
10

The Compressed Permuterm Index

PAOLO FERRAGINA

University of Pisa, Italy

ROSSANO VENTURINI

ISTI-CNR, Pisa, Italy

Abstract. The Permuterm index [Garfield 1976] is a time-efficient and elegant solution to the string
dictionary problem in which pattern queries may possibly include one wild-card symbol (called Toler-
ant Retrieval problem). Unfortunately the Permuterm index is space inefficient because it quadruples
the dictionary size. In this article we propose the Compressed Permuterm Index which solves the
Tolerant Retrieval problem in time proportional to the length of the searched pattern, and space close
to the kth order empirical entropy of the indexed dictionary. We also design a dynamic version of this
index that allows to efficiently manage insertion in, and deletion from, the dictionary of individual
strings.

The result is based on a simple variant of the Burrows-Wheeler Transform, defined on a dictionary
of strings of variable length, that allows to efficiently solve the Tolerant Retrieval problem via known
(dynamic) compressed indexes [Navarro and Mäkinen 2007]. We will complement our theoretical
study with a significant set of experiments that show that the Compressed Permuterm Index supports
fast queries within a space occupancy that is close to the one achievable by compressing the string
dictionary via gzip or bzip2. This improves known approaches based on Front-Coding [Witten et al.
1999] by more than 50% in absolute space occupancy, still guaranteeing comparable query time.

Categories and Subject Descriptors: D.4.2 [Operating System]: Storage Management; E.1 [Data
Structures]: arrays, tables; E.4 [Coding and Information Theory]: data compaction and com-
pression; E.5 [Files]: sorting/searching; F.2.2 [Analysis of Algorithms and Problem Complexity]:
Nonnumerical Algorithms and Problems—pattern matching; H.3 [Information Storage and Re-
trieval]: Content Analysis and Indexing, Information Storage, Information Search and Retrieval.

General Terms: Algorithms, Design, Theory.

Additional Key Words and Phrases: Burrows-Wheeler transform, compressed index, indexing data
structure, permuterm, string dictionary

The work is an extended version of a paper that appeared in the Proceedings of ACM SIGIR 2007.

This work was partially supported by Yahoo! Research and by Italian MIUR Italy-Israel FIRB Project
“Pattern Discovery Algorithms in Discrete Structures, with Applications of Bioinformatics.”

Authors’ addresses: P. Ferragina, University of Pisa, Department of Computer Science, Largo B.
Pontecorvo, 3 56127 Pisa, Italy, e-mail: ferragina@di.unipi.it; R. Venturini, Via G. Moruzzi 1 56126
Pisa, Italy, email: rossano.venturini@isti.cnr.it

Permission to make digital or hard copies of part or all of this work for personal or classroom use
is granted without fee provided that copies are not made or distributed for profit or commercial
advantage and that copies show this notice on the first page or initial screen of a display along with
the full citation. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers, to redistribute
to lists, or to use any component of this work in other works requires prior specific permission and/or
a fee. Permissions may be requested from Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701,
New York, NY 10121-0701 USA, fax +1 (212) 869-0481, or permissions@acm.org.
C© 2010 ACM 1549-6325/2010/10-ART10 $10.00
DOI 10.1145/1868237.1868248 http://doi.acm.org/10.1145/1868237.1868248

ACM Transactions on Algorithms, Vol. 7, No. 1, Article 10, Publication date: November 2010.

10:2 P. FERRAGINA AND R. VENTURINI

ACM Reference Format:
Ferragina, P., and Venturini, R. 2010. The compressed permuterm index. ACM Trans.
Algor. 7, 1, Article 10 (November 2010), 21 pages. DOI = 10.1145/1868237.1868248
http://doi.acm.org/10.1145/1868237.1868248

1. Introduction

String processing and searching tasks are at the core of modern Web search, in-
formation retrieval and data mining applications. Most of such tasks boil down to
some basic algorithmic primitives that involve a large dictionary of strings having
variable length. Typical examples include: pattern matching (exact, approximate,
with wild-cards,...), the ranking of a string in a sorted dictionary, or the selection
of the i th string from it. While it is easy to imagine uses of pattern matching prim-
itives in real applications, such as search engines and text mining tools, rank/select
operations appear uncommon. However, they are quite often used (probably, un-
consciously!) by programmers to replace long strings with unique IDs that are
easier and faster to be processed and compressed. In this context ranking a string
means mapping it to its unique ID, whereas selecting the i th string means retrieving
it from its ID (i.e. its ranked position i).

As strings are getting longer and longer, and dictionaries of strings are getting
larger and larger, it becomes crucial to devise implementations for the above
primitives which are fast and work in compressed space. This is the topic of the
present paper that actually addresses the design of compressed data structures for
the so called tolerant retrieval problem, defined as follows [Manning et al. 2008].
Let D be a sorted dictionary of m strings having total length n and drawn from
an arbitrary alphabet �. The tolerant retrieval problem consists of preprocessing
D in order to efficiently support the following WILDCARD(P) query operation:
search for the strings in D that match the pattern P ∈ (� ∪ {∗})+. Symbol ∗ is
the so-called wild-card symbol, and matches any substring of �∗. In principle, the
pattern P might contain several occurrences of ∗; however, for practical reasons,
it is common to restrict the attention to the following significant cases:

—MEMBERSHIP query determines whether a pattern P ∈ �+ occurs in D. Here P
does not include wild-cards.

—PREFIX query determines all strings in D that are prefixed by string α. Here
P = α∗ with α ∈ �+.

—SUFFIX query determines all strings in D that are suffixed by string β. Here
P = ∗β with β ∈ �+.

—SUBSTRING query determines all strings in D that have γ as a substring. Here
P = ∗γ ∗ with γ ∈ �+.

—PREFIXSUFFIX query is the most sophisticated one and asks for all strings in D
that are prefixed by α and suffixed by β. Here P = α ∗ β with α, β ∈ �+.

In this article, we extend the tolerant retrieval problem to include the following two
basic primitives:

—RANK(P) computes the rank of string P ∈ �+ within the (sorted) dictionary D.
—SELECT(i) retrieves the i th string of the (sorted) dictionary D.

There are two classical approaches to string searching: Hashing and Tries [Baeza-
Yates and Ribeiro-Neto 1999]. Hashing supports only the exact MEMBERSHIP
query; its more sophisticated variant called minimal ordered perfect hashing [Witten
ACM Transactions on Algorithms, Vol. 7, No. 1, Article 10, Publication date: November 2010.

The Compressed Permuterm Index 10:3

et al. 1999] supports also the RANK operation but only on strings of D. All other
queries need however the inefficient scan of the whole dictionary!

Tries are more powerful in searching than hashing, but they introduce extra space
and fail to provide an efficient solution to the PREFIXSUFFIX query. In fact, the search
for P = α ∗ β needs to visit the subtrie descending from the trie-path labeled α,
in order to find the strings that are suffixed by β. Such a brute-force visit may
cost �(|D|) time independently of the number of query answers (cf. Baeza-Yates
and Gonnet [1996]). We can circumvent this limitation by using the sophisticated
approach proposed in Ferragina et al. [2003], which builds two tries, one storing the
strings of D and the other storing their reversals, and then reduce the PREFIXSUFFIX
query to a geometric 2D-range query, which is eventually solved via a proper
efficient geometric data structure in O(|α| + |β| + polylog(n)) time. The overall
space occupancy would be �(n log n) bits,1 with a large constant hidden in the
big-O notation due to the presence of the two tries and the geometric data structure.

Recently Manning et al. [2008] resorted the Permuterm index of Garfield [1976]
as a time-efficient and elegant solution to the tolerant retrieval problem above.
The idea is to take every string s ∈ D, append a special symbol $, and then
consider all the cyclic rotations of s$. The dictionary of all rotated strings is called
the permuterm dictionary, and is then indexed via any data structure that supports
prefix searches, for example, the trie. The key to solve the PREFIXSUFFIX query is to
rotate the query string α∗β$ so that the wild-card symbol appears at the end, namely
β$α∗. Finally, it suffices to perform a prefix-query for β$α over the permuterm
dictionary. As a result, the Permuterm index allows to reduce any query of the
Tolerant Retrieval problem on the dictionary D to a prefix query over its permuterm
dictionary. The limitation of this elegant approach relies in its space occupancy, as
“its dictionary becomes quite large, including as it does all rotations of each term.”
[Manning et al. 2008]. In practice, one memory word per rotated string (and thus
4 bytes per symbol) is needed to index it, for a total of �(n log n) bits.

In this article, we propose the Compressed Permuterm Index that solves the
tolerant retrieval problem in time proportional to the length of the queried string
P , and space close to the kth order empirical entropy of the dictionary D (see
Section 2 for definitions). The time complexity matches the one achieved by the (un-
compressed) Permuterm index. The space complexity approaches the information-
theoretic lower bound to the output size of any compressor that encodes each
symbol of a string with a code that depends on the symbol itself and on the k
immediately preceding symbols. Compressors achieving performance related to
the kth order empirical entropy of a text are the well-known gzip,2 bzip23 and
ppmdi.4 In addition, we devise a dynamic Compressed Permuterm Index that is
able to maintain the dictionary D under insertions and deletions of an individual
string s in O(|s|(1+ log |�|/ log log n) log n) time. All query operations are slowed
down by a multiplicative factor of at most O((1 + log |�|/ log log n) log n). The
space occupancy is still close to the kth order empirical entropy of the dictionary D.

1 Throughout this article, we assume that all logarithms are taken to the base 2, whenever not explicitly
indicated, and we assume 0 log 0 = 0.
2 Available at http://www.gzip.org.
3 Available at http://www.bzip.org.
4 Available at http://pizzachili.di.unipi.it/utils.

ACM Transactions on Algorithms, Vol. 7, No. 1, Article 10, Publication date: November 2010.

10:4 P. FERRAGINA AND R. VENTURINI

Our result is based on a variant of the Burrows-Wheeler Transform here extended
to work on a dictionary of strings of variable length. We prove new properties of
such BWT, and show that known (dynamic) compressed indexes [Navarro and
Mäkinen 2007] may be easily adapted to solve efficiently the (dynamic) Tolerant
Retrieval problem.

We finally complement our theoretical study with a significant set of experiments
over large dictionaries of URLs, hosts and terms, and compare our Compressed
Permuterm index against some classical approaches to the Tolerant Retrieval prob-
lem mentioned in Manning et al. [2008] and Witten et al. [1999] such as tries and
front-coded dictionaries. Experiments will show that tries are fast but much space
consuming; conversely our compressed permuterm index allows to trade query
time by space occupancy, resulting as fast as Front-Coding in searching the dic-
tionary but more than 50% smaller in space occupancy—thus being close to gzip,
bzip2 and ppmdi. This way the compressed permuterm index offers a plethora
of solutions for the Tolerant Retrieval problem which may well adapt to different
applicative scenarios.

2. Background

Let T [1, n] be a string drawn from the alphabet � = {a1, . . . , ah}. For each
ai ∈ �, we let ni be the number of occurrences of ai in T . The zeroth order
empirical entropy of T is defined as:

H0(T) = 1

|T |
h∑

i=1

ni log
n

ni
. (1)

Note that |T |H0(T) provides an information-theoretic lower bound to the output
size of any compressor that encodes each symbol of T with a fixed code [Witten
et al. 1999].

For any string w of length k, we denote by wT the string of single symbols
following the occurrences of w in T , taken from left to right. For example, if
T = mississippi and w = si, we have wT = sp since the two occurrences of
si in T are followed by the symbols s and p, respectively. The kth order empirical
entropy of T is defined as:

Hk(T) = 1

|T |
∑

w∈�k

|wT | H0(wT). (2)

We have Hk(T) ≥ Hk+1(T) for any k ≥ 0. As usual in data compression
[Manzini 2001], we will adopt |T |Hk(T) as an information-theoretic lower bound
to the output size of any compressor that encodes each symbol of T with a code
that depends on the symbol itself and on the k immediately preceding symbols.

Burrows and Wheeler [1994] introduced a new compression algorithm based
on a reversible transformation, now called the Burrows-Wheeler Transform (BWT
from now on). The BWT transforms the input string T into a new string that is
easier to compress. The BWT of T , hereafter denoted by bwt(T), consists of three
basic steps (see Figure 1):

(1) append at the end of T a special symbol $ smaller than any other symbol
of �;

ACM Transactions on Algorithms, Vol. 7, No. 1, Article 10, Publication date: November 2010.

The Compressed Permuterm Index 10:5

FIG. 1. Example of Burrows-Wheeler transform for the string T = mississippi. The matrix
on the right has the rows sorted in lexicographic order. The output of the BWT is the last column
L = ipssm$pissii.

(2) form a conceptual matrix M(T) whose rows are the cyclic rotations of string
T $ in lexicographic order;

(3) construct string L by taking the last column of the sorted matrix M(T). It is
bwt(T) = L .

Every column of M(T), hence also the transformed string L , is a permutation
of T $. In particular the first column of M(T), call it F , is obtained by lexicograph-
ically sorting the symbols of T $ (or, equally, the symbols of L). Note that when
we sort the rows of M(T) we are essentially sorting the suffixes of T because of
the presence of the special symbol $. This shows that: (1) there is a strong relation
between M(T) and the suffix array data structure built on T ; (2) symbols following
the same substring (context) in T are grouped together in L , thus giving raise to
clusters of nearly identical symbols. Property 1 is crucial for designing compressed
indexes (see, e.g., Navarro and Mäkinen [2007]), Property 2 is the key for designing
modern data compressors (see, e.g., Manzini [2001] and Ferragina et al. [2005]).

For our purposes, we hereafter concentrate on compressed indexes. They effi-
ciently support the search of any (fully-specified) pattern Q[1, q] as a substring
of the indexed string T [1, n]. Two properties are crucial for their design [Burrows
and Wheeler 1994]:

(a) Given the cyclic rotation of rows in M(T), L[i] precedes F[i] in the original
string T .

(b) For any c ∈ �, the �th occurrence of c in F and the �th occurrence of c in L
correspond to the same symbol of string T .

As an example, the 3rd s in L lies onto the row which starts with sippi$ and,
correctly, the 3rd s in F lies onto the row which starts with ssippi$. That symbol
s is T [6].

In order to map symbols in L to their corresponding symbols in F , Ferragina
and Manzini [2005] introduced the following function:

L F(i) = C[L[i]] + rankL[i](L , i),

ACM Transactions on Algorithms, Vol. 7, No. 1, Article 10, Publication date: November 2010.

10:6 P. FERRAGINA AND R. VENTURINI

where C[c] counts the number of symbols smaller than c in the whole string L ,
and rankc(L , i) counts the occurrences of c in the prefix L[1, i]. Given Prop-
erty (b) and the alphabetic ordering of F , it is not difficult to see that sym-
bol L[i] corresponds to symbol F[L F(i)]. For example, in Figure 1, we have
L F(9) = C[s] + ranks(L , 9) = 8 + 3 = 11 and, in fact both L[9] and F[11]
correspond to the symbol T [6].

Array C is small and occupies O(|�| log n) bits, the implementation of function
L F(·) is more sophisticated and boils down to the design of compressed data
structures for supporting RANK queries over strings. The literature offers now
many theoretical and practical solutions for this problem (see, e.g., Navarro and
Mäkinen [2007] and Barbay et al. [2007] and references therein). We summarize
the ones we use as follows.

LEMMA 2.1. Let T [1, n] be a string over alphabet � and let L = bwt(T) be
its BW-transform.

(1) For |�| = O(polylog(n)), there exists a data structure which supports rank
queries and the retrieval of any symbol of L in constant time, by using nHk(T)+
o(n) bits of space, for any k ≤ α log|�| n and 0 < α < 1 [Ferragina et al.
2007, Theorem 5].

(2) For general �, there exists a data structure which supports rank queries and
the retrieval of any symbol of L in O(log log |�|) time, by using nHk(T) + n ·
o(log |�|) bits of space, for any k ≤ α log|�| n and 0 < α < 1 [Barbay et al.
2007, Theorem 4.2].

Given Property (a) and the definition of LF, it is easy to see that L[i] (which is
equal to F[L F(i)]) is preceded by L[L F(i)], and thus the iterated application of
LF allows to move backward over the text T . Of course, we can compute T from
L by moving backward from symbol L[1] = T [n].

Ferragina and Manzini [2005] made one step further by showing that data struc-
tures for supporting RANK queries on the string L are enough to search for an
arbitrary pattern Q[1, q] as a substring of the indexed text T . The resulting search
procedure is now called backward search and is illustrated in Figure 2. It works in
q phases, each preserving the invariant: At the end of the i th phase, [First, Last]
is the range of contiguous rows in M(T) which are prefixed by Q[i, q]. Back-
ward search starts with i = q so that First and Last are determined via the
array C (step 1). Ferragina and Manzini proved that the pseudo-code in Figure 2
maintains this invariant for all phases, so [First, Last] delimits at the end the rows
prefixed by Q (if any).

By plugging Lemma 2.1 into Backward search, Ferragina et al. [2007] and
Barbay et al. [2007] obtained the following.

THEOREM 2.2. Given a text T [1, n] drawn from an alphabet �, there exists a
compressed index that takes q × trank time to support Backward search(Q[1, q]),
where trank is the time cost of a single rank operation over L = bwt(T). The space
usage is bounded by nHk(T) + lspace bits, for any k ≤ α log|�| n and 0 < α < 1,
where lspace is o(n) when |�| = O(polylog(n)) and n · o(log |�|), otherwise.

Notice that compressed indexes support also other operations, like locate and
display of pattern occurrences, which are slower than Backward search in that
they require polylog(n) time per occurrence [Navarro and Mäkinen 2007]. We

ACM Transactions on Algorithms, Vol. 7, No. 1, Article 10, Publication date: November 2010.

The Compressed Permuterm Index 10:7

FIG. 2. The algorithm to find the range [First, Last] of rows of M(T) prefixed by Q[1, q].

do not go into further details on these operations because one positive feature of
our compressed permuterm index is that it will not need these (sophisticated) data
structures, and thus it will not incur in this polylog-slowdown.

3. Compressed Permuterm Index

The way in which the Permuterm dictionary is computed, immediately suggests
that there should be a relation between the BWT and the Permuterm dictionary of
the string set D. In both cases, we talk about cyclic rotations of strings, but in the
former we refer to just one string, whereas in the latter we refer to a dictionary of
strings of possibly different lengths. The notion of BWT for a set of strings has
been considered in Mantaci et al. [2005] for the purpose of string compression
and comparison. Here, we are interested in the compressed indexing of the string
dictionary D, which introduces more challenges. Surprisingly enough, the solution
we propose is novel, simple, and efficient in time and space; furthermore, it admits
an effective dynamization.

3.1. A SIMPLE, BUT INEFFICIENT SOLUTION. Let D = {s1, s2, . . . , sm} be the
lexicographically sorted dictionary of strings to be indexed. Let $ (respectively, #)
be a symbol smaller (respectively, larger) than any other symbol of �. We consider
the doubled strings ŝi = si $si . It is easy to note that any pattern searched by
WILDCARD(P) matches si if, and only if, the rotation of P mentioned in Section 1
is a substring of ŝi . For example, the query PREFIXSUFFIX(α ∗ β) matches si iff the
rotated string β$α occurs as a substring of ŝi .

Consequently, the simplest approach to solve the Tolerant Retrieval problem
with compressed indexes seems to boil down to the indexing of the string ŜD =
#̂s1#̂s2 · · · #̂sm# by means of the data structure of Theorem 2.2. Unfortunately, this
approach suffers of subtle inefficiencies in the indexing and searching steps. To
see them, let us “compare” string ŜD against string SD = $s1$s2$ · · · $sm−1$sm$#,
which is a serialization of the dictionary D (and it will be at the core of our
approach, see below). We note that the “duplication” of si within ŝi : (1) doubles
the string to be indexed, because |ŜD| = 2|SD| − 1; and (2) doubles the space
bound of compressed indexes evaluated in Theorem 2.2, because |ŜD|Hk(ŜD) ∼=
2|SD|Hk(SD) ± m(k log |�| + 2), where the second term comes from the presence
of symbol # which introduces new k-long substrings in the computation of Hk(ŜD).
Point (1) is a limitation for building large static compressed indexes in practice,
being their construction space a primary concern [Puglisi et al. 2007]; point (2)

ACM Transactions on Algorithms, Vol. 7, No. 1, Article 10, Publication date: November 2010.

10:8 P. FERRAGINA AND R. VENTURINI

FIG. 3. Given the dictionary D = {hat, hip, hope, hot}, we build the string SD =
hathip$hope$hot$#, and then compute its BW-transform. Arrows denote the positions incre-
mented by the function jump2end.

will be experimentally investigated in Section 5 where we show that a compressed
index built on ŜD may be up to 1.9 times larger than a compressed index built
on SD.

3.2. A SIMPLE AND EFFICIENT SOLUTION. Unlike the previous solution, our
Compressed Permuterm index works on the plain string SD, and is built in three
steps (see Figure 3):

(1) Build the string SD = $s1$s2$ · · · $sm−1$sm$#. Recall that the dictionary
strings are lexicographically ordered, and that symbol $ (respectively, #) is
assumed to be smaller (respectively, larger) than any other symbol of �.

(2) Compute L = bwt(SD).
(3) Build a compressed data structure to support RANK queries over the string L

(Lemma 2.1).

Our goal is to turn every wild-card search over the dictionary D into a substring
search over the string SD. Some of the queries indicated in Section 1 are immedi-
ately implementable as substring searches over SD (and thus they can be supported
supported by procedure Backward search and the RANK data structure built on
L). But the sophisticated PREFIXSUFFIX query needs a different approach because it
requires to simultaneously match a prefix and a suffix of a dictionary string, which
are possibly far apart from each other in SD. In order to circumvent this limitation,
we prove a novel property of bwt(SD) and deploy it to design a function, called
jump2end, that allows to modify the procedure Backward search of Figure 2 in
a way that is suitable to support efficiently the PREFIXSUFFIX query. The main idea
is that when Backward search reaches the beginning of some dictionary string,
say si , then it “jumps” to the last symbol of si rather than continuing onto the last
symbol of its previous string in D, i.e. the last symbol of si−1. Surprisingly enough,
function jump2end(i) consists of one line of code:

if 1 ≤ i ≤ m then return(i + 1) else return(i)

ACM Transactions on Algorithms, Vol. 7, No. 1, Article 10, Publication date: November 2010.

The Compressed Permuterm Index 10:9

and its correctness derives from the following two Lemmas. (Refer to Figure 3 for
an illustrative example.)

LEMMA 3.1. Given the sorted dictionary D, and the way string SD is built,
matrix M(SD) satisfies the following properties:

—The first row of M(SD) is prefixed by $s1$, thus it ends with symbol L[1] = #.
—For any 2 ≤ i ≤ m, the i th row of M(SD) is prefixed by $si $ and thus it ends

with the last symbol of si−1, that is, L[i] = si−1[|si−1|].
—The (m + 1)-th row of M(SD) is prefixed by $#$s1$, and thus it ends with the

last symbol of sm, that is, L[m + 1] = sm[|sm |].
PROOF. The three properties come from the sorted ordering of the dictionary

strings in SD, from the fact that symbol $ (respectively, #) is the smallest (respec-
tively, largest) alphabet symbol, from the cyclic rotation of the rows in M(SD),
and from their lexicographic ordering.

The previous lemma immediately implies the “locality” property deployed by
function jump2end(i).

LEMMA 3.2. Any row i ∈ [1, m] is prefixed by $si $ and the next row (i + 1)
ends with the last symbol of si .

We are now ready to design the procedures for pattern searching and for display-
ing the strings of D. As we anticipated above the main search procedure, called
BackPerm search, is derived from the original Backward search of Figure 2
by adding one step which makes proper use of jump2end:

3′: First = jump2end(First); Last = jump2end(Last);

It is remarkable that the change is minimal (just one line of code!) and takes
constant time, because jump2end takes O(1) time. Let us now comment on the
correctness of the new procedure BackPerm search(β$α) in solving the sophis-
ticated query PREFIXSUFFIX(α ∗ β). We note that BackPerm search proceeds as
the standard Backward search for all symbols Q[i]
= $. In fact, the rows in-
volved in these search steps do not belong to the range [1, m], and thus jump2end
is ineffective. When Q[i] = $, the range [First, Last] is formed by rows which
are prefixed by $α. By Lemma 3.2, we know that these rows are actually prefixed
by strings $s j , with j ∈ [First, Last], and thus these strings are in turn prefixed
by $α. Given that [First, Last] ⊂ [1, m], Step 3′ moves this range of rows to
[First + 1, Last + 1], and thus identifies the new block of rows which are ended by
the last symbols of those strings s j (Lemma 3.2). After that, BackPerm search
continues by scanning backward the symbols of β (no other $ symbol is involved),
thus eventually finding the rows prefixed by β$α.

Figure 4 shows the pseudo-code of two other basic procedures: Back step(i)
and Display string(i). The former procedure is a slight variation of the backward
step implemented by any current compressed index based on BWT (see, e.g.,
Ferragina and Manzini [2005]; Navarro and Mäkinen [2007]), here modified to
support a leftward cyclic scan of every dictionary string. Precisely, if F[i] is the
j th symbol of some dictionary string s, then Back step(i) returns the row prefixed
by the (j − 1)-th symbol of that string if j > 1 (this is a standard backward
step), otherwise it returns the row prefixed by the last symbol of s (by means of

ACM Transactions on Algorithms, Vol. 7, No. 1, Article 10, Publication date: November 2010.

10:10 P. FERRAGINA AND R. VENTURINI

FIG. 4. Algorithm Back step is the one devised in [Ferragina and Manzini 2005] for standard
compressed indexes. Algorithm Display string(i) retrieves the string containing the symbol F[i].

jump2end). Procedure Display string(i) builds upon Back step(i) and retrieves
the string s, namely the dictionary string that contains the symbol F[i].

Using the data structures of Lemma 2.1 for supporting RANK queries over the
string L = bwt(SD), we obtain the following.

THEOREM 3.3. Let SD be the string built upon a dictionary D of m strings
having total length n and drawn from an alphabet �, such that |�| = polylog(n).
We can design a Compressed Permuterm index such that:

—Procedure Back step(i) takes O(1) time.

—Procedure BackPerm search(Q[1, q]) takes O(q) time.

—Procedure Display string(i) takes O(|s|) time, if s is the string containing
symbol F[i].

Space occupancy is bounded by nHk(SD) + o(n) bits, for any k ≤ α log|�| n and
0 < α < 1.

PROOF. For the time complexity, we observe that function jump2end takes
constant time, and it is invoked O(1) times at each possible iteration of procedures
BackPerm search and Display string. Moreover, Back step takes constant time,
by Lemma 2.1. For the space complexity, we use the data structure of Lemma 2.1
(case 1) to support RANK queries on the string L = bwt(SD).

If |�| = �(polylog(n)), the previous time bounds must be multiplied by a
factor O(log log |�|) and the space bound has an additive term of n ·o(log |�|) bits
(Lemma 2.1, case 2).

We are left with detailing the implementation of WILDCARD, RANK and SELECT
queries for the Tolerant Retrieval problem. As it is standard in the Compressed
Indexing literature we distinguish between two subproblems: counting the number
of dictionary strings that match the given wild-card query P , and retrieving these
strings. Based on the Compressed Permuterm index of Theorem 3.3, we have:

—MEMBERSHIP query invokes BackPerm search(P), then checks if First <
Last.

ACM Transactions on Algorithms, Vol. 7, No. 1, Article 10, Publication date: November 2010.

The Compressed Permuterm Index 10:11

—PREFIX query invokes BackPerm search($α) and returns the value Last −
First + 1 as the number of dictionary strings prefixed by α. These strings
can be retrieved by applying Display string(i), for each i ∈ [First,
Last].

—SUFFIX query invokes BackPerm search(β$) and returns the value Last −
First + 1 as the number of dictionary strings suffixed by β. These strings can
be retrieved by applying Display string(i), for each i ∈ [First, Last].

—SUBSTRING query invokes BackPerm search(γ) and returns the value Last −
First + 1 as the number of occurrences of γ as a substring of D’s strings.5

Unfortunately, the efficient retrieval of these strings cannot be through the
execution of Display string, as we did for the queries above. A dictionary
string s may now be retrieved multiple times if γ occurs many times as a
substring of s. To circumvent this problem we design a simple time-optimal
retrieval, as follows. We use a bit vector V of size Last − First + 1, initialized
to 0. The execution of Display string is modified so that V [j − First] is set to
1 when a row j within the range [First, Last] is visited during its execution. In
order to retrieve once all dictionary strings that contain γ , we scan through i ∈
[First, Last] and invoke the modified Display string(i) only if V [i−First] = 0.
It is easy to see that if i1, i2, . . . , ik ∈ [First, Last] are the rows of M(SD)
denoting the occurrences of γ in some dictionary string s (i.e., F[i j] is a
symbol of s), only Display string(i1) is fully executed, thus taking O(|s|) time.
For all the other rows i j , with j > 1, we find V [i j − First] = 1 and thus
Display string(i j) is not invoked.

—PREFIXSUFFIX query invokes BackPerm search(β$α) and returns the value
Last − First + 1 as the number of dictionary strings which are prefixed by α
and suffixed β. These strings can be retrieved by applying Display string(i),
for each i ∈ [First, Last].

—RANK(P) invokes BackPerm search(P) and returns the value First, if
First < Last, otherwise P
∈ D (see Lemma 3.1) and thus the lexico-
graphic position of P in D can be discovered by means of a slight variant
of Backward search whose details are given in Figure 6 (see Section 4.2 for
further comments).

—SELECT(i) invokes Display string(i) provided that 1 ≤ i ≤ m (see Lemma 3.1).

THEOREM 3.4. LetD be a dictionary of m strings having total length n, drawn
from an alphabet � such that |�| = polylog(n). Our Compressed Permuterm
index ensures that:

—if P[1, p] is a pattern with one-single wild-card symbol, the query
WILDCARD(P) takes O(p) time to count the number of occurrences of P
in D, and O(Locc) time to retrieve the dictionary strings matching P, where
Locc is their total length.

—SUBSTRING(γ) takes O(|γ |) time to count the number of occurrences of γ as
a substring of D’s strings, and O(Locc) time to retrieve the dictionary strings
having γ as a substring, where Locc is their total length.

5 This is different from the problem of efficiently counting the number of strings containing γ . Our
index does not solve this interesting problem (cfr. Sadakane [2007] and references therein).

ACM Transactions on Algorithms, Vol. 7, No. 1, Article 10, Publication date: November 2010.

10:12 P. FERRAGINA AND R. VENTURINI

—RANK(P[1, p]) takes O(p) time.
—SELECT(i) takes O(|si |) time.

The space occupancy is bounded by nHk(SD) + o(n) bits, for any k ≤ α log|�| n
and 0 < α < 1.

In accordance with Lemma 2.1 (case 2), if |�| = �(polylog(n)) these time
bounds must be multiplied by O(log log |�|) and the space bound has an additive
term of n · o(log |�|) bits. We remark that our Compressed Permuterm index can
support all wild-card searches without using any locate-data structure, which
is known to be the main bottleneck of current compressed indexes [Navarro and
Mäkinen 2007]: it implies the polylog-term in their query bounds and most of
the o(n log |�|) term of their space cost. The net result is that our Compressed
Permuterm index achieves in practice space occupancy much closer to known
compressors and very fast queries, as we will experimentally show in Section 5.

A comment is in order at this point. Instead of introducing function jump2end
and then modify the Backward search procedure, we could have modified
L = bwt(SD) just as follows: cyclically rotate the prefix L[1, m + 1] of one
single step (i.e., move L[1] = # to position L[m + 1]). This way, we are actually
plugging Lemma 3.2 directly into the string L . It is thus possible to show that
the compressed index of Theorem 2.2 applied on the rotated L , is equivalent to
the compressed permuterm index introduced in this article. The performance in
practice of this variation are slightly better since the computation of jump2end
is no longer required. This is the implementation we used in the experiments of
Section 5.

4. Dynamic Compressed Permuterm Index

In this section, we deal with the dynamic Tolerant Retrieval problem in which the
dictionary D changes over the time under two update operations:

—INSERTSTRING(W) inserts the string W in D.
—DELETESTRING(j) removes the j th lexicographically smallest string s j from D.

The problem of maintaining a compressed index over a dynamically changing
collection of strings, has been addressed in, for example, Ferragina and Manzini
[2005], Chan et al. [2007], Mäkinen and Navarro [2008]. In those papers the design
of dynamic Compressed Indexes boils down to the design of dynamic compressed
data structures for supporting Rank/Select operations. Here we adapt those solu-
tions to the design of our dynamic Compressed Permuterm Index by showing that
the insertion/deletion of an individual string s in/from D can be implemented via
an optimal number O(|s|) of basic insert/delete operations of single symbols in the
compressed Rank/Select data structure built on L = bwt(SD). Precisely, we will
consider the following two basic update operations:

—insert(L , i, c) inserts symbol c between symbols L[i] and L[i + 1].
—delete(L , i) removes the i th symbol L[i].

The literature provides several dynamic data structures for supporting Rank
queries and the above two update operations, with various time/space trade-offs.
The best-known results are currently due to González and Navarro [2008].

ACM Transactions on Algorithms, Vol. 7, No. 1, Article 10, Publication date: November 2010.

The Compressed Permuterm Index 10:13

LEMMA 4.1. Let S[1, s] be a string drawn from an alphabet � and let L =
bwt(S) be its BW-Transform. There exists a dynamic data structure that supports
rank, select and access operations in L taking O((1 + log |�|/ log log s) log s)
time, and maintains L under insert and delete operations of single symbols in
O((1 + log |�|/ log log s) log s) time. The space required by this data structure is
nHk(S) + o(n log |�|) bits, for any k < α log|�| s and constant 0 < α < 1.

Our dynamic Compressed Permuterm Index is designed upon the above dy-
namic data structures, in a way that any improvement to Lemma 4.1 will positively
reflect onto an improvement to our bounds. Therefore we will indicate the time
complexities of our algorithms as a function of the number of insert and delete
operations executed onto the changing string L = bwt(SD). We also notice that
these operations will change not only L but also the string F (which is the lexi-
cographically sorted version of L , see Section 2). The maintenance of L will be
discussed in the next subsections; while for F we will make use of the solution pro-
posed in Mäkinen and Navarro [2008, Section 7] that takes |�| log s + o(|�| log s)
bits and implements in O(log s) time the following query and update operations:
C[c] returns the number of symbols in F smaller than c; deleteF(c) removes
from F an occurrence of symbol c; and insertF(c) adds an occurrence of
symbol c in F .

The next two sections detail our implementations of INSERTSTRING and
DELETESTRING. The former is a slight modified version of the algorithm introduced
in Chan et al. [2007], here adapted to deal with the specialties of our dictionary
problem: namely, the dictionary strings forming SD must be kept in lexicographic
order. The latter coincides with the algorithm presented in Mäkinen and Navarro
[2008] for which we prove an additional property (Lemma 4.2), which is a key for
using this result as is in our context.

4.1. DELETING ONE DICTIONARY STRING. The operation DELETESTRING(j)
requires to delete the string s j from the dictionary D, and thus recompute the
BW-transform L ′ of the new string S ′

D = $s1$ · · · $s j−1$s j+1$. . . sm#. The key
property we deploy next is that this removal does not impact on the ordering of the
rows of M(SD) which do not refer to suffixes of $s j .

LEMMA 4.2. The removal from L of the symbols of $s j gives the correct string
bwt(S ′

D).

PROOF. It is enough to prove that the removal of $s j will not influence the
order between any pair of rows i ′ < i ′′ in M(SD). Take i ′, i ′′ as two rows that
are not deleted from M(SD), and thus do not start/end with symbols of $s j . We
compare the suffix of SD corresponding to the i ′-th row, say Si ′ , and the suffix
of SD corresponding to the i ′′-th row, say Si ′′ . We recall that these are increasing
strings, in that they are composed by the dictionary strings which are arranged in
increasing lexicographic order and they are separated by the special symbol $ (see
Section 3.2). Since all dictionary strings are distinct, the mismatch between Si ′ and
Si ′′ occurs before the second occurrence of $ in them. Let us denote the prefix of Si ′

and Si ′′ preceding the second occurrence of $ with α′$s ′$ and α′′$s ′′$, respectively,
where α′, α′′ are (possibly empty) suffixes of dictionary strings, and s ′, s ′′ are
dictionary strings. If the mismatch occurs in α′ or α′′ we are done, because they are
not suffixes of $s j (by the assumption), and therefore they are not interested by the
deletion process. If the mismatch occurs in s ′ or s ′′ and they are both different of

ACM Transactions on Algorithms, Vol. 7, No. 1, Article 10, Publication date: November 2010.

10:14 P. FERRAGINA AND R. VENTURINI

FIG. 5. Algorithm to delete the string $s j from SD .

s j , we are also done. The trouble is when s ′ = s j or s ′′ = s j . We consider the first
case, because the second is similar. This case occurs when |α′| = |α′′|, so that the
order between Si ′ and Si ′′ is given by the order of s ′ vs s ′′. If s ′ = s j , then the order
of the two rows is then given by comparing s j+1 and s ′′. Since s ′ < s ′′ (because
Si ′ < Si ′′) and s j+1 is the smallest dictionary string greater than s ′, we have that
s j+1 ≤ s ′′, and the thesis follows.

Given this property, we can use the same string-deletion algorithm of Mäkinen
and Navarro [2008] to remove all symbols of $s j from L and F . (Figure 5 reports
the pseudocode of this algorithm, for the sake of completeness.)

4.2. INSERTING ONE DICTIONARY STRING. An implementation of
INSERTSTRING(W) for standard compressed indexes was described in Chan
et al. [2007]. Here we present a slightly modified version of that algorithm
that correctly deals with the maintenance of the lexicographic ordering of the
dictionary strings in SD, and the re-computation of its BW-transform. We recall
that this order is crucial for the correctness of most of our query operations.

Let j be the lexicographic position of the string W in D. INSERTSTRING(W)
requires to recompute the BW-transform L ′ of the new string S ′

D =
$s1$ · · · $s j−1$W $ s j $s j+1$ · · · sm#. For this purpose, we can use the reverse
of Lemma 4.2 in order to infer that this insertion does not affect the ordering of
the rows already in M(SD). Thus INSERTSTRING(W) boils down to insert just the
symbols of W in their correct positions within L (and, accordingly, in F). This is
implemented in two main steps: first, we find the lexicographic position of W in D
(Algorithm LEXORDER(W)); and then, we deploy this position to infer the positions
in L where all symbols of W have to be inserted (Algorithm INSERTSTRING).

The pseudocode in Figure 6 details algorithm LEXORDER(W) that assumes that
any symbol of W already occurs in the dictionary strings. If this is not the case,
we set c = W [x] as the leftmost symbol of W that does not occur in any string
of D, and set c′ as the smallest symbol that is lexicographically greater than c and
occurs in D. If LEXORDER is correct, then LEXORDER(W [1, x − 1]c′) returns the
lexicographic position of W in D.

LEMMA 4.3. Given a string W [1, w] whose symbols occurs in D,
LEXORDER(W) returns the lexicographic position of W among the strings in D.

PROOF. Its correctness derives from the correctness of Backward search. At
any step i , First points to the first row of M(SD) that is prefixed by the suffix
W [w − i, w]$. If such a row does not exist, First points to the first row of M(SD)
that is lexicographically greater than W [w − i, w]$.

ACM Transactions on Algorithms, Vol. 7, No. 1, Article 10, Publication date: November 2010.

The Compressed Permuterm Index 10:15

FIG. 6. Algorithm LEXORDER(W [1, w]) returns the lexicographic position of W in D.

FIG. 7. Algorithm to insert string $W [1, w] by knowing its lexicographically order j among the
strings in D.

Now we have all the ingredients to describe algorithm INSERTSTRING(W). Sup-
pose that j is the value returned by LEXORDER(W [1, w]). We have to insert the sym-
bol W [i] preceding any suffix W [i + 1, w] in its correct position of L ′ = bwt(S ′

D)
and update the string F too. The algorithm in Figure 7 starts from the last symbol
W [w], and inserts it at the (j + 1)-th position of bwt(SD) (by Lemma 3.2). It
also inserts the symbol $ in F , since it is the first symbol of the (j + 1)-th row.
After that, the algorithm performs a backward step from the (j + 1)-th row with
the symbol W [w] in order to find the position in L where W [w − 1] should be
inserted. Accordingly, the symbol W [w] is inserted in F too. These insertions are
executed in L and F until all positions of W are processed. Step (7) completes
the process by inserting the special symbol $. Overall, INSERTSTRING executes
an optimal number of inserts of single symbols in L and F . We then use the
dynamic data structures of Lemma 4.1 to dynamically maintain L , and the solu-
tion of Mäkinen and Navarro [2008, Section 7] to maintain F , thus obtaining the
following.

THEOREM 4.4. Let D be a dynamic dictionary of m strings having total
length n, drawn from an alphabet �. The Dynamic Compressed Permuterm
index supports all queries of the Tolerant Retrieval problem with a slow-
down factor of O((1 + log |�|/ log log n) log n) with respect to its static coun-
terpart (see Theorem 3.4). Additionally, it can support INSERTSTRING(W) in
O(|W |(1 + log |�|/ log log n) log n) time; and DELETESTRING(j) in O(|s j |(1 +
log |�|/ log log n) log n)) time.

The space occupancy is bounded by nHk(SD) + o(n log |�|) bits, for any k ≤
α log|�| n and 0 < α < 1.

ACM Transactions on Algorithms, Vol. 7, No. 1, Article 10, Publication date: November 2010.

10:16 P. FERRAGINA AND R. VENTURINI

TABLE I. STATISTICS ON OUR THREE DICTIONARIES.

Statistics DictUrl DictHost DictTerm

Size (Mb) 190 34 118
� 95 52 36
strings 3, 034, 144 1, 778, 927 10, 707, 681
Avg len strings 64.92 18.91 10.64
Max len strings 1, 138 180 50
Avg lcp 45.85 11.25 6.81
Max lcp 720 69 49
Total lcp 68.81% 55.27% 58.50%
gzip -9 11.49% 23.77% 29.50%
bzip2 -9 10.86% 24.03% 32.58%
ppmdi -l 9 8.32% 19.08% 29.06%

We point out again that any improvement to Lemma 4.1 will positively affect
the dynamic bounds above.

5. Experimental Results

We downloaded from http://law.dsi.unimi.it/ various crawls of the web—
namely, arabic-2005, indocina-2004, it-2004, uk-2005, webbase-2001
[Boldi et al. 2004]. We extracted from uk-2005 about 190 Mb of distinct urls,
and we derived from all crawls about 34 Mb of distinct host-names. The dictionary
of urls and hosts have been lexicographically sorted by reversed host names in order
to maximize the longest common-prefix (shortly, lcp) shared by strings adjacent
in the lexicographic order. We have also built a dictionary of (alphanumeric) terms
by parsing the TREC collection WT10G and by dropping (spurious) terms longer
than 50 symbols. These three dictionaries are representatives of string sets usually
manipulated in Web search and mining engines.

Table I reports some statistics on these three dictionaries: DictUrl (the dictio-
nary of urls), DictHost (the dictionary of hosts), and DictTerm (the dictionary of
terms). In particular, lines 3-5 describe the composition of the dictionaries at the
string level, lines 6-8 account for the repetitiveness in the dictionaries at the string-
prefix level (which affects the performance of front-coding and trie, see below), and
the last three lines account for the repetitiveness in the dictionaries at the substring
level (which affects the performance of compressed indexes). It is interesting to
note that the Total lcp varies between 55–69% of the dictionary size, whereas
the amount of compression achieved by gzip, bzip2 and ppmdi is superior and
reaches 67–92%. This proves that there is much repetitiveness in these dictionaries
not only at the string-prefix level but also within the strings. The net consequence is
that compressed indexes, which are based on the Burrows-Wheeler Transform (and
thus have the same bzip2-core), should achieve on these dictionaries significant
compression, much better than the one achieved by front-coding based schemes!

In Tables II and III, we test the time and space performance of three (compressed)
solutions to the Tolerant Retrieval problem:

CPI is our Compressed Permuterm Index of Section 3.2. In order to com-
press the string SD and implement procedures BackPerm search and Dis-
play string, we modified three types of compressed indexes available under

ACM Transactions on Algorithms, Vol. 7, No. 1, Article 10, Publication date: November 2010.

The Compressed Permuterm Index 10:17

TABLE II. SPACE OCCUPANCY IS REPORTED AS A PERCENTAGE OF THE

ORIGINAL DICTIONARY SIZE. RECALL THAT TRIE AND FC ARE BUILT ON BOTH

THE DICTIONARY STRINGS AND THEIR REVERSALS, IN ORDER TO SUPPORT

PREFIXSUFFIX QUERIES.

Method DictUrl DictHost DictTerm

Trie 1374.29% 1793.19% 1727.93%
FC-32 109.95% 113.22% 106.45%
FC-128 107.41% 109.91% 102.10%
FC-1024 106.67% 108.94% 100.84%
CPI-AFI 49.72% 47.48% 52.24%
CPI-CSA-64 37.82% 56.36% 73.98%
CPI-CSA-128 31.57% 50.11% 67.73%
CPI-CSA-256 28.45% 46.99% 64.61%
CPI-FMI-256 24.27% 40.68% 55.41%
CPI-FMI-512 18.94% 34.58% 47.80%
CPI-FMI-1024 16.12% 31.45% 44.13%

TABLE III. TIMINGS ARE GIVEN IN μsecs/char AVERAGED OVER ONE MILLION OF SEARCHED

PATTERNS, WHOSE LENGTH IS REPORTED AT THE TOP OF EACH COLUMN. VALUE b DENOTES IN

CPI-FMI-b THE BUCKET SIZE OF THE FM-INDEX, IN CPI-CSA-b THE SAMPLE RATE OF THE FUNCTION 	

[FERRAGINA AND NAVARRO 2006], AND IN FC-b THE BUCKET SIZE OF THE FRONT-CODING SCHEME. WE

RECALL THAT b ALLOWS IN ALL THESE SOLUTIONS TO TRADE SPACE OCCUPANCY PER QUERY TIME.

DictUrl DictHost DictTerm

Method 10 60 5 15 5 10

Trie 0.1 0.2 0.4 0.5 1.2 0.9
FC-32 1.3 0.4 1.5 1 2.5 1.7
FC-128 3.2 1.0 3.4 1.8 4.6 2.8
FC-1024 26.6 5.2 24.6 11.0 25.0 14.6
CPI-AFI 1.8 2.9 1.6 2.5 2.9 3.0
CPI-CSA-64 4.9 5.6 4.3 5.2 5.4 5.7
CPI-CSA-128 7.3 8.0 6.9 7.6 7.6 8.3
CPI-CSA-256 11.8 14.1 11.8 12.5 12.8 13.2
CPI-FMI-256 11.9 9.8 19.3 15.5 22.5 20.1
CPI-FMI-512 16.2 13.4 28.4 23.1 34.2 30.3
CPI-FMI-1024 24.1 20.7 46.4 38.4 57.6 50.1

the Pizza&Chili site [Ferragina and Navarro 2006], which represent the
best choices in this setting. Namely CSA, FM-index v2 (shortly FMI), and
the alphabet-friendly FM-index (shortly AFI). We tested three variants of
CSA and FMI by properly setting their parameter which allows to trade space
occupancy by query performance.

FC data structure applies front-coding to groups of b adjacent strings in the sorted
dictionary, and then keeps explicit pointers to the beginners of every group
[Witten et al. 1999].

Trie is the ternary search tree of Bentley and Sedgewick which “combines the
time efficiency of digital tries with the space efficiency of binary search
trees” [Bentley and Sedgewick 1997].6

6 Code at http://www.cs.princeton.edu/∼rs/strings/.

ACM Transactions on Algorithms, Vol. 7, No. 1, Article 10, Publication date: November 2010.

10:18 P. FERRAGINA AND R. VENTURINI

Theorem 3.4 showed that CPI supports efficiently all queries of the Tolerant
Retrieval problem. The same positive feature does not hold for the other two data
structures. In fact, FC and TRIE support only prefix searches over the indexed
strings. Therefore, in order to implement the PREFIXSUFFIX query, we need to
build these data structures twice — one on the strings of D and the other on
their reversals. This doubles the space occupancy, and slows down the search
performance because we need to first make two prefix-searches, one for P’s prefix
α and the other for P’s suffix β, and then we need to intersect the two candidate
lists of answers. If we wish to also support the rank/select primitives, we need to
add some auxiliary data that keep information about the left-to-right numbering of
trie leaves thus further increasing the space occupancy of the trie-based solution.
In Table II, we account for such “space doubling”, but not for the auxiliary data,
thus giving an advantage in space to these data structures wrt CPI. It is evident the
large space occupancy of ternary search trees because of the use of pointers and the
explicit storage of the dictionary strings (without any compression). As predicted
from the statistics of Table I, FC achieves a compression ratio of about 40% on
the original dictionaries, but more than 60% on their reversal. Further, we note
that FC space improves negligibly if we vary the bucket size b from 32 to 1024
strings, and achieves the best space/time trade-off when b = 32.7 In summary,
the space occupancy of the FC solution is more than the original dictionary size,
if we wish to support all queries of the Tolerant Retrieval problem! As far as the
variants of CPI are concerned, we note that their space improvement is significant: a
multiplicative factor from 2 to 7 with respect to FC, and from 40 to 86 with respect to
TRIE.

In Section 3.1, we mentioned another simple solution to the Tolerant Retrieval
problem which was based on the compressed indexing of the string ŜD, built by
juxtaposing twice every string of D. In that section, we argued that this solution
is inefficient in indexing time and compressed-space occupancy because of this
“string duplication” process. Here we investigate experimentally our conjecture by
computing and comparing the kth order empirical entropy of the two strings ŜD
and SD. As predicted theoretically, the two entropy values are close for all three
dictionaries, thus implying that the compressed indexing of ŜD should require
about twice the compressed indexing of SD (recall that |ŜD| = 2|SD| − 1). To
check this, we have then built two FM-indexes: one on ŜD and the other on SD,
by varying D over the three dictionaries. We found that the space occupancy of the
FM-index built on ŜD is a factor 1.6–1.9 worse than our CPI-FMI built on SD. So we
were right when, in Section 3.1, we conjectured the inefficiency of the compressed
indexing of ŜD.

We have finally tested the time efficiency of the indexing data structures over a
P4 2.6-GHz machine, with 1.5 Gb of internal memory and running Linux kernel
2.4.20. We executed a large set of experiments by varying the searched-pattern
length, and by searching one million patterns per length. Since the results were
stable over all these timings, we report in Table III only the most significant ones
by using the notation microsecs per searched symbol (shortly μs/char): this is

7 A smaller b would enlarge the extra-space dedicated to pointers, a larger b would impact seriously
on the time efficiency of the prefix searches.

ACM Transactions on Algorithms, Vol. 7, No. 1, Article 10, Publication date: November 2010.

The Compressed Permuterm Index 10:19

obtained by dividing the overall time of an experiment by the total length of the
searched patterns. We remark that the timings in Table III account for the cost of
searching a pattern prefix and a pattern suffix of the specified length. While this is
the total time taken by our CPI to solve a PREFIXSUFFIX query, the timings for FC
and TRIE are optimistic evaluations because they should also take into account the
time needed to intersect the candidate list of answers returned by the prefix/suffix
queries! Keeping this in mind, we look at Table III and note that CPI allows to trade
space occupancy per query time: we can go from a space close to gzip–ppmdi
and access time of 20–57 μs/char (i.e., CPI-FMI-1024), to an access time similar
to FC of few μs/char but using less than half of its space (i.e., CPI-AFI). Which
variant of CPI to choose depends on the application for which the Tolerant Retrieval
problem must be solved.

We finally notice that, of course, any improvement to compressed indexes
[Navarro and Mäkinen 2007] will immediately and positively impact onto our
CPI, both in theory and in practice. Overall our experiments show that CPI is a
novel compressed storage scheme for string dictionaries which is fast in supporting
the sophisticated searches of the Tolerant Retrieval problem, and is as compact as
the best-known compressors!

6. Conclusions and Open Problems

In this article, we have proposed a static and dynamic Compressed Permuterm
Index that solves the Tolerant Retrieval problem in time proportional to the length
of the searched pattern, and space close to the kth order empirical entropy of
the indexed dictionary. This index is based on an elegant variant of the Burrows-
Wheeler Transform defined on a dictionary of strings of variable length, which
allows to easily adapt known compressed indexes [Navarro and Mäkinen 2007] to
solve the Tolerant Retrieval problem too. Our theoretical study has been comple-
mented with a significant set of experiments that have shown that the Compressed
Permuterm Index supports fast queries within a space occupancy that is close
to the one achievable by compressing the string dictionary via gzip or bzip2.
This improves known approaches based on front-coding [Witten et al. 1999] by
more than 50% in absolute space occupancy, still guaranteeing comparable query
time.

In Manning et al. [2008], the more sophisticated wild-card query P = α ∗ β ∗ γ
is also considered and implemented by intersecting the set of strings contain-
ing γ $α with the set of strings containing β. Our compressed permuterm index
allows to avoid the materialization of these two sets by working only on the com-
pressed index built on the string SD. The basic idea consists of the following
steps:

—Compute [First′, Last′] = BackPerm search(γ $α);
—Compute [First′′, Last′′] = BackPerm search(β);
—For each r ∈ [First′, Last′], repeatedly apply Back step of Figure 3 until

it finds a row which either belongs to [First′′, Last′′] or to [1, m] (i.e. starts
with $).

—In the former case, r is an answer to WILDCARD(P), in the latter case it is
not.

ACM Transactions on Algorithms, Vol. 7, No. 1, Article 10, Publication date: November 2010.

10:20 P. FERRAGINA AND R. VENTURINI

The number of Back step’s invocations depends on the length of the dictionary
strings which match the query PREFIXSUFFIX(α ∗ γ). In practice, it is possible to
engineer this paradigm to reduce the total number of Back steps (see, Ferragina
and Navarro [2006], FM-index V2). This scheme can be also used to answer more
complex queries as P = α∗β1 ∗β2 ∗· · ·∗βk ∗γ , with possibly empty α and γ . The
efficiency depends on the selectivity of the individual queries PREFIXSUFFIX(α ∗γ)
and SUBSTRING(βi), for i = 1, . . . , k.

It would be then interesting to extend our results in two directions, either by
proving guaranteed and efficient worst-case bounds for queries with multiple wild-
card symbols, or by turning our Compressed Permuterm index in a I/O-conscious
or, even better, cache-oblivious compressed data structure. This latter issue actually
falls in the key challenge of current data structural design: does it exist a cache-
oblivious compressed index?

ACKNOWLEDGMENTS. The authors would like to thank the anonymous referees and
Gonzalo Navarro for their valuable technical comments and their help in improving
the presentation of the article.

REFERENCES

BAEZA-YATES, R., AND GONNET, G. 1996. Fast text searching for regular expressions or automaton
searching on tries. J. ACM 43, 6, 915–936.

BAEZA-YATES, R., AND RIBEIRO-NETO, B. 1999. Modern Information Retrieval. ACM/Addison-Wesley.
BARBAY, J., HE, M., MUNRO, J., AND RAO, S. S. 2007. Succinct indexes for string, binary relations

and multi-labeled trees. In Proceedings of the ACM-SIAM Symposium on Discrete Algorithms (SODA).
680–689.

BENTLEY, J. L., AND SEDGEWICK, R. 1997. Fast algorithms for sorting and searching strings. In Proceed-
ings of the ACM-SIAM Symposium on Discrete Algorithms (SODA). 360–369.

BOLDI, P., CODENOTTI, B., SANTINI, M., AND VIGNA, S. 2004. Ubicrawler: A scalable fully distributed
web crawler. Softw.: Pract. Exper. 34, 8, 711–726.

BURROWS, M., AND WHEELER, D. 1994. A block sorting lossless data compression algorithm. Tech. rep.
No. 124, Digital Equipment Corporation.

CHAN, H., HON, W., LAM, T., AND SADAKANE, K. 2007. Compressed indexes for dynamic text collections.
ACM Trans. Algor. 3, 2.

FERRAGINA, P., GIANCARLO, R., MANZINI, G., AND SCIORTINO, M. 2005. Boosting textual compression
in optimal linear time. J ACM 52, 688–713.

FERRAGINA, P., KOUDAS, N., MUTHUKRISHNAN, S., AND SRIVASTAVA, D. 2003. Two-dimensional sub-
string indexing. J Compu. Syst. Sci. 66, 4, 763–774.

FERRAGINA, P., AND MANZINI, G. 2005. Indexing compressed text. J. ACM 52, 4, 552–581.
FERRAGINA, P., MANZINI, G., MÄKINEN, V., AND NAVARRO, G. 2007. Compressed representations of

sequences and full-text indexes. ACM Trans. Algo. 3, 2.
FERRAGINA, P., AND NAVARRO, G. 2006. Pizza&Chili corpus homepage. http://pizzachili.dcc.

uchile.cl/ or http://pizzachili.di.unipi.it/.
GARFIELD, E. 1976. The permuterm subject index: An autobiographical review. J. ACM 27, 288–291.
GONZÁLEZ, R., AND NAVARRO, G. 2008. Improved dynamic rank-select entropy-bound structures. In

Proceedings of the Latin American Symposium on Theoretical Informatics (LATIN). Lecture Notes in
Computer Science, vol. 4957, Springer, 374–386.

MÄKINEN, V., AND NAVARRO, G. 2008. Dynamic entropy-compressed sequences and full-text indexes.
ACM Trans. Algo. 4, 3.

MANNING, C. D., RAGHAVAN, P., AND SCHÜLZE, H. 2008. Introduction to Information Retrieval. Cam-
bridge University Press.

MANTACI, S., RESTIVO, A., ROSONE, G., AND SCIORTINO, M. 2005. An extension of the burrows wheeler
transform and applications to sequence comparison and data compression. In Proceedings of Symposium
on Combinatorial Pattern Matching (CPM). Lecture Notes in Computer Science, vol. 3537. Springer,
178–189.

MANZINI, G. 2001. An analysis of the Burrows-Wheeler transform. J. ACM 48, 3, 407–430.

ACM Transactions on Algorithms, Vol. 7, No. 1, Article 10, Publication date: November 2010.

The Compressed Permuterm Index 10:21

NAVARRO, G., AND MÄKINEN, V. 2007. Compressed full text indexes. ACM Comput. Surv. 39, 1.
PUGLISI, S., SMYTH, W., AND TURPIN, A. 2007. A taxonomy of suffix array construction algorithms.

ACM Comput. Surv. 39, 2.
SADAKANE, K. 2007. Succinct data structures for flexible text retrieval systems. J. Discr. Algorithms 5, 1,

12–22.
WITTEN, I. H., MOFFAT, A., AND BELL, T. C. 1999. Managing Gigabytes: Compressing and Indexing

Documents and Images. Morgan Kaufmann Publishers.

RECEIVED DECEMBER 2007; REVISED JULY 2008; ACCEPTED AUGUST 2008

ACM Transactions on Algorithms, Vol. 7, No. 1, Article 10, Publication date: November 2010.

