 20.0 nonzeros

PFD 97.8 66.6 7.7 pfor_exceptions

Varint-G8IU 42.4 3.5 1.8 size

Table 2: Median time (Time), average absolute er-
ror for the constant (C. Err) and linear (L. Err) pre-
dictors, and highest weighted feature in the linear
model (HWF). All the numbers are in nanoseconds.

As shown in Table 2, we find that the linear predictor
significantly reduces the error with respect to the median
predictor, bringing it down to less than 8% of the median
time in all cases. The highest improvement occurs with PFD,
which exhibits a large variability in decoding time, as it is
highly affected by the number of exceptions.
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Figure 2: Predicted and actual average query times
for different index spaces on the ClueWeb09 dataset.

Model validation. To test the validity of our query pro-
cessing time model we compare the predicted average query
time, that is T̃ =

∑n
i=1 fiti,ϕi , where the fis are computed

on the test set, with the actual average query time T using
all the query processing strategies. Recall that T = T̃ +Tp(q),
where Tp(q) is assumed independent from the choice of the
encoders and thus constant along the space-time curve.

We estimate Tp(q) by taking the average of the differences

between T and T̃ with different index spaces, and plot the
predicted and actual query times in Figure 2. Note that the
two curves are very close; in fact, the predicted times are
within 4% of the actual times. Taken into account the additive
factor Tp(q), this error is very close to the prediction error
on the single blocks, thus suggesting that an improvement
on the decoding time prediction would further reduce this
already small gap.

Construction time. Almost all the phases of hybrid index
construction can be trivially parallelized, since each list can
be handled independently. The only phase that is inherently
sequential is the greedy one, which is just a scan of the sorted
λi,js and it is extremely fast. We report here the times for
the ClueWeb09 dataset, using 8 threads.

The most time-consuming task is the computation of the
ratios λi,j , since it involves compressing each block with each
encoder to measure the space and estimate the decoding time,
taking about 14 minutes. We then store the (i, j, λi,j , si,j , ti,j)
tuples in a file and use an external algorithm to sort them
by λi,j , specifically the implementation in STXXL [10]. The
reason is twofold: first, the tuples may be so many that they
do not fit in memory; second, this way we can reuse the
vector of sorted tuples to build indexes on several points of
the space-time curve. Besides, going through disk does not
affect seriously this step, taking about 6 minutes.

The next phase is the greedy algorithm that finds the
space-time tradeoff by scanning the sorted vector of tuples.
While this phase must be run on a single thread, it takes
just a little more than a minute. The last step is using the
assignments found by the greedy algorithm to construct the
actual index, which takes from 5 to 8 minutes, depending on
the percentages of the various chosen encoders. Note that this
is roughly the same time needed to construct a single-encoder
index; the overall algorithm is thus about 4 times slower than
the construction of a single-encoder index. However, it can be

https://github.com/ot/ds2i/tree/WSDM15
https://github.com/ot/ds2i/tree/WSDM15
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Figure 3: Percentage of full blocks compressed with
each encoder for different index spaces. For PFD
different shades denote different values of h.

made faster by increasing the parallelism in the first phases,
while the final index construction is dominated by I/O in all
cases.

Index spaces and query times. We report in Figure 4
the space-time tradeoff curves of our Hybrid and the single-
encoder indexes on ClueWeb09. The different plots show the
overall index size in gigabytes and the average query time,
in milliseconds per query, for the three different processing
strategies, namely Ranked AND, WAND and MaxScore. Inter-
polative and Varint-G8IU are on the extremes of the curve,
being respectively the smallest and the fastest. Note that all
Hybrid tradeoff curves are smooth, as they can achieve any
point within their space-time tradeoff curve; any of these
points is an optimal solution within a space margin of at most
512 bytes. The convexity of the curves shows no dominated
points, according to both dominance criteria 1 and 2.
Partitioned EF index confirms its excellent performance

with strategies that perform a large number of skips, namely
Ranked AND and WAND. Conversely, its performance worsens
on MaxScore, which depends on enumerating the union of
the so-called essential lists, thus the decoding speed for such
lists plays an important role in the overall processing time.

To get some insight on the choices made by the opti-
mization algorithm, we show in Figure 3 the percentages of
blocks that are compressed with each encoder by varying the
available space budget. Not surprisingly, Hybrid chooses In-
terpolative for a vast majority of the blocks with a very small
budget, and Varint-G8IU with a very large budget. Perhaps
surprisingly, instead, the algorithm assigns PFD to about
10% of the blocks even at the smallest space budget, showing
that Interpolative is dominated by PFD on those blocks.
However, it is interesting to observe how the choices change
in the regime where PFD becomes more prevalent. As we
mention above, the value of h in PFD(h) influences both
the encoding size and the decoding time. In general, a small
value of h implies a small encoding size but the presence of
several exceptions slows down the decoding speed. This is
apparent in Figure 3: initially Hybrid prefers small values of
h to favor space efficiency, and then it starts to increase h as
the available budget increases to favor time efficiency.

Table 3 reports the index space, both as overall size in
gigabytes, and broken down in bits per integers for docids
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Figure 4: Average query times for different index
spaces and strategies on the ClueWeb09 dataset.

and frequencies, as well as the average query time, in millisec-
onds per query, for the three processing strategies, for both
datasets. For our Hybrid index, we select a few points from
its space-time tradeoff curve, which help to more accurately
compare its results to the closer single-encoder index.

On the extreme of the space-time tradeoff curve, which
favors space occupancy disregarding query processing time,
Hybrid@1 achieves almost the same space of Interpolative.
On ClueWeb09, Hybrid@1 produces a slightly larger index
(about 1%) than Interpolative. Even if in this case Hybrid@1
minimizes its space occupancy by compressing almost all
the blocks with Interpolative code, it has a space overhead of
0.0625 bits per posting due to extra byte per block to write
the encoder type. Interestingly, on Gov2 a large number of



Space Docids Freqs Ranked AND WAND MaxScore
GB bpi bpi ms ms ms

ClueWeb09

Hybrid@1 14.08 5.21 1.90 74.7 122.4 45.5
Hybrid@2 14.58 5.35 2.01 38.4 62.9 31.4
Hybrid@Partitioned EF 15.94 5.77 2.27 19.8 37.7 22.3
Hybrid@OptPFD 17.04 6.13 2.47 16.4 33.1 20.1
Hybrid@3 20.92 7.33 3.22 13.3 29.2 18.8
Hybrid@4 26.00 8.56 4.55 12.3 27.9 18.3
Hybrid@5 39.05 10.81 8.89 12.1 27.5 18.1

Interpolative 13.90 5.15 1.87 76.3 124.4 45.4
Partitioned EF 15.94 5.85 2.20 18.4 40.2 30.9
OptPFD 17.04 6.18 2.41 19.7 39.2 21.9
Varint-G8IU 38.82 10.75 8.83 11.8 26.1 17.0

Gov2

Hybrid@1 4.21 3.85 2.01 14.1 26.2 11.4
Hybrid@2 4.54 4.12 2.21 4.2 8.7 5.9
Hybrid@Partitioned EF 4.65 4.21 2.27 3.7 7.8 5.5
Hybrid@OptPFD 4.92 4.44 2.42 3.1 6.9 5.1
Hybrid@3 6.36 5.52 3.34 2.5 5.9 4.8
Hybrid@4 8.07 6.62 4.63 2.5 5.8 4.7
Hybrid@5 13.83 10.40 8.87 2.4 5.8 4.7

Interpolative 4.26 3.80 2.14 14.5 27.0 11.5
Partitioned EF 4.65 4.10 2.38 4.0 8.6 8.0
OptPFD 4.92 4.48 2.38 3.8 8.2 5.5
Varint-G8IU 13.75 10.35 8.81 2.3 5.5 4.4

Table 3: Index spaces, both overall space in gigabytes and broken down into docids and frequencies in bits
per integer, along with average query times in milliseconds for the query strategies considered.

blocks is better compressed with PFD than with Interpolative;
this is exploited by Hybrid@1 which is able to improve the
space of Interpolative by roughly 1%.

The ability of Hybrid to achieve any point in the tradeoff
curve can be exploited to remain close to the best possible
space occupancy but significantly improve the query time. For
example, Hybrid@2 is obtained by imposing a space budget
which is within 5− 7% the space occupancy of Interpolative.
This gives an index faster than Interpolative by factors that
range, depending on the query processing strategy, between
1.45 and 1.99 on ClueWeb09, and 1.95 and 3.45 on Gov2.

With Hybrid@Partitioned EF we set the budget to the space
occupancy of Partitioned EF. Hybrid@Partitioned EF is faster
than Partitioned EF on all the strategies but Ranked AND on
ClueWeb09, where Partitioned EF is 7% faster. With WAND,
Hybrid@Partitioned EFis faster by 6% on ClueWeb09 and
9% on Gov2. As expected, these percentages increase with
MaxScore where they become 28% on ClueWeb09 and 31%
on Gov2.

Similarly, Hybrid@OptPFD is obtained by setting the bud-
get to the space of OptPFD. On the same conditions, Hy-
brid@OptPFD is always faster than OptPFD. The largest
improvement is 18% on Gov2 and 17% on ClueWeb09, both
with the Ranked AND strategy.

On the other extreme of the space-time tradeoff curve,
which favors query processing time, Varint-G8IU index is
slightly faster than Hybrid@5. Even if Hybrid@5 encodes all
the blocks with the Varint-G8IU encoder, there is a small
time overhead due to the dispatching of the block decoding

code, which is most noticeable on MaxScore. However, if we
renounce to at most 8% of Varint-G8IU overall time efficiency,
we obtain an index, see Hybrid@4, which significantly reduces
the space occupancy by a factor 1.49 on ClueWeb09 and 1.7
on Gov2. Finally, Hybrid@3 is slower than Varint-G8IU by no
more than 14% and reduces the space occupancy by a factor
1.86 on ClueWeb09 and 2.16 on Gov2.

7. CONCLUSIONS & FUTURE WORK
In this paper we introduced and motivated the study of the

Space-Constrained Expected Time Minimization problem.
We presented a linear-time algorithm that computes optimal
solutions with a negligible additive approximation. An ex-
tensive experimental analysis in a realistic and reproducible
setting validates all the hypotheses at the basis of our model
and shows that the obtained indexes dominate state-of-the-
art single-encoder methods such as OptPFD and Partitioned
Elias-Fano with most query processing strategies.

Since our solution takes the set of encoders to be opti-
mized as a parameter, future experiments will investigate
the consequences of optimizing with other encoders. Elias-
Fano representation is one of the few encoders which cannot
benefit from this approach. Indeed, compared to the other
encoders, Elias-Fano is faster in providing random access to
single postings but it is slower in decoding large chunks of
consecutive postings (see e.g., [20] and references therein).
An interesting open problem would be thus to design a solu-
tion which is able to model and to optimize the index using
encoders that have these characteristics.



Finally, our solution optimizes by assuming that the post-
ing lists are split into constant-size blocks. Allowing blocks of
variable sizes relaxes the range of the achievable space-time
tradeoffs, and, thus, may further improve the overall results.
However, this increases the difficulty of the optimization
problem, since the access statistics must be taken at the
posting level. The design of an efficient algorithm in this
setting is left as an interesting open problem.
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