Compressed Cache-Oblivious String B-tree

PAOLO FERRAGINA, Department of Computer Science, University of Pisa
ROSSANO VENTURINI, Department of Computer Science, University of Pisa

In this paper we study three variants of the well-known prefix-search problem for strings, and design solutions
for the cache-oblivious model which improve the best known results. Among these contributions, we close
(asymptotically) the classic problem which asks for the detection of the set of strings which share the longest
common prefix with a queried pattern by providing an I/O-optimal solution which matches the space lower
bound for tries up to a constant multiplicative factor of the form (1 + ¢), for ¢ > 0. Our solutions hinge
upon a novel compressed storage scheme which adds the ability to decompress prefixes of the stored strings
I/O-optimally to the elegant locality-preserving front coding (Bender et al. 2006) still preserving its space
bounds.

CCS Concepts:*Theory of computation — Data structures design and analysis;

Additional Key Words and Phrases: Pattern matching, data compression, compressed index, indexing data
structure, string dictionary

ACM Reference Format:

Paolo Ferragina and Rossano Venturini, 2016. Compressed Cache-Oblivious String B-tree. ACM Trans. Algor.
V, N, Article A (January 2015), 17 pages.

DOI: http://dx.doi.org/10.1145/0000000.0000000

1. INTRODUCTION

The Prefix Search Problem is probably the most well-known problem in data-structure
design for strings. It asks for the preprocessing of a set S of K strings, with total length
N, in such a way that, given a query-pattern P, (the range of) all the strings in S which
have P as a prefix can be returned efficiently in time and space. This easy-to-formalize
problem is the backbone of many other algorithmic applications, and it has recently
received revamped interest because of its Web-search (e.g., auto-completion search) and
Internet-based (e.g., IP-lookup) applications. In this paper we concentrate on the case
of binary strings and state that, if strings are not binary and ¥ is the alphabet of their
symbols, then we can binarize them all by changing every symbol into its (log |X|)-binary
encoding and still make our algorithms and results hold.

In order to establish and contextualize our results, we need to survey the main
achievements in this topic and highlight their missing algorithmic points. The first
solution to the prefix-search problem dates back to Fredkin [1960], who introduced and
deployed the notion of the (compacted) trie. The trie structure became famous in the
1980s-"90s due to its suffix-based version, known as the Suffix Tree, which dominated

This work was partially supported by the MIUR of Italy under project PRIN ARS Technomedia 2012, and the
SoBigData EU Project.

A preliminary version of this paper was published in the Proceedings of the 21st Annual European Symposium
on Algorithms (ESA) 2013 [Ferragina and Venturini 2013].

Authors’ address: Paolo Ferragina and Rossano Venturini, Department of Computer Science, University of
Pisa, Largo Bruno Pontecorvo 3, I-56127 Pisa, Italy.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights for components of this work owned
by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.

© 2015 Copyright held by the owner/author(s). Publication rights licensed to ACM. 1549-6325/2015/01-ARTA
$15.00

DOI: http:/dx.doi.org/10.1145/0000000.0000000

ACM Transactions on Algorithms, Vol. V, No. N, Article A, Publication date: January 2015.

A2 P. Ferragina and R. Venturini

first the string-matching scene [Apostolico 1985] and then bioinformatics [Gusfield
1997].

Starting from the Oxford English Dictionary initiative [Frakes and Baeza-Yates
1992], and the subsequent advent of the Web, it became crucial to design tries able to
manage large sets of strings. It was immediately clear that laying out a trie in a disk
memory with page size B words, each of ©(log N) bits, which supports I/O-efficient path
traversals was not an easy task. After a decade, Demaine et al. [2004] showed that any
layout of an arbitrary tree (and thus a trie) in a disk memory needs a large number of
I/Os to traverse those downward paths.

The turning point in disk-efficient prefix search was the design of the string B-tree
data structure [Ferragina and Grossi 1999] that was able to achieve O(logy K +Scan(P))

I/Os, where Scan(P) = O(1 + B,‘lf gl;) indicates the number of I/Os needed to examine
the input pattern of | P| bits. String B-trees provide I/O-efficient analogues of tries and
suffix trees, with the specialty of introducing some redundancy in the representation of
the classic trie, thus allowing the author to get around the lower bounds by Demaine
et al. [2004]. Also, the I/O-bound is optimal whenever the alphabet size is large and
the data structure is required to support the search for the lexicographic position of P
among the strings S. The space usage is O(K log N + N) bits, which is uncompressed,
and this takes into account the explicit storage of the (binary) strings and their pointers.
The string B-tree is based upon a careful organization of a B-tree layout of string
pointers, plus the use of one Patricia Trie [Morrison 1968] in each B-tree node which
organizes its strings (pointers) in optimal space and supports prefix searches in O(1)
string accesses. In addition, the string B-tree is dynamic in that it allows the efficient
insertion/deletion of individual strings from S. As for B-trees, the data structure needs
to know B in advance.

Brodal and Fagerberg [2006] made one step further by removing the dependance on
B, and thus designed a static trie-like data structure in the cache-oblivious model [Frigo
et al. 2012]. This structure is basically a trie over the indexed strings plus a few paths
which are replicated multiple times. This redundancy is the essential feature to get
around the lower bounds by Demaine et al. [2004], and it basically comes at no additional
asymptotic space cost. Overall this solution solves the prefix-search by guaranteeing
the same I/0O- and space-bounds of the string B-tree, simultaneously over all values of
B. In order to reduce the space usage, Bender et al. [2006] designed the (randomized)
cache-oblivious string B-tree (abbreviated as COSB). It achieves the improved space
of (14 €)FC(S) + O(K log N) bits, where FC(S) is the space required by the front-coded
storage of the strings in S (see Section 2), and ¢ is a positive user-defined parameter
that controls the trade-off between space usage and I/0-complexity of the query/update
operations. COSB supports searches in O(logg K + (1 + 2)(Scan(P) + Scan(succ(P))))
I/Os, where succ(P) is the successor of P in the ordered S.! The solution is randomized,
so the I/O bounds hold with high probability, and, more importantly for our subsequent
discussions, the term O((1+ 1)Scan(succ(P))) may degenerate into ©((1 + 2)v/N/B) for
some sets of strings.

Subsequently, Ferragina et al. [2008] proposed an improved in space cache-oblivious
solution for the static version of the problem. They showed that there exists a static
data structure which takes (1+¢)LB(S)+O(K) bits, where LB(S) is a lower bound to the
storage complexity of the binary strings in S. Searches can be supported in O(log, K +
Scan(P)) I/Os or in O(logz K + (1+ 1)(Scan(P) 4 Scan(succ(P)))) I/Os. Even though this
solution is deterministic, its query complexity still has the dependency on Scan(succ(P))

IThis index can be dynamized to support insertion and deletion of a string s in O(logg K + (log? N) (1 +
%)Scan(s)) I/Os plus the cost of identifying s’s rank in S.

ACM Transactions on Algorithms, Vol. V, No. N, Article A, Publication date: January 2015.

Compressed Cache-Oblivious String B-tree A:3

which might be not bounded in terms of | P|, thus resulting suboptimal. For the sake of
completeness, we note that the literature proposes many other compressed solutions
to the prefix-search problem but their algorithms appear not to be suitable for the
cache-oblivious model (see e.g., [Ferragina and Venturini 2010; Navarro and Mékinen
2007; Hon et al. 2010]).

Recently, Belazzougui et al. [2010] introduced the weak variant of the problem that
allows for a one-sided error in the answer to the prefix-search query. Namely, the answer
is required to be correct only in the case that P is a prefix of some of the (binary) strings
in S; otherwise, it leaves to the algorithm the possibility to return an arbitrary answer.
The weak-feature allowed the authors of that paper to prefix-search in the cache-
oblivious model by taking O(log, | P| + Scan(P)) I/Os in the succinct space of O(K log &)
bits. This means that the string set S is not stored explicitly, because the solution uses
only O(log %) bits per string. This improvement is significant for very large string sets,
and actually turns out to be optimal regardless of the query complexity. Subsequently,
Ferragina [2013] proposed a very simple (randomized) solution for the weak-prefix
search problem which matches the best known results, taking O(loggz N + Scan(P))
I/Os and O(K log %) bits of space. The searching algorithm is randomized, and thus its
answer is correct with high probability.

In this paper we attack three versions of increasing sophistication of the prefix-search
problem, by asking ourselves the challenging question: how much redundancy we have
to add to the classic trie data structure in order to achieve O(logg K + Scan(P)) I/Os in
the supported search operations.?

— Weak-prefix search. Returns the (lexicographic) range of strings prefixed by P, or an
arbitrary value whenever such strings do not exist.

— Full-prefix search. Returns the (lexicographic) range of strings prefixed by P, or L if
such strings do not exist.

— Longest-prefix search. Returns the (lexicographic) range of strings sharing the longest
common prefix with P.

We get the above I/0O bound of O(log K + Scan(P)) for the Weak-Prefix Search Prob-
lem, which is optimal, whereas for the other two problems we achieve O(logz K + (1 +
1)Scan(P)) I/Os, for any constant ¢ > 0. The space complexities are asymptotically
optimal because they match the space lower bounds up to constant factors. This means
that for the Weak-Prefix Search Problem we improve on Ferragina [2013] via a deter-
ministic solution (rather than a randomized one) which also offers better space usage
and better I/O-complexity; for the other two problems we improve on both Bender
et al. [2006] and Ferragina et al. [2008] via a space-1/O optimal deterministic solution
(rather than their randomized, space suboptimal, or I/O-inefficient solutions). The query
complexity of our solution matches that of the string B-Tree by Ferragina and Grossi
[1999] and the solution by Brodal and Fagerberg [2006] but significantly improves their
space usage.

Technically speaking, our results are obtained by adopting a new storage scheme that
extends the locality-preserving front coding scheme, at the base of COSB, in such a way
that any prefix of the compressed strings can be decompressed with an optimal number
of I/Os. Table I reports the main results for the three problems in the External Memory
and the Cache-Oblivious Models.

2We remark that this query bound can be looked at as nearly optimal for the following first two problems
because it has not been proved yet that the term logz K is necessary in the space bounds obtained in this

paper.

ACM Transactions on Algorithms, Vol. V, No. N, Article A, Publication date: January 2015.

A4 P. Ferragina and R. Venturini

Table I. A summary of the main results for the three problems in the External Memory and Cache-Oblivious Models

Weak-Prefix Search Problem

1/0s Space (bits) Reference
O(log, | P| 4 Scan(P)) O(K log &) [Belazzougui et al. 2010]
O(logg N + Scan(P)) * O(K log &) [Ferragina 2013]
O(log s K + Scan(P)) log (Me(9)) + O(K) Theorem 4.1

Full-Prefix Search Problem & Longest-Prefix Search Problem

1/0s Space (bits) Reference
O(logg K + Scan(P)) ** O(N 4 KlogN) [Ferragina and Grossi 1999]
O(logp K + Scan(P)) O(N + Klog N) [Brodal and Fagerberg 2006]

O(logg K + (1 + 1/€)(Scan(P) + Scan(succ(P)))) *** (1+ €)FC(S) + O(K log N) [Bender et al. 2006]
O(logg K + (1 + 1/€)(Scan(P) + Scan(succ(P)))) (14 €)LB(S) + O(K) [Ferragina et al. 2008]

O(logg K + (1 + 1/€)Scan(P)) (14 €)LB(S) + O(K) Theorems 4.3 and 4.4

* The reported results are correct with high probability.
** The result holds only in the External Memory Model, with a disk with pages of size B.
*** The complexity of this data structure holds with high probability.

2. NOTATION AND BACKGROUND

In order to simplify the following presentation of our results, we assume we are dealing
with binary strings. In the case of a larger alphabet X, it is enough to transform the
strings over X into binary strings, and then apply our algorithmic solutions. Their
I/O-complexity does not change because it depends only on the number of strings K
in S and on the number of bits that fit in a disk block (hence O(Blog N) bits). As a
further simplifying assumption we take S to be prefix free, so that no string in the set is
the prefix of another string. This condition is satisfied in applications because of the
null-character terminating each string.

Table II summarizes all our notations and terminology. Here we briefly recall a few
algorithmic tools that we will deploy to design our algorithmic solutions to the three
variants of the prefix-search problem stated in the previous section.

In the next solutions we will need two key tools which are nowadays the backbone of
every compressed index: namely, Rank/Select data structures for binary strings. Their
complexities are stated in the following theorems.

THEOREM 2.1 ([ELIAS 1974; FANO 1971]). A binary vector B[l...m] with n bits
set to 1 can be encoded by using log (") + O(n) bits so that we can solve in O(1) time the
query Selecty (B, 1), with 1 < i < n, which returns the position in B of the ith occurrence

of 1.
THEOREM 2.2 ([MUNRO 1996]). A binary vector B[1...m| with n bits set to 1 can be
encoded by using m + o(m) bits so that we can solve in O(1) time the queries Rank; (B, i),

with 1 < i < m, which returns the number of 1s in the prefix B[1...i], and Select; (B, 1),
with 1 <1 < n, which returns the position in B of the ith occurrence of 1.

In the next sections we will often use the following inequality.

ACM Transactions on Algorithms, Vol. V, No. N, Article A, Publication date: January 2015.

Compressed Cache-Oblivious String B-tree A5

Table Il. A summary of our notation and terminology.

The set of strings

Total length of the strings in S

Number of strings in S

The compact trie built on S

Number of nodes in 7g; it satisfies t < 2K — 1

The parent of the node u in Tg

label(uw) The label of the edge (p(u), u)

string(u) | The string spelled out by the path in 7s reaching u from the root

S The set S augmented with string string(u) for all v in Tg

Trie(S) The sum of edge-label lengths in 75

LB(S) Lower bound (in bits) to the storage complexity of the set of strings S which is
equal to Trie(S) + log (T;'e_(f)) bits

M The internal memory size, unknown to the algorithm

B The disk page size measured as the number of machine words that fit in one
page, unknown to the algorithm

Scan(P) | The optimal number of I/Os required to scan a binary string P[1, p|] (namely,
Scan(P) = ©(1 + |P|/(Blog N)) I/Os)

2 ARz

LEMMA 2.3 ([BRODNIK AND MUNRO 1999]). Let mg,...,msand ny,...,ns be non-
negative integers, it holds

< v Zz 1 >
lo <lo + s.
ot ()1 < (217

Front coding is a compression scheme for strings which represents S as the
sequence FC(S) = (nj, Ly1,n9, Lo, ...,nk, Lx), where n; is the length of the longest
common prefix between S; ; and S;, and L; is the suffix of S; remaining after
the removal of its first n; (shared) characters. Hence |L;| = |S;| — n;. The first
string S; is represented in its entirety, so that L; = S; and n; = 0. FC is a
well established practical method for encoding a (lexicographically sorted) string
set [Witten et al. 1999], and FC will be used to denote either the algorithmic
scheme or its output size in bits. As an example, consider the set of strings S =
{000000000, 000000001, 000001110, 000001111,000010100,000010101,00001011,0001,1}.
Its front coding is FC(S) = (0,000000000, 8,1, 5,1110, 8,1, 4,10100, 8,1, 7,1, 3,1, 0,1).

In order to estimate the space cost of FC(S) in bits, Ferragina et al. [2008] introduced

the so-called trie measure of S, defined as: Trie(S) = Zfil |L;|, which accounts for the

number of characters outputted by FC(S). And then, they devised a lower bound LB(S)
to the storage complexity of S which adds to the trie measure the cost, in bits, of storing

the lengths |L;|. We have LB(S) = Trie(S) + log (") bits.
In the paper we will often obtain bounds in terms of log (
is helpful.

Te(5)), so the following fact
FAcT 1. Forany dictionary of strings S, log (T"e(‘s)) O(K log). Nevertheless there

exist dictionaries for which K log & 7 may be up to log K times larger than log (T"e(s))
Also, O(log (")) = o(Trie(S)) + O(K).

PROOF. The first statement comes from the observation that Trie(S) < N, ¢t <2K —1
and log (")) < tlog Te5) 4 O(1p).

As far as the second statement is concerned, consider the dictionary of strings S =
{S1,..., Sk} of total length N with K = (/8N +1—1) = O(VN). String S, is equal to
1°=10. We have Trie(S) = 2K — 1 because each string S;, with i < K, shares a common

ACM Transactions on Algorithms, Vol. V, No. N, Article A, Publication date: January 2015.

A6 P. Ferragina and R. Venturini

prefix of length i —2 with the previous string S;_;. Thus log (T”e(s)) log (*K71) = O(K),

because t — 1 < 2K — 2, which is log K times smaller than K log & 7% = O(Klog K).
For the third statement, we observe that every trie edge is labeled with at least one

bit, so t — 1 < Trie(S). We are interested in the term log (™*(%)) which is bounded above
by tlog —=2 T”e) + O(t). We distinguish two cases: ¢ = o(Trie(S)) and ¢ = (Trie(S)) In the
former case, tlog M + O(t) = o(Trie(S)), while in the latter case tlog —=* Tr'e)+ O(t) =
O(t) = O(K). Hence the term log (")) is bounded above by o(Trie(S)) + O(). O

FC can be encoded with three binary arrays. One array consists of concatenating all
binary sequences corresponding to the suffixes L; of S’s strings, which sum up to Trie(S)
bits; another array marks the first bit of each of those suffixes, thus consists of Trie(S)
bits; and, finally, the third array encodes in unary the length of the shared prefixes

between consecutive strings (i.e., values n;). Since ZZK: 1 "y < N, the last array consists
of less than NN bits. The last two arrays can be encoded with the solution in Theorem 2.1

and, thus, they require at most log (")) + log (¥) + O(K) = O(K log) bits. Thus,
the representation obtained via front coding takes

LB(S) < FC(S) < Trie(S) + O(K log %) < LB(S) + O(K log %) bits. (1)

Ferragina et al. [2008] show that pathological cases exist in which front coding
requires space close to that upper bound.

A simple variant of FC, called rear coding (RC), achieves a more succinct storage
of the string set S by specifying not n; but rather the length |S;_1| — n; of the suffix
of S;_1 to be removed in order to get the longest common prefix between S;_; and S;.
This simple change is crucial to avoid repetitive encodings of the same longest common
prefixes, which is the cause of the space inefficiency of FC. Following the previous
example for the front coding scheme, the rear coding of the same set of strings S =
{OOOOOOOOO, 000000001, 000001110,000001111,000010100,000010101,00001011,0001, 1}
is RC(S) = (0,000000000, 1,1, 4,1110, 1,1, 5,10100, 1,1, 2,1, 5,1, 4,1).

We note that smaller numbers than FC’s encoding of those strings, and indeed RC
is able to come very close to LB. The idea is to encode the lengths of the suffixes to be
dropped via a binary array of length Trie(S) with K — 1 bits set to 1, as indeed those
suffixes partition 7s into K disjoint paths from the leaves to the root. Just think to
scanning the leaves of 75 rightwards, then the suffix of S; explicitly written down by
RC is the prefix of the leaf-to-root path that starts at the leaf associated to S; and
stops as soon as that path meets the previous leaf-to-root path starting at S;_;. Clearly,
S is written explicitly because its leaf-to-root path is the leftmost one in 75. As an
illustrative example, let us refer to Figure 2. We see that the leaf-to-root path starting
at leaf S5 stops immediately after percolating one edge (with binary label 1), at the node
with label 4 (whose distance in bits is 1 from the previous leaf S;), because it meets
the leftmost path which started at leaf S;. The next leaf-to-root path starting at leaf S
stops after percolating two edges (with binary labels 111 and 0) at the node with label 3
(whose distance in bits is 4 from the previous leaf S:), because at this point it meets the
leaf-to-root path which started at leaf S;. And so on. The bits over the percolated edges
and the distances in bits correspond exactly to the encoding emitted by RC.

As we have done with FC, RC can be encoded with three binary arrays. An array
consists of concatenating all binary sequences corresponding to the suffixes of S’s strings;
an array marks the first bit of each of those suffixes, and, finally, the third array encodes
in unary the length of the dropped suffixes. With reference to the previous example,
we have that the first binary array is given by [000000000, 1,1110,1,10100,1,1,1,1],

ACM Transactions on Algorithms, Vol. V, No. N, Article A, Publication date: January 2015.

Compressed Cache-Oblivious String B-tree A7

the second binary array is given by [000000000, 1, 1000, 1, 10000, 1,1, 1, 1], whilst the
third array is given by the unary encoding of [1,4,1,5,1,2,5,4]. Since Zfil [Si—1| —n; <
Trie(S), the last array in RC consists of less than Trie(S) bits, and, thus, it is shorter
than in FC. Thus, if we encode the two arrays with the solution in Theorem 2.1, their
space usage decreases to at most 2log (™)) + O(K) bits.

As a result, Ferragina et al. [2008] showed that the rear-coding representation above
takes

Trie(S)
K

where the latter equality follows from the third statement in Fact 1 and the observation
that K < ¢t. Comparing eqn. (2) and (1), the difference between RC and FC is in the
encoding of the n;, so Trie(S) < N (typically, Trie(S) < N).

The main drawback of front/rear codings is that decoding a string S; might require
the decompression of the entire sequence (0, L1, ...,n;, L;). In order to overcome this
drawback, Bender et al. [2006] proposed a variant of FC, called locality-preserving
front coding (abbreviated as LPFC), that, given a parameter ¢, adaptively partitions S
into blocks such that decoding any string S; takes optimal O((1 + 1)|5;|/B) I/Os, and
requires (1 + €)FC(S) bits of space. This adaptive scheme is agnostic in the parameter
B and offers a clear space/time tradeoff in terms of the user-defined parameter e.

RC(S) < Trie(S) + 2log <) +O(K) = (1+0(1))LB(S) + O(K) bits, (2)

3. AKEY TOOL: CACHE-OBLIVIOUS PREFIX RETRIEVAL

The novelty of our paper consists in a surprisingly simple representation of S which is
compressed and still supports the cache-oblivious retrieval of any prefix of any string of
S in an optimal number of I/Os and bits of space (up to constant factors). The striking
news is that, despite its simplicity, this result will constitute the foundation for our
improved algorithmic solutions.

In this section we describe our solution on tries even though it is sufficiently general
to represent any (labeled) tree in compact form while guaranteeing optimal traversal of
any root-to-a-node path in the cache-oblivious model. We assume that the trie nodes
are numbered according to the time of their DFS visit. Any node v in 7s is associated
with label(w) which is (the variable length) string on the edge (p(u),), where p(u) is
the parent of u in 7s. Observe that any node u uniquely identifies the string string(u)
that is a prefix of all strings of S descending from . The string(u) can be obtained by
concatenating the labels of the nodes on the path from the root to u. Our goal is to
design a storage scheme whose space use is close to LB(S) bits and supports in optimal
time/I0 the following operation:

— Retrieval(u,¢) returns the prefix of the string string(u) with length ¢ €
(Istring(p(w))], |string(w)|]. So the returned prefix ends up in the edge (p(u), u).

In other words, Retrieval supports the efficient access to any string prefix, and thus
any root-to-a-node path in the trie built over S. Formally, we aim to prove the following
theorem.

THEOREM 3.1. Given a set S of K binary strings with total length N, there exists
a storage scheme for S that occupies (1 + ¢)LB(S) + O(K) bits, where ¢ > 0 is any fixed

constant, and solves the query Retrieval(u, ¢) in optimal O(1 + (1 + %)ﬁ) 1/0s.

Before presenting the proof of this theorem, let us discuss the efficiency of two close
relatives of our solution: Giraffe tree decomposition [Brodal and Fagerberg 2006] and
Locality-preserving front coding (LPFC) [Bender et al. 2006]. The former solution has the

ACM Transactions on Algorithms, Vol. V, No. N, Article A, Publication date: January 2015.

A8 P. Ferragina and R. Venturini

same time complexity as our solution but has a space usage of at least 3 - LB(S) + O(K)
bits. The latter approach has (almost) the same space usage as our solution but provides
no guarantee on the number of I/Os required to access prefixes of the strings in S.

Our novel storage scheme accurately lays out the labels of nodes of 7s so that any
string(u) can be retrieved in optimal O((1 + %)Scan(string(u))) I/Os. This is sufficient to
obtain the bound stated in Theorem 3.1 because, once we have reconstructed string(p(u)),
we can complete the execution of Retrieval(u, £) by accessing the prefix of label(u) of length
j = £ —|string(p(u))| which is written consecutively in memory. One key feature of our
storage scheme is a proper replication of some labels in the layout, whose space is
bounded by ¢ - LB(S) bits.

The starting point is the amortization argument in LPFC [Bender et al. 2006] which
represents S by means of a variant of the classic front-coding in which some strings
are stored explicitly rather than front-coded. More precisely, LPFC writes the string 5,
explicitly, whereas all subsequent strings are encoded in accordance with the follow-
ing argument. Suppose that the scheme already compressed i — 1 strings and has to
compress string S;. It scans back ¢|S;| characters (here bits, because strings are binary)
in the current representation to check if it is possible to decode S;, where ¢ = 2 + 2/e.
If this is the case, S; is compressed by writing (n;, L;); otherwise S; is fully written

s (0, S;). A sophisticated amortization argument by Bender et al. [2006] proves that
LPFC requires (1 + ¢)LB + O(K log(N/K)) bits of storage and an optimal decompres-
sion time/IO of any string S; € S, namely O((1 + 1)Scan(S;)) I/Os. This space-bound
can be improved by replacing front coding with rear coding, whilst still ensuring an
optimal decompression time/IO. We call this approach LPRC, Locality Preserving Rear
Coding, and prove straightforwardly the following result (here included for the sake of
completeness).

FACT 2. Given a set S of K binary strings with total length N, the LPRC storage
scheme for S occupies (1 + €)LB(S) + O(K) bits, where € > 0 is any fixed constant, and
decompresses any string s € S in optimal O(1 + (1 + 1)Scan(s)) I/0Os.

PRrROOF. This proof adapts the analysis in Bender et al. [2006] to use rear coding in
place of front coding as compressed storage scheme for the string set S. As in Bender
et al. [2006], we can deduce that LPRC takes the optimal I/O-bound stated above to
decompress any string S;. Indeed, either S; is fully written or it is rear-coded, but, in
this case, it is enough to look back at most ¢|S;| bits (by definition of LPRC). So it only
remains to show that the extra-space occupied by the fully-written strings, namely the
ones in S that were possibly compressed by RC but are left uncompressed by LPRC, sums
up to € times the rear-coding bound given in eqn. 2.

Let s’ and s be two consecutive strings left uncompressed by LPRC, and denote the c|s|
bits belonging to the suffixes of S’s strings that have been explored during the backward
check as the left extent of s. There can be no other uncompressed strings beginning in
the left extent of s (otherwise it would have been compressed by RC), and note that
s’ starts before the left extent of s but could end within that extent. We consider two
cases for s depending on the amount of bits written for the rear-coded strings that lie
between s’ and s. The first case is called crowded and occurs when the number of bits is

at most 0‘73 (see Figure 1 left); the second case is called uncrowded and occurs when the

number of bits is at least % (see Figure 1 right).

If s is crowded, then s’ starts before the left extent of s (hence at least c|s| bits before
s) but ends within the last c|s|/2 bits of that extent. This means that |s’| > ¢|s|/2. In the
other (uncrowded) case, s is preceded by at least c|s|/2 bits of rear-coded strings. These
two properties allow us to bound the total length of the uncompressed strings.

ACM Transactions on Algorithms, Vol. V, No. N, Article A, Publication date: January 2015.

Compressed Cache-Oblivious String B-tree A9

cls| cls|
| s O | s e
|5 cls|
=N =5
(a) String s is crowded (b) String s is uncrowded

Fig. 1. The light gray rectangles denote the suffixes of the rear-coded strings, and the gray rectangles denote
the two consecutive uncompressed strings s’ and s.

We partition the fully-written strings into chains composed of one uncrowded string
followed by the maximal sequence of crowded strings (recall that all of them are un-
compressed in LPRC). The total number of bits in each chain is proportional to the
length of its first string, namely the uncrowded one. Precisely, consider the chain
wiws - - - w, of consecutive uncompressed strings, where w; is uncrowded and the fol-
lowing w;s are crowded. Take any crowded w;. By the observation above, we have that
|lw;_1| > c|lw;|/2 or, equivalently, |w;| < 2|w;_1|/c < --- < (2/¢)" " |w;|. Summing the
length of the uncompressed strings in the chain, we have >°7 | |w;| = |wi| + Y71 Jwi| <
w1 + 7 (2/¢)Ywi| = [wr] Yho(2/¢)' < 444l The latter inequality follows from
the assumption that we have set c =2 +2/¢ > 2.

Finally, since w; is uncrowded, it is preceded by at least c|w,|/2 bits of rear-coded
string (see above); moreover we know that the total storage of uncrowded strings is
bounded above by RC. Consequently we can upper bound the space induced by all
uncrowded strings, starting the chains, by %RC. By plugging this into the previous
bound on the total length of the chains of uncompressed strings, we get _%; x %RC =
CE—QRC = ¢RC. Summing this space cost to the one needed to store the strings which are
rear-coded also by LPRC, namely no more than RC bits (because they are a subset of S),
we get an upper bound of (1 + ¢)RC < (1 + €)LB(S) + O(K), because of eqn. 2. O

Although elegant, this fact does not suffice to guarantee an optimal decompression
for prefixes of s because this might cost up to ©((1 + 1)Scan(s)) I/Os regardless of the
length of the string prefix to be decompressed.

In order to circumvent this limitation, we modify LPRC (or, similarly, LPFC) as follows.
We define the superset S of S which contains one additional string string(u) for each node
u in Ts (possibly a leaf). The string string(u) is a prefix of string(v), for any descendant v
of v in Tg, so string(u) is lexicographically smaller than string(v). The lexicographically
ordered S can thus be obtained by visiting the nodes of 75 according to a DFS visit.
Figure 2 shows 75 and S for a set of strings.

In order to design an optimal storage and decompressor for string prefixes, we
introduce the following data structures.

— R is the compressed output obtained by computing LPRC(S). Since we require that

all pairs emitted by LPRC(S) are self-delimited, we prefix each pair p with its length
coded with Elias’ Gamma thus taking 2 log |p| + 1 bits [Witten et al. 1999]. By Fact 2 we

know that R requires no more than (1+ ¢)LB(S) + O(K) bits. Thus the key observation

is that the trie measure of S coincides with that of S (i.e., Trie(S) = Trie(S)), so
that |R| = (1 + ¢)LB(S) + O(K) = (1 + ¢)LB(S) + O(K). Moreover, the cost of self-
delimiting the ¢ pairs p; emitted by LPRC with Elias’ Gamma coding is at most

2221(2 log |pi|+1) < 2tlog(|R|/t)+O(t) = o(Trie(S))+ O(K) bits by Jensen’s inequality

ACM Transactions on Algorithms, Vol. V, No. N, Article A, Publication date: January 2015.

A:10 P. Ferragina and R. Venturini

000

0000

000
00000

00000000

9

000000000
/ \ 000000001

00000111

8
0 000001110
/ \ 000001111
@ 0000101
000 111 00001010
/ \ / \ 000010100
@ @ @ Sy 000010101
o/\1 o/\1 o/\1 00001011
0001

Sa || S3 || Sa || S5 || S6 1
(a) Trie Ts (b) Superset S

Fig. 2. The figure shows the trie 7s of the set of strings S =
{000000000, 000000001, 000001110, 000001111, 000010100,000010101,00001011,0001,1} and, to the

right, the superset S of S where the string string(u) is written in black if the node u is a leaf or otherwise in
gray.

and Fact 1. As a result, the overall cost of storing R and self-delimiting its pairs is
(14 €)LB(S) + O(K) bits.

— The binary array FJ[1...|R|] which sets to 1 the positions in R where the encoding
of some string(u) starts. F contains ¢ — 1 bits set to 1, one per trie’s edges apart
from the first one which surely starts at E[1]. Array E is enriched with the data
structure in Theorem 2.1 so that Select; queries can be computed in constant time. The

space usage of E is log (}™]) bits (Theorem 2.1). Therefore |E| < tlog(|R|/t) + O(t) =

o(Trie(S)) + O(K) bits®.

— The binary array V]1...t] that has an entry for each node in 7s according to their
(DFS-)order. The entry V[u] is set to 1 whenever string(u) has been fully-copied in R, 0
otherwise. We augment V' with the data structure of Theorem 2.2 to support Rank and
Select queries. Vector V requires just O(K) bits, according to Theorem 2.2.

3Note that the binary array E could be also used to self-delimit the pairs p; of the previous item instead
of Gamma coding. However, there is a subtle size issue which may impact on the cache-oblivious scanning
of R. Indeed, the Elias-Fano coding of FE does not guarantee that the space taken by an individual pair is
proportional to its space in R. Conversely, this is guaranteed by using the self-delimiting Gamma code.

ACM Transactions on Algorithms, Vol. V, No. N, Article A, Publication date: January 2015.

Compressed Cache-Oblivious String B-tree A:11

In order to answer Retrieval(u, ¢) we first implement the retrieval of string(u), namely
the string spelled out by the root-to-u path in 7s. The query Select;(E, u) gives in
constant time the position in R where the encoding of string(u) starts. Now, if this string
is stored uncompressed in R then we are done; otherwise we have to reconstruct it. This
has some subtle issues that have to be addressed. For example, we do not know the
length of string(u) since the array F encodes the individual edge-labels and not their
lengths from the root of 75. Nevertheless we reconstruct string(u) forward by starting
from the first copied string (say, string(v)) that precedes string(u) in R. The node index v
is obtained by computing Select; (V, Rank; (V, «)) which identifies the position of the first
1in V that precedes the entry corresponding to u (i.e., the closer uncompressed string
preceding v in the DFS-visit of 7).

Assume that the copy of string(v) starts at position p, in R, which is computed
by selecting the v-th 1 in the E. By the DFS-order processing of 7s and by the fact
that string(u) is rear-coded, it follows that string(u) can be reconstructed by copying
characters in R starting from position p, up to the occurrence of string(u). We recall
that if w and w’ are two nodes consecutive in the DFS-visit of 7, rear-coding writes the
number [string(w)| — lcp(string(w), string(w’)) (namely, the length of the suffix of string(w)
that we have to remove from w in order to obtain the length of its longest common
prefix with string(w’)) and the remaining suffix of w’. This information is exploited in
reconstructing string(u). We start by copying string(v) into a buffer, and then scan R
forward from position p,. For every value m written by rear-coding, we overwrite the
last m characters of the buffer with the characters in R of the suffix of the current
string (delimited by E’s bits set to 1). At the end, the buffer will contain string(u). By
LPRC’s properties, we are guaranteed that this scan takes O((1 + %)Scan(string(u)) I/Os.

Let us now come back to the solution of Retrieval(u, ¢). First of all we reconstruct
string(p(u)), then determine the edge-label (p(u),u) in E given the DFS-numbering of u
and a Select; operation over E. We finally take from this string its (contiguous) prefix of
length ¢ — |string(p(u))|; the latter is known because we have in fact reconstructed that
string.

4. SEARCHING STRINGS: THREE PROBLEMS

In this section we address the three problems presented in the introduction; they allow
us to frame the wide spectrum of algorithmic difficulties and solutions related to the
search for a pattern within a string set.

PROBLEM 1 (Weak-Prefix Search Problem). Let S = {S1,S5s,...,Sk} be a set of K
binary strings of total length N. We wish to preprocess S so that, given a pattern P, we
can efficiently answer the query weakPrefix(P) which asks for the range of strings in S
prefixed by P. An arbitrary answer could be returned whenever P is not a prefix of any
string in S.

The lower bound in Belazzougui et al. [2010] states that Q(K log %) bits are necessary
regardless of the query time. We show the following theorem.

THEOREM 4.1. Given a set of S of K binary strings of total length N, there exists a

deterministic data structure requiring log (T;'i(f)) + O(K) bits of space that solves the

Weak-Prefix Search Problem for any pattern P with O(logg K + Scan(P)) I/Os.

Trie

The space usage is optimal up to constant factor since log (t_(f)) is always at most

Klog % (see Fact 1). Moreover, our refined estimate of the space usage, which depends
on the characteristics of S, may go below the general lower bound in Belazzougui
et al. [2010] which depends only on N and K. Our improvement may be up to a factor
O(log K), see Fact 1. The query time instead is almost optimal, because it is not clear

ACM Transactions on Algorithms, Vol. V, No. N, Article A, Publication date: January 2015.

A2 P. Ferragina and R. Venturini

whether the term log; K is necessary with this space bound. In short, our data structure
is deterministic, smaller and faster than previously known solutions.

Technically speaking we follow the solution in Ferragina [2013] by using two-level
indexing. We start by partitioning S into s = K/log N groups of (contiguous) strings
defined as follows: S; = {S1tilog N, S24ilog Ny - -+ Sii+1)10g N} fOri =10,1,2,...,5 — 1. We
then construct a subset S;,, of S consisting of 2s = O(@) representative strings

obtained by selecting the first and the last string in each of these groups. The index in
the first level is responsible for searching for the pattern P within the set Sy, in order
to identify an approximate range. This range is guaranteed to contain the range of
strings prefixed by P. A search on the second level suffices to identify the correct range
of strings prefixed by P. We have two crucial differences w.r.t. the solution in Ferragina
[2013]: 1) our index is deterministic; 2) our space-optimal solution for the second level
is the key for achieving Theorem 4.1.

First level. As in Ferragina [2013] we build the Patricia Trie PTy,, over the strings in
Stop With the change that we store in each node v of PTy,, a fingerprint of O(log N) bits
computed for string(u) according to Karp-Rabin fingerprinting [Karp and Rabin 1987].
The crucial difference w.r.t. Ferragina [2013] is the use of a (deterministic) injective
instance of Karp-Rabin that maps any prefix of any string in S into a distinct value in
an interval of size O(N?).# Given a string S[1... s], the Karp-Rabin fingerprinting rk(S)
is equal to >_7_, S[i] - * (mod M), where M is a prime number and r is a randomly
chosen integer in [1, M — 1]. Given the set of strings S, we can obtain an instance rk() of
the Karp-Rabin fingerprinting that maps all the prefixes of all the strings in S to the
first [M] integers without collisions, with M chosen from the first ©(N?) integers. It
is known that a value of ¢ that guarantees no collisions can be found in expected O(1)
attempts. In the cache-oblivious setting, this implies that finding a suitable function
requires O(Sort(N)) I/Os in expectation, where Sort(N) is the number of I/Os required to
sort N integers and thus to check whether the selected hash function has no collision.

Given the binary Patricia Trie PT.,, and the pattern P, our goal is to find the lowest
edge e = (v, w) such that string(v) is a prefix of P and string(w) is not. This edge can be
found with a standard trie search on PT,, where fingerprints of P are compared with
the ones stored in the traversed nodes. A cache-oblivious efficient solution is obtained
by laying out PTy, via the centroid trie decomposition [Bender et al. 2006]. This layout
guarantees that the above search requires O(logy K + Scan(P)) 1/Os.

We note that the algorithm proposed in Ferragina [2013] identifies the edge ¢ only
with high probability. The reason is that a prefix of P and a prefix of a string in S may
have the same fingerprint even if they are different. Our use of the injective Karp-Rabin
fingerprints avoids this situation by guaranteeing that the search is always correct?®.

Figure 3 shows the strings in set S;,, and the corresponding patricia trie PTy,, for a
set of binary strings.

Second level. For each edge e = (u,v) of PTy,, we define the set of strings S. as
follows. Assume that each node v of PTy,, points to its leftmost/rightmost descending
leaf, denoted by L(v) and R(v) respectively. We call S;(,,) and Sg(,) the two groups of
strings, from the grouping above, that contain L(v) and R(v). Then S, = Sy,(,) U Sg(v)-
We have a total of O(K/logn) sets, each consisting of O(log N) strings. The latter is the
key feature that we exploit in order to index these small sets efficiently by resorting to
Lemma 4.2. It is worth noting that S, will not be constructed and indexed explicitly,

4Note that we require the function to be injective for prefixes of strings in S not Siop.
5Recall that in the Weak-Prefix Search Problem we are searching under the assumption that P is a prefix of
at least one string in S.

ACM Transactions on Algorithms, Vol. V, No. N, Article A, Publication date: January 2015.

Compressed Cache-Oblivious String B-tree A:13

O[OO/ \
S 000000000
000000001 / Noﬂ
S; 000001110

S, 000001111

1011
00010100 o[ooo]/\ [11] o[ﬂ/\
60 B

9

Sg 000010101

1
S7 00001011
0 1
0001

So 1 S3 || Sa

Sy

(a) Stop (b) Patricia trie of Siop

Fig. 3. The figure reports (in black) the strings in set Siop selected from S with groups of size 3 and the
corresponding patricia trie PTtop.

rather we will index the sets Sy,(,,) and Sg(,) individually, and keep two pointers to each
of them for every edge e. This avoids duplication of information and some subtle issues
in the storage complexities, but poses the problem of how to weak-prefix search in S,
which is only virtually available. The idea is to search in S;,(,,) and Sg(, individually,
and two cases may occur. Either we find that the range of S’s strings prefixed by P is
totally within one of the two sets, and in this case we return that range; or we find
that the range includes the rightmost string in Sy, and the leftmost string in Sg(,),
and in this case we merge them. The correctness comes from the properties of trie’s
structure and the first-level search, as one can prove by observing that the trie built
over Sr,(,) U Sg(v) is equivalent to the two tries built over the two individual sets except
for the rightmost path of S;(,,) and the leftmost path of Sg(,) which are merged in the
trie for S.. This merge is not a problem because if the range is totally within Sg(,), then
the dominating node is within the trie for this set and thus the search for P would
find it by searching either Sg(,,) or S.. Similarly this holds for a range totally within
SL(v)- The other case comes by exclusion, so the following lemma makes it possible to
establish the claimed I/0 and space bounds.

LEMMA 4.2. Let S; be a set of K; = O(log N) strings of total length at most N. The
Patricia trie of S; can be represented by requiring log (T”e(s)) + O(K;) bits of space so

that the blind search of any pattern P requires O((log K)/B + Scan(P)) 1/Os, where t;
is the number of nodes in the trie of the set S;.

PROOF. Let PT be the patricia trie of S;. The patricia trie is formed by three different
components: the structure of the tree of O(K;) nodes, the first symbol of the label of
each edge, and the lengths of the (labels on the) edges.

ACM Transactions on Algorithms, Vol. V, No. N, Article A, Publication date: January 2015.

A:14 P. Ferragina and R. Venturini

The structure of the PT is represented by using balanced parenthesis in O(¢;) =
O(K;) = O(log N) bits. In correspondence with the open parenthesis of a node we also
write the symbol on the edge from that node to its parent. Once this representation is
in memory, accessing the structure of the tree and symbols is for free since the whole
representation fits in a constant number of memory blocks for any possible value of B.5

Representing the lengths on the edges is more complex. The idea is to divide edge-
lengths into two groups: group L contains the length of the edge (v, w) iff |string(u)| <
K, log N and group H contains the remaining lengths. Intuitively, L contains the edge-
length required to search for the first K; log N symbols (i.e., bits) of any pattern P while
lengths in H are required to complete the search for patterns that are longer than
K, log N. Observe that if the lengths are presented in level-wise order and we have
access to the PT structure and its edge-symbols, a pattern can be searched for by first
scanning lengths in L, and then, if the pattern is longer than K log N, by continuing
with the scanning of H. The lengths in L and H are represented with the Elias-Fano
solution of Theorem 2.1. Accessing the values of this representation sequentially can
be done cache-obliviously with a simple scan. The space usage of these two Elias-Fano
representations is in the space bound of Lemma 4.2. Indeed, we observe that we have
overall t; — 1 edge-lengths that sum up to Trie(S;). A single Elias-Fano representation
for all the edge-lengths would require log (T;'ei‘sl’)) + O(K;) bits according to Theorem 2.1.
Inequality in Lemma 2.3 guarantees that we achieve the same upper bound even if we
divide these lengths into the two (non-overlapping) groups L and H.

Regarding the query complexity, the scanning of L requires O(1 + K;(log K; +
loglog N)/(Blog N)) I/Os, since it contains at most K, lengths representable with
O(log K; + loglog N) bits each. Observe that this bound is O(1 + (log K;)/B) because
if K; = O(log N/loglog N) then the whole L fits in one memory word and the bound
is O(1) I/Os; otherwise K; = Q(log N/loglog N) and the bound is O(1 + (log K;)/B)
I/Os. Similarly, scanning H requires O(1 + K;/B) 1/Os, since it contains at most K;
lengths representable with at most log N bits each. Observe that H is scanned only
for patterns P of length p = Q(K;log N) bits and, thus, scanning the pattern costs
O(Scan(P)) = Q(1 + K;/B). This concludes the proof of Lemma 4.2. O

To conclude the proof of Theorem 4.1, we distinguish two cases based on the value
of K. If K = O(log N), we do not use the first level since Lemma 4.2 with K; = K
already matches the bounds in Theorem 4.1. Otherwise K = Q(log N), and we use
Lemma 4.2 to index each set S; above with the key strategy of removing the prefix
common to all the strings in each set because it is already stored in the first level.
We call S/ the set of strings obtained by stripping their common prefix. Searching P
requires O(logz K + Scan(P)) I/Os on the first level and O((loglog N)/B + Scan(P)) =
O(logg K + Scan(P)) I/Os on the second level. For the space usage, we observe that the
first level requires O(K) bits, and the second level requires >, (log (T;'e(j)) + K;) bits
according to Lemma 4.2. The latter space bound is at most), (log (th”e_(‘ls))) + O(K)
bits by noticing that >, K; <> . t; <t = O(K), because each string of S belongs to at
most one set S;, and that >, Trie(S]) < 2Trie(S), because the edge-labels shared by the
first string in S; and the last string in S/_; are repeated at most twice.

PROBLEM 2 (Full-Prefix Search Problem). Let & = {51, 55,...,S5k} be a set of K bi-
nary strings of total length N. We wish to preprocess S in such a way that, given a
pattern P, we can efficiently answer the query Prefix(P) which asks for the range of

6Indeed, the cache-oblivious model is transdichotomous and, thus, any block size B is at least Q(log V) bits.

ACM Transactions on Algorithms, Vol. V, No. N, Article A, Publication date: January 2015.

Compressed Cache-Oblivious String B-tree A:15

strings in S with P as prefix, the value | is returned whenever P is not a prefix of any
string in S.

This is the classic prefix-search which requires to establish whether P is or is not the
prefix of any string in S. By combining Theorems 3.1 and 4.1 we obtain the following
theorem.

THEOREM 4.3. Given a set of S of binary strings of size K of total length N, there
exists a data structure requiring (1 + ¢)LB(S) + O(K) bits of space that solves the Full-
Prefix Search Problem for any pattern P with O(logg K + (1 + 1)Scan(P)) I/Os, where
e > 0 is any constant. ‘

We use the solution of Theorem 4.1 to identify the highest node u from which descends
the largest range of strings that have P as prefix. Then, we use Theorem 3.1 to check
I/0-optimally whether Retrieval(u,|P|) equals P. The space usage of this solution is
optimal up to a constant factor; the query complexity is almost optimal as it is unclear
whether it is possible to remove the log; K term and still maintain optimal space.

PROBLEM 3 (Longest-Prefix Search Problem). Let S = {S1,55,...,5k} be a set of K
binary strings of total length N. We wish to preprocess S in such a way that, given a
pattern P, we can efficiently answer the query LPrefix(P) which asks for the range of
strings in S sharing the longest common prefix with P.

This problem waives the requirement that P is a prefix of some of the strings in S,
and thus searches for the longest common prefix between P and S’s strings. If P is a
prefix of some strings in S, then this problem coincides with the classic prefix-search.
Possibly the identified lcp is the null string, and thus the returned range of strings is
the whole set S. We will prove the following result.

THEOREM 4.4. Given a set of S of K binary strings of total length N, there exists a
data structure requiring (1 + €)LB(S) + O(K) bits of space that solves the Longest-Prefix
Search Problem for any pattern P with O(logg K + (1 + 1)Scan(P)) I/Os, where € > 0 is
any constant.

First we build the data structures of Theorem 3.1 with a constant ¢’ to be fixed at a
later stage, in order to efficiently access prefixes of strings in S but also as a basis to
partition the strings. It is convenient to observe this process on 7s. Recall that the data
structure of Theorem 3.1 processes nodes of 75 in DFS-order. For each visited node u, it
encodes string(u) either by copying string(u) or by writing label(u). In the former case we
say that u is marked. Let Scopieq be the set formed by the string(u) of any marked node w.
The goal of a query LPrefix(P) is to identify the lowest node w in 75 which shares the
longest common prefix with P. We identify the node w in two phases. In the first phase
we solve the query LPrefix(P) on the set Scopied in order to identify the range of all the
(consecutive) marked nodes [v;, v,] sharing the longest common prefix with P. Armed
with this information, we start a second phase that scans appropriate portions of the
compressed representation R of Theorem 3.1 to identify our target node w.

In the following we say that a node u is smaller than a node v iff u precedes v in the
DFS-visit of 7s, u is larger than v otherwise.

First phase. We index the set Scopied With a two-level indexing approach as in Weak-
prefix Search with the difference that we replace the index on the first level with the
cache-oblivious solution in Brodal and Fagerberg [2006]. By the properties of the data
structure in Theorem 3.1 we know that the total length of the strings in Scopied is at most
¢ - LB(S) and their number is at most ¢ < 2K. This implies that applying the solution
in Brodal and Fagerberg [2006] requires ¢ ¢’ - LB(S) + O((|Scopied|/ log N) - 1og | Scopied|) =
c- € - LB(S) + O(K) bits of space, for a constant c. We adjust the constants to match the

ACM Transactions on Algorithms, Vol. V, No. N, Article A, Publication date: January 2015.

A:16 P. Ferragina and R. Venturini

one in Theorem 4.4 by fixing ¢’ = €¢/c, so to get € - LB(S) + O(K) bits as required. It is
easy to see that this two-level index identifies the range of marked nodes [v;, v,,] which
share the longest common prefix with P in O(logz K + Scan(P)) I/Os.

Second phase. We aim to find the target node w starting from the range of marked
nodes [v;, v,]. Consider the marked node u; (resp. u,) that precedes (resp. follows) v;
(resp. v,.) in the DFS-visit of 7s. The crucial property is that our target node w is either
between w; and v;, or between v, and w, in the DFS-visit of 7s. By this property it
follows that string(w) is represented in R either between v; and v;, or between v, and w,.,
with the additional observation that no other copied string() is in between them. Clearly
w and its position are unknown to the algorithm. Thus, our solution first identifies the
unmarked node w; in the first interval which shares the longest common prefix with P,
then the homologous node w, in the second interval. Here we show the search for w;,
since the search for w, is the same.

We first compute the longest common prefix (say, L) between P and string(u;).
Since string(u;) is copied (marked) this costs O(Scan(P)). Then, we move to the end
of string(u;)’s encoding in R and we try to extend L by matching further symbols be-
tween P and the subsequent nodes z represented in R via the DFS-visit order. The
procedure stops as soon as L cannot be further increased which means, by the DFS-visit
order, that 1cp(string(z), P) becomes shorter than L. It is tempting to scan and match
R up to the position corresponding to the (unknown) w;. Unfortunately, this approach
would only guarantee a complexity in O(Scan(string(w;))) I/Os which may potentially be
w(Scan(P)). Consider for example the case when string(w;) is much longer than P and P
is one of its proper prefixes. Thus, we use a slightly different strategy. We stop as soon
as we have scanned the first (2 + 2/¢)|P| bits in R. Our claim is that the parent of w;
(denoted p(w;)) must be represented in this portion and it is correctly identified by our
algorithm.

The proof is as follows. We have that string(w;) and P have to share a common prefix
longer than string(p(w;)); otherwise p(w;) would be our answer. Thus string(p(w;)) is
a proper prefix of P implying |string(p(w;))| < |P|. Moreover, p(w;) precedes w; in the
DFS-visit and, thus, precedes w; in R. Since string(p(w;)) is not copied, it is represented
in the first (2+2/¢)string(p(w;)) < (2+2/¢€)|P| bits of R because of the properties of LPRC.
The node p(w;) is easily identified by our algorithm, since p(w;) is the node represented
in this region with the longest string() which is a proper prefix of P. Given p(w;) we can
identify w; by just taking its left or right child depending on the next bit in P. The left
child is the string immediately to the right of p(w;) in R, and the right child can be
identified by adding to the data structure of Theorem 3.1 an encoding of the structure
of the underlying trie using additional O(K) bits (see e.g., He et al. [2012]) and just
one more I/O. At this point 1cp(string(w;), P) can be computed by accessing the label of
the edge (p(w;),w;) in R via a Select; (E, w;), taking O(1) more I/Os. Finally by matching
P and string(w;) bits-by-bits we compute their lcp. The same is done for w, and the
comparison between the two lcps determines the node w we were searching for.

5. CONCLUSION AND FUTURE WORK

In this paper we proposed cache-oblivious optimal or almost-optimal solutions for three
variants of the well-known prefix-search problem over strings. We foresee two main open
questions. The first one concerns the design of a dynamic solution for these problems
in compressed space. The second question asks to prove or disprove the existence of a
solution for the Weak-prefix search and the Full-prefix search problems whose query
complexity is o(logz K) + O(Scan(P)) I/Os having a space usage close to the ones stated
in Theorems 4.1 and 4.3.

ACM Transactions on Algorithms, Vol. V, No. N, Article A, Publication date: January 2015.

Compressed Cache-Oblivious String B-tree A:17

References

Alberto Apostolico. 1985. The Myriad Virtues of Subword Trees. Combinatorial Algorithms on Words (1985),
85-96.

Djamal Belazzougui, Paolo Boldi, Rasmus Pagh, and Sebastiano Vigna. 2010. Fast Prefix Search in Little
Space, with Applications. In Proceedings of the 18th Annual European Symposium on Algorithms (ESA).
427-438. DOI : http://dx.doi.org/10.1007/978-3-642-15775-2_37

Michael A. Bender, Martin Farach-Colton, and Bradley C. Kuszmaul. 2006. Cache-oblivious string B-trees. In
Proceedings of the 25th ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems
(PODS). 233—-242. DOI : http://dx.doi.org/10.1145/1142351.1142385

Gerth Stglting Brodal and Rolf Fagerberg. 2006. Cache-oblivious string dictionaries. In Proceed-
ings of the 17th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA). 581-590.
DOI:http://dx.doi.org/10.1145/1109557.1109621

Andrej Brodnik and J. Ian Munro. 1999. Membership in Constant Time and Almost-Minimum Space. SIAM
J. Comput. 28, 5 (1999), 1627-1640. DOI : http://dx.doi.org/10.1137/S0097539795294165

Erik D. Demaine, John Iacono, and Stefan Langerman. 2004. Worst-Case Optimal Tree Layout in a Memory
Hierarchy. CoRR ¢s.DS/0410048 (2004).

Peter Elias. 1974. Efficient Storage and Retrieval by Content and Address of Static Files. J ACM 21, 2 (1974),
246-260. DOI : http://dx.doi.org/10.1145/321812.321820

Robert M. Fano. 1971. On the number of bits required to implement an associative memory. Memorandum 61,
Computer Structures Group, Project MAC, MIT, Cambridge, Mass. (1971).

Paolo Ferragina. 2013. On the weak prefix-search problem. Theorectical Computer Science 483 (2013), 75-84.
DOI:http://dx.doi.org/10.1016/j.tcs.2012.06.011

Paolo Ferragina and Roberto Grossi. 1999. The String B-tree: A New Data Structure for
String Search in External Memory and Its Applications. J ACM 46, 2 (1999), 236-280.
DOI:http://dx.doi.org/10.1145/301970.301973

Paolo Ferragina, Roberto Grossi, Ankur Gupta, Rahul Shah, and Jeffrey Scott Vitter. 2008. On
searching compressed string collections cache-obliviously. In Proceedings of the 27th ACM
SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems (PODS). 181-190.
DOI:http://dx.doi.org/10.1145/1376916.1376943

Paolo Ferragina and Rossano Venturini. 2010. The Compressed Permuterm Index. ACM Trans. Algorithms 7,
1, Article 10 (2010), 10:1-10:21 pages. DOI: http://dx.doi.org/10.1145/1868237.1868248

Paolo Ferragina and Rossano Venturini. 2013. Compressed Cache-Oblivious String B-tree.
In Proceedings of 2I1th Annual European Symposium on Algorithms (ESA). 469-480.
DOI:http://dx.doi.org/10.1007/978-3-642-40450-4_40

William Frakes and Ricardo Baeza-Yates. 1992. Information Retrieval: Data Structures and Algorithms.
Prentice-Hall.

Edward Fredkin. 1960. Trie memory. Communication of the ACM 3, 9 (Sept. 1960), 490-499.

Matteo Frigo, Charles E. Leiserson, Harald Prokop, and Sridhar Ramachandran. 2012. Cache-Oblivious Algo-
rithms. ACM Transactions on Algorithms 8, 1 (2012), 4. DOI : http:/dx.doi.org/10.1145/2071379.2071383

Dan Gusfield. 1997. Algorithms on Strings, Trees, and Sequences - Computer Science and Computational
Biology. Cambridge University Press.

Meng He, J. Ian Munro, and Srinivasa Rao Satti. 2012. Succinct ordinal trees based on tree covering. ACM
Transactions on Algorithms 8, 4 (2012), 42. DOI : http://dx.doi.org/10.1145/2344422.2344432

Wing-Kai Hon, Rahul Shah, and Jeffrey Scott Vitter. 2010. Compression, Indexing, and Retrieval for Massive
String Data.. In Procedings of the 21st Annual Symposium on Combinatorial Pattern Matching CPM.
260-274. DOI : http://dx.doi.org/10.1007/978-3-642-13509-5_24

Richard M. Karp and Michael O. Rabin. 1987. Efficient Randomized Pattern-Matching Algorithms. IBM
Journal of Research and Development 31, 2 (1987), 249-260. DOI: http://dx.doi.org/10.1147/rd.312.0249

Donald R. Morrison. 1968. PATRICIA - practical algorithm to retrieve coded in alphanumeric. J. ACM 15, 4
(1968), 514-534.

J. Ian Munro. 1996. Tables. In Proceedings of the 16th Annual Conference on Foundations of Software Technol-
ogy and Theoretical Computer Science (FSTTCS). 37-42. D01 : http://dx.doi.org/10.1007/3-540-62034-6_35

Gonzalo Navarro and Veli Mékinen. 2007. Compressed Full-text Indexes. ACM Comput. Surv. 39, 1, Article 2
(2007). DOI : http://dx.doi.org/10.1145/1216370.1216372

Ian H. Witten, Alistair Moffat, and Timothy C. Bell. 1999. Managing Gigabytes: Compressing and Indexing
Documents and Images (second ed.). Morgan Kaufmann Publishers, Los Altos, CA 94022, USA. xxxi +
519 pages.

ACM Transactions on Algorithms, Vol. V, No. N, Article A, Publication date: January 2015.

