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ABSTRACT
�e e�cient indexing of large and sparse N -gram datasets is crucial

in several applications in Information Retrieval, Natural Language

Processing and Machine Learning. Because of the stringent e�-

ciency requirements, dealing with billions of N -grams poses the

challenge of introducing a compressed representation that pre-

serves the query processing speed.

In this paper we study the problem of reducing the space required

by the representation of such datasets, maintaining the capability

of looking up for a given N -gram within micro seconds. For this

purpose we describe compressed, exact and lossless data structures

that achieve, at the same time, high space reductions and no time

degradation with respect to state-of-the-art so�ware packages. In

particular, we present a trie data structure in which each word

following a context of �xed length k , i.e., its preceding k words, is

encoded as an integer whose value is proportional to the number of

words that follow such context. Since the number of words follow-

ing a given context is typically very small in natural languages, we

are able to lower the space of representation to compression levels

that were never achieved before. Despite the signi�cant savings in

space, we show that our technique introduces a negligible penalty

at query time.

CCS CONCEPTS
•Information systems→ Data compression; Language mod-
els; Information extraction;

KEYWORDS
Performance, Data Compression, Elias-Fano, Language Models

ACM Reference format:
Giulio Ermanno Pibiri and Rossano Venturini. 2017. E�cient Data Struc-

tures for Massive N -Gram Datasets. In Proceedings of SIGIR’17, Shinjuku,
Tokyo, Japan, August 7-11, 2017, 10 pages.

DOI: h�p://dx.doi.org/10.1145/3077136.3080798

1 INTRODUCTION
N -grams are widely adopted for many vital tasks in Information Re-

trieval, Natural Language Processing and Machine Learning, such

as: auto-completion in search engines, spelling correction, simi-

larity search, identi�cation of duplicated documents in databases,

automatic speech recognition and machine translation [10, 19, 21,
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25, 26, 34]. As an example, query auto-completion is one of the

key features that any modern search engine o�ers to help users

formulate their queries. �e objective is to predict the query by

saving keystrokes: this is implemented by reporting the top-k most

frequently-searched N -grams that follow the words typed by the

user [2, 25, 26]. �e identi�cation of such pa�erns is possible by

traversing a data structure that stores the N -grams as seen by previ-

ous user searches. Given the number of users served by large-scale

search engines and the high query rates, it is of utmost importance

that such data structure traversals are carried out in a handful of

microseconds [2, 10, 21, 25, 26]. Another noticeable example is

spelling correction in text editors and web search. In their basic for-

mulation, N -gram spelling correction techniques work by looking

up every N -gram in the input string in a pre-built data structure in

order to assess their existence or return a statistic, e.g., a frequency

count, to guide the correction [23]. If the N -gram is not found

in the data structure it is marked as a misspelled pa�ern: in such

case correction happens by suggesting the most frequent word that

follows the pa�ern with the longest matching history [10, 21, 23].

At the core of all the mentioned applications lies an e�cient

data structure mapping N -grams to their associated satellite data,

e.g., a frequency count representing the number of occurrences of

the N -gram or probability and backo� weights for word-predicting

computations [17, 31]. �e data structure e�ciency should be both

in time and space, because modern string search and machine

translation systems make very frequent queries over databases

containing several billion N -grams that o�en do not �t in internal

memory [10, 21].

While several solutions have been proposed for the indexing

and retrieval of N -grams, either based on tries [15] or hashing [24],

their practicality is actually limited because of some important

ine�ciencies that we discuss now. Context information, such as

the fact that relatively few words may follow a given context, is

not currently exploited to achieve be�er compression ratios. When

query processing speed is the main concern, space e�ciency is

almost completely neglected by not compressing the data structure

using sophisticated encoding techniques [17]. Space reductions are

usually achieved by lossy quantization of satellite values and/or

randomized approaches with false positive allowed [35]. �e most

space-e�cient and lossless proposals still employ binary search over

the compressed representation to lookup for a N -gram: this results

in a severe ine�ciency during query processing because of the lack

of a compression strategy with a fast random access operation [31].

To support random access, current methods leverage on block-

wise compression with expensive decompression of a block every

time an element of the block has to be retrieved. Even hashing

schemes, adopted for their constant-time access capabilities, result

sub-optimal for static corpora as long as open addressing with

linear probing is used [17, 31].
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Because a solution that is compact, fast and lossless at the same

time is still missing, the aim of this paper is that of addressing the

aforementioned problems by introducing compressed data struc-

tures that, despite their space e�ciency, support e�cient random

access to the satellite N -gram values.

Our contributions. We list here our main contributions.

(1) We introduce a compressed trie data structure in which each

level of the trie is modeled as a monotone integer sequence

that we encode with Elias-Fano [12, 13] as to e�ciently support

random access operations and successor queries over the com-

pressed sequence. Our hashing approach leverages on minimal

perfect hash in order to use tables of size equal to the number

of stored pa�erns per level, with one random access to retrieve

the relative N -gram information.

(2) We describe a technique for lowering the space usage of the trie

data structure, by reducing the magnitude of the integers that

form its monotone sequences. Our technique is based on the

observation that few distinct words follow a prede�ned context,

in any natural language. In particular, each word following a

context of �xed length k , i.e., its preceding k words, is encoded

as an integer whose value is proportional to the number of

words that follow such context.

(3) We present an extensive experimental analysis that shows our

technique o�ers a signi�cantly be�er compression with respect

to the plain Elias-Fano trie, while only introducing a slight

penalty at query processing time. Compared to the state-of-

the-art proposals, our data structures outperform all of them

for space usage, without compromising their time performance.

More precisely, the most space-e�cient proposals, which are

both quantized and lossy, are no be�er than our trie data struc-

ture and up to 5 times slower. Conversely, we are as fast as the

fastest competitor, but also retain an advantage of up to 65% in

absolute space.

2 RELATEDWORK
Two di�erent data structures are mostly used to store large and

sparse N -grams language models: trie [15] and hashing [24].

A trie is a tree devised for e�cient indexing and search of string

dictionaries. �e common pre�xes shared by the strings are repre-

sented once to achieve compact storage. �is property makes this

data structure useful for storing the N -gram strings in compressed

space. In this case, each constituent word of a N -gram is associated

a node in the trie and di�erent N -grams correspond to di�erent

root-to-leaf paths. �ese paths must be traversed to resolve a query,

which retrieves the string itself or an associated satellite value,

e.g., a frequency count. Conceptually, a trie implementation has

to store a triplet for any node: the associated word, satellite value

and a pointer to each child node. As N is typically very small and

each node has many children, tries are of short height and dense.

�erefore, these are implemented as a collection of sorted arrays:

for each level of the trie, a separate array is built to contain all the

triplets for that level, sorted by the words. In this implementation,

a pair of adjacent pointers indicates the sub-array listing all the

children for a word, which can be inspected by binary search.

Hashing is another way to implement associative arrays: for

each value of N a separate hash table stores all grams of order

N . At the location indicated by the hash function the following

information is stored: a �ngerprint value to lower the probability

of a false positive and the satellite data for the N -gram. �is data

structure permits to access the speci�ed N -gram data in expected

O (1). Open addressing with linear probing is usually preferred over

chaining for its be�er locality of accesses.

Tries are usually designed for space-e�ciency as the formed

sorted arrays are highly compressible. However, retrieval for the

value of a N -gram involves O (N ) searches in the constituent ar-

rays. Conversely, hashing is designed for speed but sacri�ces space-

e�ciency since keys, along with their �ngerprint values, are ran-

domly distributed and, therefore, incompressible. Moreover, hash-

ing is a randomized solution, i.e., there is a non-null probability of

retrieving a frequency count for a N -gram not really belonging to

the indexed corpus (false positive). Such probability equals 2
−δ

,

where δ indicates the number of bits dedicated to the �ngerprint

values: larger values of δ yield a smaller probability of false positive

but also increase the space of the data structure. We now review

how these two di�erent data structural approaches have been used

in the literature to implement the state-of-the-art solutions.

�e paper by Pauls and Klein [31] proposes trie-based data struc-

tures in which the nodes are represented via sorted arrays or with

hash tables with linear probing. �e trie sorted arrays are com-

pressed using a variable-length block encoding: a con�gurable

radix r = 2
k

is chosen and the number of digits d to represents a

number in base r is wri�en in unary. �e representation then ter-

minates with the d digits, each of which requires exactly k bits. To

preserve the property of looking up a record by binary search, each

sorted array is divided into blocks of 128 bytes. �e encoding is

used to compress words, pointers and the positions that frequency

counts take in a unique-value array that collect all distinct counts.

�e hash-based variant is likely to be faster than the sorted array

variant, but requires extra table allocation space to avoid excessive

collisions.

Hea�eld [17] improves the sorted array trie implementation with

some optimizations. �e keys in the arrays are replaced by their

hashes and sorted, so that these are uniformly distributed over their

ranges. Now lookup time for a record is reduced to O (log logn)
with high probability by using interpolation search [11]. Pointers are

compressed using the integer compressor devised in [32]. Values

can also be quantized using the binning method [14] that sorts

the values, divides them into equally-sized bins and then elects

the average value of the bin as the representative of the bin. �e

number of chosen quantization bits directly controls the number of

created bins and, hence, the trade-o� between space and accuracy.

Talbot and Osborne [35] use Bloom �lters [4] with lossy quan-

tization of frequency counts to achieve small memory footprint.

In particular, the raw frequency count f (д) of gram д is quantized

using a logarithmic codebook, i.e., f̃ (д) = 1+ logb f (д). �e scale is

determined by the base b of the logarithm: in the implementation b

is set to 2
1/v

, where v is the quantization range used by the model,

e.g.,v = 8. Given the quantized count f̃ (д) of gram д, a Bloom �lter

is trained by entering composite events into the �lter, represented

by д with an appended integer value j, which is incremented from

1 to f̃ (д). �en at query time, to retrieve f̃ (д), the �lter is queried

with a 1 appended to д. �is event is hashed using the k hash
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functions of the �lter: if all of them test positive, then the count is

incremented and the process repeated. �e procedure terminates as

soon as any of the k hash functions hits a 0 and the previous count

is reported. �is procedure avoids a space requirement for the

counts proportional to the number of grams in the corpus because

only the codebook needs to be stored.

�e use of the succinct encoding LOUDS [20] is advocated in [37]

to implicitly represent the trie nodes. In particular, the pointers for

a trie ofm nodes are encoded using a bitvector of 2m + 1 bits. Bit-

level searches on such bitvector allow forward/backward navigation

of the trie structure. Words and frequency counts are compressed

using Variable-Byte encoding [33], with an additional bitvector used

to indicate the boundaries of such byte sequences as to support

random access to each element.

Because of the importance of strings as one of the most common

computerized kind of information, the problem of representing

trie-based storage for string dictionaries is among one of the most

studied in computer science, with many and di�erent solutions

available [9, 18, 29]. Given the properties that N -gram datasets

exhibit, generic trie implementations are not suitable for their ef-

�cient treatment. However, comparing with the performance of

such implementations gives useful insights about the performance

gap with respect to a general solution. We mention Marisa [38] as

the best and practical general-purpose trie implementation. �e

core idea is to use Patricia [28] tries to recursively represent the

nodes of a Patricia trie. �is clearly comes with a space/time trade

o�.

3 ELIAS-FANO TRIES
In this section we introduce our main result: a compressed trie data

structure, based on the Elias-Fano representation [12, 13] of mono-

tone integer sequences for its e�cient random access and search

operations. As we will see, the constant-time random access of

Elias-Fano makes it the right choice for the encoding of the sorted-

array trie levels, given that we fundamentally need to randomly

access the sub-array pointed to by a pair of pointers. Such pair is

retrieved in constant time too. Now every access performed by bi-

nary search takes O (1) without requiring any block decompression,

di�erently from currently employed strategies [31].

We also describe a novel technique to lower the memory foot-

print of the trie levels by losslessly reducing the entity of their

constituent integers. �is reduction is achieved by mapping a word

ID conditionally to its context of �xed length k , i.e., its k preceding

words.

3.1 Core data structure
As it is standard, a unique integer ID is assigned to each distinct

token (uni-gram) to form the vocabulary V of the indexed corpus.

Uni-grams are indexed using a hash data structure that stores for

each gram its ID in order to retrieve it when needed in O (1). If

we sort the N -grams following the token-ID order, we have that

all the successors of gram wN−1

1
= w1, . . . ,wN−1, i.e., all grams

whose pre�x is wN−1

1
, form a strictly increasing integer sequence.

For example, suppose we have the uni-grams 〈a, b, c, d〉, which are

assigned IDs 〈0, 1, 2, 3〉 respectively. Now consider the bi-grams

〈aa, ac, bb, bc, bd, ca, cd, db, dd〉 sorted by IDs. �e sequence of the

successors of a, referred to as the range of a, is 〈a, c〉, i.e., 〈0, 2〉;

the sequence of the successors of b, is 〈b, c, d〉, i.e., 〈1, 2, 3〉 and

so on. Concatenating the ranges, we obtain the integer sequence

〈0, 2, 1, 2, 3, 0, 3, 1, 3〉. In order to distinguish the successors of a

gram from others, we also maintain where each range begins in

a monotone integer sequence of pointers. In our example, the

sequence of pointers is 〈0, 2, 5, 7, 9〉 (we also store a �nal dummy

pointer to be able to obtain the last range length by taking the

di�erence between the last and previous pointer). �e ID assigned

to a uni-gram is also used as the position at which we read the

uni-gram pointer in the uni-grams pointer sequence. �erefore,

apart from uni-grams, each level of the trie has to store two integer

sequences: one for the representation of the gram-IDs, the other

for the pointers.

Among the many integer compressors available in the litera-

ture [33], we choose Elias-Fano, which has been recently applied to

inverted index compression showing an excellent time/space trade

o� [30, 36]. We now brie�y describe this elegant integer encoding.

Elias-Fano. Given a monotonically increasing sequence S (n,u)
of n positive integers upper-bounded by u, i.e., S[i − 1] ≤ S[i], for

any 1 ≤ i < n with S[n − 1] ≤ u, we write each S[i] in binary

using dlogue bits. Each binary representation is then split into two

parts: a high part consisting in the �rst dlogne most signi�cant

bits that we call high bits and a low part consisting in the other

` = blog
u
n c bits that we similarly call low bits. Let us call hi and `i

the values of high and low bits of S[i] respectively. �e Elias-Fano

representation of S is given by the encoding of the high and low

parts. �e array L = [`0, . . . , `n−1] is stored in �xed-width and

represents the encoding of the low parts. Concerning the high

bits, we represent them in negated unary using a bit vector of

n + u/2` ≤ 2n bits as follows. We start from a 0-valued bit vector

H and we set the bit in position hi + i , ∀i ∈ [0,n). �e e�ect is

that now the k-th unary integerm of H indicates thatm integers of

S have high bits equal to k . Finally the Elias-Fano representation

of S is given by the concatenation of H and L and takes, overall,

EF(S (n,u)) = ndlog
u
n e + 2n bits.

Despite its simplicity, it is possible to randomly access an integer

from a sequence compressed with Elias-Fano without decompress-

ing it. �e operation is supported using an auxiliary data structure

that is built on bit vector H , able to e�ciently answer Select1 (i )
queries, that return the position in H of the i-th 1 bit. �is auxiliary

data structure is succinct in the sense that it is negligibly small

compared to EF(S (n,u)), requiring only o(n) additional bits [8, 36].

Using the Select1 primitive, it is possible to implement Access(i ),
which returns S[i] for any 1 ≤ i < n, in constant time.

Gram-ID sequences and pointers. While the sequences of point-

ers are monotonically increasing by construction and, therefore,

immediately Elias-Fano encodable, the gram-ID sequences could

not. However, a gram-ID sequence can be transformed into a

monotone one, though not strictly increasing, by taking range-

wise pre�x sums: to the values of a range we sum the last pre�x

sum (initially equal to 0). �en, our exemplar sequence becomes

〈0, 2, 3, 4, 5, 5, 8, 9, 11〉. �e last pre�x sum is initially 0, therefore

the range of a remains the same, i.e., 〈0, 2〉. Now the last pre�x sum

is 2, so we sum 2 to the values in the range of b, yielding 〈3, 4, 5〉,

and so on. In particular, if we sort the vocabulary IDs in decreasing
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order of occurrence, we make small IDs appear more o�en than

large ones and this is highly bene�cial for the growth of the uni-

verse u and, hence, for Elias-Fano whose space occupancy critically

depends on it. We emphasize this point again: for each uni-gram

in the vocabulary we count the number of times it appears in all

gram-ID sequences. Notice that the number of occurrences of a

N -gram can be di�erent than its frequency count as reported in

the indexed corpus. �e reason is that such corpora o�en do not

include the N -grams appearing less than a prede�ned frequency

threshold.

Frequency counts. To represent the frequency counts, we use

the unique-value array technique, i.e., each count is represented

by its rank in an array, one for each separate value of N , that

collects all distinct frequency counts. �e reason for this is that

the distribution of the frequency counts is extremely skewed (see

Table 2), i.e., relatively few N -grams are very frequent while most of

them appear only a few times. Now each level of the trie, besides the

sequences of gram-IDs and pointers, has also to store the sequence

made by all the frequency count ranks. Unfortunately, this sequence

of ranks is not monotone, yet it follows the aforementioned highly

repetitive distribution. �erefore, we assigned to each count rank a

codeword of variable length. As similarly done for the gram-IDs,

by assigning smaller codewords to more repetitive count ranks, we

have most ranks encoded with just a few bits. More speci�cally,

starting from k = 1, we �rst assign all the 2
k

codewords of length

k before increasing k by 1 and repeating the process until all count

ranks have been considered. �erefore, we �rst assign codewords

0 and 1, then codewords 00, 01, and so on. All codewords are then

concatenated one a�er the other in a bitvector B. Following [16], to

the i-th value we give codeword c = i +2−2
`c

, where `c = blog(i +
2)c is the number of bits dedicated to the codeword. From codeword

c and its length `c in bits, we can retrieve i by taking the inverse of

the previous formula, i.e., i = c−2+2
`c

. Besides the bitvector for the

codewords themselves, we also need to know where each codeword

begins and ends. We can use another bitvector for this purpose, say

L, that stores a 1 for the starting position of every codeword. A small

additional data structure built on L allows e�cient computation of

Select1, which we use to retrieve `c . In fact, b = Select1 (i ) gives

us the starting position of the i-th codeword. Its length is easily

computed by scanning L upward from position b until we hit the

next 1, say in position e . Finally `c = e − b and c = B[b, e − 1].

In conclusion, each level i of the trie stores three sequences: the

gram-ID sequence Gi , the pointer sequence Pi and the count ranks

sequence Ri . Two exceptions are represented by uni-grams and

maximum-order grams, for which gram-ID and pointer sequences

are missing respectively.

Lookup. We now describe how to retrieve the frequency count

given a gram wm
1

. We �rst performm vocabulary lookups to map

the gram tokens into its constituent IDs. We write these IDs into an

arrayW [1,m]. �is preliminary query-mapping step takes O (m).
Now, the search procedure basically has to locate W [i] in the i-
th level of the trie. Refer to Figure 1, which shows a pictorial

representation of a trie of order 3. If m = 1, then our search

terminates: at the position k1 =W [1] we read the rank r1 = R1[k1]

N = 1

N = 2

W [1]

W [3]

N = 3

W [2]

Figure 1: Search for the tri-gramW [1, 3] in a trie data struc-
ture of order 3. �e light gray shaded area indicates the
range of IDs that follow a given gram and its is delimited
by the black IDs pointed to by the pointers represented as
blue squares.

to �nally access C1[r1]. If, instead, m is greater than 1, the position

k1 is used to retrieve the pair of pointers 〈P1[k1], P1[k1 + 1]〉 in

constant time, which delimits the range of IDs in which we have

to search for W [2] in the second level of the trie. �is range is

inspected by binary search, taking O (log(P1[k1 + 1] − P1[k1])) as

each access to an Elias-Fano-encoded sequence is performed in

constant time. Let k2 be the position at whichW [2] is found in the

range. Again, if m = 2, the search terminates by accessing C2[r2]

where r2 is the rank R2[k2]. Ifm is greater than 2, we fetch the pair

〈P2[k2], P2[k2 + 1]〉 to continue the search ofW [3] in the third level

of the trie, and so on. �is search step is repeated form − 1 times

in total, to �nally return the count Cm[rm] of wm
1

.

3.2 Context-based identi�er remapping
In this subsection we describe a technique that lowers the space

occupancy of the gram-ID sequences that constitute, as we have

seen, the core of the trie data structure. �e high level idea is to

map a wordw occurring a�er contextwk
1

to an integer whose value

is proportional to the number of words that follow the context wk
1

,

and not proportional to the whole vocabulary size |V |. Speci�cally,

w is mapped to the position it occupies within its siblings, i.e., all the

words following the gram wk
1

. We call this technique context-based
remapping as each ID is mapped to the position it takes relative to

a context. As we will see in the experimental Section 5, the dataset

vocabulary can contain several million tokens, whereas the number

of words that naturally occur a�er another is typically very small.

Even in the case of stopwords, such as “the” or “are”, the number of

words that can follow is far less than the whole number of distinct

words for any N -gram dataset. �is ultimately means that the

remapped integers forming the gram-ID sequences of the trie will

be much smaller than the original ones, which can indeed range

from 0 to |V |−1. Lowering the values of the integers clearly helps in

reducing the memory footprint of the levels of the trie because any
integer compressor takes advantage of encoding smaller integers,

since fewer bits are needed for their representation [27, 30]. In

our case the gram-ID sequences are encoded with Elias-Fano: from

Section 3.1 we know that Elias-Fano spends dlog
u
n e + 2 bits per

integer, thus a number of bits proportional to the average gap

between the integers. Remapping the integers as explained can
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a b c d

a c b c d a d b d

c c d d db c

0 1

2 32 3 1 2 3

2 3

1 21 1 0 1 1

10 10 2 10 10

Figure 2: Example of a trie of order 3. Vocabulary IDs are
represented in dark grey while level-3 IDs in red. �e blue
IDs are derived by applying a context-based remapping with
context length 1.

critically reduce the universe u of representation, thus lowering the

average gap of the sequence.

To be�er understand the power of the idea, we consider now

a concrete example. We continue the example from Section 3.1,

extended to contain the tri-grams depicted in Figure 2. �e Figure

shows a trie model of order 3. �e gray IDs are the vocabulary

IDs and the red ones are the last token IDs of the tri-grams as

assigned by the vocabulary. We now explain how the remapped IDs,

represented in blue, are derived by the model using our technique

with a context of length 1. Consider the tri-gram bcd. �e default

ID of d is 3. We now rewrite this ID as the position that d takes

within the successors of the word preceding it, i.e., c (context 1).

As we can see in the Figure, d appears in position 1 within the

successors of c, therefore its new ID will be 1. Another example:

take dbb. �e default ID of b is 1, but it occurs in position 0 within

the successors of its parent b, therefore its new ID is 0. As it is

clear, the �rst two levels of the trie act as a mapper structure which

is used to map the vocabulary ID of the last token of a tri-gram

into its new ID. At query time, this mapper structure is used to

retrieve the mapped ID that is �nally searched in the third level of

the trie. �erefore, notice that the technique takes full advantage

of the N -gram model represented by the trie structure itself in that

it does not need any redundancy to retrieve the remapped ID.

We observe that this strategy allows a great deal of �exibility,

in that we can choose the length of the context. �e example in

Figure 2 illustrates how to map tri-grams using a context of length 1:

this is clearly the only one possible as the �rst two levels of the trie

must be used to retrieve the mapped ID at query time. However, if

we have a gram of order 4, i.e., w4

1
, we can choose to map w4 as the

position it takes within the successors of w3 (context length 1) or

within the successors of w2w3 (context length 2). In general, with a

gram of order N ≥ 2 we can choose between N − 2 distinct context

lengths k , i.e., 1 ≤ k ≤ N − 2. �is also means that, when using

context length k , we have the �rst k + 1 levels of the trie acting as

the mapper structure and, hence, must be kept un-mapped. Clearly,

the greater the context length we use, the smaller the remapped

integers will be. �e proper context length to use should take into

account the characteristics of the N -gram dataset, in particular the

number of grams per order.

To support our discussion, we present some real numbers regard-

ing the e�ect of the context-based remapping on the average gap of

the gram-ID sequences of Europarl, one of the datasets used in the

experiments. As uni-grams and bi-grams must be kept un-mapped

as explained, we report the statistics for the trie of order 5 built from

the N -grams of the dataset. �e average gap
u
n of the sequences of

order N ≥ 3 are respectively, without remapping: 2404, 2782 and

2920. With our technique, using a context of length 1, we obtain the

following average gaps instead: 213, 480 and 646, i.e., an average

reduction of 7.2 (up to 11.3 on tri-grams). With a context of length

2 we obtain: 48 and 101 for 4− and 5-grams respectively, i.e., an

average reduction of 43.4 (up to 58 on 4-grams).

Lookup. �e context-based remapping comes with an overhead

at query time as the search algorithm described in Section 3.1 must

map the default vocabulary ID to its remapped ID, before it can be

searched in the proper gram sequence. If the remapping strategy is

applied with a context of length k , it involves k (N −k−1) additional

searches. As an example, by looking at Figure 2, before searching

the mapped ID 1 of d for the tri-gram bcd, we have to map the

vocabulary ID of d, i.e., 3, to 1. For this task, we search 3 within

the successors of c. As 3 is found in position 1, we now know that

we have to search for 1 within the successors of bc. On the one

hand, the context-based remapping will assign smaller IDs as the

length of the context rises, on the other hand it will also spend

more time at query processing. In conclusion, we have a space/time

trade-o� that we explore with an extensive experimental analysis

in Section 5.

4 HASHING
Since the indexed N -gram corpus is static, we obtain a full hash

utilization by resorting to Minimal Perfect Hash (MPH). We indexed

all grams of the same order N into a separate MPH table TN , each

with its own MPH functionhN . �is introduces a twofold advantage

over the linear probing approach used in the literature [17, 31]: use

a hash table of size equal to the exact number of grams per order

(no extra space allocation is required) and avoid the linear probing

search phase by requiring one single access to the required hash

location. We use the implementation, publicly available at h�ps:

//github.com/ot/emphf, of MPH as described in [3], which requires

2.61 bits per key on average. At the hash location for a N -gram we

store: its 8-byte hash key as to have a false positive probability of

2
−64

(4-byte hash keys are supported as well) and the position of

the frequency count in the unique-value array CN which keeps all

distinct frequency counts for order N . As already motivated, these

unique-value arrays, one for each di�erent order ofN , are negligibly

small compared to the number of grams themselves and act as a

direct map from the position of the count to its value. Although

these unique values could be sorted and compressed, we do not

perform any space optimization as these are too few to yield any

improvement but we store them uncompressed and byte-aligned,

in order to favor lookup time. We also use this hash approach to

implement the vocabulary of the previously introduced trie data

structure.

Lookup. Given N -gram д we compute the position p = hN (д)
in the relevant table TN , then we access the count rank r stored at

position p and �nally retrieve the count value CN [r ].

https://github.com/ot/emphf
https://github.com/ot/emphf
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Europarl YahooV2 GoogleV2

bpg µs × query bpg µs × query bpg µs × query

EF 1.97 1.28 2.17 1.60 2.13 2.09

PEF 1.87 (−4.99%) 1.35 (+5.93%) 1.91 (−12.03%) 1.73 (+8.00%) 1.52 (−28.60%) 1.91 (−8.79%)

C
O
N
TE

X
T-
B
A
SE

D

ID
R
EM

A
PP

IN
G

k
=

1 EF 1.67 (−15.30%) 1.58 (+23.86%) 1.89 (−12.92%) 2.05 (+28.07%) 1.91 (−10.24%) 3.03 (+44.61%)

PEF 1.53 (−22.36%) 1.61 (+25.89%) 1.63 (−24.91%) 2.16 (+35.22%) 1.31 (−38.71%) 2.30 (+9.88%)

k
=

2 EF 1.46 (−25.62%) 1.60 (+25.17%) 1.68 (−22.32%) 2.08 (+30.23%) — —

PEF 1.28 (−34.87%) 1.64 (+28.12%) 1.38 (−36.15%) 2.15 (+34.81%) — —

Table 1: Average bytes per gram (bpg) and average Lookup time per query in micro seconds.

5 EXPERIMENTS
We performed our experiments on the following standard datasets:

Europarl, which consists in all unpruned N -grams extracted from

the english Europarl parallel corpus [22]; YahooV2 [1] andGoogleV2
as the last English version of Web1T [5]. Each dataset comprises all

N -grams for 1 ≤ N ≤ 5 and associated frequency counts. Table 2

shows the basic statistics of the datasets.

N
Europarl YahooV2 GoogleV2

n m n m n m

1 304 579 4518 3 475 482 23 785 24 357 349 246 490

2 5 192 260 4663 53 844 927 31 711 665 752 080 722 966

3 18 908 249 2975 187 639 522 19 856 7 384 478 110 683 653

4 33 862 651 1744 287 562 409 10 761 1 642 783 634 133 491

5 43 160 518 1032 295 701 337 6167 1 413 870 914 104 025

Total 101 428 257 7147 828 223 677 45 285 11 131 242 087 1 073 473

gzip bpg 6.98 6.45 6.20

Table 2: Number ofN -grams per order (n); distinct frequency
counts (m); and gzip average bytes per gram (bpg) for the
datasets used in the experiments.

Compared Indexes. We compare the performance of our data

structures against the following so�ware packages that use the

approaches introduced in Section 2.

• BerkeleyLM implements two trie data structures based on sorted

arrays and hash tables to represent the nodes of the trie [31].

Java implementation available at: h�ps://github.com/adampauls/

berkeleylm.

• Expgram makes use of the LOUDS succinct encoding [20] to

implicitly represent the trie structure and compresses frequency

counts using Variable-Byte encoding [37]. C++ implementation

available at: h�ps://github.com/tarowatanabe/expgram.

• KenLM implements a trie with interpolation search and a hashing

with linear probing [17]. C++ implementation available at: h�p:

//khea�eld.com/code/kenlm.

• Marisa is a general-purposes string dictionary implementation

in which Patricia tries are recursively used to represent the nodes

of a Patricia trie [38]. C++ implementation available at: h�ps:

//github.com/s-yata/marisa-trie.

• RandLM employs Bloom �lters with lossy quantization of fre-

quency counts to a�ain to low memory footprint [35]. C++ imple-

mentation available at: h�ps://sourceforge.net/projects/randlm.

Experimental setup. All experiments have been performed on a

machine with 16 Intel Xeon E5-2630 v3 cores (32 threads) clocked

at 2.4 Ghz, with 193 GBs of RAM, running Linux 3.13.0, 64 bits.

Our implementation is in standard C++11 and freely available at

h�ps://github.com/jermp/tongrams. �e code was compiled with

gcc 5.4.1, using the highest optimization se�ings.

�e data structures were saved to disk a�er construction, and

loaded into main memory to be queried. To test the speed of

lookup queries, we use a query set of 5 million random N -grams

for YahooV2 and GoogleV2 and of 0.5 million for Europarl. In or-

der to smooth the e�ect of �uctuations during measurements, we

repeat each experiment �ve times and consider the mean. All query

algorithms were run on a single core.

5.1 Elias-Fano Tries
Gram-ID sequences. Table 1 shows the average number of bytes

per gram including the cost of pointers, and lookup speed per query.

�e �rst two rows refers to the trie data structure described in

Section 3.1, when the sorted arrays are encoded with Elias-Fano (EF)

and partitioned Elias-Fano (PEF) [30]. Subsequent rows indicate

the space gains obtained by applying the context-based remapping

strategy using EF and PEF for contexts of lengths respectively 1

and 2. In particular, for GoogleV2 we use a context of length 1, as

the number of tri-grams roughly takes 66% of the whole number of

N -grams in the dataset, thus it would make li�le sense to optimize

only the space of 4- and 5-grams.

As expected, partitioning the gram sequences using PEF yields

a be�er space occupancy. However, though the paper by O�aviano

and Venturini [30] describes a dynamic programming algorithm

that �nds the partitioning able of minimizing the space occupancy

of a monotone sequence, we instead adopt a uniform partitioning

strategy. Partitioning the sequence uniformly has several advan-

tages over variable-length partitions for our se�ing. As we have

seen in Section 3.1, trie searches are carried out by performing a

preliminary random access to the endpoints of the range pointed

to by a pointer pair. �en a search in the range follows to deter-

mine the position of the gram-ID. Partitioning the sequence by

variable-length blocks introduces an additional search over the

sequence of partition endpoints to determine the proper block in

which the search must continue. While this preliminary search

only introduces a minor overhead in query processing for inverted

index queries [30] (as it has to be performed once and successive

accesses are only directed to forward positions of the sequence), it

https://github.com/adampauls/berkeleylm
https://github.com/adampauls/berkeleylm
https://github.com/tarowatanabe/expgram
http://kheafield.com/code/kenlm
http://kheafield.com/code/kenlm
https://github.com/s-yata/marisa-trie
https://github.com/s-yata/marisa-trie
https://sourceforge.net/projects/randlm
https://github.com/jermp/tongrams
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is instead the major bo�leneck when random access operations are

very frequent as in our case. By resorting on uniform partitions,

we eliminate this �rst search and the cost of representation for the

variable-length sizes. To speed up queries even further, we also

keep the upper bounds of the blocks uncompressed and bit-aligned.

We use partitions of 64 integers for bi-gram sequences, and of 128

for all other orders, i.e., for N ≥ 3. Shrinking the size of blocks

has the potential of speeding-up searches over plain Elias-Fano

because a successor query has to be resolved over an interval poten-

tially much smaller than a range length (number of successors of a

gram). However, excessively reducing the block size will ruin the

advantage in space reduction. We use 64-integer blocks for bi-gram

sequences because these must be searched several times during

the query-mapping phase when the context-based remapping is

adopted. In conclusion, as we can see by the second row of Table 1,

this sequence organization brings a negligible overhead in query

processing speed (less than 8% on Europarl and YahooV2), while

maintaining a noticeable space reduction (up to 29% on GoogleV2).

Concerning the e�cacy of the context-based remapping, we

have that remapping the gram IDs with a context of length k = 1

is already able of reducing the space of the sequences by ≈13% on

average when sequences are encoded with Elias-Fano, with respect

to the EF cost. If we consider a context of length k = 2 we double
the gain, allowing for more than 28% of space reduction without
a�ecting the lookup time with respect to the case k = 1. As a

�rst conclusion, when space e�ciency is the main concern, it is

always convenient to apply the remapping strategy with a context

of length 2. �e gain of the strategy is even more evident with PEF:

this is no surprise as the encoder can be�er exploit the reduced IDs

by encoding all the integers belonging to a block with a universe

relative to the block and not to the whole sequence. �is results

in a space reduction of more than 36% on average and up to 39%

on GoogleV2. However, as explained in Section 3, the remapping

strategy comes with a penalty at query time as we have to map

an ID before it can be searched in the proper gram sequence. On

average, we found that 30% more time is spent with respect to the

Elias-Fano baseline. Notice that PEF does not introduce any time

degradation with respect to EF with context-based remapping: it is

actually faster on GoogleV2.

Frequency counts. For the representation of frequency counts

we compare three di�erent encoding schemes: the �rst one refers

to the strategy described in Section 3 that assigns variable-length

codewords (CW) to the ranks of the counts and keeps track of code-

words length using a binary vector (BV), the other two schemes

transform the sequence of count ranks into a non-decreasing se-

quence by taking its pre�x sums (PF) and then applies EF or PEF.

Table 3 shows the average number of bytes per count for these

di�erent strategies. �e reported space also includes the space for

the storage of the arrays containing the distinct counts for each

order of N . As already pointed out, these take a negligible amount

of space because the distribution of frequency counts is highly

repetitive (see Table 2). �e percentages of PS + EF and PS + PEF
are done with respect to the �rst row CW + BV.

�e time for retrieving a count was pre�y much the same for

all the three techniques. Pre�x-summing the sequence and apply

EF does not bring any advantage over the codeword assignment

Europarl YahooV2 GoogleV2

CW + BV 0.36 0.47 1.46

PS + EF 0.35 (−1.59%) 0.62 (+32.46%) 1.59 (+9.17%)

PS + PEF 0.30 (−16.65%) 0.51 (+8.67%) 1.30 (−11.03%)

VLBC 0.76 (+155.63%) 0.79 (+55.86%) 1.32 (+1.44%)

PLAIN 1.63 (+444.74%) 2.00 (+294.17%) 2.63 (+102.43%)

VByte + BV 3.21 (+975.40%) 3.32 (+554.66%) —

Table 3: Average bytes per count (bpc).

technique because its space is practically the same on Europarl but

it is actually larger on both YahooV2 (by up to 32%) and GoogleV2.

�ese two reasons together place the codeword assignment tech-

nique in net advantage over EF. PEF, instead, o�ers a be�er space

occupancy of more than 16% on Europarl and 10% on GoogleV2.

�erefore, in the following we assume this representation for fre-

quency counts, except for YahooV2, where we adopt CW + BV.

We also report the space occupancy for the counts represen-

tation of BerkeleyLM and Expgram which, di�erently from all

other competitors, can also be used to index frequency counts.

BerkeleyLM COMPRESSED variant uses the variable-length block

coding (VLBC) explained in Section 2 to compress count ranks,

whereas the HASH variant stores uncompressed count ranks, re-

ferred to as PLAIN in the table, using the minimum number of

bits necessary for their representation (see Table 2). Expgram, in-

stead, does not store count ranks but directly compress the counts

themselves using Variable-Byte encoding with an additional binary

vector as to be able of randomly accessing the counts sequence.

�e available RAM of our test machine (192 GBs) was not su�-

cient to successfully build Expgram on GoogleV2. �e same holds

for KenLM and Marisa, as we are going to see in the next Sec-

tion. �erefore, we report its space for Europarl and YahooV2.

We �rst observe that rank-encoding schemes are far more advanta-

geous than compressing the counts themselves, as done by Expgram.

Moreover, none of the these techniques beats the three ones we

previously introduced, except for the BerkeleyLM COMPRESSED
variant which is ≈10% smaller on GoogleV2 with respect to CW +
BV. However, notice that this gap is completely closed as soon as

we adopt the combination PS + PEF.

Before concluding the subsection, we use the analysis to �x

two di�erent trie data structures that respectively privilege space

e�ciency and query time: we call them PEF-RTrie and PEF-Trie.

For the PEF-RTrie variant we use PEF for representing the gram-

ID sequences; PEF for the counts on Europarl and GoogleV2 but

CW + BV for YahooV2. We also use the maximum applicable con-

text length for the context-based remapping technique, i.e., 2 for

Europarl and YahooV2; 1 for GoogleV2. For the PEF-Trie variant

we choose a data structure using PEF for representing gram-ID

sequences and the codeword assignment technique for the counts,

without remapping. �e corresponding size breakdowns are shown

in Figures 3c and 3d respectively. Pointer sequences take very li�le

space for both data structures, while most of the di�erence lies,

not surprisingly, in space of the gram-ID sequences. �e timing
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Figure 3: Trie data structures timing (a-b) and size (c-d)
breakdowns in percentage on the tested datasets.

breakdowns in Figures 3a and 3b clearly highlight, instead, how the

context-based remapping technique rises the time we spend in the

query-mapping phase, during which the IDs are mapped to their

reduced IDs.

5.2 Hashing
We build our MPH tables using 8-byte hash keys, as to yield a false

positive rate of 2
−64

. For each di�erent value of N we store the

distinct count values in an array, uncompressed and byte-aligned

using 4 bytes per distinct count on Europarl and YahooV2; 8 bytes

on GoogleV2.

For all the three datasets, the number of bytes per gram, includ-

ing also the cost of the hash function itself (0.33 bytes per gram)

is 8.33. �e number of bytes per count is given by the sum of the

cost for the ranks and the distinct counts themselves and is equal

to 1.41, 1.74 and 2.43 for Europarl, YahooV2 and GoogleV2 respec-

tively. Not surprisingly, the majority of space is taken by the hash

keys: clients willing to reduce this memory impact can use 4-byte

hash keys instead, at the price of a higher false positive rate (2
−32

).

�erefore, it is worth observing that spending additional e�ort in

trying to lower the space occupancy of the counts only results in

poor improvements as we pay for the high cost of the hash keys.

�e constant-time access capability of hashing makes gram

lookup extremely fast, by requiring on average
1

3
of a micro second

per lookup (exact numbers are reported in Table 4). In particular,

all the time is spent in computing the hash function itself and ac-

cess the relative table location: the �nal count lookup is totally

negligible.

5.3 Overall comparison
In this subsection we compare the performance of our selected trie-

based solutions, PEF-RTrie and PEF-Trie, as well as our minimal

perfect hash approach against the competitors introduced at the

beginning of the section. �e results of the comparison are shown

in Table 4, where we report the space taken by the representation of

the gram-ID sequences and lookup time per query in micro seconds.

For the trie data structures, the reported space also includes the cost

of representation for the pointers. We compare the space of repre-

sentation for the N -grams excluding their associated information

because this varies according to the chosen implementation: for

example, KenLM can only store probability and backo�s, whereas

BerkeleyLM can be used to store either counts or probabilities. For

those competitors storing frequency counts, we already discussed

their count representation in subsection 5.1. Expgram, KenLM and

Marisa require too much memory for the building of their data

structures on GoogleV2, therefore we mark as empty their entry in

the table for this dataset.

Except for the last two rows of the table in which we compare

the performance of our MPH table against KenLM probing (P.),
we write for each competitor two percentages indicating its score

against our selected trie data structures PEF-Trie and PEF-RTrie,

respectively. Let us now examine each row one by one. In the

following, unless explicitly indicated, numbers refer to average

values over the di�erent datasets.

BerkeleyLMCOMPRESSED (C.) variant results≈21% larger than

our PEF-RTrie implementation and slower by more than 70%. It

gains, instead, an advantage of roughly 9% over our PEF-Trie data

structure, but it is also more than 2 times slower. �e HASH variant

uses hash tables with linear probing to represent the nodes of the

trie. �erefore, we test it with a small extra space factor of 3%

for table allocation (H.3) and with 50% (H.50), which is also used

as the default value in the implementation, as to obtain di�erent

time/space trade-o�s. Clearly the space occupancy of both hash

variants do not compete with the ones of our proposals as these are

from 3 to 7 times larger, but theO (1)-lookup capabilities of hashing

makes it faster than a sorted array trie implementation: while this

is no surprise, notice that our PEF-Trie data structure is anyway

competitive as it is actually faster on GoogleV2.

Expgram is ≈13.5% larger than PEF-Trie and also 2 and 5 times

slower on Europarl and YahooV2 respectively. Our PEF-RTrie data

structure retains an advantage in space of 60% and it is still signi�-

cantly faster: of about 72% on Europarl and 4.3 times on YahooV2.

KenLM is the fastest trie language model implementation in

the literature. As we can see, our PEF-Trie variant retains 70% of

its space with a negligible penalty at query time. Compared to

PEF-RTrie, it results a li�le faster, i.e., ≈15%, but also 2.3 and 2.5

times larger on Europarl and YahooV2 respectively.

We also tested the performance of Marisa even though it is not a

trie optimized for language models as to understand how our data

structures compare against a general-purpose string dictionary

implementation. We outperform Marisa in both space and time:

compared to PEF-RTrie, it is 2.7 times larger and 38% slower; with

respect to PEF-Trie it is more than 90% larger and 70% slower.

RandLM is designed for small memory footprint and returns

approximated frequency counts when queried. We build its data

structures using the default se�ing recommended in the documen-

tation: 8 bits for frequency count quantization and 8 bits per value

as to yield a false positive rate of
1

256
. While being from 2.3 to

5 times slower than our exact and lossless approach, it is quite

compact because the quantized frequency counts are recomputed

on the �y using the procedure described in Section 2. �erefore,

while its space occupancy results even larger with respect to our

grams representation by 61%, it is still no be�er than the whole

space of our PEF-RTrie data structure. With respect to the whole
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Europarl YahooV2 GoogleV2

bpg µs × query bpg µs × query bpg µs × query

PEF-Trie 1.87 1.35 1.91 1.73 1.52 1.91

PEF-RTrie 1.28 1.64 1.38 2.15 1.31 2.30

BerkeleyLM C. 1.70 (−8.89%) 2.83 (+108.88%) 1.69 (−11.41%) 3.48 (+101.84%) 1.45 (−4.87%) 4.13 (+116.57%)

(+32.90%) (+72.70%) (+22.04%) (+61.70%) (+10.83%) (+79.76%)

BerkeleyLM H.3 6.70 (+258.81%) 0.97 (−28.46%) 7.82 (+310.38%) 1.13 (−34.35%) 9.24 (+507.79%) 2.18 (+13.95%)

(+423.40%) (−40.85%) (+465.36%) (−47.41%) (+608.07%) (−5.42%)

BerkeleyLM H.50 7.96 (+326.03%) 0.97 (−28.49%) 9.37 (+391.32%) 0.96 (−44.27%) — —

(+521.45%) (−40.88%) (+576.87%) (−55.35%)

Expgram 2.06 (+10.18%) 2.80 (+106.61%) 2.24 (+17.36%) 9.23 (+435.33%) — —

(+60.73%) (+70.82%) (+61.68%) (+328.87%)

KenLM T. 2.99 (+60.11%) 1.28 (−5.47%) 3.44 (+80.39%) 1.94 (+12.32%) — —

(+133.56%) (−21.84%) (+148.52%) (−10.01%)

Marisa 3.61 (+93.09%) 2.06 (+52.00%) 3.81 (+99.60%) 3.24 (+87.96%) — —

(+181.66%) (+25.67%) (+174.98%) (+50.58%)

RandLM 1.81 (−3.06%) 4.39 (+224.20%) 2.02 (+6.18%) 5.08 (+194.35%) 2.60 (+70.73%) 9.25 (+384.54%)

(+41.41%) (+168.04%) (+46.29%) (+135.82%) (+98.90%) (+302.19%)

MPH 8.33 0.26 8.33 0.32 8.33 0.37

KenLM P.3 9.40 (+12.87%) 0.43 (+62.60%) 9.41 (+13.03%) 0.38 (+20.08%) — —

KenLM P.50 16.91 (+103.11%) 0.31 (+16.83%) 16.92 (+103.25%) 0.34 (+7.84%) — —

Table 4: Average bytes per gram (bpg) and average Lookup time per query in micro seconds.

space of PEF-Trie, it retains instead an advantage of ≈15.6%. �is

space advantage is, however, compensated by a loss in precision

and a much higher query time (up to 5 times slower on GoogleV2).

�e last two rows of Table 4 regard the performance of our

MPH table with respect to KenLM PROBING. As similarly done

for BerkeleyLM H., we also test the PROBING data structure with

3% (P.3) and 50% (P.50) extra space allocation factor for the tables.

While being larger as expected, the KenLM implementation makes

use of expensive hash key recombinations that yields a slower ran-

dom access capability with respect to our minimal perfect hashing

approach.

Perplexity. Besides the e�cient indexing of frequency counts,

our data structures can also be used to map N -grams to language

model probabilities and backo�s. As done by KenLM, we also use

the binning method [14] to quantize probabilities and backo�s, but

allowing any quantization bits ranging from 2 to 32. Uni-grams

values are stored unquantized to favor query speed: as vocabulary

size is typically very small compared to the number of total N -

grams, this has a minimal impact on the space of the data structure.

Our trie implementation is reversed as to permit a more e�cient

computation of sentence-level probabilities, with a stateful scoring

function that carries its state on from a query to the next as similarly

done by KenLM and BerkeleyLM.

For the perplexity benchmark we used the query dataset, pub-

licly available at h�p://www.statmt.org/lm-benchmark, that con-

tains 306 688 sentences, for a total of 7 790 011 tokens [6]. We used

Expgram utilities to build modi�ed Kneser-Ney [7] 5-gram lan-

guage models from the counts of Europarl and YahooV2 that have

an OOV (out of vocabulary) rate of, respectively, 16% and 1.82% on

the test query �le. As Expgram only builds quantized models using

8 quantization bits for both probabilities and backo�s, we also use

this number of quantization bits for our tries and KenLM trie.

Europarl YahooV2

bpg µs × query bpg µs × query

PEF-Trie 3.48 0.25 3.64 0.38

PEF-RTrie 2.91 0.28 3.06 0.43

BerkeleyLM C. 6.50 (+87.03%) 1.19 (+371.79%) 6.39 (+75.72%) 1.08 (+187.45%)

(+123.47%) (+322.22%) (+109.21%) (+152.17%)

BerkeleyLM H.3 9.36 (+169.17%) 0.84 (+233.63%) 8.75 (+140.41%) 0.74 (+95.77%)

(+221.61%) (+198.58%) (+186.23%) (+71.75%)

BerkeleyLM H.50 12.31 (+254.00%) 0.35 (+39.00%) 12.01 (+230.05%) 0.30 (−19.39%)

(+322.97%) (+24.39%) (+292.95%) (−29.28%)

Expgram 4.15 (+19.33%) 3.83 (+1424.87%) 5.80 (+59.41%) 14.05 (+3637.90%)

(+42.59%) (+1264.67%) (+89.79%) (+3179.16%)

KenLM T. 4.58 (+31.80%) 0.23 (−8.00%) 5.04 (+38.53%) 0.39 (+4.57%)

(+57.48%) (−17.66%) (+64.93%) (−8.26%)

RandLM 4.01 (+15.42%) 6.48 (+2477.95%) 3.86 (+6.03%) 6.25 (+1561.20%)

(+37.90%) (+2207.12%) (+26.24%) (+1357.33%)

MPH 9.92 0.15 9.94 0.24

KenLM P.3 14.77 (+48.90%) 0.32 (+106.38%) 14.84 (+49.24%) 0.30 (+24.82%)

KenLM P.50 21.48 (+116.59%) 0.10 (−36.37%) 21.57 (+116.89%) 0.15 (−40.16%)

Table 5: Perplexity benchmark results reporting average
number of bytes per gram (bpg) and micro seconds per
query using modi�ed Kneser-Ney 5-gram language models
built from Europarl and YahooV2 counts.

http://www.statmt.org/lm-benchmark
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For all data structures, BerkeleyLM truncates the mantissa of

�oating-point values to 24 bits and then stores indices to distinct

probabilities and backo�s. RandLM was build, as already said, with

the default parameters recommended in the documentation.

Table 5 shows the results of the benchmark. As we can see, the

PEF-Trie data structure is as fast as the KenLM trie while being

more than 30% more compact on average; the PEF-RTrie variant

doubles the space gains with negligible loss in query processing

speed (≈13% slower). We instead signi�cantly outperform all other

competitors in both space and time, including the BerkeleyLM H.3
variant. In particular, notice that we are also smaller than RandLM
which is randomized and, therefore, less accurate. �e query time

of BerkeleyLM H.50 is smaller on YahooV2; however, it also uses

from 3 up to 4 times the space of our tries.

�e last two rows of the table are dedicated to the compari-

son of our MPH table with KenLM PROBING. While our data

structure stores quantized probabilities and backo�s, KenLM stores

uncompressed values for all orders of N . We found out that stor-

ing unquantized values results in indistinguishable di�erences in

perplexity while unnecessarily increasing the space of the data

structure, as it is apparent in the results. �e expensive hash key

recombinations necessary for random access are avoided during

perplexity computation for the le�-to-right nature of the query

access pa�ern. �is makes, not surprisingly, a linear probing im-

plementation actually faster, by 38% on average, than a minimal

perfect hash approach when a large multiplicative factor is used for

tables allocation (P.50). �e price to pay is the double of the space.

On the other hand, the P.3 variant is larger (by 50%) and slower (by

60% on average).

6 CONCLUSION AND FUTUREWORK
We have presented highly compact and fast indexes for N -grams

datasets that achieve substantial performance improvements over

state-of-the-art approaches. Our trie data structure represents each

level of the trie with Elias-Fano, preserving the query processing

speed of the fastest implementation in the literature. We have also

described how to reduce its memory footprint by introducing a

context-based remapping for vocabulary tokens. �is technique

o�ers, on average, an additional 28% of space reduction with a

context of length 1 and 35% with a context of length 2, with only a

slight penalty at query processing speed.

Some interesting research problems naturally arise from the

ideas described in the paper. We mention some of them. Is the

frequency-based assignment of vocabulary tokens optimal for Elias-

Fano? An interesting, yet hard, research problem could focus on

devising an ID-assignment strategy with proven guarantees of

optimality for Elias-Fano and for our context-based remapping

technique. Additional e�orts could also be spent on making trie

searches even faster, e.g., by exploiting SIMD processor special

instructions.
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