
Efficient Query Recommendations in the Long Tail via
Center-Piece Subgraphs

Francesco Bonchi
Yahoo! Research, Spain

bonchi@yahoo-inc.com

Raffaele Perego
ISTI - CNR, Pisa, Italy
r.perego@isti.cnr.it

Fabrizio Silvestri
ISTI - CNR, Italy; and

Yahoo! Research, Spain
f.silvestri@isti.cnr.it

Hossein Vahabi
IMT, Lucca, Italy

hossein.vahabi@imtlucca.it

Rossano Venturini
Dept. of Computer Science,

University of Pisa
rossano@di.unipi.it

ABSTRACT
We present a recommendation method based on the well-
known concept of center-piece subgraph, that allows for the
time/space efficient generation of suggestions also for rare,
i.e., long-tail queries. Our method is scalable with respect to
both the size of datasets from which the model is computed
and the heavy workloads that current web search engines
have to deal with. Basically, we relate terms contained into
queries with highly correlated queries in a query-flow graph.
This enables a novel recommendation generation method
able to produce recommendations for approximately 99%
of the workload of a real-world search engine. The method
is based on a graph having term nodes, query nodes, and
two kinds of connections: term-query and query-query. The
first connects a term to the queries in which it is contained,
the second connects two query nodes if the likelihood that a
user submits the second query after having issued the first
one is sufficiently high. On such large graph we compute
the center-piece subgraph induced by terms contained into
queries and we reduce the cost of this computation using a
novel and efficient method based on an inverted index repre-
sentation of the model. We experiment our solution on two
real-world query logs and we show that its effectiveness is
comparable (and in some case better) than state-of-the-art
methods for head-queries. More importantly, the quality of
the recommendations generated remains very high also for
long-tail queries, where other methods fail even to produce
any suggestion. Finally, we extensively investigate scalabil-
ity and efficiency issues and we show the viability of our
method in real world search engines.

Categories and Subject Descriptors
H.3.3 [Information Search and Retrieval]: Search pro-
cess, Query formulation

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGIR’12, August 12–16, 2012, Portland, Oregon, USA.
Copyright 2012 ACM 978-1-4503-1472-5/12/08 ...$10.00.

General Terms
Algorithms, Experimentation, Measurement

Keywords
Query Recommender Systems, Web Search Effectiveness

1. INTRODUCTION
Much of the literature on query recommendation is de-

voted to propose novel“methods”, or “models”, that enhance
effectiveness. Although this is, clearly, a fundamental is-
sue, the other side of the coin, efficiency, has indeed been
poorly addressed by the research community. The key idea
behind query recommendation is that of exploiting the so-
called “wisdom of the crowds”, i.e., the knowledge mined
from search engine query logs which store all the past in-
teractions of users with the search system. For this reason
query recommenders are more effective when the informa-
tion need of the user is a popular one, i.e., the same query has
been been frequently submitted by other users in the past.
Using common wording, these queries are head queries in-
dicating that they are usually appearing in the head of the
power-law-like curve typical of query popularity distribu-
tion. In this paper we introduce a novel recommendation
method based on computing the center-piece subgraph [14]
on a large graph-model. Our solution presents several en-
hancements with respect to the state-of-the art. Firstly, the
method is scalable and efficient. It is scalable as the genera-
tion of the model is easily parallelizable and the model itself
can be stored in a compressed form. Furthermore, we repre-
sent the model in an inverted index and we show that several
engineering practices used for inverted indexes are inherited
by our model as well. The inverted index representation has
several advantages as, for instance, the possibility of exploit-
ing the existing index processing infrastructure of search
engines with small, or no, modifications. The suggestions
generation time, also, is comparable to that taken by the
query processing phase. Thus, generating recommendations
does not represent a bottleneck even when rare, uncached
queries are processed. Even if the main goal of this paper
is that of designing an efficient and implementable system,
we show that the quality of its suggestions is comparable
(and sometimes even better) with respect to state-of-the-art
method, query flow graph. Interestingly, the quality of the
suggestions produced by our system is stable, almost inde-
pendently of the frequency of the query in the query log

used to learn the model. This is a key property which does
not hold for the query flow graph. Query flow graph is, in-
deed, not able to generate suggestions for previously unseen
or rare queries.

More in details, our method is based on a graph-model
that we dub TQGraph (Term-Query Graph). A TQGraph

extends the well-known Query Flow Graph [3] by considering
two distinct sets of nodes: Term and Query nodes. Arcs
connect a term node to all the query nodes containing it,
while arcs between two query nodes expresses the likelihood
that a user submits the second query after having issued the
first one. We design such a structure so that we are able
to generate recommendations for a query by extracting the
center-piece subgraph [14] associated with terms of the query
itself. It is important to remark that since we do not require
a query to be present in the TQGraph, but only its terms,
our method is able in principle to provide recommendations
even for a never-seen-before query.

It is this term-centric perspective that allows us to provide
a framework enabling suggestions to be efficiently generated
on the fly during query processing. Finally, let us resume
the original contributions of this paper:

• A novel method for query recommendation based on
center-piece graph computation over the TQGraph 1

model. Being term-centric, our center-piece-based
method does not suffer from the problem of spar-
sity of queries, being able to generate suggestions for
previously-unseen queries as far as terms have been
previously seen. Empirical assessment confirms that
our method is able to generate suggestions for the vast
majority (i.e., 99%) of queries and with a quality that
is comparable to (and in some cases better than) the
state-of-the-art method based on Query Flow Graph.

• After having proved the effectiveness our method, we
are faced with its major but only apparent drawback:
any suggestion pass through the computation of the
center-piece subgraph from query terms. Given the
very large size of the underlying graph, this task is
clearly unfeasible for any system claiming to be real-
time. We overcome to this limitation by introducing
a novel and efficient way to compute center-piece sub-
graphs. This comes at the small cost of storing precom-
puted vectors that need to be opportunely combined
to obtain the final results. The data structure we use
is inverted list-based and thus it is particularly suitable
for web search environments.

• The inverted-list-based data structure is compressed
by using a lossy compression method able to reduce
by an average of 80% the space occupancy of the un-
compressed data structures. Furthermore, caching is
exploited at the term-level to enable scalable genera-
tion of query suggestions. Being term-based, caching
is able to attain hit-ratios of approximately 95% with a
reasonable footprint (i.e., few gigabytes of main mem-
ory.) Furthermore, since the compression method is
lossy, we have evaluated through a user study the loss
in terms of suggestion quality, and we have found that
this loss is negligible. We can claim that our method

1A preliminary presentation of the idea of the TQGraph, was
given in a poster at WWW’11 by the same authors: http://
www.www2011india.com/proceeding/companion/p15.pdf.

to generate suggestions is very effective (and efficient)
also when a very aggressive lossy compression strategy
is applied.

It should be noted that the last two research results, beyond
enabling our model to be real-time, represent a more general
achievement for what concerns the computation of center-
piece subgraphs in very large graphs.

The paper is organized as follows. Section 2 presents re-
lated research results. Section 3 details the TQGraph model
and presents the methods used to compute suggestions. In
Section 4 we assess the quality of the recommendations com-
puted by our method and we compare our results with state-
of-the-art QFG. Sections 5 and 6 present and experimentally
evaluate our scalability and efficiency enhancing techniques.
Finally, in Section 7, we discuss future work and conclude.

2. RELATED WORK
Hanghan et al. in [14] propose the Center-Piece Subgraph,

as the subgraph that best captures the connections of a set
of nodes in a graph. The computation of the Center-Piece
Subgraph is based on the Hadamard (i.e., component-wise)
product of a set of vectors, where each vector is obtained by
doing a random walk with restart from a single node. Due to
the long processing time of random walks with restart, the
method is unfeasible for real-time application on large graph.
The authors themselves propose a way to speed up the pro-
cess by precomputing a n×n matrix, where n is the number
of nodes in graph. This technique helps on small graphs,
but is unfeasible for large graphs due to space requirements.
This paper contributes with a novel way to compute effi-
ciently center-piece sub-graphs on large graphs. The tech-
nique requires to precompute probability distributions and
storing them in an inverted index that need to be oppor-
tunely processed to obtain center-pieces. Moreover, several
optimizations, namely pruning, bucketing, and compression
can be applied in order to reduce the memory footprint.

The techniques proposed during last years for query rec-
ommendation are very different, yet they have in common
the exploitation of usage information recorded in query logs.

Baeza-Yates et al. [1] exploit click-through data on query
logs as a way to provide recommendations. The method
is based on the concept of Cover Graph (CG). A CG is a
bipartite graph of queries and URLs, where a query q and
an URL u are connected if a user issued q and clicked on u
that was an answer for the query. Suggestions for a query
q are thus obtained by accessing the corresponding node in
the CG and by extracting the related queries sharing more
URLs.

Among the proposals exploiting the chains of queries
stored in query logs, [7] use an association rule mining algo-
rithm to devise frequent query patterns. These patterns are
inserted in a query relation graph which allows “concepts”
(queries that are synonyms, specializations, generalizations,
etc.) to be identified and suggested. Jones et al. introduce
the notion of query substitution or query rewriting, and pro-
pose a solution for sponsored search [9]. Such solution relies
on the fact that in about half sessions the user modifies a
query with another which is closely related. Such pairs of
reformulated queries are mined from the log and used for
query suggestion.

Boldi et al. introduce the Query Flow Graph [3] (QFG)
model, which is a Markov chain-based representation of a

query log. A QFG is a directed graph in which nodes are
queries, and an edge e = (q1, q2) exists if at least a user
has issued q2 after q1. Furthermore, e is weighed by the
probability of a user to issue q2 after q1. Given a query q,
suggestions are generated by means of random walks from q
on the QFG [4]. It is worth noting that the “central” part of
our TQGraph (i.e, the subgraph induced by only the query
nodes, without the term nodes) corresponds to a QFG, whose
construction is discussed in detail in the next section.

The importance of rare query classification and suggestion
recently attracted a lot of attention. Generating suggestions
for rare queries is in fact very difficult due to the lack of
information in the query logs. As it was pointed out by
Downey et al. [6] trough an analysis on search behaviors, rare
queries are very important, and their effective satisfaction is
very challenging for search engines. The authors also study
transitions between rare and common queries highlighting
the difference between the frequency of queries and their
related information needs.

Mei et al. propose a novel query suggestion algorithm
based on ranking queries with the hitting time on a large
scale bipartite graph [10]. The rationale of the method is to
capture semantic consistency between the suggested queries
and the original query. Empirical results on a query log from
a real world search engine show that hitting time is effective
to generate semantically consistent query suggestions. The
authors show that the proposed method and its variations
are able to boost long tail queries, and personalized query
suggestion. Also a recent work by Yang et al. [12] proposes
an optimal framework for rare-query suggestion leveraging
on implicit feedbacks from users mined from the query logs.

Broder et al. [5] proposes an efficient and effective ap-
proach for matching ads against rare queries. The approach
builds an expanded query representation by leveraging of-
fline processing done for related popular queries. Xu and
Xu [15] designes a way to learn similarity functions that
are well suited for rare queries. The method leverages the
knowledge extracted from past queries and build a locality
sensitive hashing function thrugh which similarity of rare
queries is estimated. Jain et al. [8] modifies the terms in
rare queries in order to match more frequent queries in the
query log.

All the previous proposals suffer from a main limitation
which regards the granularity of the atomic items repre-
sented in the recommendation model. In the literature the
granularity is always at the query level, and thus the sug-
gestion algorithms can provide recommendations only to
queries already seen in the past and present in the train-
ing log. This paper proposes a different solution in which
the knowledge learned from the query log is coded at the
granularity of the single terms present in the queries used
for training. As a consequence, differently from competi-
tors, our solution can generate suggestions even for queries
not occurring in the training log and never submitted in the
past. The only constraint is in fact on the presence in the
training log of the terms used for expressing the query.

A totally orthogonal proposal to deal with query recom-
mendations for long-tail queries has recently been presented
by Szpektor et al. [13]. They propose to extract rules be-
tween query templates rather than individual query tran-
sitions, as currently done in session-based models. The
method applies general rules learned from the log to rare
queries fitting the rule. As an example, if the template
< city > hotels → < city > restaurants holds strongly
in the log, and Montezuma is recognized as a city in the

rare query Montezuma hotels, then Montezuma restaurants
is generated as possible query recommendation, even if it
was not present it the training log.

Obviously this method extends the coverage of query rec-
ommendation to the long-tail from a different standpoint
w.r.t. our proposal. While our method can not suggest
Montezuma restaurants in the hypothetical case that the
term Montezuma has never been seen before, the method
based on query templates can only suggest recommenda-
tions for query for which templates exist. The two proposal
are hence totally orthogonal and as such they could be po-
tentially combined.

A second limitation common to some of the previous pro-
posals is on efficiency. Query suggestions for most popular
queries can be cached with query results themselves, but
the time needed to generate relevant suggestions for queries
that are not cached must necessarily be comparable to the
query processing time. This need makes practically unus-
able all the methods requiring complex computations over
large graphs, e.g., random walks over a huge QFG [4]. As
discussed above, our novel solution to compute efficiently
center-piece sub-graphs on large graphs solves this very im-
portant issue.

3. THE TQGRAPH MODEL
Let Q = 〈q1, . . . , qn〉 be a query log, i.e., a set of queries

each annotated with an anonymized userid and timestamp
representing when the query has been submitted.

TQGraph is a digraph G = (V, E) with vertices V and
arcs E defined as follows. Let T be the set of all the distinct
terms appearing in queries of Q. V contains a node for
each term t ∈ T and for each query q ∈ Q. In particular,
let VT be the set of Term nodes and VQ be the set Query
nodes, then V = VT ∪ VQ. Likewise, E is the union of two
different sets of arcs EQ and ETQ. Arcs in EQ are defined
as in QFG [3] and connect only nodes in VQ. ETQ contains
arcs (t, q) where t ∈ T is a term contained in query q ∈ Q.
Finally, let w : E → (0..1] be a weighting function assigning
to each arc (u, v) ∈ E a value w(u, v) defined as follows.

For arcs (t, q) ∈ ETQ,
w(t,q)=1

d
where d is the number of

distinct queries in which the t occurs, i.e., the number of
outlinks of t. For arcs (q, q′) ∈ EQ we follow QFG weighting
scheme. In the original QFG paper, Boldi et al. [3] describe
two distinct weighting schemes, namely chaining probability
and relative frequencies. In the case of arc weighting it has
been shown that chaining probability is the most effective
scheme. Therefore, we resort to chaining probability for arcs
in EQ. To estimate such chaining probability, we extract
for each arc (q, q′) ∈ EQ a set of features. Such features
are aggregated over all sessions in which queries q and q′

appear consecutively and in this order. Finally, the chaining
probability is computed by using logistic regression. Noisy
arcs, i.e., arcs having a probability of being traversed lower
than a minimum threshold value, are removed. In other
words, query reformulations that are not likely to be made
are not considered. For further details regarding the features
and the model, we refer to the original work of Boldi et
al. [3]. In particular, we have used the settings suggested in
the original paper [3] for the values of the various parameters
involved in QFG building.

3.1 Query suggestion method
Given our TQGraph G, the query suggestions for an in-

coming query q composed of terms {t1, . . . tm} ⊆ T are gen-
erated from G by extracting the center-piece subgraph [14]

#queries #terms
#queries #terms |VQ| |VT | dang. |ETQ| |EQ| dTQ dQ freq = 1 freq = 1

Yahoo! 580,797,850 1,343,988,549 28,763,637 6,261,105 14.5% 83,808,761 56,250,874 13.38 1.95 162,221,967 5,099,145
MSN 14,899,247 35,697,149 6,488,713 2,014,547 35.2% 19,740,312 5,051,843 9.79 0.77 4,992,180 1,633,729

Table 1: Statistics of the two query logs and TQGraphs. Total number of queries and terms. Number of query
nodes and term nodes. Percentage of dangling nodes. Number of arcs from terms to queries and from queries
to queries, and corresponding average degrees. Number of queries and terms with frequency 1.

starting from the m Term nodes corresponding to terms
t1, . . . , tm. Given a directed graph and m of its nodes,
the center-piece subgraph is informally defined as a small
subgraph that best captures the connections between the
m nodes. In our case the center-piece subgraph represent
the set of queries that better represent terms of the original
query q. It is important to point out, here, the following im-
portant fact: in order to build a center-piece subgraph from
q is not necessary that q is contained in the TQGraph.

The center-piece subgraph for a query q composed of
terms {t1, . . . tm} ⊆ T is obtained by performing a Random
Walk with Restart (RWR) from each one of the m term
nodes corresponding to terms in q. The resulting m station-
ary distributions are then multiplied component-wise. More
formally, given an incoming query q = {t1, . . . , tm} we com-
pute m RWRs from the m query-terms of q to obtain m vec-
tors of stationary distribution rt1 , . . . , rtm . Then, we com-
pute the Hadamard (i.e., component-wise) product of the m
vectors rt1 ◦ rt2 ◦ . . . ◦ rtm to obtain the final scoring vector
rq . Following the definition of Hadamard product, the i-th

component of rq , i.e. rq (i), is given by rq (i) =
m∏

j=1

rtj (i).

Since each dimension of r corresponds to a query in Q, the
TQGraph recommendation algorithm suggests the k queries
having the k highest scores, where k is a parameter deter-
mining the maximum number of recommendations we want
to show for each query. The reason for resorting to the prod-
uct of the entries (namely, Center-piece) instead of their sum
(namely, Personalized PageRank) is that we are interested
in discovering queries that are “strongly” related to “most of
the terms” in the starting query instead of queries that are
highly related even to just few of them2 It is also worth be-
ing remarked that, while Personalized PageRank could have
been computed directly on the QFG, computing the center-
piece subgraph related to the query terms can be done only
on the TQGraph. Computing center-piece starting from the
queries in QFGcontaining those terms, in fact, would pre-
vent those queries themselves to be returned as suggestions.
Obviously, this is not the case for the QFG-based model.

The following toy example shows how suggestions are
computed using the center-piece-based TQGraph model.
Consider a query log containing only two queries, q1, q2,
made up from a vocabulary of three terms, t1, t2, t3. Sup-
pose that the RWR procedure described above leads to the
following three stationary distributions: rt1 = [0.9, 0.1];
rt2 = [0.3, 0.5]; rt3 = [0.09, 0.91]. Finally, let k be equal
to 1. According to this model, when a user submits a query
containing terms (t1, t3) the system would compute the vec-
tor of scores rq = [0.081, 0.091]. Thus q2, i.e., the top-1
center-piece subgraph, would be chosen as suggestion since,

2For the sake of completeness, a comparison of the sugges-
tions produced by RWR from query nodes containing term
queries and our TQGraph-based model is discussed in Sec-
tion 4.

in this case, its score is greater than q1 score.

4. EFFECTIVENESS
Ideally, a recommendation model has to produce high

quality recommendations for the largest number of queries
possible. The fraction of queries for which a method is able
to generate recommendations, henceforth referred to as cov-
erage, is of paramount importance in order to satisfy as much
users requests as possible. It turns out that coverage is one
of the major weak points of previously proposed solutions.
As we shall see in the following our method is extremely ro-
bust w.r.t. this problem, and it is able to generate (useful)
recommendations for a very large fraction of users’ queries.

Unfortunately, defining and measuring quality of recom-
mendations is not an easy task. It turns out to be, in fact,
a subjective matter, usually measured on the basis of user-
studies comparing a given method with some baselines. Fol-
lowing the prevailing custom, we will rely on an extensive
user-study to assess effectiveness. Finally, to let the reader
to appreciate the quality of our methods, we will discuss
some anecdotal evidences on a small set of user-queries.

Query logs. We use two different query logs coming from
two popular web search engines, namely Yahoo! and MSN.

• Yahoo! query log consists of approximately 600 mil-
lions of anonymized queries sampled from Yahoo! USA
queries submitted within a short period of time in
spring 2010. The TQGraph built on the Yahoo! log con-
sists of 6, 261, 105 term nodes and 28, 763, 637 query
nodes. The number of term-query arcs is 83, 808, 761
whereas the number of arcs between query nodes is
56, 250, 874.

• MSN is the Search Spring 2006 Query Log, released in
the context of the 2009 Workshop on Web Search Click
Data3, containing approximately 15 millions queries
from the USA search volume. The TQGraph built
on this log consists of 2, 014, 547 term nodes and
6, 488, 713 query nodes, 19, 740, 312 term-query arcs,
and 5, 051, 843 query-query arcs.

Table 1 reports some statistics on the two TQGraphs.

On coverage. Before describing recommendation effective-
ness we discuss query coverage. As we have discussed before,
the main advantage of our proposal over the state of the art,
is the capability of providing useful recommendations also
for “difficult” queries (i.e., rare or never-seen-before). Let
us recall that, in order to produce recommendations for a
given query, our method needs all the terms contained in
the query to belong to the TQGraph. Or in other terms, our
model fails to give a recommendation only when it receive a

3http://research.microsoft.com/en-us/um/people/
nickcr/wscd09/

 1

 10

 100

 1000

 10000

 100000

 0 10 20 30 40 50

F
re

qu
en

cy
 o

n
M

S
N

Query TREC

 1

 10

 100

 0 20 40 60 80 100

F
re

qu
en

cy
 o

n
Y

ah
oo

Random Queries

Figure 1: Frequency in the corresponding log of all
the queries in the two testbeds.

never-seen-before term. While unique queries are quite fre-
quent, unique terms are not. For instance, out of the 580.8
million of queries contained in the Yahoo! query log about
162.2 million of them are unique, in the same log the number
of unique term is, instead, 5.1 million (see Table 1). There-
fore, on this query log the coverage of our model is more
than 99%, while the maximum coverage of QFG is 73% (i.e.
the percentage of repeated queries).

User-study. Having pointed out the almost perfect cover-
age of our method, we next focus on evaluating the quality
of the recommendations produced, evaluated by conducting
a user-study. As a baseline for comparison we used recom-
mendations provided by the state-of-the-art method QFG.
To produce recommendations from the QFG we follow the
method presented in [4]: recommendations are based on the
probability of being at a certain node after performing a
random walk over the QFG. This random walk starts at the
node corresponding to the input query. At each step, the
random walker either remains in the same node with prob-
ability 0.9, or follows one of the out-links with probability
0.1. in the latter case the links are followed with probability
proportional to w(i, j).

The user study was conducted on two different sets of
queries. The first one is the composed by the 50 queries of
the standard TREC Web diversification track testbed4 that
we use for the MSN query log. The second is a set of 100
queries randomly chosen from the Yahoo! query log. Figure 1
reports the distribution of the frequency of the queries in the
two sets in the corresponding query log. We can observe that
8 queries in the TREC testbed do not appear at all in the
MSN query log. The assessment was conducted by a group
of 10 assessors (researchers not working on related topics).
To reduce the load on our assessors we conducted only two,
out of the four (2 query logs × 2 testbeds) possible user-
studies. In particular we pair the Yahoo! set of queries up
with the TQGraph and QFG models built over the same log
(obviously the queries were randomly drawn by a portion of
the log not used to build the suggestion models). Whereas,
we pair TREC queries up with the models built on the MSN

query log. In fact, the period from which TREC topics come,
is close to the period in which MSN queries were collected.

We generated the top-5 recommendations for each query
by using both the QFG and the TQGraph-based method with
different parameters setting. Using a web interface each as-
sessor was presented a random query followed by the list of
all the different recommendations produced. Recommenda-
tions were presented shuffled, in order for the assessors to
not be able to distinguish which system produced them. We
give assessors the possibility to observe the search engine

4http://trec.nist.gov/data/web09.html

TREC on MSN useful somewhat not useful

α = 0.9 57% 16% 27%
α = 0.5 32% 13% 55%
α = 0.1 22% 12% 66%

100 queries on Yahoo! useful somewhat not useful

α = 0.9 48% 11% 41%
α = 0.5 41% 20% 39%
α = 0.1 37% 20% 43%

Table 2: TQGraph effectiveness on the two different
set of queries and query logs, by varying α.

TREC on MSN useful somewhat not useful

TQGraph α = 0.9 57% 16% 27%
QFG 50% 9% 41%

100 queries on Yahoo! useful somewhat not useful

TQGraph α = 0.9 48% 11% 41%
QFG 23% 10% 67%

Table 3: TQGraph and QFG effectiveness on the two
different testbeds.

results for the original query and the recommended query
that was being evaluated. The assessors were asked to rate
a recommendation using one of the following scores: useful,
somewhat useful, and not useful5.

In first instance we evaluate the impact of the α parameter
(we recall here that α is the restart value of the RWR, from
each term of the query to be recommended). Table 2 shows
the effectiveness of our method when varying α among three
different values α = 0.1, 0.5, 0.9. Results show that the best
quality is achieved when α = 0.9. Table 3 reports the results
of the user study comparing effectiveness of the TQGraph-
based and QFG-based recommendations. TQGraph-based
recommendations are globally of higher quality than QFG-
based ones. We further investigate (see Table 4) the effec-
tiveness of our method with respect to three different classes
of MSN queries: unseen, dangling, and others. A query is un-
seen if it does not appear in the training query log. A query
is dangling if its corresponding node in theQFG has no outgo-
ing edges. The remaining queries belong to the class others.
We observe that QFG is unable to provide suggestions for
queries in the first two classes while our method provides

5The following very broad instruction was given to assessors:
A useful recommendation is a query such that, if the user
submits it to the search engine, it provides new results that
were not available using the original query, and that agree
with the inferred user intent of the original query. Of course
there is a great deal of subjectivity in this assessment as the
original intent is not known by the assessors.

TREC on MSN (unseen) useful somewhat not useful

TQGraph α = 0.9 46% 10% 44%
QFG 0% 0% 100%

TREC on MSN (dangling) useful somewhat not useful

TQGraph α = 0.9 60% 30% 10%
QFG 0% 0% 100%

TREC on MSN (others) useful somewhat not useful

TQGraph α = 0.9 59% 17% 24%
QFG 61% 13% 26%

Table 4: User study results on unseen, dangling and
others queries.

suggestions of high quality. The two methods have almost
the same quality for the third class of queries. A similar
behavior has been observed in Yahoo! query log. We do not
report the results due to space limitations.6

Anecdotal evidence. We next show an example of query
recommendations. The query “lower heart rate” is one
among the eight from the TREC testbed that does not ap-
pear at all in the MSN query log. Below we report the top 5
recommendations both using our TQGraph model and using
RWR7.

Query: lower heart rate
TQGraph Suggestions RWR Suggestions

things to lower heart rate broken heart
lower heart rate through exercise prime rate
accelerated heart rate and pregnant exchange rate
web md bank rate
heart problems currency exchange rate

We can observe that all the top-5 suggestions can be con-
sidered pertinent to the initial topic. Moreover, even if this
is not an objective in this paper, they present some diver-
sity : the first two are how-to queries, while the last three are
queries related to finding information w.r.t. possible prob-
lems (with one very specific for pregnant women). The most
interesting recommendation is probably “web md”, which
makes perfect sense (WebMD.com is a web site devoted to
provide health and medical news and information), and has
a large edit distance from the original query. Recommenda-
tions produced by RWR are not relevant due to the effect
we point out in Section 3.

5. EFFICIENCY
Since query suggestions have to be served online, a query

recommender must compute them efficiently, possibly in
real-time. In this section we introduce some novel tech-
niques allowing the efficient generation of recommendations
at query time. Such techniques are peculiar of the TQGraph

as they can only be achieved thanks to the term-centric per-
spective.

We recall that given an incoming query q, the generation
of suggestions requires to compute RWRs on the TQGraph

from the nodes associated with the terms occurring in the
query. For each term t, the stationary probability distri-
bution resulting from the RWR is represented by a vector
rt that scores queries in Q according to the probability of
reaching them in a random walk on the TQGraph starting
from t. As discussed in Section 3, given an incoming query
q = {t1, . . . , tm}, our recommender system returns the k
queries having the largest probabilities in the Hadamard
product

∏m

i=1 rti .
Before introducing our optimized solution we want to

point out the major drawbacks of the two trivial approaches
that can be used for computing suggestions using our model.

The most trivial approach consists in simply computing
the RWR on the TQGraph for each term ti in the incoming
query as it arrives, and in multiplying the resulting station-
ary distributions.

6We observe that results in Table 3 and Table 4 are consis-
tent because we considered as not useful the cases in which
a method is not able to provide any suggestion.
7RWR corresponds to summing the entries of score vectors
instead of computing the Hadamard product.

Figure 2: Dissimilarity (in percentage) for the top-5
suggestions as a function of the pruning threshold
p, measured on the MSN (top) and Yahoo! (bottom)
query logs. The curves refer to different values of
the parameter α used in the RWR.

The second (less) trivial approach, instead, provides to
store the precomputed stationary distributions for all the
terms appearing in T . To improve efficiency, we can re-
sort to use an index on which the stationary distribution
of the random walks for terms in T are stored as lists of
postings, where each posting is given by the identifier of the
query (queryID), along with its probability. Recommenda-
tions for an incoming query are then computed by process-
ing the posting lists associated with the terms composing
the query.

Both approaches suffer from crucial time or space ineffi-
ciencies. The former approach requires Ω(m · (|E| + |Q|))
time for each suggestion, thus making it unusable in any on-
line recommender system. As far as the latter approach is
concerned, it has its main drawback in the space occupancy.
Indeed, the algorithm for computing recommendations is
significantly simpler and its time complexity is lower (i.e.,
O(m · |Q|)). Storing all the stationary distributions requires
to store |T | different vectors of |Q| entries each (namely, the
ith entry of each vector is the probability of the i-th query in
the stationary distribution of a term). The space required
to store these |T | · |Q| entries is unfortunately prohibitive
even for quite small query logs. For example, we notice that
using such a approach for the TQGraph built over the rel-
atively small MSN query log would ask to store a total of
13 × 1012 entries which is clearly not feasible in any real
system.

In the following we show how the two above-mentioned
drawbacks can be avoided by using three different optimiza-
tions, namely pruning, bucketing, and compression. The

goal is to sensibly reduce space requirements, thus making
our query suggestion method viable.

Pruning Lists. In order to reduce the space occupancy of
the latter approach we consider to prune unnecessary en-
tries in each list. The idea is to store only the probabilities
of the top-p entries of each stationary distribution, where p
is a user defined threshold. In this way we require to store
p entries per term instead of |Q|.8 The total number of en-
tries to be stored becomes thus p · |T |, with a large saving
in space occupancy when p ≪ |Q|. Obviously, this prun-
ing phase comes at the price of introducing errors in the
scores computed by the recommender. Assume that the k
suggestions for a query q = {t1, t2, . . . , tm} are the queries
q1, q2, . . . , qk. The pruning phase introduces an error when-
ever one of these top-k queries has been pruned in the list
of at least one of the terms ti ∈ q.

We evaluated experimentally the effects of pruning, and
report in Figure 2 the results of these tests. In particular
we measured the average dissimilarities for the top-5 sug-
gestions returned before and after pruning, by varying the
number p of entries maintained for each term. Given two
set A and B of size k, the dissimilarity among A and B

is defined as 1− |A∩B|
k

. This experiment has been repeated
by varying also the parameter α used in the RWR. In both
cases the largest loss is obtained for RWR α = 0.9. This
is due to the fact that with this value of restart the most
probable queries for a term are more likely to differ from
the ones of other terms. This increases the chances for a
query to be evicted from the list of at least a term of the
user query. However, the experiments conducted show that
relatively small values of p lead to a average similarity larger
than 95% between the sets of top-5 results.

For example, it is possible to preserve the correctness of
97, 6% of the top-5 results by setting p = 20, 000 on the
MSN query log. Note that on MSN 20, 000 queries account
for only 0.67% of the total number of queries |Q| present
in the log. For Yahoo! query log we can instead preserve
95.40% of the results by setting p = 100, 000. In this case
the number of non pruned queries is just 0.34% of |Q|. These
figures show that about 97% of the queries in each list can be
safely pruned away without remarkably affecting the quality
of results. This phenomenon can be explained by observing
that usually the terms in the user queries are highly related
to each other. Thus, it should be not surprising that relevant
queries have relatively high probabilities in the lists of all
these terms.

Table 5 shows some figures related to the percentage of
dissimilarity measured for some values of p on the two query
logs. The average dissimilarity after pruning for the top-5
suggestions returned for all the queries in our testbeds, is
computed by considering only those recommendations that
have been deemed to be sufficiently good by assessors in the
user study (namely, recommendations having been classified
as useful or somewhat useful by at least an assessor). Dissim-
ilarity, in percent, due to pruning for the whole lists of the
top-5 recommendations is indicated between parenthesis.

As far as the space occupancy is concerned, we recall that
the list of each term is formed by a pair of values, for each of
the p most probable queries, i.e., the queryID and its prob-
ability. We represent each list in the form of a posting list.
Firstly, we sort pairs by increasing queryIDs. Then, we en-

8The probability of a pruned query is assumed to be 0.

MSN query log
p RWR α = 0.1 RWR α = 0.5 RWR α = 0.9

5, 000 1.18 (0.40) 5.31 (3.60) 13.66 (20.80)

10, 000 1.18 (0.40) 1.77 (0.80) 7.10 (9.60)

15, 000 1.18 (0.40) 1.77 (0.80) 6.01 (5.20)

20, 000 1.18 (0.40) 1.77 (0.80) 3.28 (2.40)

100, 000 1.18 (0.40) 0.88 (0.80) 0.00 (0.00)

200, 000 1.18 (0.40) 0.00 (0.80) 0.00 (0.00)

Yahoo! query log
p RWR α = 0.1 RWR α = 0.5 RWR α = 0.9

5, 000 21.75 (31.40) 24.26 (31.80) 25.08 (31.60)

10, 000 15.09 (25, 00) 18.69 (26.20) 18.31 (25.40)

15, 000 11.93 (20.80) 15.74 (22.40) 14.58 (21.20)

20, 000 11.23 (18.20) 13.77 (20.00) 13.22 (20.00)

100, 000 1.05 (1.80) 2.30 (3.00) 2.37 (4.60)

200, 000 1.05 (1.60) 1.64 (2.20) 1.36 (2.60)

Table 5: Average dissimilarity (in percentage) be-
tween the sets of top-5 suggestions computed with
or without pruning as a function of p. The same
measure computed by restricting to suggestions that
have been considered “useful” or “somewhat useful”
is reported between parenthesis.

MSN query log
p RWR α = 0.1 RWR α = 0.5 RWR α = 0.9

5, 000 19.21 (73.63) 17.34 (73.98) 15.81 (73.71)

10, 000 18.32 (73.31) 17.15 (73.44) 16.08 (73.44)

15, 000 17.99 (73.16) 17.17 (73.16) 16.23 (73.32)

20, 000 17.82 (73.03) 17.23 (72.96) 16.33 (73.21)

100, 000 15.84(71.39) 16.09(71.28) 16.34(71.15)

200, 000 15.43(70.22) 15.36(70.15) 15.21(70.05)

Yahoo! query log
p RWR α = 0.1 RWR α = 0.5 RWR α = 0.9

5, 000 16.25 (72.17) 15.26 (72.26) 13.67 (72.33)

10, 000 15.72 (71.43) 14.99 (71.54) 13.79 (71.63)

15, 000 15.54 (71.17) 14.96 (71.29) 13.99 (71.42)

20, 000 15.59 (71.03) 15.11 (71.17) 14.27 (71.32)

100, 000 16.55 (70.47) 16.42 (70.67) 16.16 (70.87)

200, 000 16.30 (69.94) 16.23 (70.12) 16.09 (70.30)

Table 6: Average bits per entry for our bucketing
method (ǫ = 0.95) and the baseline (between paren-
thesis) by varying p and α.

code differences between consecutive queryIDs by resorting
to the well-known Elias’ Delta coding (see [11] and refer-
ences therein for more details on integers encoding meth-
ods). Finally, we encode the probability of each query in
a fixed-length field of 8 bytes. The average number of bits
required to store each pair ranges from 69 to 74 bits de-
pending on the value of p. Complete experimental results
are reported in parenthesis in Table 6. We observe that the
larger the value of p, the denser are the lists for each term.
This implies that gaps between queries IDs become smaller
and, thus, each pair is more effectively encodable.

Approximating Probabilities. The above method allow
to build a index of terms’ RWRs, where the pruned list of
queries for each term is coded as a postings list. The size
of this index is used as baseline to assess the effectiveness
of our more sophisticated solution that relies on approxima-
tions. We observed that the previous method spends most
of its space in storing the probability rt(q) for each query q

 10

 12

 14

 16

 18

 20

 0 0.2 0.4 0.6 0.8 1

B
its

 p
er

 e
nt

ry

ε

MSN query log

 RWR α=0.1
 RWR α=0.5
 RWR α=0.9

Figure 3: Average bits per entry on the MSN query
log as a function of ǫ (p = 20, 000).

in the stationary distribution rt. The idea is thus that of ap-
proximating each probability by a bucketing schema in a way
that still preserves roughly indications of its magnitude. We
start by choosing a parameter ǫ which is a real value in (0, 1).
We divide the query IDs in the list of a particular term t in
buckets based on their probabilities. Let s be the smallest
probability in the list. We have l buckets B0, B1, . . ., Bl−1

where ǫl−1 ≤ s < ǫl. The i-th bucket Bi contains the IDs
of the queries whose probabilities are in the range [ǫi, ǫi+1).
The approximated probability r̂t(q) of a query q in bucket
Bi is approximated with ǫi. This organization in buckets is
particularly suitable for compression. In our scheme we sort
queries IDs in each buckets, then we encode gaps between
consecutive queries in the same bucket. Finally, we encode
the index and the cardinality of each bucket. For simplicity,
all the values have been encoded by resorting to Elias’ Delta
coding. Different choices are possible since the literature of-
fers a great variety of different solutions for these aims [11].
According to our schema, the decoding is very simple: IDs
of queries are obtained by decompressing each bucket, while
their probabilities are set to be equal to ǫi where i is the
index of the corresponding bucket.

By resorting to this bucketing technique, we are able to
achieve high levels of compression as shown in Figure 3. In
this figure we report the average number of bits per entry
required by our method with p = 20, 000, as a function of
the values of ǫ and α. The number of bits per entry ranges
between 11 and 19. These figures are reported for the MSN

query log only since a very similar behavior was observed
on the Yahoo! query log. Notice that the smaller the value
of ǫ, the smaller is the average number of bits per entry.
This expected effect is due to the fact that with smaller val-
ues of ǫ we obtain fewer different buckets which are more
dense. Thus, query IDs become more compressible. Table
6 compares the average number of bits per entry required
by our schema (ǫ = 0.95), with those required by the base-
line (pruned lists without bucketing). The comparison was
made by using both the MSN and Yahoo! query logs by vary-
ing p for three different values of α in the RWR. The num-
ber of bits per entry for the baseline are reported between
parenthesis. The table shows that our scheme is much more
space-efficient than the baseline (namely, each entry requires
roughly 4 times less space).

Clearly, our bucketing scheme may introduce approxima-

tions on the probabilities of each query. However, by con-
struction, we are able to precisely bound the highest pos-
sible level of approximation. The approximated probability
of any query q is in fact at most ǫ−1 times larger than its
real probability (namely, rt(q) ≤ r̂t(q) < ǫ−1 · rt(q)). Thus,
the larger is the value of ǫ, the better are the guarantees on
the resulting approximations. Since recommendations are
computed by using these approximated probabilities, there
may exist differences between the top-k queries suggested
by resorting to real probabilities and the ones obtained with
approximated probabilities. In other words, a query that is
among the top-k with real probabilities may be replaced by
another query when we resort to approximations. However,
we can prove that this event happens only if the two queries
have a very close product of (real) probabilities. More for-
mally, let q = {t1, t2, . . . , tm} be the user query and let q′

and q′′ be any pair of candidate queries. Assume that

rq′ =
m∏

i=1

rti(q
′) >

m∏

i=1

rti(q
′′) = r′′q .

Thus, q′ precedes q′′ in the ranking for query q computed
via real probabilities and, thus, q′ should be preferred to
q′′. The relative order in the ranking between q′ and q′′

computed via the approximated probabilities differs if9

r̂q′ =
m∏

i=1

r̂ti(q
′) ≤

m∏

i=1

r̂ti(q
′′) = r̂q′′ .

Therefore, a change in the relative order of these two queries
is possible only if their products of probabilities are too close.
More precisely, since rq′ < r̂q′ , r̂q′ ≤ ǫ−mrq′′ and rq′ > rq′′ ,
the relative order between q′ and q′′ cannot change whenever
rq′ > ǫ−mrq′′ . The quantity ǫ−m is sufficiently small since
the number of terms m in the input query is usually a value
between 2 and 3. For example, the average number of terms
per query in MSN query log is m = 2.40. Thus, it suffices
that r̂(q′) > 1.131 × r̂(q′′) in order to preserve the relative
order between q and q′′ with ǫ = 0.95.

Table 7 shows the percentage of dissimilarity achieved
with pruning and bucketing with respect to the original
results computing considering the whole lists. Once more
dissimilarity is computed for the top-5 results restricted
to those recommendations that have been considered suffi-
ciently good in the user study discussed in Section 4. At the
first glance, we can see that the percentage of dissimilarity
is remarkable. For example, a percentage ranging between
47.12% and 28.14% of the useful suggestions generated us-
ing the whole lists built from the Yahoo! query log are lost
due to pruning and approximation. We observe however,
that we are measuring exact differences in sets of results.
This measure might not actually capture the global qual-
ity of the set of suggestions provided. It could happen in
fact (and we will see that it often actually happens), that a
good query suggested by using the whole lists is evicted by
the set of suggestions due to pruning and bucketing to make
place to a different query of comparable quality. The differ-
ences in the probabilities among the queries retrieved which
are close to the fifth position, are in fact so small that our
approximation could swap two queries having a very similar
probability. This has a negligible effect on the overall quality

9In case of tails between products of probabilities one of the
queries is preferred arbitrarily.

MSN query log
p RWR α = 0.1 RWR α = 0.5 RWR α = 0.9

5, 000 18.48 (8.47) 22.58 (14.11) 42.04 (40.32)

10, 000 17.39 (8.47) 20.97 (12.50) 39.49 (30.65)

15, 000 17.39 (8.47) 20.16 (12.10) 36.31 (25.40)

20, 000 17.39 (8.06) 18.55 (11.29) 33.12 (22.18)

100, 000 17.39 (8.06) 18.55 (11.29) 32.48 (21.77)

200, 000 17.39 (8.06) 18.55 (11.29) 32.48 (21.77)

Yahoo! query log
p RWR α = 0.1 RWR α = 0.5 RWR α = 0.9

5, 000 33.75 (40.30) 37.87 (42.22) 45.11 (47.12)

10, 000 27.76 (34.12) 32.84 (36.89) 40.23 (42.22)

15, 000 26.18 (31.13) 31.36 (34.33) 38.22 (39.23)

20, 000 23.97 (27.72) 28.70 (31.56) 37.07 (38.38)

100, 000 19.24 (17.48) 21.89 (20.26) 31.32 (28.78)

200, 000 19.24 (17.70) 21.30 (19.62) 31.90 (28.14)

Table 7: Average dissimilarity (in percentage) be-
tween the sets of top-5 suggestions computed by
resorting or not to bucketing (with ǫ = 0.95) as a
function of p. The same measure computed by re-
stricting to suggestions that have been considered
“useful” or “somewhat useful” is reported between
parenthesis.

MSN query log
p useful somewhat not useful

5, 000 56% 17% 27%

20, 000 55% 15% 30%

200, 000 55% 15% 30%

Yahoo! query log
p useful somewhat not useful

5, 000 46% 29% 25%

20, 000 47% 29% 24%

200, 000 46% 28% 26%

Table 8: Effectiveness of the suggestions provided
with pruning and bucketing as a function of p for
ǫ = 0.95 and α = 0.9.

of the suggestions provided, but it accounts for a 20% error
according to our metrics. In order to verify this hypothesis,
we thus conducted a new user study to evaluate the rec-
ommendations generated with the index exploiting pruning
(p = 5, 000; 20, 000; 200, 000) and bucketing (ǫ = 0.95).

Table 8 reports the results of this new user study, con-
ducted exactly as discussed in Section 4. By comparing the
figures reported in Table 3 and 8, we can see that the qual-
ity of recommendations as judged by our assessors does not
change remarkably. The experiment confirms our hypothe-
sis: even if some of the lowest-ranked top-5 recommendations
computed on the whole RWRs lists are lacking in the set of
recommendations generated by using the pruned and approx-
imated index, they are in most cases replaced with queries of
similar quality even according to human judgements.

6. SCALING UP SUGGESTION BUILDING
To further improve query suggestion response time in the

case even the pruned and compressed index discussed above
does not fit into the main memory of the computer used for
generating suggestion, we can exploit caching to improve
throughput and scalability. It is in fact worth remarking
that while query popularity changes significantly over time,

the usage of terms in queries presents a higher temporal
locality [2].

As we have discussed in the previous section, our index
is accessed by query terms. For each term t occurring in
queries of the log, we have a posting list consisting of p pairs
of query IDs and (approximated) steady-state probabilities
of reaching such queries by performing a RWR from t. At
recommendation-generation time, the lists corresponding to
each term occurring in the incoming query are retrieved and
their probabilities multiplied. Therefore, in order to speed-
up the recommendation scoring phase we can adopt a cache
to keep in memory a“working set”of“likely-to-be-used”lists.
Each entry of the cache stores p bucketed queryIDs, and is
accessed by using the associated term as the key. The cache
can be managed with a simple “Least Recently Used” (LRU)
policy consisting in replacing, when needed, the oldest list
in the cache.

Experiments. In order to assess empirically the benefits
of adopting such a caching mechanism, we consider two por-
tions of the query logs not used to learn the TQGraph model.
We extract from such portions the queries and we sort them
by timestamp. From each query we parse the terms and
we build the stream of term requests by keeping the order
induced by query timestamps. Each time a term t appears
in the stream, we check if the cache contains the associated
list. If not we count a cache miss and we store t and the as-
sociated posting list in the cache, possibly evicting another
entry according to the LRU policy. Three different values
of p = 5, 000, 20, 000, 200, 000 are considered in the exper-
iments, while the relative average bits per entry b are set
as reported in Table 6. As in the previous experiments the
RWRs are computed by setting α = 0.9. The number of
entries fitting in a cache of s bits is thus given by s/(p · b).

Results. Figure 4 shows the percentage of cache misses
measured on our LRU cache over the total number of re-
quests. The first obvious observation is that bigger caches
correspond to a smaller number of cache misses. Indeed,
the cache miss curve has an asymptotic trend allowing us to
estimate the most reasonable cache size for each query log.

For instance, in the case of the MSN query log, when p is
equal to 5, 000 and the average bit per entry is 15.81, we are
able to obtain a cache miss ratio of 7.21% when the cache has
a size of 4GB. On the other hand, by doubling the size of the
cache (from 4GB to 8GB) we obtain a miss ratio of 6.20%,
i.e., a decrease of just the 1.01%, a small gain if compared
to the higher cost of allocating a bigger cache size.

Similar results can be observed in the case of the Ya-

hoo! query log (> 1 billion terms) where almost 90% of
the recommendations can be computed (when p = 5, 000,
and ǫ = 0.95.) in memory by using a “small” 8GB cache.
These figures strengthen further our proposal that results
to be very scalable as it allows the fast generation of rec-
ommendations by using an in-memory approach for the vast
majority of queries.

7. CONCLUSIONS AND FUTURE WORK
In this paper we shifted the common query-centric per-

spective over the problem of query recommendation, and by
taking a term-centric perspective we achieved two impor-
tant results. First a novel query recommendation method
able to generate relevant query suggestions also for rare or
previously unseen queries. Second, a framework to make our
emthod extremely efficient and scalable, thanks to the use

Figure 4: Miss ratio of our cache as a function of
its size for different values of p. Results obtained
on both the two query logs MSN (top) and Yahoo!

(down) are reported.

of a optimized index data structure.
The proposed method is based on a graph model dubbed

TQGraph, which has two sets of nodes: Query nodes, which
are connected among them on the basis of the query reformu-
lations observed in a historical query log, and Term nodes,
which have only outgoing links pointing at the nodes cor-
responding to the queries in which the terms occur. Given
a TQGraph, the suggestions for a incoming query are gen-
erated by performing RWRs starting from the nodes associ-
ated with query terms. The method we propose to efficiently
compute on-the-fly query suggestions by exploiting a pruned
and approximated index represents a more general contri-
bution in the field of efficient computation of approximated
random walks with restart, in particular of center-piece sub-
graphs. An accurate experimental evaluation was conducted
to assess effectiveness and efficiency of our proposal. We
firstly observed that the distribution of query terms allows
our solution to provide suggestions for about the 99% of
the queries encountered. The quality of TQGraph-based rec-
ommendations were judged higher than QFG-based ones in
the user study conducted. Furthermore, we showed that the
optimization techniques adopted are very effective, and safe-
guard the quality of suggestions provided also when aggres-
sive pruning and lossy compression strategies are applied.
Finally, a simple caching technique was proposed to enable
scalable and fast in-memory generation of TQGraph-based
recommendations.

There are various ideas that worth further investigation
in order to improve our solution. Firstly, in our model the

stationary distributions of the terms in the input query are
multiplied together without considering their relative impor-
tance. Essentially, we are implicitly assuming that all the
terms forming a query are equally important. Obviously,
this is not the case. Thus, one could think to weight each
vector based on the importance of the corresponding term.
For example, we could increase the importance of the terms
that better characterize the query at hand. This could be
done by resorting to scoring mechanisms that recall known
measures like TF/IDF.

Another aspect worth further exploration is the tuning
of the length of the pruned lists and of the approximation
level. In all the experiments conducted the values of these
two parameters were equal for all the terms. Thus, we are
again implicitly assuming that all the terms have the same
importance. Instead, one should reserve more space for the
lists of more important terms.

Acknowledgement
This research has been partially funded by the EU CIP PSP-
BPN ASSETS Project, Grant Agreement no. 250527, and
InGeoCloudS Project, Contract No 297300.

8. REFERENCES
[1] R. Baeza-Yates and A. Tiberi. Extracting semantic

relations from query logs. In Proc. KDD’07.
[2] R. A. Baeza-Yates, A. Gionis, F. Junqueira, V. Murdock,

V. Plachouras, and F. Silvestri. Design trade-offs for search
engine caching. TWEB, 2(4), 2008.

[3] P. Boldi, F. Bonchi, C. Castillo, D. Donato, A. Gionis, and
S. Vigna. The query-flow graph: model and applications. In
Proc. CIKM’08.

[4] P. Boldi, F. Bonchi, C. Castillo, and S. Vigna. Query
reformulation mining: models, patterns, and applications.
Inf. Retr., 14(3):257–289, 2011.

[5] A. Broder, P. Ciccolo, E. Gabrilovich, V. Josifovski,
D. Metzler, L. Riedel, and J. Yuan. Online expansion of
rare queries for sponsored search. In Proc. WWW’09.

[6] D. Downey, S. Dumais, and E. Horvitz. Heads and tails:
studies of web search with common and rare queries. In
Proc. SIGIR’07.

[7] B. M. Fonseca, P. Golgher, B. Pôssas, B. Ribeiro-Neto, and
N. Ziviani. Concept-based interactive query expansion. In
Proc. CIKM’05.

[8] A. Jain, U. Ozertem, and E. Velipasaoglu. Synthesizing
high utility suggestions for rare web search queries. In
Proc. SIGIR’11.

[9] R. Jones, B. Rey, O. Madani, and W. Greiner. Generating
query substitutions. In Proc. WWW’06.

[10] Q. Mei, D. Zhou, and K. Church. Query suggestion using
hitting time. In Proc. CIKM’08.

[11] F. Silvestri and R. Venturini. VSEncoding: efficient coding
and fast decoding of integer lists via dynamic
programming. In Proc. CIKM’10.

[12] Y. Song and L.-w. He. Optimal rare query suggestion with
implicit user feedback. In Proc. WWW’10.

[13] I. Szpektor, A. Gionis, and Y. Maarek. Improving
recommendation for long-tail queries via templates. In
Proc. WWW’11.

[14] H. Tong and C. Faloutsos. Center-piece subgraphs:
problem definition and fast solutions. In Proc. KDD’06.

[15] J. Xu and G. Xu. Learning similarity function for rare
queries. In Proc. WSDM’11.

