
Partitioned Elias-Fano Indexes

Giuseppe Ottaviano
ISTI-CNR, Pisa

giuseppe.ottaviano@isti.cnr.it

Rossano Venturini
Dept. of Computer Science, University of Pisa

rossano@di.unipi.it

ABSTRACT
The Elias-Fano representation of monotone sequences has
been recently applied to the compression of inverted indexes,
showing excellent query performance thanks to its efficient
random access and search operations. While its space oc-
cupancy is competitive with some state-of-the-art methods
such as γ-δ-Golomb codes and PForDelta, it fails to exploit
the local clustering that inverted lists usually exhibit, namely
the presence of long subsequences of close identifiers.

In this paper we describe a new representation based on
partitioning the list into chunks and encoding both the chunks
and their endpoints with Elias-Fano, hence forming a two-
level data structure. This partitioning enables the encoding
to better adapt to the local statistics of the chunk, thus
exploiting clustering and improving compression. We present
two partition strategies, respectively with fixed and variable-
length chunks. For the latter case we introduce a linear-time
optimization algorithm which identifies the minimum-space
partition up to an arbitrarily small approximation factor.

We show that our partitioned Elias-Fano indexes offer
significantly better compression than plain Elias-Fano, while
preserving their query time efficiency. Furthermore, compared
with other state-of-the-art compressed encodings, our indexes
exhibit the best compression ratio/query time trade-off.

Categories and Subject Descriptors
H.3.2 [Information Storage and Retrieval]: Information
Storage; E.4 [Coding and Information Theory]: Data
Compaction and Compression

Keywords
Compression, Dynamic Programming, Inverted Indexes

1. INTRODUCTION
The inverted index is the data structure at the core of

most large-scale search systems for text, (semi-)structured
data, and graphs, with web search engines, XML and RDF

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
SIGIR’14, July 6–11, 2014, Gold Coast, Queensland, Australia.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-2257-7/14/07 ...$15.00.
http://dx.doi.org/10.1145/2600428.2609615.

databases, and graph search engines in social networks as
the most notable examples. The huge size of the corpora
involved and the stringent query efficiency requirements of
these applications have driven a large amount of research
with the ultimate goal of minimizing the space occupancy of
the index and maximizing its query processing speed. These
are two conflicting objectives: a high level of compression is
obtained by removing the redundancy in the dataset, high
speed is obtained by keeping the data easily accessible and by
augmenting the dataset with auxiliary information that drive
the query processing algorithm. The effects of space reduction
on the memory hierarchy partially mitigate this dichotomy.
Indeed, memory transfers are an important bottleneck in
query processing, and, thus, fitting more data into higher and
faster levels of the hierarchy reduces the transfer time from
the slow levels, and, hence, speeds up the algorithm [5]. In
fact, in the last few years the focus has shifted from disk-based
indexes to in-memory indexes, as in many scenarios it is not
possible to afford a single disk seek. However, these beneficial
effects can be nullified by slow decoding algorithms. Thus,
research has focused its attention on designing solutions that
best balance decoding time and space occupancy.

In its most basic and popular form, an inverted index is
a collection of sorted sequences of integers [6,16,27]. Com-
pressing such sequences is a crucial problem which has been
studied since the 1950s; the literature presents several ap-
proaches, each of which introduces its own trade-off between
space occupancy and decompression speed [15,17,19,22,26].
Most of these methods only allow sequential decoding, so the
lists involved while processing a query need to be entirely de-
coded. This can be avoided by using the standard technique
of splitting each sequence into blocks of fixed size (say, 128
elements) and encoding each block independently, so that it
is possible to avoid the decompression of portions which are
not necessary for answering the query. Still, a block must be
fully decoded even if just one of its values is required.

Recently Vigna [23] overcame this drawback by introduc-
ing a new data structure called quasi-succinct index. This
index hinges on the Elias-Fano representation of monotone
sequences [10, 11], a conceptually simple and elegant data
structure that supports fast random access and search opera-
tions, combining strong theoretical guarantees and excellent
practical performance. Vigna showed that quasi-succinct
indexes can compete in speed with mature and highly engi-
neered implementations of state-of-the-art inverted indexes.
In particular, Elias-Fano shines when the values accessed
are scattered in the list; this is very common in conjunctive
queries when the number of results is significantly smaller

than the sequences being intersected. A typical scenario,
for example, is intersecting edge sets in large social net-
work graphs, as Facebook’s Graph Search, which has in fact
adopted an implementationof Elias-Fano indexes [8].

Experiments show however that Elias-Fano indexes can be
significantly larger than those obtained using state-of-the-art
encoders. This inefficiency is caused by its inability to exploit
any characteristics of the sequence other than two global
statistics: the number of elements in the list, and the value of
the largest element. More precisely, Elias-Fano represents a
monotone sequence of m integers smaller than u with roughly
mdlog u

m
e+ 2m bits of space, regardless of any regularities

in the sequence. As an extreme toy example consider the
sequence S = [0, 1, 2, . . . ,m − 2, u − 1] of length m. This
sequence is highly compressible since the length of the first
run and the value of u, which can be encoded in O(log u)
bits, are sufficient to describe S. Elias-Fano requires instead
dlog u

m
e+ 2 bits for every element in the sequence, which is

not one single bit less than it would require to represent a
random sequence of m sorted elements smaller than u. Even
if this is just a toy example, it highlights an issue that occurs
frequently in compressing posting lists, whose compressibility
is caused by large clusters of very close values.

In this paper we tackle this issue by partitioning the se-
quences into contiguous chunks and encoding each chunk
independently with Elias-Fano, so that the encoding of each
chunk can better adapt to the local statistics. To perform ran-
dom access and search operations, the lists of chunk endpoints
and boundary elements are in turn encoded with Elias-Fano,
thus forming a two-level data structure which supports fast
queries on the original sequence. The chunk endpoints can be
completely arbitrary, so we propose two strategies to define
the partition. The first is a straightforward uniform partition,
meaning that each chunk (except possibly the last) has the
same fixed size. The second aims at minimizing the space
occupancy by setting up the partitioning as an instance of
an optimization problem, for which we present a linear-time
algorithm that is guaranteed to find a solution at most (1+ ε)
times larger than the optimal one, for any given ε ∈ (0, 1).

We perform an extensive experimental analysis on two
large text corpora, namely Gov2 and ClueWeb09 (Category
B), with several query operations, and compare our indexes
with the plain quasi-succinct indexes as described in [23], and
with three state-of-the-art list encodings, namely Binary In-
terpolative Coding [17], the PForDelta variant OptPFD [26],
and Varint-G8IU [22], a SIMD-optimized Variable Byte code.
Respectively, they are representative of best compression
ratio, best compression ratio/processing speed trade-off, and
highest speed in the literature.

In our experiments, we show that our indexes are signifi-
cantly smaller than the original quasi-succinct indexes, with
a small query time overhead. Compared to the others, they
are slightly larger but significantly faster than Interpolative,
both faster and smaller than OptPFD, and slightly slower
but significantly smaller than Varint-G8IU.

Our contributions. We list here our main contributions.

1. We introduce a two-level representation of monotone
sequences which, given a partition of a sequence into
chunks, represents each chunk with Elias-Fano and
stores the endpoints of the chunks and their boundary
values in separate Elias-Fano sequences, in order to
support fast random access and search operations.

2. We describe two partitioning strategies: an uniform
strategy, which divides the sequence into chunks with
a fixed size, and a strategy with variable-length chunks,
whose endpoints are chosen by solving an optimiza-
tion problem in order to minimize the overall space
occupancy. More precisely, we introduce a linear-time
dynamic programming algorithm which finds a parti-
tion whose cost is at most (1 + ε) times larger than the
optimal one, for any given ε ∈ (0, 1). In the experiments
we show that this ε-optimal strategy gives significantly
smaller indexes than the uniform strategy, which in
turn are significantly smaller than the indexes obtained
with non-partitioned Elias-Fano. Indeed, the latter are
more than 23% larger on ClueWeb09 and more than
64% larger on Gov2.

3. We show with an extensive experimental analysis that
the partitioned indexes are only slightly slower than
non-partitioned indexes. Furthermore, in comparison
with other indexes from the literature, the ε-optimal
indexes dominate in both space and time methods
which are in the same region of the space-time trade-
off curve, and obtain spaces very close to the methods
which give the highest compression ratio. More precisely,
Binary Interpolative Coding is only 2%-8% smaller but
up to 5.5 times slower; OptPFD is roughly 12% larger
and almost always slower; Varint-G8IU is 10%-40%
faster but more than 2.5 times larger.

2. BACKGROUND AND NOTATION
Given a collection D of documents, the posting list of a

term t is the list of all the document identifiers, or docIds,
that contain the term t. The collection of posting lists for all
the terms in the collection is called the inverted index of D;
the set of such terms is usually called the dictionary. Posting
lists are often augmented with additional information about
each docId, such as the number of occurrences of the term in
the document (the frequency), and the set of positions where
the term occurs. Since the inverted index is a fundamental
data structure in virtually all modern search systems, there
is a vast amount of literature describing several variants
and query processing strategies; we refer the reader to the
excellent surveys and books on the subject [6, 16,27].

In the following, we adopt the docId-sorted variant, mean-
ing that each posting list is sorted by docId; this enables
fast query processing and efficient compression. In our ex-
periments we focus our attention on posting lists storing
docIds and frequencies; we do not store positions or other
additional data, since they have different nature and often
require specialized compression techniques [25], thus they are
outside of the scope of this paper. We also ignore additional
per-document or per-term information, such as the mappings
between docIds and URLs, or between termIds and actual
terms, as their space is negligible compared to the index size.

Query Processing. Given a term query as a (multi-)set of
terms, the basic query operations are the boolean conjunctive
(AND) and disjunctive (OR) queries, retrieving the docu-
ments that contain respectively all the terms or at least one
of them. In many scenarios the query-document pairs can be
associated with a relevance score which is usually a function
of the term frequencies in the query and in the document,
and other global statistics. Instead of the full set of matches,

for scored queries it is often sufficient to retrieve the k high-
est scored documents for a given k. A widely used relevance
score is BM25 [18], which we will use in our experiments.

There exist two popular query processing strategies, dual
in nature, namely Term-at-a-Time (TAAT) and Document-
at-a-Time (DAAT). The former scans the posting list of each
query term separately to build the result set, while the latter
scans them concurrently, keeping them aligned by docId. We
will focus on the DAAT strategy as it is the most natural for
docId-sorted indexes.

The alignment of the lists during DAAT scanning can
be achieved by means of the NextGEQt(d) operator, which
returns the smallest docId in the list of t that is greater
than or equal to d. A fast implementation of the function
NextGEQt(d) is crucial for the efficiency of this process. The
trivial implementation that scans sequentially the whole
posting lists is usually too slow; a common solution resorts
to skipping strategies. The basic idea is to divide the lists in
small blocks that are compressed independently, and to store
additional information about each block, in particular the
maximum docId present in the block. This allows to find and
decode only the block that may contain the sought docId by
scanning the list of maxima, thus skipping a potentially large
number of useless blocks. In the following we call block-based
the indexes that adopt this technique.

Solving scored queries can be achieved with DAAT by
computing the relevance score for the matching documents
as they are found, and maintaining a priority queue with
the top-k matches. This can be very inefficient for scored
disjunctive queries, as the whole lists need to be scanned.
Several query processing strategies have been introduced to
alleviate this problem. Among them, one the most popular
is WAND [3], which augments the index by storing for each
term its maximum impact to the score, thus allowing to
skip large segments of docIds if they only contain terms
whose sum of maximum impacts is smaller than the top-k
documents found up to that point. Again, WAND can be
efficiently implemented in terms of NextGEQt(d).

3. RELATED WORK
Index compression ultimately reduces to the problem of rep-

resenting sequences, specifically strictly monotone sequences
for docIds, and positive sequences for the frequencies. The
two are equivalent: a strictly monotone sequence can be
turned into a positive sequence by subtracting from each ele-
ment the one that precedes it (also known as delta encoding),
the other direction can be achieved by computing prefix sums.
For this reason most of the work assumes that the posting
lists are delta-encoded and focuses on the representation of
sequences of positive integers.

Representing such sequences of integers in compressed
space is a crucial problem which has been studied since the
1950s with applications going beyond inverted indexes. A
classical solution is to assign to each integer an uniquely-
decodable variable length code; if the codes do not depend
on the input they are called universal codes. The most basic
example is the unary code, which encodes a non-negative
integer x as the bit sequence 0x1. The unary code is efficient
only if the input distribution is concentrated on very small in-
tegers. More sophisticated codes, such as Elias Gamma/Delta
codes and Golomb/Rice codes build on the unary code to
efficiently compress a broader class of distributions. We refer
to Salomon [19] for an in-depth discussion on this topic.

Bit-aligned codes can be inefficient to decode as they re-
quire several bitwise operations, so byte-aligned or word-
aligned codes are usually preferred if speed is a main concern.
Variable byte [19] or VByte is the most popular byte-aligned
code. In VByte the binary representation of a non-negative
integer x is split into groups of 7 bits which are represented
as a sequence of bytes. The lower 7 bits of each byte store the
data, whereas the eighth bit, called the continuation bit, is
equal to 1 only for the last byte of the sequence. Stepanov et
al. [22] present a variant of variable byte (called Varint-G8IU)
which exploits SIMD operations of modern CPUs to further
speed up decoding.

A different approach is to encode simultaneously blocks
of integers in order to improve both compression ratio and
decoding speed. This line of work has seen in the last few
years a proliferation of encoding approaches which find their
common roots in frame-of-reference (For) [14]. Their under-
lying idea is to partition the sequence of integers into blocks
of fixed or variable length and to encode each block sepa-
rately. The integers in each block are encoded by resorting
to codewords of fixed length. A basic application of this
technique (called also binary packing or packed binary [2,15])
partitions the sequence of integers into blocks of b consec-
utive integers (e.g., b = 128 integers); for each block, the
algorithm encodes the range enclosing the values in the block,
say [l, r], then each value is subtracted l and represented with
h = dlog(r − l + 1)e bits. There are several variants of this
approach which differentiate themselves for their encoding or
partitioning strategies [9, 15,21]. For example, Simple-9 and
Simple-16 [1, 2, 26] are two popular variants of this approach.

A major space inefficiency of For is the fact that the pres-
ence of few large values in the block forces the algorithm to
encode all its integers with a large h, thus affecting the overall
compression performance. To address this issue, PForDelta
(PFD) [28] introduces the concept of patching. In PFD the
value of h is chosen so that h bits are sufficient to encode a
large fraction of the integers in the block, say 90%. Those
integers that do not fit within h bits are called exceptions and
encoded separately with a different encoder (e.g., Simple-9 or
Simple-16). Yan et al.’s introduce the OptPFD variant [26],
which selects for each block the value of h that minimizes the
space occupancy. OptPFD is more compact and only slightly
slower than the original PFD [15,26].

A completely different approach is taken by Binary Inter-
polative Coding [17], which skips the delta-encoding step and
directly encodes strictly monotone sequences. This method
recursively splits the sequence of integers in two halves, en-
coding at each split the middle element and recursively the
two halves. At each recursive step the range that encloses
the middle element is reduced, and so is the number of bits
needed to encode it. Experiments [21,24,26] have shown that
Binary Interpolative Coding is the best encoding method for
highly clustered sequence of integers. However, this space ef-
ficiency is paid at the cost of a very slow decoding algorithm.

Recently, Vigna [23] introduced quasi-succinct indexes,
based on the Elias-Fano representation of monotone se-
quences, showing that it is competitive with delta-encoded
block-based indexes. Our paper aims at making this repre-
sentation more space-efficient.

Optimal partitioning algorithms. The idea of partition-
ing a sequence to improve compression dates back to Buchs-
baum et al. [4], who address the problem of partitioning the

input of a compressor C so that compressing the chunks in-
dividually yields a smaller space than compressing the whole
input at once. Their paper discusses only the case of com-
pressing a large table of records with gzip but their solution
can be adapted to solve the more general problem stated
above. Their approach is to reduce this optimization problem
to a dynamic programming recurrence which is solved in
Θ(m3) time and Θ(m2) space, where m is the input size.

Silvestri and Venturini [21] resort to a similar dynamic pro-
gramming recurrence to optimize their encoder for posting
lists. They obtain an O(mh) construction time by limiting
the length of the longest part to h. Ferragina et al. [12] signifi-
cantly improve the result in [4] by computing inO(m log1+εm)
time and O(m) space a partition whose compressed size is
guaranteed to be at most (1 + ε) times the optimal one, for
any given ε > 0, provided that the compression ratio of C on
any portion of the input can be estimated in constant time.

In this paper we apply the same ideas in [12] to the Elias-
Fano representation and we exploit some of its properties
to compute exactly, as opposed to estimating, its encoding
cost in constant time. Then, we improve the optimization
algorithm reducing its time to O(m) while preserving the
same approximation guarantees.

4. SEARCHABLE SEQUENCES
The Elias-Fano representation [10, 11] is an elegant encod-

ing for monotone sequences, which provides good compression
ratio and efficient access and searching operations. Consider
a monotonically increasing sequence S[0,m− 1] of m non-
negative integers (i.e., S[i] ≤ S[i+ 1], for any 0 ≤ i < m− 1)
drawn from an universe [u] = {0, 1, . . . , u− 1}.

Given an integer `, the elements of S are conceptually
grouped into buckets according to their dlog ue − ` higher
bits. The number of buckets is thus u

2`
. The cardinalities of

these buckets (including the empty ones) are written into a
bitvector H with negated unary codes; it follows that H has
length at most m+ u

2`
bits. The remaining ` lower bits of

each integer are concatenated into a bitvector L, which thus
requires m` bits. It is easy to see that H and L are sufficient
to recover S[i] for every i: its dlog ue− ` higher bits are equal
to the number of 0s preceding the ith 1 in H, and the ` lower
bits can be retrieved directly from L.

While ` can be chosen arbitrarily between 0 and dlog ue,
it can be shown that the value ` = blog u

m
c minimizes the

overall space. Summing up the lengths of H and L, it follows
that the representation requires at most mdlog u

m
e+ 2m bits.

Despite its simplicity, it is possible to support efficiently
powerful operations on S. For our purposes we are interested
in the following.

• Access(i) which, given i ∈ [m], returns S[i];

• NextGEQ(x) which, given x ∈ [u], returns the smallest
element in S which is greater than or equal to x.

The support for these operations requires to augment H
with an auxiliary data structure to efficiently answer Select0
and Select1 operations, which, given an index i, return the
position of respectively the ith 1 or the ith 0 in H. See [23]
and references therein for more details on the implementation
of these standard operations.

To access the ith element of S we have to retrieve and
concatenate its higher and lower bits. The value of the higher
bits is obtained by computing Select1(i) − i in H, which

represents the number of 0s (thus, buckets) ending before
the ith occurrence of 1. The lower bits are directly accessed
by reading ` consecutive bits in L starting from position i`.

The operation NextGEQ(x) is supported by observing that
p = Select0(hx)− hx is the number of elements of S whose
higher bits are smaller than hx, where hx are the higher bits of
x. Thus, p is the starting position in S of the elements whose
higher bits are equal to hx (if any) or larger. NextGEQ(x) is
identified by scanning the elements starting from p.

Several implementations of Elias-Fano supporting effi-
ciently these operations are available1.

All the operations can be implemented in a stateful cursor,
in order to exploit locality of access by optimizing short
forward skips, which are very frequent in query processing.
An additional convenient cursor operation is Next, which
advances the cursor from position i to i+ 1.

Note that Elias-Fano requires just weak monotonicity of S,
so if only the Access operation is needed, the space occupancy
can be reduced to mdlog u−m+1

m
e+2m bits by turning S into

a weakly monotone sequence S′[i] = S[i]− i and encoding S′

with Elias-Fano. At query time we can recover the ith entry
of S by computing AccessS′(i) + i.

The quasi-succinct indexes of Vigna [23] are a direct ap-
plication of Elias-Fano; the posting lists are immediately
representable with Elias-Fano as the docIds are monoton-
ically sorted. Since Elias-Fano is not efficient for dense se-
quences, a bitvector is used instead when it is convenient to
do so; the Access and NextGEQ can be supported efficiently
with small additional data structures. The frequencies can
be turned into a strictly monotone sequence by computing
their prefix sums, and the ith frequency can be recovered as
Access(i)−Access(i−1). Moreover, since the query processing
needs only Access on the frequencies, we can use the trick
mentioned above to reduce the space occupancy of the rep-
resentation. In positional indexes, a similar transformation
can be used to represent the term positions.

4.1 Uniform partitioning
As we argued above Elias-Fano uses roughly dlog u

m
e+ 2

bits per element regardless the sequence being compressed.
Notice that log u

m
is the logarithm of the average distance

among consecutive elements in the sequence. Apart from this
average distance, Elias-Fano does not exploit in any way the
nature of the underlying sequence and, thus, for example it
does not make any distinction between the two extreme cases
of a randomly generated sequence and a sequence formed by
only a long run of consecutive integers. While paying dlog u

m
e

bits per element is the best we can hope for in the former
case, we would expect to achieve a better space occupancy in
the latter. Indeed, a sequence of integers is intuitively more
compressible than a random one when it contains regions of
integers which are very close to each other. The presence of
these regions is typical in posting lists. Consider for example
a term which is present only in few domains. If the docIds are
assigned by sorting the documents by their URLs, then the
posting list of this term is, apart from few outliers, formed
by clusters of integers in correspondence of those domains.
Observe that, since the elements within each region are very
close to each other, the average distance intra-region is much
smaller than the global average distance.

1Such as the open-source http://github.com/facebook/
folly, http://github.com/simongog/sdsl, http://
github.com/ot/succinct, and http://sux.di.unimi.it.

The above observation is the main motivation for intro-
ducing a two-level Elias-Fano. The basic idea is to parti-
tion the sequence S into m/b chunks of b consecutive in-
tegers each, except possibly the last one. The first level is
an Elias-Fano representation of the sequence L obtained
by juxtaposing the last element of each chunk (i.e., L =
S[b− 1], S[2b− 1], . . . , S[m− 1]). The second level is the col-
lection of the chunks of S, each represented with Elias-Fano.
The main advantage of having this first level is that the ele-
ments of the jth chunk can be rewritten in a smaller universe
of size uj = L[j]− L[j − 1]− 1 by subtracting L[j − 1] + 1
from each element. Thus, the Elias-Fano representation of
the chunk requires dlog

uj
b
e+ 2 bits per element. Since the

quantity
uj
b

is the average distance of the elements within
the chunk, we expect that this space occupancy is much
smaller that the one obtained by representing the sequence
in its entirety, especially for highly compressible sequences.
Observe that part of this gain vanishes due to the cost of
the first level which is dlog u

m/b
e + 2 bits every b original

elements. Indeed, the first level stores m/b integers drawn
from a universe of size u.

This two-level representation introduces a level of indi-
rection in solving the operations Access and NextGEQ. The
operation Access(i) is solved as follows. Let j be the index
of the chunk containing the ith element of S (i.e., j = bi/bc)
and k be its offset within this chunk (i.e., k = i mod b).
We access L[j − 1] and L[j] on the first level to compute
the size of the universe uj of the chunk as L[j] − L[j − 1]
(or L[j] if j is the first chunk). Knowing uj and b suffices
for accessing the kth element of the jth chunk. If e is the
value at this position, then we conclude that the value S[i]
is equal to L[j] + 1 + e. The operation NextGEQ(x) is solved
as follows. We first compute the successor of x, say L[j], on
the first level. This implies that the successor of x in S is
within the jth chunk and, thus, it can be identified by solving
NextGEQ(x− L[j]− 1) on this chunk.

An important distinction with block-based indexes is that
the choice of b does not affect significantly the efficiency
of the operations: while block-based indexes may need to
scan the full block to retrieve one element, the chunks in our
representation are searchable sequences themselves, so the
performance does not degrade as b gets larger; it actually
gets better, as fewer block boundaries have to be crossed
during a query.

In our implementation we use different encodings to over-
come the space inefficiencies of Elias-Fano in representing
dense chunks. The jth chunk is dense if the chunk covers
a large fraction of the elements in the universe [uj] (or,
in other words, b is close to uj). Indeed, the space bound
bdlog

uj
b
e + 2b bits becomes close to 2uj bits whenever b

approaches uj . However, we can always represent the chunk
within uj bits by writing the characteristic vector of the
set of its elements as a bitvector. Note that Vigna [23] also
uses this technique but only for whole lists, which are very
unlikely to be so dense except for very few terms such as
stop-words. In our case, instead, we expect dense chunks
to occur frequently in representing posting lists, because
they can be contained inside dense clusters of docIds. Hence,
besides Elias-Fano, we adopt two other encodings chosen de-
pending on the relation between uj and b. The first encoding
addresses the extreme case in which the chunk covers the
whole universe (i.e., whenever uj is equal to b). The first
level gives us the values of uj and b which are enough by

themselves to derive all the elements in the chunk without
the need of encoding further information. Operations Access
and NextGEQ become trivial: both Access(i) and NextGEQ(i)
are equal to i. The second encoding is used whenever the
size of the Elias-Fano representation of the chunk is larger
than uj bits (i.e., whenever b >

uj
4

). In this case we encode
the set of elements in the chunk by writing its characteristic
vector in uj bits. The Access and NextGEQ operations can
be reduced to the standard Rank and Select operations on
bitvectors; their implementation is described in detail in [23].

4.2 Optimal partitioning
Splitting S into chunks of fixed size is likely to be subopti-

mal, since we cannot expect the dense clusters in S to appear
aligned with the uniform partition. Intuitively it would be
better to allow S to be partitioned freely, with chunks of vari-
able size. It is not obvious however how to find the partition
that minimizes the overall space occupancy: on one hand, the
chunks should be as large as possible to minimize the number
of entries in the first level of the representation and, thus, its
space occupancy; on the other hand, the chunks should be as
small as possible to minimize the average distances between
their elements, and, thus, the space occupancy of the second
level of the representation.

An optimal partition can be computed in Θ(n2) time
and space by solving a variant of dynamic programming
recurrence introduced in [4]. However, these prohibitive com-
plexities make this solution unfeasible for inputs larger than
few thousands of integers. This is the main motivation for de-
signing an approximation algorithm which reduces the time
and space complexities to linear at the cost of finding slightly
suboptimal solutions. More precisely, in this subsection we
present an algorithm that identifies in O(m log1+ε

1
ε
) time

and linear space a partition whose cost is only 1 + ε times
larger than the optimal one, for any given ε ∈ (0, 1). Observe
that the time complexity is linear as soon as ε is constant.

Before entering into the technical details of our solution, it
is convenient to fix precisely the space costs involved in our
representation. The space occupancy of a given partition P
of k chunks S[i0, i1−1] S[i1, i2−1] . . . S[ik−1, ik], with i0 = 0

and ik = m−1, is C(P) =
∑k−1
h=0 C(S[ih, ih+1−1]) bits, where

C(S[i, j]) is the cost of representing the chunk S[i, j]. Each
of these costs C(S[i, j]) is the sum of two terms: a fixed cost
F to store information regarding the chunk in the first level
and the cost of representing its elements in the second level.
Concerning the fixed cost F , for each chunk we store three
integers in the first level: the largest integer within the chunk,
the size of the chunk, and the pointer to its second-level Elias-
Fano representation. Thus, we can safely upper bound this
cost F with the quantity 2 log u + logm bits. Instead, the
cost of representing the elements in S[i, j] is computed by
taking the minimum between the costs of the three possible
encodings introduced in the previous subsection. Depending
on the size of the universe u′ = S[j]−S[i−1] (or, u′ = S[j], if
i = 0) and the number of elements m′ = j− i+ 1, these three

costs are i) m′` + m′ + u′

2`
bits with ` = blog u′

m′ c, if S[i, j]

is encoded with Elias-Fano; ii) m′ bits, if S[i, j] is encoded
with its characteristic vector; iii) 0 bits, if m′ = u′ and,
thus, S[i, j] covers the whole universe. A crucial property
to devise our approximation algorithm is the monotonicity
of the cost function C, namely, for any i, j and k with
0 ≤ i < j < k ≤ m, we have C(S[i, j]) ≤ C(S[i, k]).

In the following we first use the algorithm in [12] to ob-

tain a solution which finds a (1 + ε)-approximation in time
O(m log1+ε

U
F

), where U is the cost in bits of representing
S as a single partition. Then, we improve the algorithm to
obtain a linear time solution with the same approximation
guarantees. Following [12], it is convenient to recast our
optimization problem to the problem of finding a shortest
path in a particular directed acyclic graph (DAG) G. Given
the sequence S of m integers, the graph G has a vertex
v0, v1, . . . , vm−1 for each position of S plus a dummy vertex
vm marking the end of the sequence. The DAG G is complete
in the sense that, for any i and j with i < j ≤ m, there
exists the edge from vi to vj , denoted as (vi, vj). Notice
that there is a one-to-one correspondence between paths
from v0 to vm in G and partitions of S. Indeed, a path
π = (v0, vi1)(vi1 , vi2) . . . (vik−1 , vim) crossing k edges corre-
sponds to the partition S[0, i1−1] S[i1, i2−1] . . . S[ik−1,m−1]
of k chunks. Hence, by assigning the weight w(vi, vj) =
C(S[i, j − 1]) to each edge (vi, vj), the weight of a path is
equal to the cost in bits of the corresponding partition. Thus,
a shortest path on G corresponds to an optimal partition of S.
Computing a shortest path on a DAG has a time complexity
proportional to the number of edges in the DAG. This is
done with a classical elegant algorithm which processes the
vertices from left to right [7]. The goal is to compute the
value M [v] for each vertex v which is equal to the cost of
a shortest path which starts at v0 and ends at v. Initially,
M [v0] is set to 0, while M [v] is set to +∞ for any other
vertex v. When the algorithm reaches the vertex v in its
left-to-right scan, it assumes that M [v] has been already
correctly computed and extends this shortest path with any
edge outgoing from v. This is done by visiting each edge
(v, v′) outgoing from v and by computing M [v] + w(v, v′).
If this quantity is smaller than M [v′], the path that follows
the shortest path from v0 to v and then the edge (v, v′) is
currently the best way to reach v′. Thus, M [v′] is updated
to M [v] + w(v, v′). The correctness of this algorithm can be
proved by induction and, since each edge is relaxed exactly
once, its time complexity is proportional to the number of
edges in the DAG.

Unfortunately our DAG G is complete and, thus, it has
Θ(n2) edges, so this algorithm by itself does not suffice to
obtain an efficient solution for our problem. However, it
can be used as the last step of a solution which performs
a non-trivial pruning of G. This pruning produces another
DAG Gε with two crucial properties: i) its number of edges
is substantially reduced from Θ(n2) to O(m log1+ε

U
F

), for
any given ε ∈ (0, 1); ii) its shortest path distance is (almost)
preserved since it increases by no more than a factor 1 + ε.

The pruned graph Gε is constructed as the subgraph of G
consisting of all the edges (vi, vj) such that at least one of
the following two conditions holds: i) there exists an integer
h ≥ 0 such that w(vi, vj) ≤ F (1 + ε)h < w(vi, vj+1); ii)
(vi, vj) is the last outgoing edge from vi (i.e., j = m).

Since w is monotone, these conditions correspond of keep-
ing, for each integer h, the edge of G that better approximates
the value F (1 + ε)h from below. The edges of Gε are called
(1 + ε)-maximal edges. We point out that, since there exist at
most log1+ε

U
F

possible values for h, each vertex of Gε has at

most log1+ε
U
F

outgoing (1 + ε)-maximal edges. Thus, the to-

tal size of Gε is O(m log1+ε
U
F

). Theorem 3 in [12] proves that
the shortest path distance on Gε is at most 1 + ε times larger
than the one in G. Thus, given Gε, a (1 + ε)-approximated
partition can be computed in O(m log1+ε

U
F

) time with the

above algorithm.
We show now how to further reduce this time complexity

to O(m log1+ε
1
ε
) time without altering the approximation

guarantees. Let ε1 ∈ (0, 1] and ε2 ∈ (0, 1] be two parameters
to be fixed later. We first obtain the graph Ḡ from G by
keeping only edges whose weight is no more than L = F + 2F

ε1
plus the first edge outgoing from every vertex whose cost is
larger than L. Then, we apply the pruning above to Ḡ by
fixing the approximation parameter to ε2. The only difference
here is that we force the pruning to retain the m edges in Ḡ of
cost larger than L. In this way we obtain a graph Ḡε2 having
O(m log1+ε2

L
F

) = O(m log1+ε2
1
ε1

) edges. We can prove that

the shortest path distance in Ḡε2 is at most (1 + ε1)(1 + ε2)
times larger than the one in G. This implies that the partition
computed with Ḡ is a (1 + ε)-approximation of the optimal
one, by setting ε1 = ε2 = ε

3
so that (1 + ε1)(1 + ε2) ≤ 1 + ε.

This result is stated in the following lemma.

Lemma 1. For any ε1 > 0 and ε2 > 0, the shortest path
distance in Ḡε2 is at most (1 + ε1)(1 + ε2) times larger than
the one in G.

Proof. Let πG , πḠ and πḠε2 denote the shortest paths in

G, Ḡ and Ḡε2 , respectively. We know that the weight w(πḠε2)

of πḠε2 satisfies w(πḠε2) ≤ (1+ ε2)w(πḠ). It remains to prove

that w(πḠ) ≤ (1 + ε1)w(πG) which allows us to conclude that
w(πḠε2) ≤ (1 + ε1)(1 + ε2)w(πG).

We do so by showing that there exists a path π′ in Ḡ such
that its weight is no more than (1 + ε1) times the weight of
the shortest path πG of G. The thesis follows immediately
because πḠ is a shortest path, so by definition w(πḠ) ≤ w(π′).

The path π′ is obtained by transforming πG so that its
edges are all contained in Ḡ. Note that this transformation is
not actually performed by the algorithm but it only serves
for proving the lemma.

This transformation is done as follows. For each edge
(ui, vj) in πḠ , either w(vi, vj) ≤ L, so there is nothing to do,
or w(vi, vj) > L, in which case we need to substitute it with a
subpath from vi to vj whose edges are all in Ḡ. This subpath
can be found greedily, starting from vi and traversing always
the longest edge until we reach vj . It can be proved that
the weighting function w satisfies w(vi, vk) + w(vk, vj) ≤
w(vi, vj) + F + 1 for any 0 ≤ i < k < j ≤ m; intuitively, this
means that by breaking an edge into two shorter edges we
lose at most F + 1 bits. By combining these properties with
the fact that all the edges in the subpath except possibly
the last have cost at least L, it follows that the number of

edges in this subpath cannot be larger than
w(vi,vj)−F

L−F + 1

and its cost is at most w(vi, vj)+
(
w(vi,vj)−F

L−F + 1
)

(F +1) ≤
w(vi, vj) + ε1w(vi, vj), thus proving the thesis.

It remains to describe how to generate the pruned graph
Ḡε2 in O(n log1+ε

1
ε
) time directly without explicitly con-

structing G which, otherwise, would require quadratic time.
This is done by keeping k = O(log1+ε

1
ε
) windows W0, . . . ,Wk

sliding over the sequence S, one for each possible exponent
h such that F ≤ F (1 + ε)h ≤ L. These sliding windows cover
potentially different portions of S that start at the same
position i but have different ending positions. Armed with
these sliding windows, we generate the (1 + ε)-maximal edges
outgoing from any vertex vi on-the-fly as soon as the shortest
path algorithm visits this vertex. Initially, each sliding win-
dow Wj starts and ends at position 0. During the execution,

every time the shortest path algorithm visits the next vertex
vi, we advance the starting position of each Wj by one posi-
tion and its ending position until the cost of representing the
currently covered portion of S is larger than F (1 + ε)j . It is
easy to prove that if at the end of these moves the window
Wj covers S[i, r], then (vi, vr) is the (1 + ε)-maximal edge
outgoing from the vertex vi for the weight bound F (1 + ε)j .
Notice that with this approach we generate all the maximal
edges of Ḡε2 by performing a scan of S for each sliding win-
dow. Every time we move the starting or the ending position
of a window we need to evaluate the cost of representing its
covered portion of S. This can be done in constant time with
simple arithmetic operations. Thus, it follows that generat-
ing the pruned graph requires constant time per edge, hence
O(n log1+ε

1
ε
) time overall.

We conclude the section by describing how to modify
the first-level data structure to support arbitrary partitions:
together with the first-level sequence L with the last element
of each block, we write a second sequence E which contains
the positions of the endpoints of the partition. This sequence
can be again represented with Elias-Fano. The NextGEQ
operation can be supported as before, while for Access(i) we
can find the chunk of i with NextGEQ on E. Both L and E
have as many elements as the number of the chunks in the
partition.

5. EXPERIMENTAL ANALYSIS
We performed our experiments on the following datasets.

• ClueWeb09 is the ClueWeb 2009 TREC Category B test
collection, consisting of 50 million English web pages
crawled between January and February 2009.

• Gov2 is the TREC 2004 Terabyte Track test collection,
consisting of 25 million .gov sites crawled in early 2004;
the documents are truncated to 256 kB.

Gov2 ClueWeb09

Documents 24, 622, 347 50, 131, 015
Terms 35, 636, 425 92, 094, 694
Postings 5, 742, 630, 292 15, 857, 983, 641

Table 1: Basic statistics for the test collections

For each document in the collection the body text was
extracted using Apache Tika2, and the words lowercased
and stemmed using the Porter2 stemmer; no stopwords were
removed. The docIds were assigned according to the lexico-
graphic order of their URLs [20]. Table 1 reports the basic
statistics for the two collections.

Indexes tested. We compare three versions of Elias-Fano
indexes, namely EF single, EF uniform, and EF ε-optimal, that
are respectively the original single-partition representation,
a partitioned representation with uniform partitions, and
a variable-length partitioned representation optimized with
the algorithm of Section 4.2. The implementation of the
base Elias-Fano sequences is mostly faithful to the original
description and source code [23].

To validate Elias-Fano indexes against the more widespread
block-based indexes, we tested three more indexes, namely

2http://tika.apache.org/

Interpolative, OptPFD, and Varint-G8IU, which are repre-
sentative of best compression ratio, best compression ra-
tio/processing speed trade-off, and highest speed in the liter-
ature [15,21]. For the last two use the code made available
by the authors of [15]. Actually, recent experiments [15] show
that there exist methods faster than Varint-G8IU by roughly
50% in sequential decoding. However, they require very large
blocks (from 211 to 216) making block decoding prohibitively
expensive if the lists are sparsely accessed.

For these three indexes we encoded the lists in blocks of
128 postings; we keep in a separate array the maximum docId
of each block to perform fast skipping through linear search
(we experimented with falling back to binary search after a
small lookahead, but got worse results). Blocks of postings
and blocks of frequencies are interleaved, and the frequencies
blocks are decoded lazily as needed. The last block of each
list is encoded with variable bytes if it is smaller than 128
postings to avoid any block padding overhead.

All the implementations of posting lists expose the same
interface, namely the Access, NextGEQ, and Next operations
described in Section 4. The query algorithms are C++ tem-
plates specialized for each posting list implementation to
avoid the virtual method call overhead, which can be signifi-
cant for operations that take just a handful of CPU cycles.
For the same reason, we made sure that frequent code paths
are inlined in the query processing code.

Testing details. All the algorithms were implemented in
C++11 and compiled with GCC 4.9 with the highest op-
timization settings. We do not use any SIMD instructions
or special processor features, except for the instructions to
count the 1 bits in a word and to find the position of the
least significant bit; both are available in modern x86-64
CPUs and exposed by the compiler through portable builtins.
Apart from this, all the code is standard C++11. The tests
were performed on a machine with 24 Intel Xeon E5-2697 Ivy
Bridge cores (48 threads) clocked at 2.70Ghz, with 64GiB
RAM, running Linux 3.12.7.

The data structures were saved to disk after construction,
and memory-mapped to perform the queries. Before timing
the queries we ensure that the index is fully loaded in memory.

The source code is available at http://github.com/ot/

partitioned_elias_fano/tree/sigir14 for the reader in-
terested in replicating the experiments.

5.1 Space and construction time
Before comparing the spaces obtained with the different

indexes, we have to set the parameters needed by the par-
titioned EF indexes, namely the chunk size for EF uniform
and the approximation parameters ε1, ε2 for EF ε-optimal.

For the former, we show in Figure 1 the space obtained by
EF uniform on Gov2 for different values of the chunk size. The
minimum space is obtained at 128, which is also a widely
used block size for block-based indexes; in all the following
experiments we will use this chunk size.

A little more care has to be put in choosing the parameters
ε1 and ε2 since they significantly affect the construction time,
as shown in Figure 2. First we fix ε1 at 0, thus posing no
upper bound on the chunk costs, and let ε2 vary. Notice that
the (1 + ε2) approximation bound is very pessimistic: even
setting ε2 as high as 0.5, meaning a potential 50% overhead,
the actual overhead is never higher than 1.5%. Hence, we set
ε2 = 0.3 to control the construction time.

Gov2 ClueWeb09

space doc freq space doc freq
GB bpi bpi GB bpi bpi

EF single 7.66 (+64.7%) 7.53 (+83.4%) 3.14 (+32.4%) 19.63 (+23.1%) 7.46 (+27.7%) 2.44 (+11.0%)

EF uniform 5.17 (+11.2%) 4.63 (+12.9%) 2.58 (+8.4%) 17.78 (+11.5%) 6.58 (+12.6%) 2.39 (+8.8%)

EF ε-optimal 4.65 4.10 2.38 15.94 5.85 2.20

Interpolative 4.57 (−1.8%) 4.03 (−1.8%) 2.33 (−1.8%) 14.62 (−8.3%) 5.33 (−8.8%) 2.04 (−7.1%)

OptPFD 5.22 (+12.3%) 4.72 (+15.1%) 2.55 (+7.4%) 17.80 (+11.6%) 6.42 (+9.8%) 2.56 (+16.4%)

Varint-G8IU 14.06 (+202.2%) 10.60 (+158.2%) 8.98 (+278.3%) 39.59 (+148.3%) 10.99 (+88.1%) 8.98 (+308.8%)

Table 2: Overall space in gigabytes, and average bits per docId and frequency

32 64 128 256 512 1024

4.50

5.00

5.50

6.00

6.50

7.00

7.50

8.00
EF single

EF uniform

EF ε-opt

Figure 1: Index size in gigabytes for Gov2 with EF
uniform at different chunk sizes

After fixing ε2, we let ε1 vary. Notice the sharp drop in
running time without a noticeable increase in space as soon
as ε1 is non-zero: it is a direct consequence of the algorithm
going from O(m logm)-time to O(m)-time. Again, the spread
between the worse and best solutions found is smaller than
1%. In the following, we set ε1 = 0.03. We found that with
these parameters, the average chunk length on Gov2 for docId
sequences is 231 and for frequencies 466. On ClueWeb09 they
are respectively 142 and 512. For brevity we omit the plots
for ClueWeb09, which are very similar to the ones for Gov2.

0.0 0.1 0.2 0.3 0.4 0.5
4.59

4.60

4.61

4.62

4.63

4.64

4.65

4.66

0

500

1000

1500

2000

2500

3000

3500

(a) ε1 = 0, varying ε2 from 0.025 to 0.5

0.00 0.02 0.04 0.06 0.08 0.10
4.60

4.65

4.70

4.75

4.80

4.85

50

100

150

200

250

300

350

(b) ε2 = 0.3, varying ε1 from 0 to 0.1

Figure 2: Influence of the parameters ε1 and ε2 on
the EF ε-optimal indexes for Gov2. Solid line is the
overall size in gigabytes (left scale), dashed line is
the construction time in minutes (right scale).

Table 2 shows the index space, both as overall size in
gigabytes and broken down in bits per integers for docIds
and frequencies. Next to each value is shown the relative
loss/gain (in percentage) compared to EF ε-optimal. The
results confirm that partitioning the indexes indeed pays off:
compared to EF ε-optimal, EF single is 64.7% larger on Gov2
and 23.1% larger on ClueWeb09. The optimization strategy
also produces significant savings: EF uniform is about 11%
larger on both Gov2 and ClueWeb09, but still significantly
smaller than EF single.

Compared to the other indexes, Varint-G8IU is by far the
largest, 2.5 to 3 times larger than EF ε-optimal; it is partic-
ularly inefficient on the frequencies, as it needs at least 8
bits to encode an integer. On the other end of the spectrum,
Interpolative confirms its high compression ratio and produces
the smallest indexes, but the edge with EF ε-optimal is sur-
prisingly small: only 1.8% on Gov2 and 8.3% on ClueWeb09.
To conclude the comparison, we observe that OptPFD loses
more than 10% w.r.t. EF ε-optimal: 12.3% on Gov2 and 11.6%
on ClueWeb09. Since, as we will show in the following, EF
ε-optimal is also faster than OptPFD, this implies that our
solution dominates OptPFD on the trade-off curve.

Regarding construction time, for all the indexes except
EF ε-optimal, Gov2 can be processed on a single thread in
8 to 10 minutes, while ClueWeb09 in 24 to 30 minutes; in
both cases the construction is essentially I/O-bound. For EF
ε-optimal, instead, the algorithm that computes the optimal
partition, despite linear-time, has a noticeable CPU cost,
raising the time for Gov2 to 95 minutes and for ClueWeb09
to 284 minutes. However, since the encoding of each list can
be performed independently, using all the 24 cores of the test
machine makes EF ε-optimal construction I/O-bound as well.
Parallelization does not improve the construction time of the
other encoders.

5.2 Query processing
To evaluate the speed of query processing we randomly

sampled two sets of 1000 queries respectively from TREC
2005 and 2006 Efficiency Track topics, drawing only queries
whose terms are all in the collection dictionary. The two
dataset have quite different statistics, as will be apparent in
the results.

In his experimental analysis, Vigna [23] provides some
examples showing that Elias-Fano indexes are particularly
efficient in conjunctive queries that have sparse results. To
make the analysis more systematic, we define as selective any
query such that the fraction of the documents that contain
all its terms over those that contain at least one of them
is small (we set this threshold to 0.5%). For both datasets,

selective queries among TREC 2005 queries are at least 58%,
and among TREC 2006 queries at least 78%, hence making
up the most part of the samples.

The query times were measured by running each query set
3 times, and averaging the results. All the times are reported
in milliseconds. In the timings tables, next to each timing
is reported in parentheses the relative percentage against
EF ε-optimal. Not very surprisingly, Interpolative is always
50% to 500% slower than the others, and Varint-G8IU is 10%
to 40% faster, so for the sake of brevity we will focus the
following analysis on the Elias-Fano indexes and OptPFD.

Boolean queries. We first analyze the basic disjunctive
(OR) and conjunctive (AND) queries. Note that these queries
do not need the term frequencies, so only the docId lists are
accessed. For these types of operations, we measure the time
needed to count the number of results matching the query.

Gov2 ClueWeb09

TREC 05 TREC 06 TREC 05 TREC 06

EF single 80.7 (+8%) 175.0 (+10%) 261.0 (+0%) 444.0 (−2%)

EF uniform 72.1 (−3%) 154.0 (−3%) 254.0 (−3%) 435.0 (−4%)

EF ε-optimal 74.5 159.0 261.0 451.0

Interpolative 121.0 (+62%) 257.0 (+62%) 399.0 (+53%) 680.0 (+51%)

OptPFD 69.5 (−7%) 148.0 (−7%) 235.0 (−10%) 398.0 (−12%)

Varint-G8IU 67.4 (−10%) 143.0 (−10%) 222.0 (−15%) 375.0 (−17%)

Table 3: Times for OR queries

Times for OR queries are reported in Table 3. Unsur-
prisingly, as OR needs to scan the whole lists, block-based
indexes perform better than Elias-Fano indexes, since they
are optimized for raw decoding speed. However, the edge is
not as high as one could expect, ranging from 7% to 17%.
In sequential decoding Varint-G8IU can be even double as
fast as OptPFD [15], however in this task it is not even 10%
faster. The reason can be most likely traced back to branch
misprediction penalties: the cost of decoding an integer is in
the order of 2-5 CPU cycles; at each decoded docId, the CPU
has to decide whether it is equal to the current candidate
docId, or if it must be considered as a candidate for the next
docId. The resulting jump is basically unpredictable, and
the branch misprediction penalty on modern CPUs can be
as high as 10-20 cycles (specifically at least 15 for the CPU
we used [13]), thus becoming the main bottleneck of query
processing.

Among Elias-Fano indexes, EF ε-optimal and EF uniform
are either negligibly slower or slightly faster than EF single;
we believe that the additional complexity is balanced by the
higher memory throughput caused by the smaller sizes.

Table 4 reports the times for AND queries. Again, EF
ε-optimal is competitive with EF single, except for selective
queries where the overhead is slightly higher, touching 14%.
EF uniform is slightly slower, which is likely caused by the
smaller chunk sizes compared to EF ε-optimal. This will also
be the case in the other queries. Compared to OptPFD, EF
ε-optimal is 14% to 26% faster in all cases on general queries.
The gap becomes even higher for selective queries, ranging
from 34% to 40%, confirming the observations made in [23].

Ranked queries. In order to analyze the impact of accessing
the frequencies in query time, we measured the time required
to find the top-10 results for AND and WAND [3] queries

Gov2 ClueWeb09

TREC 05 TREC 06 TREC 05 TREC 06

EF single 2.1 (+10%) 4.7 (+1%) 13.6 (−5%) 15.8 (−9%)

EF uniform 2.1 (+9%) 5.1 (+10%) 15.5 (+8%) 18.9 (+9%)

EF ε-optimal 1.9 4.6 14.3 17.4

Interpolative 7.5 (+291%) 20.4 (+343%) 55.7 (+289%) 76.5 (+341%)

OptPFD 2.2 (+14%) 5.7 (+24%) 16.6 (+16%) 21.9 (+26%)

Varint-G8IU 1.5 (−20%) 4.0 (−13%) 11.1 (−23%) 14.8 (−15%)

(a) All queries

Gov2 ClueWeb09

TREC 05 TREC 06 TREC 05 TREC 06

EF single 1.1 (−11%) 2.5 (−9%) 9.2 (−14%) 11.1 (−13%)

EF uniform 1.3 (+8%) 3.0 (+11%) 11.3 (+6%) 13.0 (+2%)

EF ε-optimal 1.2 2.7 10.7 12.7

Interpolative 6.0 (+399%) 14.3 (+430%) 49.9 (+368%) 61.0 (+379%)

OptPFD 1.6 (+34%) 3.8 (+40%) 13.0 (+22%) 17.0 (+33%)

Varint-G8IU 1.1 (−11%) 2.5 (−6%) 8.8 (−18%) 11.3 (−12%)

(b) Selective queries

Table 4: Times for AND queries

using BM25 [18] scoring.
Results for scored AND, reported in Table 5, and for

WAND, reported in Table 6, are actually very similar. As
before, we note that the overhead of EF ε-optimal against
EF single is small, ranging between 2% and 13% for all
queries, and between 8% and 18% for selective queries. Also
as before, EF uniform is about 10% slower than EF ε-optimal;
this is likely caused by the optimal partitioning algorithm
placing chunk endpoints around dense clusters of docId,
hence making the query algorithms crossing fewer chunk
boundaries. Compared to OptPFD, EF ε-optimal is slightly
slower on Gov2 and slightly faster on the larger ClueWeb09 on
all queries. On selective queries, however, it is never slower,
and up to 23% faster, thus providing further evidence that
Elias-Fano indexes benefit significantly from selectiveness,
even for non-conjunctive queries.

Gov2 ClueWeb09

TREC 05 TREC 06 TREC 05 TREC 06

EF single 4.0 (−2%) 8.4 (−7%) 22.8 (−9%) 24.6 (−13%)

EF uniform 4.4 (+7%) 9.8 (+8%) 27.3 (+9%) 31.0 (+9%)

EF ε-optimal 4.1 9.0 25.1 28.4

Interpolative 14.1 (+242%) 38.6 (+327%) 99.1 (+295%) 132.0 (+365%)

OptPFD 3.9 (−7%) 9.2 (+1%) 25.8 (+3%) 31.6 (+11%)

Varint-G8IU 2.6 (−38%) 5.5 (−39%) 15.8 (−37%) 18.0 (−37%)

(a) All queries

Gov2 ClueWeb09

TREC 05 TREC 06 TREC 05 TREC 06

EF single 1.7 (−16%) 4.1 (−14%) 12.5 (−18%) 16.2 (−17%)

EF uniform 2.1 (+7%) 5.2 (+9%) 16.3 (+7%) 21.1 (+8%)

EF ε-optimal 2.0 4.8 15.2 19.4

Interpolative 10.2 (+412%) 25.9 (+439%) 80.7 (+430%) 99.7 (+412%)

OptPFD 2.3 (+18%) 5.7 (+18%) 18.8 (+23%) 23.1 (+19%)

Varint-G8IU 1.4 (−32%) 3.3 (−32%) 10.6 (−30%) 13.6 (−30%)

(b) Selective queries

Table 5: Times for AND top-10 BM25 queries

Gov2 ClueWeb09

TREC 05 TREC 06 TREC 05 TREC 06

EF single 8.8 (−4%) 15.8 (−7%) 31.5 (−7%) 41.2 (−13%)

EF uniform 9.7 (+6%) 18.2 (+7%) 36.9 (+9%) 51.2 (+8%)

EF ε-optimal 9.2 17.1 34.0 47.4

Interpolative 28.0 (+203%) 62.6 (+267%) 123.0 (+262%) 200.0 (+322%)

OptPFD 8.7 (−6%) 16.7 (−2%) 35.6 (+5%) 52.1 (+10%)

Varint-G8IU 6.1 (−34%) 11.1 (−35%) 24.0 (−30%) 34.3 (−28%)

(a) All queries

Gov2 ClueWeb09

TREC 05 TREC 06 TREC 05 TREC 06

EF single 8.5 (−8%) 12.2 (−9%) 21.0 (−19%) 34.2 (−15%)

EF uniform 9.8 (+6%) 14.4 (+7%) 27.3 (+6%) 43.0 (+7%)

EF ε-optimal 9.2 13.5 25.8 40.1

Interpolative 33.8 (+265%) 54.7 (+307%) 115.0 (+345%) 179.0 (+346%)

OptPFD 9.3 (+0%) 14.1 (+4%) 29.9 (+16%) 45.7 (+14%)

Varint-G8IU 6.3 (−32%) 9.2 (−32%) 19.2 (−26%) 30.0 (−25%)

(b) Selective queries

Table 6: Times for WAND top-10 BM25 queries

6. CONCLUSION AND FUTURE WORK
We introduced two new index representations, EF uniform

and EF ε-optimal, which significantly improve the compression
ratio of Elias-Fano indexes at a small query performance cost.
EF ε-optimal is always convenient except when construction
time is an issue, in which case EF uniform offers a ≈ 12%
worse compression ratio without this additional construction
overhead. Furthermore, EF ε-optimal offers a better space-
time trade-off than the state-of-the-art OptPFD.

Future work will focus on making partitioned Elias-Fano
indexes even faster; in particular it may be worth exploring
the different space-time trade-offs that can be obtained by
varying the average chunk size. It would also be interesting
to devise faster algorithms to compute optimal partitions
preserving the same approximation guarantees.

Acknowledgements
This work was supported by Midas EU Project (318786), by
MIUR of Italy project PRIN ARS Technomedia 2012 and by
eCloud EU Project (325091).

We would like to thank Sebastiano Vigna for sharing with
us his C++ implementation of Elias-Fano indexes, which we
used to validate our implementation.

7. REFERENCES
[1] V. N. Anh and A. Moffat. Inverted index compression

using word-aligned binary codes. Inf. Retr., 8(1), 2005.

[2] V. N. Anh and A. Moffat. Index compression using
64-bit words. Softw., Pract. Exper., 40(2):131–147,
2010.

[3] A. Z. Broder, D. Carmel, M. Herscovici, A. Soffer, and
J. Y. Zien. Efficient query evaluation using a two-level
retrieval process. In CIKM, pages 426–434, 2003.

[4] A. Buchsbaum, G. Fowler, and R. Giancarlo. Improving
table compression with combinatorial optimization.
Journal of the ACM, 50(6):825–851, 2003.

[5] S. Büttcher and C. L. A. Clarke. Index compression is
good, especially for random access. In CIKM, 2007.

[6] S. Büttcher, C. L. A. Clarke, and G. V. Cormack.
Information retrieval: implementing and evaluating
search engines. MIT Press, Cambridge, Mass., 2010.

[7] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and
C. Stein. Introduction to Algorithms. The MIT Press,
2009.

[8] M. Curtiss and et al. Unicorn: A system for searching
the social graph. VLDB, 6(11):1150–1161, Aug. 2013.

[9] R. Delbru, S. Campinas, and G. Tummarello. Searching
web data: An entity retrieval and high-performance
indexing model. J. Web Sem., 10:33–58, 2012.

[10] P. Elias. Efficient storage and retrieval by content and
address of static files. J. ACM, 21(2):246–260, 1974.

[11] R. M. Fano. On the number of bits required to
implement an associative memory. Memorandum 61,
Computer Structures Group, MIT, Cambridge, MA,
1971.

[12] P. Ferragina, I. Nitto, and R. Venturini. On optimally
partitioning a text to improve its compression.
Algorithmica, 61(1):51–74, 2011.

[13] A. Fog. The microarchitecture of Intel, AMD and VIA
CPUs. http:
//www.agner.org/optimize/microarchitecture.pdf.

[14] J. Goldstein, R. Ramakrishnan, and U. Shaft.
Compressing relations and indexes. In ICDE, 1998.

[15] D. Lemire and L. Boytsov. Decoding billions of integers
per second through vectorization. Software: Practice &
Experience, 2013.

[16] C. D. Manning, P. Raghavan, and H. Schülze.
Introduction to Information Retrieval. Cambridge
University Press, 2008.

[17] A. Moffat and L. Stuiver. Binary interpolative coding
for effective index compression. Inf. Retr., 3(1), 2000.

[18] S. E. Robertson and K. S. Jones. Relevance weighting
of search terms. Journal of the American Society for
Information science, 27(3):129–146, 1976.

[19] D. Salomon. Variable-length Codes for Data
Compression. Springer, 2007.

[20] F. Silvestri. Sorting out the document identifier
assignment problem. In ECIR, pages 101–112, 2007.

[21] F. Silvestri and R. Venturini. VSEncoding: Efficient
coding and fast decoding of integer lists via dynamic
programming. In CIKM, pages 1219–1228, 2010.

[22] A. A. Stepanov, A. R. Gangolli, D. E. Rose, R. J.
Ernst, and P. S. Oberoi. Simd-based decoding of
posting lists. In CIKM, pages 317–326, 2011.

[23] S. Vigna. Quasi-succinct indices. In WSDM, 2013.

[24] I. H. Witten, A. Moffat, and T. C. Bell. Managing
gigabytes (2nd ed.): compressing and indexing
documents and images. Morgan Kaufmann Publishers
Inc., 1999.

[25] H. Yan, S. Ding, and T. Suel. Compressing term
positions in web indexes. In SIGIR, pages 147–154,
2009.

[26] H. Yan, S. Ding, and T. Suel. Inverted index
compression and query processing with optimized
document ordering. In WWW, pages 401–410, 2009.

[27] J. Zobel and A. Moffat. Inverted files for text search
engines. ACM Comput. Surv., 38(2), 2006.

[28] M. Zukowski, S. Heman, N. Nes, and P. Boncz.
Super-scalar RAM-CPU cache compression. In ICDE,
2006.

