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CHAPTER

ONE

Introduction

A large fraction of the data we process every day consists of a sequence of
symbols over an alphabet, and hence is a text. Unformatted natural language
documents, XML and HTML file collections, program codes, music sequences,
DNA and protein sequences, are the typical examples that come to our mind
when thinking of text incarnations. Although the scientific literature offers
many solutions to the storage, access and search of textual data, the current
growth and availability of massive amounts of texts gathered and processed
by applications – Web search engines, textual and biological databases, just to
cite a few – has changed the algorithmic requirements of these basic process-
ing and mining tools and provide ample motivation for a great deal of new
theoretical research on algorithms and data structures. In fact the memory hi-
erarchies on current PCs and workstations are very complex because they con-
sist of multiple levels: L1 and L2 caches, internal memory, one or more disks,
other external storage devices (like CD-ROMs and DVDs), and memories of
multiple hosts over a network. Although the virtualization of the memory
permits the address space to be larger than the internal memory, it is well-
known that not all memory references are equal. In fact each of these memory
levels has its own cost, capacity, latency and bandwidth, and thus the memory
accesses at the highest levels of the hierarchy are orders of magnitude faster
than the accesses at the lowest levels. Therefore, applications working on large
data sets should carefully organize their data in order to help the underlying
Virtual Memory to guarantee efficient performance to the underlying appli-
cations. Knuth, in its famous The Art of Computer Programming, observed
indeed that the “space optimization is closely related to time optimization in a disk
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memory”. Obviously this consideration is valid for all levels of the memory
hierarchy.

In this scenario data compression seems mandatory because it may induce a
twofold advantage: fitting more data into high (fast) memory levels reduces
the transfer time from the slow levels, and may speed up the execution of algo-
rithms. It goes without saying that storing data in compressed format is ben-
eficial whenever the cost of accessing them out-weights their decompression
time. Until recently data compression had its most important applications in
areas of data transmission and storage: texts were compressed only for reduc-
ing their size and, except for some heuristic approaches, any access or search
to their contents required their whole decompression [164]. Thus, the focus
was primarily posed on designing compression schemes that achieve the max-
imum level of compression and that are usually very slow both in compression
and decompression. Recently, a bunch of algorithmic tools and theoretical ma-
chineries have been made available to access compressed information without
incurring in their whole decompression (e.g., see [134] and references therein).
The exact meaning of access to compressed information deeply varies by ap-
plication to application. Different applications usually ask to provide different
operations on compressed text that range from allowing fast decompression
of the whole text, to permitting random accesses to its substrings, up to an-
swering sophisticated pattern matching queries on it. In literature is known
a plethora of solutions: some of them support most of these operations while
other are more specialized and provide just few of them. At a first glance, tools
with fewer supported operations seems to be unnecessary since, for example,
by providing efficient random access to substrings we also derive fast decom-
pression of whole text. However, by designing specialized schemes we can
obtain faster and/or highly compressed solutions. It is the case of compressed
full-text indexes which are compressed tools that answer efficiently pattern
matching queries on the indexed text [134]. Most of them also allow random
accesses to substrings of the compressed text. However, these tools are slower
than ad hoc solutions (e.g., [57, 79, 148]) in solving the latter operation primar-
ily due to inefficiencies induced by their compression strategies. Observation
above forced the research community to design different and specialized so-
lutions that better fit in different applicative scenarios. These scenarios can be
identified by observing the behavior of applications on the compressed data
they manage. Sometimes data are accessed by applications only few times
in their lifetime. We can, thus, admit some time inefficiencies on compres-
sion/decompression speed and focus our efforts on achieving best possible
compression. Consider, as an example, applications that manage huge files
that have to be stored on a disk for backup purposes or transmitted from an
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host to an other through a network with small bandwidth. Other applica-
tions, instead, access data very often once it has been compressed. There are
two possible pattern of accesses: the application performs its computation by
scanning the whole text, even more times, from left to right, or by random
accessing its substrings. For example, the first type of accesses may suffice
in applications that compute some statistics on the text for mining purposes
while the task of generating snippets in a search engine requires random ac-
cesses on compressed text. Finally, applications that manage texts require to
perform some relative simple pattern matching queries on them. Such queries
require to efficiently report or count the number of the occurrences of a given
pattern on the underlying text. These queries usually suffice in many contexts
but may be also used as building blocks whenever we require more sophisti-
cated queries such as approximate pattern matching, searching with regular
expressions, and so on.

We can summarize the contributions of this thesis with the following points
that introduce our solutions for different applicative scenarios described above.

Maximizing achieved compression. As we said before, in some scenarios
compression/decompression speed is not the main concern since we are more
interested in maximizing the achieved compression. In Chapter 3 we describe
a way to optimize the performance of a given compressor over an input text.
More precisely, we investigate the problem of partitioning an input string T in
such a way that compressing individually its parts via the given compressor
gets a compressed output that is shorter than applying the compressor over
the entire T at once. Our solution is the first known algorithm which is guar-
anteed to compute in O(n log1+ε n) time a partition of T whose compressed
output is guaranteed to be no more than (1 + ε) times worse in size than the
optimal one, where ε is an arbitrary positive value.

The content of this chapter is based on paper [54].

Fast whole decompression. LZ77 compressor is a compression scheme that
has been introduced by Lempel and Ziv about 30 years ago [166]. It has gained
a lot of popularity due to its good compression performance and its very fast
decompression algorithm which makes it the default choice in any scenario
in which we often decompress the original text. In Chapter 4 we provide al-
gorithms that permit to optimize the compression performance of LZ-based
compressors. These theoretical results are sustained by some experiments that
compare our novel LZ-based compressors against the most popular compres-
sion tools (like gzip, bzip2) and state-of-the-art compressors (like the booster
of [41, 43]). These results show that our solutions significantly improve com-
pression performance of other LZ-based compressors still retaining very fast
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decompression speed.

The content of this chapter is based on paper [55].

Random access to the compressed data. The task of providing efficient ran-
dom accesses to the compressed data is a key problem in many applications.
For example, search engines and textual databases often need to extract pieces
of data (e.g. web pages or records) from a compressed collection of files, with-
out incurring in their whole decompression. Many solutions for lossless data
compression (e.g. the ones discussed in the previous two points) fail in pro-
viding efficient random access to the compressed data and in achieving prov-
able good compression ratio. In Chapter 5 we describe a compressed storage
scheme for strings which improves known solutions in compression ratio and
supports the retrieval of any of its substrings in optimal time. The impor-
tance of the problem is confirmed by the fact that our scheme has been used
as building block in many subsequent papers to reduce space requirements of
data structures and algorithms (e.g., see [12, 15, 27, 39, 61, 87, 91, 136]).

The content of this chapter is based on papers [57] and [58].

Compressed full-text indexes. Suffix trees and suffix arrays [83] are well-
known classical full-text indexes that solve the so-called text searching prob-
lem efficiently in time, but they are greedy of space requiring Θ(n log n) bits to
index a text of n symbols. In practice this means that such indexes are from 4
to 20 times larger than the input text, and thus their use is unfeasible for large
data sets. Recent results [134] have shown astonishing and strong connections
between indexing data structures and compressor design. This connection, at
a first glance, might appear paradoxical because these tools have antithetical
goals. In fact, index design aims at augmenting data with routing information
(i.e. data structures) that allow the efficient retrieval of patterns or the extrac-
tion of some information. Conversely, compressors aim at removing the repeti-
tiveness present in the data to squeeze them in a reduced space occupancy. The
resulting compressed full-text indexes carefully combine ideas born in both fields
to obtain the search power of suffix arrays/trees and a space occupancy close
to the one achievable by the best known compressors, like gzip and bzip2.
These studies were mainly at a theoretical stage. The content of Chapter 6
complemented those theoretical achievements with a significant experimen-
tal and algorithmic engineering effort. This is the first extensive experimental
comparison among the most important compressed indexes known in the lit-
erature. This result has led to the design and develop of the Pizza&Chili site
(http://pizzachili.di.unipi.it), that offers publicly available imple-
mentations of the best known compressed indexes, and a collection of texts
and tools for experimenting and validating these indexes.



7

The content of this chapter is based on paper [44].

Compressed indexes for dictionaries of strings. Many applications require to
index dictionary of strings instead of texts, like terms and URLs in web search
engines. The main difference between these indexes and full-text ones relies
in the basic operations to be supported: membership of a string, ranking of a
string in the sorted dictionary, or selection of the i-th string from it. Tries are
classical data structures providing those primitives but they require a large
amount of extra space [104]. Since dictionaries of strings are getting larger
and larger, it becomes crucial to devise implementations for the above primi-
tives which are fast and work in compressed space. In Chapter 7 we describe
a compressed index having these characteristics. In addition, we also devise
a dynamic compressed index that is able to maintain the dictionary under in-
sertions and deletions of an individual string. This theoretical study has been
complemented with a rich set of experiments which have shown that our com-
pressed index is also of practical relevance. In fact, it improves known ap-
proaches based on front-coding [121, 164] by more than 50% in absolute space
occupancy, still guaranteeing comparable query time.

The content of this chapter is based on papers [56] and [59].

We conclude the thesis (Chapter 8) by presenting some of the most important
and challenging problems of this fascinating area of research.





CHAPTER

TWO

Basic concepts

In this thesis we will present and solve problems concerning combinatorial
pattern matching and data compression. In the last decade more than before
researchers have shown that these two tools are strongly related. On one hand,
pattern matching data structures and techniques are used to develop time ef-
ficient implementations of almost any data compression algorithm. On the
other hand, many classical pattern matching data structures suffer of space
inefficiencies that can mitigated by reducing the redundancy present in the
indexed text via data compression.

The aim of the present chapter is that of introducing the most important mod-
els of computation and defining useful notation. After that, we describe some
well-known results on combinatorial pattern matching and data compression
that will be often referred in subsequent chapters.

The content of this chapter can be safely skipped by readers who are familiar
with the fields of textual data compression and combinatorial pattern match-
ing.

2.1 Models of computation

In order to reason about algorithms and data structures, we need models of
computation that grasp the essence of real situation so that algorithms that are
good in a model are also good in practice. The next subsections present two of
the most important models: RAM Model and External-Memory Model.
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2.1.1 RAM Model

The RAM model tries to model a realistic computer. RAM stands for Random
Access Machine, which differentiates the model from classic but unrealistic
computation models such as a tape-based Turing Machine. The machine is
formed of a CPU, which executes primitive operations, and a memory, which
stores the program and the data. The memory is divided in cells, called words,
each having size w bits. It is usually assumed that log n ≤ w = Θ(log n),
where n is the size of the problem.1 This assumption (usually referred as trans-
dichotomous assumption [64]) is actually very realistic: a word must be large
enough to store pointers and indices into the data, since otherwise we cannot
even address the input. We can operate on words using at least a basic instruc-
tion set consisting of: Direct and indirect addressing, and a number of compu-
tational instructions, including addition, subtraction, multiplication, division,
bitwise boolean operations and left and right shifts. Each of these operations
requires a constant amount of time and can only manipulate O(1) words at a
time.

2.1.2 External-Memory Model

The RAM model does not reflect the memory hierarchy of real computers that
have more than one layer of memory, with different access characteristics. The
external-memory model (or I/O model) was introduced by Aggarwal and Vitter
in 1988 [1] to capture memory hierarchy with two layers. The model abstracts
a computer which consists of two memory levels: a fast and small (internal)
memory of size M, and a slow but potentially unbounded disk. Actually, this
model can be used to abstract any two different layers in the memory hierarchy
(e.g., disk and network). Both the memory and disk are divided into blocks of
size B. The CPU can only operate directly on the data stored in memory, which
consists of M

B blocks. Algorithms can make memory transfer operations, that
is they can either read one block from disk to memory, or write one block from
memory to disk. The cost of an algorithm is the number of memory transfers
required to complete the task. In this model, thus, the cost of performing any
other operation on data in memory is considered of secondary importance.
Clearly any algorithm that has running time T(N) in the RAM model can be
trivially converted into an external-memory algorithm that requires no more
than T(N) memory transfers. However, faster algorithms can be often de-
signed by carefully organizing and orchestrating accesses to data on the disk.

1Throughout this document we assume that all logarithms are taken to the base 2, when-
ever not explicitly indicated, and we assume 0 log 0 = 0.
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2.2 Notation

It is convenient to fix a common notation regarding strings that we will use in
the whole thesis. Let T[1, n] be a string drawn from an totally ordered alphabet
Σ of size σ 2. We will refer to the ith symbol of T as T[i]. Given any two
positions i, j ∈ [n]3 such that i ≤ j, we will use T[i : j] to denote the substring
T[i]T[i + 1] . . . T[j]. We will use Ti = T[i : n] to denote the i-th suffix of T.

In the thesis we will often compare strings resorting to their lexicographic order.
The lexicographic ordering, denoted by ≤, is a total ordering induced by an
ordering of symbols in the alphabet Σ which is defined as follows. Given two
strings S and S′ drawn from alphabet Σ, we say that S is lexicographically
smaller than S′ (S < S′) if and only if S[1] < S′[1] or both S[1] = S′[1] and
S1 < S′1. The empty string is considered lexicographically smaller than any
non-empty string.

2.3 Classical full-text indexes

The aim of this section is that of introducing the Text Searching Problem and
classical full-text indexes that will be intensively referred in the next chapters.
The Text Searching Problem is stated as follows.

Problem 1. Given a text T[1, n] and a pattern P[1, p], we wish to answer the follow-
ing queries:

1. COUNT(P) that returns the number of occurrences (occ) of P in T;

2. LOCATE(P) that reports the occ positions in T where P occurs.

In literature are known several algorithms to solve this problem in linear time
via a sequential scan of T [83]. Despite the increase in processing speeds, se-
quential text searching long ago ceased to be a viable alternative for many
applications, and indexed text searching has became mandatory. A (full-)text
index is a data structure built over a text T which significantly speeds up sub-
sequential searches for arbitrary pattern strings. This speed up came at the
cost of additional space consumption (namely, the space required to store the
index). Many different indexing data structures have been proposed in the
literature, most notably suffix trees and suffix arrays (e.g., see [2, 83] and refer-
ences therein).

2Unless otherwise stated, in most of this thesis we assume that σ = O(poly(n)).
3[n] denotes the set {1, 2, . . . , n}.
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2.3.1 Suffix tree

Let S be a sorted set of strings drawn from an alphabet Σ such that no string is
a proper prefix of any other string. The (compact) trie of S is the rooted ordered
tree defined as follows:

• each edge is labeled with a non-empty string;

• the labels of any two edges leaving the same node begin with different
symbols;

• all internal nodes, except possibly the root, are branching;

• the tree has |S| leaves;

• the i-th leaf is associated with the i-th lexicographic smaller string S of S
and the concatenation of the labels on the path from the root to this leaf
is exactly equal to S.

The suffix tree of a text T[1, n] is the compacted trie, denoted as ST (T) or sim-
ply ST , built on all the n suffixes of T. We can ensure that no suffix is a proper
prefix of another suffix by simply assuming that a special symbol, say $, ter-
minates the text T. The simbol $ does not appear anywhere else in T and is
lexicographically smaller than any other symbol in Σ. This constraint imme-
diately implies that each suffix of T has its own unique leaf in the suffix tree,
since any two suffixes of T will eventually follow separate branches in the tree.

For a given edge, the edge label is simply the substring in T corresponding to
the edge. For edge between nodes u and v in ST , the edge label (denoted
label(u, v)) is always a non-empty substring of T. For a given node u in the
suffix tree, its path label (denoted pathlabel(u)) is defined as the concatenation
of edge labels on the path from the root to u. The string depth of node u is sim-
ply |pathlabel(u)|. For any two suffixes Ti and Tj, if w is their longest common
prefix, then there exists a node u in ST whose path label is equal to w. This
node u is the lowest common ancestor of the two leaves labeled i and j. In the
following, we will use Lcp(Ti, Tj) to denote the length of w. Figure 2.1 shows
the suffix tree of the example text T = abracadabra$.

In order to allow a linear space representation of the tree, each edge label is rep-
resented by a pair of integers denoting, respectively, the starting and ending
positions in the T of the substring describing the edge label. If the edge label
corresponds to a repeat substring, the indices corresponding to any these oc-
currences could be used. In this way, the suffix tree can be stored in Θ(n log n)
bits of space which may be, however, much more than the ndlog σe bits needed
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Figure 2.1: The suffix tree of the example text T = abracadabra$.

to represent text itself. We notice that this space bound is not optimal for any
σ, since there are just σn different possible strings while n log n bits are suffice
to represent nn different elements.

An optimal algorithm for building the suffix tree of a text T is the elegant
solution by Farach-Colton [37] which requires O(n) time4.

In order to solve the Text Searching Problem with the suffix tree we observe
that if a pattern P occurs in T starting from position i, then P is a prefix of Ti.
This implies that the searching algorithm should identify the highest node u in
ST such that P is prefix of pathlabel(u). From this observation we can derive
the following algorithm for COUNT(P): Start from the root of ST and follow
the path matching symbols of P, until a mismatch occurs or P is completely
matched. In the former case P does not occur in T. In the latter case, each
leaf in the subtree below the matching position gives an occurrence of P. This
algorithm counts the occ occurrences of any pattern P[1, p] in time O(p log σ).
These positions can be located by traversing the subtree in time proportional
to its size. It is easy to see that this size is O(occ). The complexity of counting
can be reduced to O(p) by placing a (minimal) perfect hashing function [84]
in each node to speed up percolation. This will increase the space just by a

4Recall the assumption σ = O(poly(n)).
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constant factor.

For further details, the reader can consult the books by Gusfield [83] and,
Crochemore and Rytter [34] that provide a comprehensive treatment of suf-
fix trees, their construction, and their applications.

2.3.2 Suffix array

The suffix array [119] is a compact version of the suffix tree, obtained by stor-
ing in a array SA[1, n] the starting positions of the suffixes of T listed in lex-
icographic order. As the suffix tree, this array requires Θ(n log n) bits in the
worst case. The main practical advantage is given by the fact that the constant
hidden in the big-Oh notation is smaller (namely, it is less than 4). SA can be
obtained by traversing the leaves of the suffix tree, or it can be built directly in
optimal linear time via ad-hoc sorting methods [83, 139]. Since any substring
of T is the prefix of a text suffix, the solution to the Text Searching Problem con-
sists in finding the interval of positions in SA corresponding all text suffixes
that start with P. Once this interval SA[sp, ep] has been identified, COUNT(P)
is solved by returning the value occ = ep− sp+ 1, and LOCATE(P) is solved by
retrieving the entries SA[sp], SA[sp+ 1], . . . SA[ep]. The interval SA[sp, ep] can
be binary searched in O(p log n) time, since each binary search step requires to
compare up to p symbols of a text suffix and the pattern. This time can be re-
duced to O(p + log n) by using an auxiliary array called LCP that doubles the
space requirement of the suffix array. The array LCP[1, n] essentially captures
information on the heights of the internal nodes in the suffix tree of T. It is
defined such that its entry LCP[i] is equal to the length of the longest common
prefix of the (i− 1)-st and i-th lexicographically smallest suffixes in T (namely,
LCP[i] = Lcp(TSA[i−1], TSA[i])). The LCP array can be computed in linear time
starting from the suffix array and, in conjunction with an auxiliary data struc-
ture to solve Range Minimum Queries (RMQ), it suffices to compute the length
of longest common prefix between any pair of suffixes of T.

SA 12 11 8 1 4 6 9 2 5 7 10 3
SA−1 4 8 12 5 9 6 10 3 7 11 2 1
LCP − 0 1 4 1 1 0 3 0 0 0 2

Figure 2.2: The table shows SA, SA−1 and LCP arrays for the example text
T = abracadabra$.

We conclude this section by introducing the inverse suffix array. Even if it is
not directly related to the Text Searching Problem, it will be often referred in
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the next chapters. The inverse suffix array, denoted as SA−1, is an array of n
elements defined as

SA−1[i] = j⇐⇒ SA[j] = i.

In other words, since SA is just a permutation of [n], SA−1 is defined to be its
inverse. Therefore, SA−1[i] = j tells us that suffix Ti is the j-th suffix in lexico-
graphic order. We finally notice that SA and SA−1 can be easily computed one
from the other in linear time. Figure 2.2 shows SA, SA−1 and LCP arrays for
the example text T = abracadabra$.

2.4 Compression

In this section we present some concepts related to compression that will be
very useful in the next pages. In particular, in Section 2.4.1 we introduce the
notion of empirical entropy which is a well-known measure of the compress-
ibility of a text. This measure will be used in almost all the chapters either to
optimize the performance of different compressors (Chapter 3) or to establish
upper bounds to performance of compression schemes or compressed indexes
(Chapters 5–7). In Section 2.4.2 we introduce the Burrows-Wheeler Transform
which is an amazing algorithm for data compression. Even if we will intro-
duce some other compression algorithms in the next chapters, we decided to
introduce this tool earlier since it plays a central rule in all the thesis.

2.4.1 Empirical entropy

The empirical entropy resembles the entropy defined in the probabilistic set-
ting (for example, when the input comes from a Markov source), but now
it is defined for any finite individual string and can be used to measure the
performance of compression algorithms without any assumption on the input
distribution [123].

The 0-th order empirical entropy is currently a well-established measure of
compressibility for a single string [123], and it is defined as follows. For each
c ∈ Σ, we let nc be the number of occurrences of c in T. The zero-th order
empirical entropy of T is defined as

H0(T) =
1
|T| ∑

c∈Σ
nc log

n
nc

. (2.4.1)

Note that |T|H0(T) provides an information-theoretic lower bound to the out-
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put size of any compressor that encodes each symbol of T with a fixed code
[164]. The so-called zero-th order statistical compressors (such as Huffman
or Arithmetic [164]) achieve an output size which is very close to this bound.
However, they require to know information about frequencies of input sym-
bols (called the model of the source). Those frequencies can be either known
in advance (static model) or computed by scanning the input text (semistatic
model). In both cases the model must be stored in the compressed file to be
used by the decompressor. The compressed size achieved by zero-th order
compressors over T is bounded by |C0(T)| ≤ λnH0(T) + f0(n, σ) bits, where
λ is a positive constant and f0(n, σ) is a function including the extra costs of
encoding the source model and/or other inefficiencies of C. As an example,
for Huffman f0(n, σ) = σ log σ + O(σ) + n bits and λ = 1, and for Arithmetic
f0(n, σ) = O(σ log n) bits and λ = 1.

In order to evict the cost of the model, we can resort to zero-th order adaptive
compressors that do not require to know the symbols’ frequencies in advance,
since they are computed incrementally during the compression. The zero-th
order adaptive empirical entropy of T [90] is then defined as

Ha
0(T) =

1
|T| ∑

c∈Σ
log

n!
nc!

. (2.4.2)

The compress size achieved by zero-th order adaptive compressors over T is
bounded by |Ca

0(T)| ≤ nHa
0(T) + f0(n, σ) bits where f0(n, σ) is a function in-

cluding inefficiencies of C.

Let us now come to more powerful compressors. For any string u of length k,
we denote by uT the string of single symbols following the occurrences of u
in T, taken from left to right. For example, if T = abracadabra$ and u = ab,
we have uT = rr since the two occurrences of ab in T are both followed by
symbol r. The k-th order empirical entropy of T is defined as

Hk(T) =
1
|T| ∑

u∈Σk

|uT| H0(uT). (2.4.3)

Analogously, the k-th order adaptive empirical entropy of T is defined as

Ha
k (T) =

1
|T| ∑

u∈Σk

|uT| Ha
0(uT). (2.4.4)

We have Hk(T) ≥ Hk+1(T) for any k ≥ 0. As usual in data compression
[123], the value nHk(T) is an information-theoretic lower bound to the out-
put size of any compressor that encodes each symbol of T with a fixed code
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that depends on the symbol itself and on the k immediately preceding sym-
bols. Recently (see e.g. [42, 43, 48, 107, 116, 123] and references therein) au-
thors have provided upper bounds in terms of Hk(|T|) for sophisticated data
compression algorithms, such as dictionary based [107], Bwt-based [43, 94,
123], and PPM-like. These bounds have the form |C(T)| ≤ λ|T| Hk(T) +
fk(|T|, σ), where λ is a positive constant and fk(|T|, σ) is a function including
the extra-cost of encoding the source model and/or other inefficiencies of C.
The smaller are λ and fk(), the better is the compressor C. As an example, the
bound of the compressor in [116] has λ = 1 and f (|T|, σ) = O(σk+1 log |T|+
|T| log σ log log |T|/ log |T|). Similar bounds that involve the adaptive k-th or-
der entropy are known [42, 43, 123] for many compressors. In these cases the
bound takes the form |Ca

k (T)| ≤ λ|T|H∗k (T) + fk(|T|, σ) bits where fk(|T|, σ) is
a function including the inefficiencies of C.

2.4.2 Burrows-Wheeler Transform

In [24] Burrows and Wheeler introduced a new compression algorithm based
on a reversible transformation, now called the Burrows-Wheeler Transform (BWT
from now on). The BWT transforms the input string T into a new string that
is easier to compress. The BWT of T, hereafter denoted by Bwt(T) or simply
Bwt, is built with three basic steps (see Figure 2.3):

1. append at the end of T a special symbol $ smaller than any other symbol
of Σ;

2. form a conceptual matrixMT whose rows are the cyclic rotations of string
T$ in lexicographic order;

3. construct string L by taking the last column of the sorted matrixMT. We
set Bwt(T) = L.

Every column ofMT, hence also the transformed string L, is a permutation of
T$. In particular the first column ofMT, call it F, is obtained by lexicograph-
ically sorting the symbols of T$ (or, equally, the symbols of L). Note that the
sorting of the rows ofMT is essentially equal to the sorting of the suffixes of
T, because of the presence of the special symbol $. This shows that: (1) sym-
bols following the same substring (context) in T are grouped together in L, and
thus give raise to clusters of nearly identical symbols; (2) there is an obvious
relation betweenMT and SA. Property 1 is the key for devising modern data
compressors (see e.g. [123]), Property 2 is crucial for designing compressed
indexes (see e.g. [134]) and, additionally, suggests a way to compute the Bwt
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abracadabra$
bracadabra$a
racadabra$ab
acadabra$abr
cadabra$abra
adabra$abrac
dabra$abraca
abra$abracad
bra$abracada
ra$abracadab
a$abracadabr
$abracadabra

=⇒

F L
$ abracadabr a
a $abracadab r
a bra$abraca d
a bracadabra $
a cadabra$ab r
a dabra$abra c
b ra$abracad a
b racadabra$ a
c adabra$abr a
d abra$abrac a
r a$abracada b
r acadabra$a b

Figure 2.3: Example of Burrows-Wheeler transform for the string T =

abracadabra$. The matrix on the right has the rows sorted in
lexicographic order. The output of the BWT is the column L =

ard$rcaaaabb.

through the construction of the suffix array of T: L[0] = T[n] and, for any
1 ≤ i ≤ n, set L[i] = T[SA[i]− 1].

Burrows and Wheeler [24] devised two properties for the invertibility of the
Bwt:

(a) Since the rows inMT are cyclically rotated, L[i] precedes F[i] in the origi-
nal string T.

(b) For any c ∈ Σ, the `-th occurrence of c in F and the `-th occurrence of c
in L correspond to the same character of the string T.

As a result, the original text T can be obtained backwards from L by resorting
to function LF (also called Last-to-First column mapping or LF-mapping) that
maps row indexes to row indexes, and is defined as:

LF(i) = C[L[i]] + RANKL[i](L, i),

where C[L[i]] counts the number of occurrences in T of symbols smaller than
L[i] and RANKL[i](L, i) is a function that returns the number of times symbol
L[i] occurs in the prefix L[1 : i]. We talk about LF-mapping because the symbol
c = L[i] is located in the first column ofMT at position LF(i). The LF-mapping
allows one to navigate T backwards: if T[k] = L[i], then T[k − 1] = L[LF(i)]
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because row LF(i) of MT starts with T[k] and thus ends with T[k − 1]. In
this way, we can reconstruct T backwards by starting at the first row, equal to
$T, and repeatedly applying LF for n steps. As an example, see Figure 2.3 in
which the 3rd a in L lies onto the row which starts with bracadabra$ and,
correctly, the 3rd a in F lies onto the row which starts with abracadabra$.
That symbol a is T[1].





CHAPTER

THREE

Optimally partitioning a text to
improve its compression

Reorganizing data in order to improve the performance of a given compressor
C is a recent and important paradigm in data compression (see e.g. [22, 43]).
The basic idea consists of permuting the input data T to form a new string T′

which is then partitioned into substrings T′ = T′1T′2 · · · T′k that are finally com-
pressed individually by the base compressor C. The goal is to find the best
instantiation of the two steps Permuting+Partitioning so that the compression
of the individual substrings T′i minimizes the total length of the compressed
output. This approach (hereafter abbreviated as PPC) is clearly at least as pow-
erful as the classic data compression approach that applies C to the entire T:
just take the identity permutation and set k = 1. The question is whether it can
be more powerful than that!

Intuition leads to think favorably about it: by grouping together objects that
are “related”, one can hope to obtain better compression even using a very
weak compressor C. Surprisingly enough, this intuition has been sustained
by convincing theoretical and experimental results only recently. These re-
sults have investigated the PPC-paradigm under various angles by consid-
ering: different data formats (strings [43], trees [48], tables [22], etc.), dif-
ferent granularities for the items of T to be permuted (chars, node labels,
columns, blocks [18, 108], files [26, 154, 157], etc.), different permutations (see
e.g. [26, 72, 157, 160]), different base compressors to be boosted (0-th order
compressors, gzip, bzip2, etc.). Among these plethora of proposals, we sur-
vey below the most notable examples which are useful to introduce the prob-
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lem we attack in this chapter, and refer the reader to the cited bibliography for
other interesting results.

3.1 The PPC-paradigm and motivations for optimal
partitioning

The PPC-paradigm was introduced in [21], and further elaborated upon in
[22]. In these papers T is a table formed by fixed size columns, and the goal
is to permute the columns in such a way that individually compressing con-
tiguous groups of them gives the shortest compressed output. The authors
of [22] showed that the PPC-problem in its full generality is MAX-SNP hard,
devised a link between PPC and the classical asymmetric TSP problem, and
then resorted known heuristics to find approximate solutions based on several
measures of correlations between the table’s columns. For the grouping they
proposed either an optimal but very slow approach, based on Dynamic Pro-
gramming (see below), or some very simple and fast algorithms which how-
ever did not have any guaranteed bounds in terms of efficacy of their group-
ing process. Experiments showed that these heuristics achieve significant im-
provements over the classic gzip, when it is applied on the serialized original
T (row- or column-wise). Furthermore, they showed that the combination of
the TSP-heuristic with the DP-optimal partitioning is even better, but it is too
slow to be used in practice even on small file sizes because of the DP-cubic
time complexity.1

When T is a text string, the most famous instantiation of the PPC-paradigm
has been obtained by combining the Burrows and Wheeler Transform [24] with
a context-based grouping of the input symbols, which are finally compressed
via proper 0-th order-entropy compressors (like Mtf, Rle, Huffman, Arithmetic,
or their combinations, see e.g. [164]). Here the PPC-paradigm takes the name
of compression booster [43] because the net result it produces is to boost the per-
formance of the base compressor C from 0-th order-entropy bounds to k-th
order entropy bounds, simultaneously over all k ≥ 0. In this scenario the per-
mutation acts on single symbols, and the partitioning/permuting steps deploy
the context (substring) following each symbol in the original string in order to
identify “related” symbols which must be therefore compressed together. Re-
cently [72] investigated whether there exist other permutations of the symbols

1Page 836 of [22] says: ”computing a good approximation to the TSP reordering before
partitioning contributes significant compression improvement at minimal time cost. [...] This
time is negligible compared to the time to compute the optimal, contiguous partition via DP.”
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of T which admit effective compression and can be computed/inverted fast.
Unfortunately they found a connection between table compression and the
Bwt, so that many natural similarity-functions between contexts turned out
to induce MAX-SNP hard permuting problems! Interesting enough, the Bwt
seems to be the unique highly compressible permutation which is fast to be
computed and achieves effective compression bounds. Several other papers
have given an analytic account of this phenomenon [42, 94, 116, 123] and have
shown, also experimentally [41], that the partitioning of the BW-transformed
data is a key step for achieving effective compression ratios. Optimal parti-
tioning is actually even more mandatory in the context of labeled-tree com-
pression where a BWT-inspired transform, called XBW-transform in [48, 49],
allows to produce permuted strings with a strong clustering effect. Starting
from these premises [73] attacked the computation of the optimal partition-
ing of T via a DP-approach, which turned to be very costly; then [43] (and
subsequently many other authors, see e.g. [42, 48, 116]) proposed solutions
which are not optimal but, nonetheless, achieve interesting k-th order-entropy
bounds. This is indeed a subtle point which is frequently neglected when deal-
ing with compression boosters, especially in practice, and for this reason we
detail it more clearly in Subsection 3.3.1 in which we show an infinite class
of strings for which the compression achieved by the booster is far from the
optimal-partitioning by a multiplicative factor Ω(

√
log n).

Finally, there is another scenario in which the computation of the optimal par-
tition of an input string for compression boosting can be successful and occurs
when T is a single (possibly long) file on which we wish to apply classic data
compressors, such as gzip, bzip2, PPM, etc. [164]. Note that how much
redundancy can be detected and exploited by these compressors depends on
their ability to “look back” at the previously seen data. However, such abil-
ity has a cost in terms of memory usage and running time, and thus most
compression systems provide a facility that controls the amount of data that
may be processed at once — usually called the block size. For example the
classic tools gzip and bzip2 have been designed to have a small memory
footprint, up to few hundreds KBs. More recent and sophisticated compres-
sors, like PPM [164] and the family of BWT-based compressors [41], have been
designed to use block sizes of up to a few hundreds MBs. But using larger
blocks to be compressed at once does not necessarily induce a better compres-
sion ratio! As an example, let us take C as the simple Huffman or Arithmetic
coders and use them to compress the text T = 0n/21n/2: There is a clear dif-
ference whether we compress individually the two halves of T (achieving an
output size of about O(log n) bits) or we compress T as a whole (achieving
n + O(log n) bits). The impact of the block size is even more significant as
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we use more powerful compressors, such as the k-th order entropy encoder
PPM which compresses each symbol according to its preceding k-long con-
text. In this case take T = (2k0)n/(2(k+1))(2k1)n/(2(k+1)) and observe that if
we divide T in two halves and compress them individually, the output size is
about O(log n) bits, but if we compress the entire T at once then the output
size turns to be much longer, i.e. n

k+1 + O(log n) bits. Therefore the choice
of the block size cannot be underestimated and, additionally, it is made even
more problematic by the fact that it is not necessarily the same along the whole
file we are compressing because it depends on the distribution of the repeti-
tions within it. This problem is even more challenging when T is obtained by
concatenating a collection of files via any permutation of them: think to the
serialization induced by the Unix tar command, or other more sophisticated
heuristics like the ones discussed in [26, 137, 154, 157]. In these cases, the par-
titioning step looks for homogeneous groups of contiguous files which can be
effectively compressed together by the base-compressor C. More than before,
taking the largest memory-footprint offered by C to group the files and com-
press them at once is not necessarily the best choice because real collections are
typically formed by homogeneous groups of dramatically different sizes (e.g.
think to a Web collection and its different kinds of pages). Again, in all those
cases we could apply the optimal DP-based partitioning approach of [22, 73],
but this would take more than cubic time (in the overall input size |T|) thus
resulting unusable even on small input data of few MBs.

In summary the efficient computation of an optimal partitioning of the input
text for compression boosting is an important and still open problem of data
compression (see [23]). The goal of our solution is to make a step forward
by providing the first efficient approximation algorithm for this problem, for-
mally stated as follows.

Let C be the base compressor we wish to boost, and let T[1, n] be the input
string we wish to partition and then compress by C. So, we are assuming that T
has been (possibly) permuted in advance, and we are concentrating on the last
two steps of the PPC-paradigm. Now, given a partition P of the input string
into contiguous substrings, say T = T1T2 · · · Tk, we denote by Cost(P) the
cost of this partition and measure it as ∑l

i=1 |C(Ti)|, where |C(α)| is the length
in bit of the string α compressed by C. The problem of optimally partitioning T
according to the base-compressor C consists then of computing the partition
Popt achieving the minimum cost, namely Popt = minP Cost(P), and thus the
shortest compressed output.2

2We are assuming that C(α) is a prefix-free encoding of α, so that we can concatenate the
compressed output of many substrings and still be able to recover them via a sequential scan.
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As we mentioned abovePopt might be computed via a Dynamic-Programming
approach [22, 73]. Define E[i] as the cost of the optimum partitioning of T[1, i],
and set E[0] = 0. Then, for each i ≥ 1, we can compute E[i] using the re-
currence min0≤j≤i−1E[j] + |C(T[j + 1 : i])|. At the end E[n] gives the cost of
Popt, which can be explicitly determined by standard back-tracking over the
DP-array. Unfortunately, this solution requires to run C over Θ(n2) substrings
of average length Θ(n), for an overall Θ(n3) time cost in the worst case which
is clearly unfeasible even on small input sizes n.

In order to overcome this computational bottleneck we make two crucial ob-
servations: (1) instead of applying C over each substring of T, we use an
entropy-based estimation of C’s compressed output that can be computed ef-
ficiently and incrementally by suitable dynamic data structures; (2) we relax
the requirement for an exact solution to the optimal partitioning problem, and
aim at finding a partition whose cost is no more than (1 + ε) worse than Popt,
where ε may be any positive constant. Item (1) takes inspiration from the
heuristics proposed in [21, 22], but it is executed in a more principled way
because our entropy-based cost functions reflect the real behavior of modern
compressors, and our dynamic data structures allow the efficient estimation
of those costs without their re-computation from scratch at each substring (as
instead occurred in [21, 22]). For item (2) it is convenient to resort to a well-
known reduction from solutions of dynamic programming recurrences to Sin-
gle Source Shortest path (SSSP) computation over weighted DAGs [35]. In
our case, the solution for the optimal partitioning problem can be rephrased as
a SSSP-computation over a weighted DAG consisting of n nodes and O(n2)
edges whose costs are derived from item (1). By exploiting some interesting
structural properties of this graph, we are able to restrict the computation of
that SSSP to a subgraph consisting of O(n log1+ε n) edges only. The technical
part of our solution (see Section 3.2) will show that we can build this graph on-
the-fly as the SSSP-computation proceeds over the DAG via the proper use of
time-space efficient dynamic data structures. The final result will be to show
that we can (1 + ε)-approximate Popt in O(n log1+ε n) time and O(n) space,
for both 0-th order compressors (like Huffman and Arithmetic [164]) and k-th
order compressors (like PPM [164]). We will also extend these results to the
class of BWT-based compressors, when T is a collection of texts.

We point out that the result on 0-th order compressors is interesting in its own
from both the experimental side, since Huffword compressor is the standard
choice for the storage of Web pages [164], and from the theoretical side since
it can be applied to the compression booster of [43] to fast obtain an approx-
imation of the optimal partition of Bwt(T) in O(n log1+ε n) time. This may
be better than the algorithm of [43] both in time complexity, since that takes
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O(n|Σ|) time where Σ is the alphabet of T, and in compression ratio (as we
have shown above, see Subsection 3.3.1). The case of a large alphabet (namely,
|Σ| = Ω(polylog(n))) is particularly interesting whenever we consider either
a word-based Bwt [127] or the Xbw-transform over labeled trees [43]. Finally,
we mention that our results apply also to the practical case in which the base
compressor C has a maximum (block) size B of data it can process at once (see
above the case of gzip, bzip2, etc.). In this situation the time performance of
our solution reduces to O(n log1+ε(B log σ)).

The map of the chapter is as follows. Section 3.2 describes reduction from
the optimal partitioning problem of T to a SSSP problem over a weighted
DAG in which edges represent substrings of T and edge costs are entropy-
based estimations of the compression of these substrings via C. After that, we
show some properties of this DAG that permit our fast solution to the SSSP
problem. The subsequent Sections will address the problem of incrementally
and efficiently computing those edge costs as they are needed by the SSSP-
computation, distinguishing the two cases of 0-th order estimators (Section
3.3) and k-th order estimators (Section 3.4), and the situation in which C is a
BWT-based compressor and T is a collection of files (Section 3.5).

3.2 The problem and our solution

In our solution we will use entropy-based upper bounds for the estimation of
|C(T[i : j])| described in Section 2.4.1. In what follows we will assume that
the function f0(n, σ) can be computed in constant time given n and σ. Even if
we use these entropy-based bounds for the estimation of |C(T[i : j])| instead
of the real compress size, this will not be enough to achieve a fast DP-based
algorithm for our optimal-partitioning problem. We cannot re-compute from
scratch those estimates for every substring T[i : j] of T, being them Θ(n2) in
number. So we will show below some structural properties of our problem
and introduce few novel technicalities (Sections 3.3–3.4) that will allow us to
compute Hk(T[i : j]) only on a reduced subset of T’s substrings, having size
O(n log1+ε n), by taking O(polylog(n)) time per substring and O(n) space
overall.

The optimal partitioning problem, stated in Section 3.1 can be reduced to a
single source shortest path computation (SSSP) over a directed acyclic graph
G(T) defined as follows. The graph G(T) has a vertex vi for each text position
i of T, plus an additional vertex vn+1 marking the end of the text, and an edge
connecting vertex vi to vertex vj for any pair of indices i and j such that i <
j. Each edge (vi, vj) has associated the cost c(vi, vj) = |C(T[i : j − 1])| that
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corresponds to the size in bits of the substring T[i : j− 1] compressed by C. We
remark the following crucial, but easy to prove, property of the cost function
defined on G(T):

Fact 1. For any vertex vi, it is 0 < c(vi, vi+1) ≤ c(vi, vi+2) ≤ . . . ≤ c(vi, vn+1)

There is a one-to-one correspondence between paths from v1 to vn+1 in G(T)
and partitions of T: every edge (vi, vj) in the path identifies a contiguous sub-
string T[i : j− 1] of the corresponding partition. Therefore the cost of a path is
equal to the (compression-)cost of the corresponding partition. Thus, we can
find the optimal partition of T by computing the shortest path in G(T) from v1
to vn+1. Unfortunately this simple approach has two main drawbacks:

1. the number of edges in G(T) is Θ(n2), thus making the SSSP computa-
tion inefficient (i.e. Ω(n2) time) if executed directly over G(T);

2. the computation of the each edge cost might take Θ(n) time over most
T’s substrings, if C is run on each of them from scratch.

In the following sections we will successfully address both these two draw-
backs. First, we sensibly reduce the number of edges in the graph G(T) to
be examined during the SSSP computation and show that we can obtain a
(1 + ε) approximation using only O(n log1+ε n) edges, where ε > 0 is a user-
defined parameter (Section 3.2.1). Second, we show some sufficient properties
that C needs to satisfy in order to compute efficiently every edge’s cost. These
properties hold for some well-known compressors— e.g. 0-order compressors,
PPM-like and bzip-like compressors— and for them we show how to compute
each edge cost in constant or polylogarithmic time (Sections 3.3—3.5).

3.2.1 A pruning strategy

The aim of this section is to design a pruning strategy that produces a subgraph
Gε(T) of the original DAG G(T) in which the shortest path distance between its
leftmost and rightmost nodes, v1 and vn+1, increases by no more than a factor
(1 + ε). We define Gε(T) to contain all edges (vi, vj) of G(T), recall i < j, such
that at least one of the following two conditions holds:

1. there exists a positive integer k such that c(vi, vj) ≤ (1+ ε)k < c(vi, vj+1);

2. j = n + 1.

In other words, by Fact 1, we are keeping for each integer k the edge of G(T)
that approximates at the best the value (1 + ε)k from below. Given this, we
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will call ε-maximal the edges of Gε(T). Clearly, each vertex of Gε(T) has at
most log1+ε n = O(1

ε log n) outgoing edges, which are ε-maximal by defini-
tion. Therefore the total size of Gε(T) is at most O(n

ε log n). Hereafter, we will
denote with dG(−,−) the shortest path distance between any two nodes in a
graph G.

The following lemma states a basic property of shortest path distances over
our special DAG G(T):

Lemma 1. For any triple of indices 1 ≤ i ≤ j ≤ q ≤ n + 1 we have:

1. dG(T)(vj, vq) ≤ dG(T)(vi, vq)

2. dG(T)(vi, vj) ≤ dG(T)(vi, vq)

Proof. We prove just 1, since 2 is symmetric. It suffices by induction to prove
the case j = i + 1. Let (vi, w1)(w1, w2)...(wh−1, wh), with wh = vq, be a shortest
path in G(T) from vi to vq. By fact 1, c(vj, w1) ≤ c(vi, w1) since i ≤ j. Therefore
the cost of the path (vj, w1)(w1, w2)...(wh−1, wh) is at most dG(T)(vi, vq), which
proves the claim. �

The correctness of our pruning strategy relies on the following theorem:

Theorem 1. For any text T, the shortest path in Gε(T) from v1 to vn+1 has a total
cost of at most (1 + ε) dG(T)(v1, vn+1).

Proof. We prove a stronger assertion: dGε(T)(vi, vn+1) ≤ (1+ ε) dG(T)(vi, vn+1)
for any index 1 ≤ i ≤ n + 1. This is clearly true for i = n + 1, because in
that case the distance is 0. Now let us inductively consider the shortest path
π in G(T) from vi to vn+1 and let (vk, vt1)(vt1 , vt2) . . . (vth vn+1) be its edges.
By the definition of ε-maximal edge, it is possible to find an ε-maximal edge
(vk, vr) with t1 ≤ r, such that c(vk, vr) ≤ (1 + ε) c(vk, vt1). By Lemma 1,
dG(T)(vr, vn+1) ≤ dG(T)(vt1 , vn+1) while, by induction, dGε(T)(vr, vn+1) ≤ (1 +
ε) dG(T)(vr, vn+1). Combining this with the triangle inequality we get the the-
sis. �

3.2.2 Space and time efficient algorithms for generating Gε(T)

Theorem 1 ensures that, in order to compute a (1 + ε) approximation of the
optimal partition of T, it suffices to compute the SSSP in Gε(T) from v1 to
vn+1. This can be easily computed in O(|Gε(T)|) = O(n logε n) time since
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Gε(T) is a DAG [31], by making a single pass over its vertices and relaxing all
edges going out from the current one.

However, generating Gε(T) in efficient time is a non-trivial task for three main
reasons. First, the original graph G(T) contains Ω(n2) edges, so that we cannot
check each of them to determine whether it is ε-maximal or not, because this
would take Ω(n2) time. Second, we cannot compute the cost of an edge (vi, vj)
by executing C(T[i : j − 1]) from scratch, since this would require time linear
in the substring length, and thus Ω(n3) time over all T’s substrings. Third,
we cannot materialize Gε(T) (e.g. its adjacency lists) because it consists of
Θ(n polylog(n)) edges, and thus its space occupancy would be super-linear
in the input size.

The rest of this section is devoted to design an algorithm which overcomes
the three limitations above. The specialty of our algorithm consists of ma-
terializing Gε(T) on-the-fly, as its vertices are examined during the SSSP-
computation, by spending only polylogarithmic time per edge. The actual
time complexity per edge will depend on the entropy-based cost function we
will use to estimate |C(T[i : j− 1])| and on the dynamic data structure we will
deploy to compute that estimation efficiently.

The key tool we use to make a fast estimation of the edge costs is a dynamic
data structure built over the input text T and requiring O(|T|) space. We
state the main properties of this data structure in an abstract form, in order
to design a general framework for solving our problem; in the next sections
we will then provide implementations of this data structure and thus obtain
real time/space bounds for our problem. So, let us assume to have a dy-
namic data structure that maintains a set of sliding windows over T denoted
by w1, w2, . . . , wlog1+ε n. The sliding windows are substrings of T which start at
the same text position l but have different lengths: namely, wi = T[l : ri] and
r1 ≤ r2 ≤ . . . ≤ rlog1+ε n. The data structure must support the following three
operations:

1. REMOVE() moves the starting position l of all windows one position to
the right (i.e. l + 1);

2. APPEND(wi) moves the ending position of the window wi one position
to the right (i.e. ri + 1);

3. SIZE(wi) computes and returns the value |C(T[l : ri])|.

This data structure is enough to generate ε-maximal edges via a single pass
over T, using O(|T|) space. More precisely, let vl be the vertex of G(T) cur-
rently examined by our SSSP computation, and thus l is the current posi-
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tion reached by our scan of T. We maintain the following invariant: the slid-
ing windows correspond to all ε-maximal edges going out from vl, that is,
the edge (vl, v1+rt) is the ε-maximal edge satisfying c(vl, v1+rt) ≤ (1 + ε)t <
c(vl, v1+(rt+1)). Initially all indices are set to 0. To maintain the invariant, when
the text scan advances to the next position l + 1, we call operation REMOVE()
once to increment index l and, for each t = 1, . . . , log1+ε(n), we call operation
APPEND(wt) until we find the largest rt such that SIZE(wt) = c(vl, v1+rt) ≤
(1 + ε)t. The key issue here is that APPEND and SIZE are paired so that our
data structure should take advantage of the rightward sliding of rt for com-
puting c(vl, v1+rt) efficiently. Just one symbol is entering wt to its right, so we
need to deploy this fact for making the computation of SIZE(wt) fast (given its
previous value). Here comes into play the second contribution of our solution
that consists of adopting the entropy-bounded estimates for the compressibil-
ity of a string to estimate indeed the edge costs SIZE(wt) = |C(wt)|. This idea
is crucial because we will be able to show that these functions do satisfy some
structural properties that admit a fast incremental computation, as the one re-
quired by APPEND + SIZE. These issues will be discussed in the following
sections, here we just state that, overall, the SSSP computation over Gε(T)
takes O(n) calls to operation REMOVE, and O(n log1+ε n) calls to operations
APPEND and SIZE.

Theorem 2. If we have a dynamic data structure occupying O(n) space and sup-
porting operation REMOVE in time L(n), and operations APPEND and SIZE in time
R(n), we can compute the shortest path in Gε(T) from v1 to vn+1 taking O(n L(n) +
(n log1+ε n) R(n)) time and O(n) space.

3.3 On zero-th order compressors

In this section we explain how to implement the data structure above when-
ever C is a 0-th order compressor, and thus H0 is used to provide a bound
to the compression cost of G(T)’s edges. The key point is actually to show
how to efficiently compute SIZE(wi) as the sum of |T[l : ri]|H0(T[l : ri]) =

∑c∈Σ nc log((ri − l + 1)/nc) (see its definition in Section 2.4.1) plus f0(ri − l +
1, |ΣT[l:ri]

|), where nc is the number of occurrences of symbol c in T[l : ri] and
|ΣT[l:ri]

| denotes the number of different symbols in T[l : ri].

The first solution we are going to present is very simple and uses O(σ) space
per window. The idea is the following: for each window wi we keep in mem-
ory an array of counters Ai[c] indexed by symbol c in Σ. At any step of our
algorithm, the counter Ai[c] stores the number of occurrences of symbol c in
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T[l : ri]. For any window wi, we also use a variable Ei that stores the value of
∑c∈Σ Ai[c] log Ai[c]. It is easy to notice that:

|T[l : ri]| H0(T[l : ri]) = (ri − l + 1) log(ri − l + 1)− Ei. (3.3.1)

Therefore, if we know the value of Ei, we can answer to a query SIZE(wi) in
constant time. So, we are left with showing how to implement efficiently the
two operations that modify l or any rs value and, thus, modify appropriately
the E’s value. This can be done as follows:

1. REMOVE(): For each window wi, we subtract from the appropriate counter
and from variable Ei the contribution of the symbol T[l] which has been
evicted from the window. That is, we decrease Ai[T[l]] by one, and up-
date Ei by subtracting (Ai[T[l]] + 1) log(Ai[T[l]] + 1) and then summing
Ai[T[l]] log Ai[T[l]]. Finally we set l = l + 1.

2. APPEND(wi): We add to the appropriate counter and variable Ei the con-
tribution of the symbol T[ri + 1] which has been appended to window
wi. That is, we increase Ai[T[r + 1]] by one, then we update Ei by sub-
tracting (A[T[ri + 1]] − 1) log(A[T[ri + 1]] − 1) and summing A[T[ri +
1]] log A[T[ri + 1]]. Finally we set ri = ri + 1.

In this way, operation REMOVE requires constant time per window, hence
O(log1+ε n) time overall. APPEND(wi) takes constant time. The space required
by the counters Ai is O(σ log1+ε n) words. Unfortunately, the space complexity
of this solution can be too much when it is used as the basic-block for comput-
ing the k-th order entropy of T (see Section 2.4.1) as we will do in Section 3.4.
In fact, we would achieve min(σk+1 log1+ε n, n log1+ε n) space, which may be
superlinear in n depending on σ and k.

The rest of this section is therefore devoted to provide an implementation of
our dynamic data structure that takes the same query time above for these
three operations, but within O(n) space, which is independent of σ and k. The
new solution still uses E’s value but the counters Ai are computed on-the-fly
by exploiting the fact that all windows share the same value of l. We keep an
array B indexed by symbols whose entry B[c] stores the number of occurrences
of c in T[1 : l]. We can keep these counters updated after a REMOVE by simply
decreasing B[T[l]] by one. We also maintain an array R with an entry for each
text position. The entry R[j] stores the number of occurrences of symbol T[j]
in T[1 : j]. The number of elements in both B and R is no more than n, hence
they take O(n) space.

These two arrays are enough to correctly update the value Ei after APPEND(wi),
which is in turn enough to estimate H0 (see Eqn 3.3.1). In fact, we can compute
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the value Ai[T[ri + 1]] by computing R[ri + 1] − B[T[ri + 1]] which correctly
reports the number of occurrences of T[ri + 1] in T[l : ri + 1]. Once we have
the value of Ai[T[ri + 1]], we can update Ei as explained in the above item 2.

We are left with showing how to support REMOVE() whose computation re-
quires to evaluate the value of Ai[T[l]] for each window wi. Each of these
values can be computed as R[t]− B[T[l]] where t is the last occurrence of sym-
bol T[l] in T[l : ri]. The problem here is given by the fact that we do not know
the position t. We solve this issue by resorting to a doubly linked list Lc for
each symbol c. The list Lc links together the last occurrences of c in all those
windows, ordered by increasing position. Notice that a position j may be the
last occurrence of symbol T[j] for different (but consecutive) windows. In this
case we force that position to occur in LT[j] just once. These lists are sufficient
to compute values Ai[T[l]] for all the windows together. In fact, since any po-
sition in LT[l] is the last occurrence of at least one sliding window, each of them
can be used to compute Ai[T[l]] for the appropriate indices i. Once we have
all values Ai[T[l]], we can update all Ei’s as explained in the above item 1.
Since list LT[l] contains no more than log1+ε n elements, all Es can be updated
in O(log1+ε n) time. Notice that the number of elements in all the lists L is
bounded by the text length. Thus, they are stored using O(n) space.

It remains to explain how to keep lists L correctly updated. Notice that only
one list may change after a REMOVE() or an APPEND(wi). In the former case
we have possibly to remove position l from list LT[l]. This operation is simple
because, if that position is in the list, then T[l] is the last occurrence of that sym-
bol in w1 (recall that all the windows start at position l, and are kept ordered
by increasing ending position) and, thus, it must be the head of LT[l]. The case
of APPEND(wi) is more involved. Since the ending position of wi is moved
to the right, position ri + 1 becomes the last occurrence of symbol T[ri + 1] in
wi. Recall that APPEND(wi) inserts symbol T[ri + 1] in wi. Thus, it must be
inserted in LT[ri+1] in its correct (sorted) position, if it is not present yet. Ob-
viously, we can do that in O(log1+ε n) time by scanning the whole list. This is
too much, so we show how to spend only constant time. Let p the rightmost
occurrence of the symbol T[ri + 1] in T[0 : ri].3 If p < l, then ri + 1 must be
inserted in the front of LT[ri+1] and we have done. In fact, p < l implies that
there is no occurrence of T[ri + 1] in T[l : ri] and, thus, no position can precede
ri + 1 in LT[ri+1]. Otherwise (i.e. p ≥ l), we have that p is in LT[ri+1], because it
is the last occurrence of symbol T[ri + 1] for some window wj with j ≤ i. We
observe that if wj = wi, then p must be replaced by ri + 1 which is now the
last occurrence of T[ri + 1] in wi; otherwise ri + 1 must be inserted after p in

3Notice that we can precompute and store the last occurrence of symbol T[j + 1] in T[1 : j]
for all js in linear time and space.
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LT[ri+1] because p is still the last occurrence of this symbol in the window wj.
We can decide which one is the correct case by comparing p and ri−1 (i.e., the
ending position of the preceding window wri−1). In any case, the list is kept
updated in constant time.

The following Lemma derives by the discussion above:

Lemma 2. Let T[1, n] be a text drawn from an alphabet of size σ = poly(n). If we
estimate SIZE() via 0-th order entropy, then we can design a dynamic data structure
that takes O(n) space and supports the operations REMOVE in R(n) = O(log1+ε n)
time, and APPEND and SIZE in L(n) = O(1) time.

In order to evict the cost of the model from the compressed output (see Sec-
tion 2.4.1), authors typically resort to zero-th order adaptive compressors which
do not store the symbols’ frequencies, since they are computed incrementally
during the compression [90]. A similar approach can be used in this case to
achieve the same time and space bounds of Lemma 2. Here, we require that
SIZE(wi) = |Ca

0(T[l : ri])| = |T[l : ri]|Ha
0(T[l : ri]). Recall that with these type

of compressors the model must not be stored. We use the same tools above
but we change the values stored in variables Ei and the way in which they are
updated after a REMOVE or an APPEND.

Observe that in this case we have that

|Ca
0(T[l : ri])| = |T[l : ri]|Ha

0(T[l : ri]) = log((ri − l + 1)!)− ∑
c∈Σ

log(nc!)

where nc is the number of occurrences of symbol c in T[l : ri]. Therefore,
if the variable Ei stores the value ∑c∈Σ log(Ai[c]!), then we have that |T[l :
ri]|Ha

0(T[l : ri]) = log((ri − l + 1)!)− Ei.4

After the two operations, we change E’s value in the following way:

1. REMOVE(): For any window wi we update Ei by subtracting log(Ai[T[l]]).
We also increase l by one.

2. APPEND(wi): We update Ei by summing log A[T[ri + 1]] and we increase
ri by one.

By the discussion above and Theorem 2 we obtain:

Theorem 3. Given a text T[1, n] drawn from an alphabet of size σ = poly(n),
we can find an (1 + ε)-optimal partition of T with respect to a 0-th order (adaptive)
compressor in O(n log1+ε n) time and O(n) space, where ε is any positive constant.

4Notice that the value log((ri − l + 1)!) can be stored in a variable and updated in constant
time since the size of the value ri − l + 1 changes just by one after a REMOVE or an APPEND.
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We point out that these results can be applied to the compression booster
of [43] to fast obtain an approximation of the optimal partition of Bwt(T).
This may be better than the algorithm of [43] both in time complexity, since
that algorithm took O(nσ) time, and in compression ratio by a factor up to
Ω(
√

log n) (see discussion and class of strings in Subsection 3.3.1). The case
of a large alphabet (namely, σ = Ω(polylog(n))) is particularly interesting
whenever we consider either a word-based Bwt [127] or the Xbw-transform
over labeled trees [43]. We notice that our result is interesting also for the Huf-
fword compressor which is the standard choice for the storage of Web pages
[164]; here Σ consists of the distinct words constituting the Web-page collec-
tion.

3.3.1 On optimal partition and booster

An O(nσ)-exitime algorithm to partition Bwt(T) has been presented in [43].
Even if it achieves interesting k-th order-entropy bounds, there are cases in
which their greedy algorithm does not find the optimal solution. This is in-
deed a subtle point which is frequently neglected when dealing with com-
pression boosters, especially in practice. In this section we prove that there
exists an infinite class of strings for which the partition selected by booster
[43] is far from the optimal one by a factor Ω(

√
log n). Consider an alphabet

Σ = {c1, c2, . . . , cσ} and assume that c1 < c2 < . . . < cσ. We divide it into
l = σ/α groups of α consecutive symbols each, where α > 0 will be defined
later. Let Σ1, Σ2, . . . , Σl denote these sub-alphabets. For each Σi, we build a De
Bruijn sequence Ti in which each pair of symbols of Σi occurs exactly once. By
construction each sequence Ti has length α2. Then, we define T = T1T2 . . . Tl,
so that |T| = σα and each symbol of Σ occurs exactly α times in T. There-
fore, the first column of Bwt matrix is equal to (c1)

α(c2)
α . . . (cσ)α. We denote

with Lc the portion of Bwt(T) that has symbol c as prefix in the Bwt matrix.
By construction, if c ∈ Σi, we have that any Lc has either one occurrence of
each symbol of Σi or one occurrence of these symbols of Σi minus one plus
one occurrence of some symbol of Σi−1 (or Σl if i = 1). In both cases, each Lc
has α symbols, which are all distinct. Notice that by construction, the longest
common prefix among any two suffixes of T is at most 1. Therefore, since the
booster can partition only using prefix-close contexts (see [43]), there are just
three possible partitions: (1) one substring containing all symbols of L, (2) one
substring per Lc, or (3) as many substrings as symbols of L. Assuming that the
cost of each model is at least log σ bits5, then the costs of all possible booster’s

5Here we assume that it contains at least one symbol. Nevertheless, as we will see, the
compression gap between booster’s partition and the optimal one grows as the cost of the
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partitions are:

1. Compressing the whole L at once has cost at least σα log σ bits. In fact,
all the symbols in Σ have the same frequency in L.

2. Compressing each string Lc costs at least α log α + log σ bits, since each
Lc contains α distinct symbols. Thus, the overall cost for this partition is
at least σα log α + σ log σ bits.

3. Compressing each symbol separately has overall cost at least σα log σ

bits.

We consider the alternative partition which is not achievable by the booster
that subdivides L into σ/α2 substrings denoted S1, S2, . . . , Sσ/α2 of size α3 sym-
bols each (recall that |T| = σα). Notice that each Si is drawn from an alphabet
of size smaller than α3.

The strings Si are compressed separately. The cost of compressing each string
Si is O(α3 log α3 + log σ) = O(α3 log α + log σ). Since there are σ/α2 strings
Sis, the cost of this partition is P = O(σα log α + (σ/α2) log σ). Therefore, by
setting α = O(

√
log σ/ log log σ), we have that P = O(σ

√
log σ) bits. As far

as the booster is concerned, the best compression is achieved by its second
partition whose cost is O(σ log σ) bits. Therefore, the latter is Ω(

√
log σ) times

larger than our proposed partition. Since σ ≥
√

n, the ratio among the two
partitions is Ω(

√
log n).

3.4 On k-th order compressors

In this section we make one step further and consider the more powerful k-
th order compressors, for which there exist Hk bounds for estimating the size
of their compressed output (see Section 2.4.1). Here SIZE(wi) must compute
|C(T[l : ri])| which is estimated by

(ri − l + 1)Hk(T[l : ri]) + fk(ri − l + 1, |ΣT[l:ri]
|),

where ΣT[l,ri]
denotes the number of different symbols in T[l : ri].

Let us denote with Tq[1 : n− q] the text whose i-th symbol T[i] is equal to the
q-gram T[i : i + q− 1]. Actually, we can remap the symbols of Tq to integers in
[n] without modifying its zero-th order entropy. In fact the number of distinct
q-grams occurring in Tq is less than n, the length of T. Thus Tq’s symbols take

model becomes bigger.
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O(log n) bits and Tq can be stored in O(n) space. This remapping takes linear
time and space, whenever σ is polynomial in n.

A simple calculation shows that the k-th order (adaptive) entropy of a string
(see definition Section 2.4.1) can be expressed as the difference between the
zero-th order (adaptive) entropy of its k + 1-grams and its k-grams. This sug-
gests that we can use the solution of the previous section in order to compute
the zero-th order entropy of the appropriate substrings of Tk+1 and Tk. More
precisely, we use two instances of the data structure of Theorem 3 (one for Tk+1
and one for Tk), which are kept synchronized in the sense that, when operations
are performed on one data structure, then they are also executed on the other.

Lemma 3. Let T[1, n] be a text drawn from an alphabet of size σ = poly(n). If we
estimate SIZE() via k-th order entropy, then we can design a dynamic data structure
that takes O(n) space and supports the operations REMOVE in R(n) = O(log1+ε n)
time, and APPEND and SIZE in L(n) = O(1) time.

Essentially the same technique is applicable to the case of k-th order adaptive
compressor C, in this case we keep up-to-date the 0-th order adaptive entropies
of the strings Tk+1 and Tk.

Theorem 4. Given a text T[1, n] drawn from an alphabet of size σ = poly(n),
we can find an (1 + ε)-optimal partition of T with respect to a k-th order (adaptive)
compressor in O(n log1+ε n) time and O(n) space, where ε is any positive constant.

We point out that this result applies also to the practical case in which the
base compressor C has a maximum (block) size B of data it can process at once
(this is the typical scenario for gzip, bzip2, etc.). In this situation the time
performance of our solution reduces to O(n log1+ε(B log σ)).

3.5 On BWT-based compressors

In literature we know entropy-bounded estimates for the output size of BWT-
based compressors [123]. So we could apply Theorem 4 to compute the opti-
mal partitioning of T for such a type of compressors. Nevertheless, it is also
known [41] that such compression-estimates are rough in practice because of
the features of the compressors that are applied to the Bwt(T)-string. Typically,
Bwt is encoded via a sequence of simple compressors such as Mtf encoding,
Rle encoding (which is optional), and finally a 0-order encoder like Huffman
or Arithmetic [164]. For each of these compression steps, a 0-th entropy bound
is known [123], but the combination of these bounds may result much far from
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the final compressed size produced by the overall sequence of compressors in
practice [41].

In this section, we propose a solution to the optimal partitioning problem for
BWT-based compressors that introduces a Θ(σ log n) slowdown in the time
complexity of Theorem 4, but with the advantage of computing the (1 + ε)-
optimal solution wrt the real compressed size, thus without any estimation by
any entropy-cost functions. Since in practice it is σ = polylog(n), this slow-
down should be negligible. In order to achieve this result, we need to address
a slightly different (but yet interesting in practice) problem which is defined
as follows. The input string T has the form S[1]#1S[2]#2 . . . S[m]#n where each
S[i] is a text (called page) drawn from an alphabet Σ, and #1, #2, . . . , #n are spe-
cial symbols greater than any symbol of Σ. A partition of T must be page-
aligned, that is it must form groups of contiguous pages S[i]#i . . . S[j]#j, denoted
also S[i : j]. Our aim is to find a page-aligned partition whose cost is at most
(1 + ε) the minimum possible cost, for any fixed ε > 0. We notice that this
problem generalizes the table partitioning problem [22], since we can assume
that S[i] is a column of the table.

To simplify things we will drop the Rle encoding step of a Bwt-based algo-
rithm. We start by noticing that a close analog of Theorem 2 holds for this
variant of the optimal partitioning problem, which implies that a (1 + ε)-
approximation of the optimum cost (and the corresponding partition) can be
computed using a data structure supporting operations APPEND, REMOVE,
and SIZE; with the only difference that the windows w1, w2, . . . , wm subject to
the operations are groups of contiguous pages of the form wi = S[l, ri].

It goes without saying that there exist data structures designed to dynamically
maintain a dynamic text compressed with a Bwt-based compressor under in-
sertions and deletions of symbols (see Chapter 7). But they do not fit our con-
text for two reasons: (1) their underlying compressor is significantly different
from the scheme above; (2) in the worst case, they would spend linear space
per window yielding a super-linear overall space complexity.

Instead of keeping a given window w in compressed form, our approach only
store the frequency distribution of the integers in the string w′ = Mtf(Bwt(w))
since this is enough to compute the compressed output size produced by the
final step of the Bwt-based algorithm, which is usually implemented via Huff-
man or Arithmetic [164]. Indeed, since Mtf produces a sequence of integers
from 0 to σ, we can store their number of occurrences for each window wi into
an array Fwi of size σ. The update of Fwi due to the insertion or the removal
of a page in wi incurs two main difficulties: (1) how to update w′i as pages
are added/removed from the extremes of the window wi, (2) perform this up-
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date implicitly over Fwi , because of the space reasons mentioned above. Our
solution relies on two key facts about Bwt and Mtf:

1. Since the pages are separated in T by distinct separators, inserting or
removing one page into a window w does not alter the relative lexico-
graphic order of the original suffixes of w (see [59]).

2. If a string s′ is obtained from string s by inserting or removing a char c
into an arbitrary position, then Mtf(s′) differs from Mtf(s) in at most σ

symbols. More precisely, if c′ is the next occurrence in s of the newly
inserted (or removed) symbol c, then the Mtf has to be updated only in
the first occurrence of each symbol of Σ among c and c′.

We can now describe a data structure that supports operations APPEND(w)
and REMOVE(). We assume that the separator symbols in the Bwt(T) are ig-
nored by the Mtf step, which means that when the Mtf encoder finds a sep-
arator in Bwt(T), this is replaced with the corresponding integer without al-
tering the Mtf-list. This variant does not introduce any compression penalty
(because every separator occurs just once) but simplifies the discussion that
follows. Given a range I = [a, b] of positions of T, an occurrence of a sym-
bol of Bwt(T) is called active[a,b] if it corresponds to a symbol in T[a : b].
For any range [a, b] ⊂ [n] of positions in T, we define rBwt(T[a : b]) as the
string obtained by concatenating the active[a,b] symbols of Bwt(T) by preserv-
ing their relative order. In the following, we will not indicate the interval when
it will be clear from the context. Notice that, due to the presence of separators,
rBwt(T[a : b]) coincides with Bwt(T[a : b]) when T[a : b] spans a group of con-
tiguous pages (see Chapter 7). Moreover, Mtf(rBwt(T[a : b])) is the string ob-
tained by performing the Mtf algorithm on rBwt(T[a : b]). We will call the sym-
bol Mtf(rBwt(T[a : b]))[i] as the Mtf-encoding of the symbol rBwt(T[a : b])[i].

For each window w, our solution will not explicitly store neither rBwt(w) or
Mtf(rBwt(T[a : b])) since this might require a superlinear amount of space. In-
stead, we maintain only an array Fw of size σ whose entry Fw[e] keeps the num-
ber of occurrences of the encoding e in Mtf(rBwt(w)). The array Fw is enough
to compute the 0-order entropy of Mtf(rBwt(w)) in σ time (or eventually the
exact cost of compressing it with Huffman in σ log σ time).

We are left with showing how to correctly keep updated Fw after a REMOVE()
or an APPEND(w). In the following we will concentrate only on APPEND(w)
since REMOVE() is symmetrical. The idea underlying the implementation of
APPEND(w), where w = S[l, r], is to conceptually insert the symbols of the next
page S[r + 1] into rBwt(w) one at time from left to right. Since the relative
order among the symbols of rBwt(w) is preserved in Bwt(T), it is more conve-
nient to work with active symbols of Bwt(T) by resorting to a data structure,
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whose details are given later, which is able to efficiently answer the following
two queries with parameters c, I and h, where c ∈ Σ, I = [a, b] is a range of
positions in T and h is a position in Bwt(T):

• PREVc(I, h): locate the last active[a,b] occurrence in Bwt(T)[0, h − 1] of
symbol c;

• NEXTc(I, h): locate the first active[a,b] occurrence in Bwt(T)[h + 1, n] of
symbol c.

This data structure is built over the whole text T and requires O(|T|) space.

Let c be the symbol of S[ri + 1] we have to conceptually insert in rBwt(T[a : b]).
We can compute the position (say, h) of this symbol in Bwt(T) by resorting to
the inverse suffix array of T. Once we know position h, we have to determine
what changes in Mtf(rBwt(w)) the insertion of c has produced and update Fw
accordingly. It is not hard to convince ourselves that the insertion of symbol
c changes no more than σ encodings in Mtf(rBwt(w)). In fact, only the first
active occurrence of each symbol in Σ after position h may change its Mtf en-
coding. More precisely, let hp and hn be respectively the last active occurrence
of c before h and the first active occurrence of c after h in Bwt(w), then the first
active occurrence of a symbol after h changes its Mtf encoding if and only if it
occurs active both in Bwt(w)[hp, h] and in Bwt(w)[h, hn]. Otherwise, the new
occurrence of c has no effect on its Mtf encoding. Notice that hp and hn can be
computed via proper queries PREVc and NEXTc. In order to correctly update
Fw, we need to recover for each of the above symbols their old and new en-
codings. The first step consists of finding the last active occurrence before h
of each symbols in Σ using PREV queries. Once we have these positions, we
can recover the status of the Mtf list, denoted λ, before encoding c at position h.
This is simply obtained by sorting the symbols ordered by decreasing position.
In the second step, for each distinct symbol that occurs active in Bwt(w)[hp, h],
we find its first active occurrence in Bwt(w)[h, hn]. Knowing λ and these oc-
currences sorted by increasing position, we can simulate the Mtf algorithm to
find the old and new encodings of each of those symbols.

This provides an algorithm to perform APPEND(w) by making O(σ) queries
of types PREV and NEXT for each symbol of the page to append in w. To
complete the proof of the time bounds in Theorem 5 we have to show how
to support queries of type PREV and NEXT in O(log n) time and O(n) space.
This is achieved by a straightforward reduction to a classic geometric range-
searching problem. Given a set of points P = {(x1, y1), (x2, y2), . . . , (xp, yp)}
from the set [n]× [n] (notice that n can be larger than p), such that no pair of
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points shares the same x- or y-coordinate, there exists a data structure [115]
requiring O(p) space and supporting the following two queries in O(log p)
time:

• RANGEMAX([l, r], h): return among the points of P contained in [l, r]×
[−∞, h] the one with maximum y-value

• RANGEMIN([l, r], h): return among the points of P contained in [l, r] ×
[h,+∞] the one with minimum y-value

Initially we compute SA and SA−1 of T in O(n log σ) time then, for each
symbol c ∈ Σ, we define Pc as the set of points {(i, SA−1[i + 1])| T[i] = c}
and build the above geometric range-searching structure on Pc. It is easy to
see that PREVc(I, h) can be computed in O(log n) time by answering query
RANGEMAX(I, SA−1[h + 1]) on the set Pc, and the same holds for NEXTc by
using RANGEMIN instead of RANGEMAX, this completes the reduction and
the proof of the following theorem.

Theorem 5. Given a sequence of texts of total length n and alphabet size σ = poly(n),
we can compute an (1 + ε)-approximate solution to the optimal partitioning problem
for a BWT-based compressor, in O(n(log1+ε n) σ log n) time and O(n+ σ log1+ε n)
space.



CHAPTER

FOUR

Bit-complexity of Lempel-Ziv
compression

One of the most famous lossless data-compression schemes is the one intro-
duced by Lempel and Ziv in the late 70s, and indeed many (non-)commercial
programs are currently based on it— like gzip, zip, pkzip, arj, rar, just
to cite a few. This compression scheme is known as dictionary-based compres-
sor, and consists of squeezing an input string T[1, n] by replacing some of its
substrings with (shorter) codewords which are actually pointers to a dictionary
of phrases. The dictionary can be either static (in that it has been constructed
before the compression starts) or dynamic (in that it is built as the input string
is compressed). The well-known LZ77 and LZ78 compressors, proposed by
Lempel and Ziv in [166, 167], and all their variants [149], are interesting exam-
ples of dynamic dictionary-based compressors.

Many theoretical and experimental results have been dedicated to LZ-com-
pressors in these thirty years and, although today there are alternative solu-
tions to the lossless data-compression problem (e.g., Burrows-Wheeler com-
pression and Prediction by Partial Matching [164]), dictionary-based compres-
sion is still widely used for its unique combination of compression power and
compression/decompression speed. Over the years dictionary-based com-
pression has also gained importance as a general algorithmic tool, being em-
ployed in the design of compressed text indexes [134], in universal clustering
[28] or classification tools [165], in designing optimal pre-fetching mechanisms
[159], and in streaming or on-the-fly compression applications [32, 66].

In this chapter we address some key issues which arise when dealing with
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the output-size in bits of the so called LZ77-parsing scheme, namely, the one in
which the dictionary consists of all substrings starting in the last M scanned
positions of the text, where M is called the window size (and possibly depends
on the text length), and phrase-codewords consist of triples 〈d, `, c〉 where d is
the relative offset of the copied phrase (d ≤ M), ` is the length of the phrase
and c is the single (new) character following it. Classically, the LZ77-parser
adopts a greedy rule, namely, one that at each step takes the longest dictionary
phrase which is a prefix of the currently unparsed suffix of the input string.
This greedy parsing can be computed in O(n log σ) time and O(M) space [60].1

The greedy parsing is optimal with respect to the number of phrases in which
T can be parsed by any suffix-complete dictionary (like the LZ77-dictionary).
Of course, the number of parsed phrases influences the compression ratio and,
indeed, various authors [107, 166] proved that greedy parsing achieves asymp-
totically the (empirical) entropy of the source generating the input string T. But
these fundamental results have not yet closed the problem of optimally com-
pressing T because the optimality in the number of parsed phrases is not nec-
essarily equal to the optimality in the number of bits output by the final com-
pressor on each individual input string T. In fact, if the phrases are compressed
via an equal-length encoder, like in [107, 149, 166], then the produced output
is bit optimal. But if one aims for higher compression, variable-length encoders
should be taken into account (see e.g. [150, 164], and the software gzip [86]),
and in this situation the greedy-parsing scheme is no longer optimal in terms of
the number of bits output by the final compressor (see Section 4.3).

Starting from these premises we address in this chapter four main problems,
both on the theoretical and the experimental side, which pertain with the bit-
optimal compression of the input string T via parsers that deploy the LZ77-
dictionary built on an unbounded window (namely it is M = n). Our results
extend easily to windows of arbitrary size M.

Problem 1. Let us consider the greedy LZ77-parser, and assume that we en-
code every parsed phrase wi with a variable-length encoder. The value of
`i = |wi| is in some sense fixed by the greedy choice, being the length of
the longest phrase occurring in the current LZ77-dictionary. Conversely, the
value of di depends on the position of the copy of wi in T. In order to min-
imize the number of bits output by the final compressor, the greedy parser
should obviously select the closest copy of each phrase wi in T, and thus the
smallest possible di. Surprisingly enough, known implementations of greedy
parsers are time optimal but not bit-optimal, because they select an arbitrary

1Recently, [33] showed how to achieve the optimal O(n) time and space when the alphabet
has size O(n) and the window is unbounded, i.e. M = n.
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or the leftmost occurrence of the longest copied phrase (see [33] and references
therein), or they select the closest copy but take O(n log n) suboptimal time
[3]. In Section 4.2 we provide an elegant, yet simple, algorithm which com-
putes at each parsing step the closest copy of the longest dictionary phrase in
O(n(1 +

log σ
log log n )) overall time and O(n) space (Lemma 4). This is optimal in

terms of time/space performance when the alphabet has size polylog(n) (hence
almost all texts of practical interest).

Problem 2. How good is the greedy LZ77-parsing of T whenever the com-
pression cost is measured in terms of number of bits produced in output? We
show that the greedy selection of the longest dictionary phrase at each parsing
step is not optimal, and this may be larger than the bit-optimal parsing by a
multiplicative factor Ω(log n/ log log n), which is unbounded asymptotically
(Section 4.3). Additionally, we show that this lower-bound is tight up to a
factor Θ(log log n), and we support these theoretical figures with some experi-
mental results which stress the practical importance of finding the bit-optimal
parsing of T.

Problem 3. How much efficiently (in time and space) can we compute the
bit-optimal (LZ77-)parsing of T? Several solutions are indeed known for this
problem but they are either inefficient [151], in that they take Θ(n2) worst-
case time and space, or they are approximate [101], or they rely on heuristics
[14, 29, 103, 153] which do not provide any guarantee on the time/space per-
formance of the compression process. This is the reason why Rajpoot and
Sahinalp stated in [141, pag. 159] that “We are not aware of any on-line or off-line
parsing scheme that achieves optimality when the LZ77-dictionary is in use under
any constraint on the codewords other than being of equal length”. In Section 4.4.2
we investigate this question by considering a general class of variable-length
codeword encodings which are typically used in data compression (e.g. gzip)
and in the design of search engines and compressed indexes [134, 149, 164].
Our final result is a time efficient (possibly, optimal) and space optimal solu-
tion for the problem above (Theorem 7).

Technically speaking, the problem of finding bit-optimal parsing of an input
string T can be solved via Dynamic Programming [151]. As we have done
in Chapter 3, we use the reduction from solutions of Dynamic Programming
recurrences to single-source shortest path problem (SSSP) on a weighted DAG
G(T). This DAG consists of n nodes, one per character of T, and e edges, one
per possible parsing step. Every edge is weighted according to the length in
bits of the codeword adopted to compress the corresponding phrase. Since
these codewords are tuples of integers (see above), we consider a natural class
of codeword encoders which satisfy the so called increasing cost property: the
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greater is the integer to be encoded, the longer is the codeword. This class en-
compasses most of the encoders used in the literature to design data compres-
sors (see [150] and gzip [86]), compressed full-text indexes [134] and search
engines [164]. We prove new combinatorial properties for this SSSP-problem
and show that the computation of the SSSP in G(T) can be restricted onto
a subgraph G̃(T) whose structure depends on the integer-encoding functions
adopted to compress the LZ77-phrases, and whose size is provably smaller than
the complete graph generated by [151] (see Theorem 6). Additionally, we de-
sign an algorithm that solves the SSSP on the subgraph G̃(T) without mate-
rializing it all at once, but creating and exploring its edges on-the-fly in optimal
O(1) amortized time per edge and O(n) optimal space overall. As a result, our
novel LZ77-compressor achieves bit-optimality in O(n) optimal working space
and in time proportional to |G̃(T)| (hence, it is optimal in its size). The latter is
O(n log n) for a large class of integer encoders, like Elias and Fibonacci codes
[150, 164], and it is optimal O(n) for (most of) the encodings used by gzip
[86]. This is the first result providing a positive answer to Rajpoot-Sahinalp’s
question above.

Problem 4. How much efficient are in practice our bit-optimal LZ77-com-
pressor? To establish this, we have taken several freely available text collec-
tions, and compared our proposal against the classic gzip and bzip2, as well
as against the state-of-the-art boosting compressor of [41, 43]. Section 4.5 re-
ports on some experimental figures, and comments on our theoretical find-
ings as well as on possible algorithm-engineering research directions which
deserve further attention.

4.1 Notation and terminology

As usual, let T[1, n] be a string drawn from an alphabet Σ of size σ. 2

In the rest of the chapter we concentrate on LZ77-compression with an un-
bounded window size, so we will drop the specification “LZ77” unless this
will be required to make things unambiguous. The compressor, as any dictio-
nary-based compressor, will work in two intermingled phases: parsing and
encoding. Let w1, w2, . . . , wi−1 be the phrases in which a prefix of T has been
already parsed. At this step, the dictionary consists of all substrings of T start-
ing in the last M positions of w1w2 · · ·wi−1, where M is called the window

2Recall that we are assuming that σ ≤ n. In case of a larger alphabet, our algorithms are
still correct but we need to add an the additive term Timesort(n, σ) to their time complexities
where Timesort(n, σ) is the time required to sort/remap distinct symbols of T into [n].
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size (hereafter assumed unbounded, for simplicity). The classic parsing-rule
adopted by most LZ77-compressors selects the next phrase according to the so
called longest match heuristic: that is, this phrase is taken as the longest phrase
in the current dictionary which prefixes the remaining suffix of T. This is usu-
ally called greedy parsing. After such a phrase is selected, the parser adds one
further symbol to it and thus forms the next phrase wi of T’s parsing. For
simplicity of exposition we will restrict to the LZ77-variant which avoids the
additional symbol per phrase. This means that wi is represented by the inte-
ger pair 〈di, `i〉, where di is the relative offset of the copied phrase wi within
the prefix w1 · · ·wi−1 and `i is its length |wi|. Every first occurrence of a new
symbol c is encoded as 〈0, c〉.
Once phrases are identified and represented via pairs of integers, their com-
ponents are compressed via variable-length integer encoders which eventually
produce the compressed output of T as a sequence of bits. In order to study
and design bit-optimal parsing schemes, we therefore need to deal with such
integer encoders. Let f be an integer-encoding function that maps any integer
x ∈ [n] into a (bit-)codeword f (x) whose length is denoted by | f (x)| bits. We
consider variable-length encodings which use longer codewords for greater
integers:

Property 1 (Increasing Cost Property). For any x, y ∈ [n], if x ≤ y, then | f (x)| ≤
| f (y)|.

This property is satisfied by most of known integer encoders— like equal-
length codewords, Elias codes [164], Fibonacci’s codes [150]— which are used
to design data compressors [149], compressed full-text indexes [134] and search
engines [164].

4.2 An efficient and bit-optimal greedy parsing

In this section we describe how to compute efficiently the greedy parsing that
minimizes the final compress size. We remark that the minimization here is
done with respect to all the LZ77-parsings that follow the greedy strategy for
selecting their phrases.

Let f and g be two integer encoders which satisfy the Increasing Cost Property
(possibly f = g). We denote by LZ f ,g(T) the compressed output produced by
the greedy-parsing strategy in which we have used f to compress the distance
di, and g to compress the length `i of any parsed phrase wi. Thus, in LZ f ,g(T)
any phrase wi is encoded in | f (di)|+ |g(`i)| bits. Given that the parsing is the
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greedy one, `i is in some sense fixed (being the length of the longest copy),
so we minimize |LZ f ,g(T)| by minimizing the distance di of wi’s copy in T. If
pi is the starting position of wi in T (namely, T[pi, pi + `i − 1] = wi), many
copies of the phrase wi could be present in T[1, pi − 1]. To minimize |LZ f ,g(T)|
we should choose the copy which is the closest one to pi, and thus requires
the minimum number of bits to encode its distance di (recall the assumption
M = n).

In this section we propose an elegant, yet simple, algorithm that selects the
rightmost copy of each phrase wi in O(n(1 + log σ/ log log n)) time. This al-
gorithm is the fastest known in the literature [33], and results to be optimal for
alphabets with a polylog(n) size (i.e., almost all texts in practice). It requires
the suffix tree ST of T, preprocessed to support constant-time lca-queries,
and the parsing of T which consists of, say, k ≤ n phrases. All these machiner-
ies can be computed in linear time and stored in linear space. We say that a
node u of ST is marked iff the string spelled out by the root-to-u path in ST
is equal to some phrase wi. In this case we use the notation upi to denote the
node marked by phrase wi which starts at position pi of T. Since the same node
may be marked by different phrases, but any phrase marks just one node, the
total number of marked nodes is bounded by the number of phrases, hence k.
Furthermore, if a node is assigned with many phrases, since the greedy LZ77-
parsing takes the longest one, it must be the case that every such occurrences
of wi is followed by a distinct character. So the number of phrases assigned to
the same marked node is bounded by σ.

All marked nodes can be computed in O(k) time by executing k lca-queries
on ST . Let us now define STC as the contracted version of ST , namely a tree
whose internal nodes are the marked nodes of ST and whose leaves are the
leaves of ST . The parent of any node in STC is its lowest marked ancestor in
ST . It is easy to see that STC consists of O(k) internal nodes and n leaves, and
that it can be built in O(n) time via a top-down visit of ST .

Given the properties of suffix trees, we can now rephrase our problem as fol-
lows: for each position pi, we need to compute the largest position xi which
is smaller than pi and whose leaf in STC lies within the subtree rooted at upi .
Our algorithm processes the input string T from left to right and, at each po-
sition j, it maintains the following invariant: the parent v of any leaf in STC
stores the maximum position h < j such that the leaf labeled h is attached to
v. Maintaining this invariant is trivial: after that position j is processed, j is
assigned to the leaf parent of the leaf labeled j in STC . The key point now
is how to compute the position xi of the rightmost-copy of wi whenever we
discover that j is the starting position of a phrase (i.e. j = pi for some i). In
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this case, the algorithm visits the subtree of STC rooted at uj and computes the
maximum position stored in its internal nodes. By the invariant, this position
is the rightmost copy of the phrase wi. This process takes O(n + σ ∑k

i=1 #(upi))
time, where #(upi) is the number of internal nodes in the subtree rooted at upi

in STC . In fact, by construction, there can be at most σ repetitions of the same
phrase in the parsing of T, and for each of them the algorithm performs a visit
of the corresponding subtree.

As a final step we prove that ∑k
i=1 #(upi) = O(n). By properties of suffix trees,

the depth of upi is smaller than `i = |wi|, and each (marked) node of STC is
visited as many times as the number of its (marked) ancestors in STC (with
their multiplicities). For each (marked) node upi , this number can be bounded
by `i = O(|wi|). Summing up on all nodes, we get ∑k

i=1 O(|wi|) = O(n).
Thus, the above algorithm requires O(σ × n) time, which is trivially optimal
whenever σ = O(1).

Now we will show how to further reduce the time complexity to O(n(1 +
log σ/ log log n)) by properly combining a slightly modified variant of the tree
covering procedure of [69] with a dynamic Range Maximum Query data struc-
ture [126, 162] applied on properly composed arrays of integers. Notice that
this improvement leads to an algorithm requiring optimal O(n) time for al-
phabets of size poly-logarithmic in n.

Given STC and an integer parameter P ≥ 2 (in our case P = σ) this procedure
covers the k internal nodes of STC in a number of connected subtrees, all of
which have size Θ(P), except the one which contains the root of STC that has
size O(P). Any two of these subtrees are either disjoint or intersect at their
common root. (We refer to Section 2 of [69] for more details.) In our modifi-
cation we impose that there is no node in common to two subtrees, because
we move their common root to the subtree that contains its parent. None of
the above properties change, except for the fact that each cover could now be a
subforest instead of subtree of STC . Let F1, F2, . . . Ft be the subforests obtained
by the above covering, where we clearly have that t = O(k/P).

We define the tree STSC whose leaves are the leaves of STC and whose internal
nodes are the above subforests. With a little abuse of notation, let us refer with
Fi to the node in STSC corresponding to the subforest Fi. The leaf l having u as
parent in STC , is thus connected to the node Fi in STSC , where Fi is the forest
that contains the node u. Notice that roots of subtrees in any subforest Fi have
common parent in STC .
The computation of the rightmost copy for a phrase pi is now divided in two
phases. Let Fi be the subforest that contains upi , the node spelled out by the
phrase starting at T[pi]. In the first phase, we compute the rightmost copy for
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the phrase starting at pi among the descendants of upi in STSC that belong to
subforests different from Fi. In the second phase, we compute its rightmost
copy among the descendants of upi in Fi. The maximum between these two
values will give the rightmost copy for pi, of course. To solve the former prob-
lem, we execute our previous algorithm on STSC . It simply visits all subforests
descendant from Fi in STSC , each of them maintaining the rightmost position
among its already scanned leaves, and returns the maximum of these value.
Since groups of P = σ nodes of STC have single nodes in STSC , in this case
our previous algorithm requires O(n) time.

The latter problem is solved with a new algorithm exploiting the fact that the
number of nodes in Fi is O(σ) and resorting to dynamic Range Maximum
Queries (RMQ) on properly defined arrays [126]. To be precise, we assign to
each node of Fi an unique identifier in [m] that corresponds to the time of its
visit in a depth-first traversal of Fi. Notice that the nodes in the subtree rooted
at some node u receive integers spanning the whole range from the starting
time to the ending time of the DFS-visit of u. We use an array AFi that has an
entry for each node of Fi. Initially, all entries are set to −∞. The entry corre-
sponding to any node has index equal to the time of its visit. We build on each
array AFi a dynamic data structure that answers range maximum queries. For
this purpose we use a simple balanced tree augmented with the maximum of
the descending leaves in each nodes of Fi. This way Range-Max queries and
updates on AFi take O(log σ) time in the worst case. Now, we proceed, as in
our first algorithm, by processing string T from left to right. When a position j
of T is processed, we identify the subforest Fi containing the father of the leaf
labeled j in STC and we set to j the corresponding entry in AFi (this induces a
change in the underlying RMQ data structure). If j is the starting position of
a phrase, we identify the subforest Fx containing the node uj and compute its
rightmost copy in Fx, by resorting to a RMQ on AFx . The left and right indexes
for the range query are, respectively, the starting and ending time of the visit
of uj in Fx.

It is easy to notice that the overall complexity of the algorithm is dominated by
the O(n) updates to the RMQ data structures and the O(k) queries onto them
(recall that k is the number of phrases of the LZ77-greedy parsing of T). Our
algorithm then takes O(n log σ) time and O(n) space. A further improvement
can be obtained by adopting an idea similar to the one in [162][Section 5] to
reduce the height of that balanced tree and, consequently, our time complexity
by a factor O(log log n). This proves the following Lemma.

Lemma 4. Given a string T[1, n] drawn from an alphabet of size σ, there exists an
algorithm that computes the greedy parsing of T and reports the rightmost copy of
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each phrase in the LZ77-dictionary taking O(n(1 + log σ
log log n )) time and O(n) space.

4.3 On the bit-efficiency of the greedy LZ77-parsing

We have already noticed above that the greedy strategy used by LZ f ,g(T) is
not necessarily bit-optimal, so we will hereafter use OPT f ,g(T) to denote the Bit-
Optimal LZ77-parsing of T relative to f and g, namely a parsing of T which uses
phrases extracted from the LZ77-dictionary and minimizes the total number of
bits produced by using the encoding functions f and g. Of course |LZ f ,g(T)| ≥
|OPT f ,g(T)|, but this does not provide us with any estimate of how much worse
the greedy parsing can be with respect to the bit-optimal one. In what follows

we identify an infinite family of strings T for which
|LZ f ,g(T)|
|OPT f ,g(T)|

= Ω(
log n

log log n ),

so the gap may be asymptotically unbounded thus stressing the need for an
( f , g)-optimal parser, as requested by [141].

Our argument holds for any choice of f and g from the family of encoding
functions that represent an integer x with a bit string of size Θ(log x) bits (thus
the well-known Elias’ and Fibonacci’s coders belong to this family). Taking in-
spiration from the proof of Lemma 4.2 in [107], we consider the infinite family
of strings Tl = bal c2l

ba ba2 ba3 . . . bal, parameterized in the positive value l.
The greedy LZ77-parser partitions Tl as3:

(b) (a) (al−1) (c) (c2l−1) (ba) (ba2) (ba3) . . . (bal),

where the symbols forming a parsed phrase have been delimited within a pair
of brackets. Thus it copies the latest l phrases from the beginning of Tl and
takes at least l × | f (2l)| = Θ(l2) bits.

A more parsimonious parser selects the copy of bai−1 (with i > 1) from its
immediately previous occurrence thus parsing Tl as:

(b) (a) (al−1) (c) (c2l−1) (b) (a) (ba) (a) (ba2) (a) . . . (bal−1) (a).

Hence the encoding of this parsing, called rOPT(Tl), takes |g(2l − 1)|+ |g(l −
1)|+ ∑l

i=2[| f (i)|+ |g(i)|+ | f (0)|] + O(l) = O(l log l) bits.

Lemma 5. There exists an infinite family of strings such that, for any of its elements
T, it is |LZ f ,g(T)| ≥ Θ(log |T|/ log log |T|) |OPT f ,g(T)|.

3Recall the variant of LZ77 we are considering here, which uses just a pair of integers per
phrase, and thus drops the char following that phrase in T. See section 4.1.
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Proof. Since |OPT(Tl)| ≤ |rOPT(Tl)|, we can conclude that:

|LZ f ,g(Tl)|
|OPT f ,g(Tl)|

≥
|LZ f ,g(Tl)|
|rOPT(Tl)|

≥ Θ
(

l
log l

)
.

Since |Tl| = 2l + l2 −O(l), we have that l = Θ(log |Tl|) for sufficiently long
strings. �

The experimental results reported in Table 4.1 will show that this gap is not
negligible in practice too.

Additionally we can prove that this lower bound is tight up to a log log |T|
multiplicative factor, by easily extending to the LZ77-dictionary (which is dy-
namic), a result proved in [102] for static dictionaries. Precisely, it holds that
|LZ f ,g(T)|
|OPT f ,g(T)|

≤ | f (|T|)|+|g(|T|)|
| f (0)|+|g(0)| , which is upper bounded by O(log |T|) because

| f (|T|)| = |g(|T|)| = Θ(log |T|) and | f (0)| = |g(0)| = O(1). To see this,
let us assume that LZ f ,g(T) and OPT f ,g(T) are formed by `lz and `opt phrases
respectively. Of course, `lz ≤ `opt because the greedy parsing is optimal with
respect to the number of parsed phrases for T. We then assume the worst-case
scenario in which every phrase is encoded by LZ f ,g(T) with the longest en-
coding (namely, f (|T|)| and |g(|T|)| bits each) while OPT f ,g(T) uses the short-

est one (namely, f (0)| and |g(0)| bits each). Therefore, we have
|LZ f ,g(T)|
|OPT f ,g(T)|

≤
`lz(| f (|T|)|+|g(|T|)|)
`opt(| f (0)|+|g(0)|) ≤

| f (|T|)|+|g(|T|)|
| f (0)|+|g(0)| = Θ(log |T|).

4.4 On Bit-Optimal Parsings and Shortest-Path prob-
lems

In this section we will describe how to compute efficiently the parsing that
minimizes the final compress size of T with respect to all possible LZ77-par-
sings. Following [151], we model the design of a bit-optimal LZ77-parsing
strategy for a string T as a Single-Source Shortest Path problem (shortly, SSSP-
problem) on a weighted DAG G(T) defined as follows. Graph G(T) = (V, E)
has one vertex per symbol of T plus a dummy vertex vn+1, and its edge set E
is defined so that (vi, vj) ∈ E iff (1) j = i + 1 or (2) the substring T[i : j − 1]
occurs in T starting from a (previous) position p < i. Clearly i < j and thus
G(T) is a DAG. Every edge (vi, vj) is labeled with the pair 〈di,j, `i,j〉 which is
set to 〈0, T[i]〉 in case (1), or it is set to 〈i− p, j− i〉 in case (2). The second case
corresponds to copying a phrase longer than one single character.
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It is easy to see that the edges outgoing from vi denote all possible parsing
steps that can be taken by any parsing strategy which uses a LZ77-dictionary.
Hence, there exists a correspondence between paths from v1 to vn+1 in G(T)
and LZ77-parsings of the whole string T. If we weight every edge (vi, vj) ∈
E with an integer c(vi, vj) = | f (di,j)| + |g(`i,j)|, which accounts for the cost
of encoding its label (phrase) via the encoding functions f and g, then the
length in bits of the encoded parsing is equal to the cost of the corresponding
weighted path in G(T). The problem of determining OPT f ,g(T) is thus reduced
to computing the shortest path from v1 to vn+1 in G(T).
Given that G(T) is a DAG, its shortest path from v1 to vn+1 can be computed in
O(|E|) time and space. However, this is Θ(n2) in the worst case (consider e.g.
T = an [101, 151]) thus resulting inefficient and actually unfeasible in practice
even for strings of few Megabytes. In what follows we show that the compu-
tation of the SSSP can be restricted to a subgraph of G(T) whose size depends
on the choice of f and g satisfying Property 1, and is O(n log n) for most known
integer-encoding functions. Then we will design efficient algorithms and data
structures that will allow us to generate this subgraph on-the-fly by taking O(1)
amortized time per edge and O(n) space overall. These algorithms will be
therefore time-and-space optimal for the subgraph in hand.

4.4.1 A useful, small, subgraph of G(T).

We use FS(v) to denote the forward star of a vertex v, namely the set of vertices
pointed to by v in G(T); and we use BS(v) to denote the backward star of v,
namely the set of vertices pointing to v in G(T). It is easy to notice that all
edges of in this graph are oriented rightward, so G(T) is a DAG. More impor-
tantly, we can prove that the indices of the vertices in FS(v) and BS(v) form a
contiguous range:

Fact 2. Given a vertex vi and let vi+x and vi−y be respectively the vertex with greatest
index in FS(vi) and the smallest index in BS(vi), it holds

• FS(vi) = {vi+1 . . . , vi+x−1, vi+x} and

• BS(vi) = {vi−y . . . , vi−2, vi−1}.

Furthermore, x, y are smaller than the length of the longest repeated substring in T.

Proof. By definition of (vi, vi+x), string T[i : i + x− 1] occurs at some position
p < i in T. Any prefix T[i : k− 1] of T[i : i + x− 1] also occurs at that position
p, thus vk ∈ FS(vi). The bound on x derives from the definition of (vi, vi+x).
A similar argument holds for BS(vi). �
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This means that if an edge does exist in G(T), then there exist also all the edges
which are nested within it and are incident into one of its extremes. The follow-
ing property relates the indices of the vertices vj ∈ FS(vi) with the cost of
their connecting edge (vi, vj), and not surprisingly shows that the smaller is
j (i.e. the shorter is the edge), the smaller is the cost of encoding the phrase
T[i : j− 1] 4

Fact 3. Given a vertex vi, for any pair of vertices vj′ , vj′′ ∈ FS(vi) such that j′ < j′′,
we have that c(vi, vj′) ≤ c(vi, vj′′). The same property holds for vj′ , vj′′ ∈ BS(vi).

Proof. We have that di,j′ ≤ di,j′′ and `i,j′ < `i,j′′ because T[i : j′ − 1] is a prefix
of T[i : j′′ − 1] and thus the first substring occurs wherever the latter occurs.
The property holds because f and g satisfy the Increasing Cost Property. �

Given these monotonicity properties, we are ready to characterize a special
subset of the vertices in FS(vi), and their connecting edges.

Definition 1. An edge (vi, vj) ∈ E is called

• d−maximal iff the next edge from vi takes more bits to encode its distance (i.e.,
| f (di,j)| < | f (di,j+1)|).

• `−maximal iff the next edge from vi takes more bits to encode its length (i.e.,
|g(li,j)| < |g(li,j+1)|).

Edge (vi, vj) is called maximal if it is either d-maximal or `-maximal (i.e., c(vi, vj) <
c(vi, vj+1)).

The number of maximal edges depends on the functions f and g (which satisfy
Property 1). Let Q( f , n) (resp. Q(g, n)) be the number of different codeword
lengths generated by f (resp. g) when applied to integers in the range [n]. We
can partition [n] into contiguous sub-ranges I1, I2, . . . , IQ( f ,n) such that the in-
tegers in Ii are mapped by f to codewords (strictly) shorter than the codewords
for the integers in Ii+1. Similarly, g partitions the range [n] in Q(g, n) contigu-
ous sub-ranges.

Lemma 6. There are at most Q( f , n) + Q(g, n) maximal edges outgoing from any
vertex vi.

Proof. By Fact 2, vertices in FS(vi) have indices in a range R, and by Fact
3, c(vi, vj) is monotonically non-decreasing as j increases in R. Moreover we
know that f (resp. g) cannot change more than Q( f , n) (resp. Q(g, n)) times.

�
4Recall that c(vi, vj) = | f (di,j)|+ |g(`i,j)|, if the edge does exist, otherwise we set c(vi, vj) =

+∞.
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To speed up the computation of a SSSP from v1 to vn+1, we construct a sub-
graph G̃(T) of G(T) which is formed by maximal edges only, it is smaller than
G(T) and contains one of those SSSP.

Theorem 6. There exists a shortest path in G(T) from v1 to vn+1 that traverses
maximal edges only.

Proof. By contradiction assume that every such shortest path contains at least
one non-maximal edge. Let π = vi1vi2 . . . vik , with i1 = 1 and ik = n+ 1, be one
of these shortest paths, and let γ = vi1 . . . vir be the longest initial subpath of
π which traverses maximal edges only. Assume w.l.o.g. that π is the shortest
path maximizing the value of |γ|. We know that (vir , vir+1) is a non-maximal
edge, and thus we can take the maximal edge (vir , vj) that has the same cost. By
definition of maximal edge, it is j > ir+1; furthermore, we must have j < n + 1
because we assumed that no path is formed by maximal edges only. Now,
since G(T) is a DAG and indices in π are increasing, it must exist an index ih ≥
ir such that the index of that maximal edge j lies in [ih, ih+1]. Since (vih , vih+1)
is an edge of π, it does exist the edge (vj, vih+1) (by Fact 2), and by Fact 3 on
BS(vih+1) we can conclude that c(vj, vih+1) ≤ c(vih , vih+1). Consequently, the
path vi1 · · · vir vjvih+1 · · · vik is also a shortest path but its longest initial subpath
of maximal edges consists of |γ|+ 1 vertices, which is a contradiction! �

Theorem 6 implies that the distance between v1 and vn+1 is the same in G(T)
and G̃(T), with the advantage that computing SSSP in G̃(T) can be done faster
and in reduced space, because |FS(v)| ≤ Q( f , n) + Q(g, n) (Lemma 6). Thus,
subgraph G̃(T) consists of n + 1 vertices and at most n(Q( f , n) + Q(g, n))
edges. For Elias’ codes [36], Fibonacci’s codes [150], and most practical in-
teger encoders used for search engines and data compressors [149, 164], it
is Q( f , n) = Q(g, n) = O(log n). Therefore |G̃(T)| = O(n log n), so it is
smaller than the complete graph built and used by previous papers [101, 151].
For the encoders used in gzip, it is Q( f , n) = Q(g, n) = O(1) and thus
|G̃(T)| = O(n).

4.4.2 An efficient bit-optimal parser

From a high level, our solution is a variant of a classic linear-time algorithm
for SSSP over a DAG (see [31, Section 24.2]), here applied to work on the
subgraph G̃(T). Therefore its correctness follows directly from Theorem 24.5
of [31] and our Theorem 6. However, the key difficulty in implementing this
approach consists of how to generate on-the-fly and efficiently (in time and space)
the maximal edges outgoing from vertex vi. We will refer to this problem as the
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forward-star generation problem, and use FSG for brevity. In what follows we
show that FSG takes O(1) amortized time per edge and O(n) space in total.
Since we have n vertices, with no more than Q( f , n) + Q(g, n) maximal edges
each (Lemma 6), we will obtain the following:

Theorem 7. Given a string T[1, n] drawn from an alphabet of size σ, and two integer-
encoding functions f and g that satisfy Property 1, there exists an algorithm that
computes the ( f , g)-optimal parsing of T based on a LZ77-dictionary by taking O(n)
space and O(n(Q( f , n) + Q(g, n))) time in the worst case.

Most of the integer-encoding functions used in practice are such that Q(e, n) =
O(log n) [150]. Thus, by Theorem 7 we derive the following corollary that
instantiates our result for many of such integers-encoding functions.

Corollary 1. Given a string T[1, n] drawn from an alphabet of size σ, and let f and
g be chosen among Elias Gamma code, Elias Delta code, Elias Omega code, Even-
Rodeh codes, Fibonacci code, Variable Bytes, Nibbles code or Boldi-Vigna Zeta codes,
the ( f , g)-optimal parsing of T based on a LZ77-dictionary by taking O(n log n) time
and O(n) space in the worst case.

To the best of our knowledge, result stated above is the first one that answers
positively to the question posed by Rajpoot and Sahinalp in [141, pag. 159].

The rest of this section will be devoted to prove Theorem 7, which is indeed
our main contribution.

From Lemma 6 we know that the edges outgoing from vi can be partitioned
into no more than Q( f , n) groups, according to the distance from T[i] of the
copied string they represent. Let I1, I2, . . . , IQ( f ,n) be the intervals of distances
such that all distances in Ik are encoded with the same number of bits by f .
Take now the d-maximal edge (vi, vhk

) for the interval Ik. We can infer that
substring T[i : hk − 1] is the longest substring having a copy at distance within
Ik because, by Definition 1 and Fact 3, any edge following (vi, vhk

) denotes a
longer substring which must lie in a subsequent interval (by d-maximality of
(vi, vhk

)), and thus must have longer distance from T[i]. Once d-maximal edges
are known, the computation of the `-maximal edges is then easy because it suf-
fices to further decompose the edges between successive d-maximal edges, say
between (vi, vhk−1+1) and (vi, vhk

), according to the distinct values assumed by
the encoding function g on the lengths in the range [hk−1, . . . , hk − 1]. This
takes O(1) time per `-maximal edge, because it needs some algebraic calcula-
tions, and the corresponding copied substring can then be inferred as a prefix
of T[i : hk − 1].

So, let us concentrate on the computation of d-maximal edges outgoing from
vertex vi. We remark that we could use the solution proposed in [60] on each
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of the Q( f , n) ranges of distances in which a phrase copy can be found. Un-
fortunately, this approach would pay another multiplicative factor log σ per
symbol and its space complexity would be super-linear in n. Conversely, our
solution overcomes these drawbacks by deploying two key ideas:

1. The first idea aims at achieving the optimal O(n) working-space bound.
It consists of proceeding in Q( f , n) passes, one per interval Ik of pos-
sible d-costs for the edges in G̃(T). During the kth pass, we logically
partition the vertices of G̃(T) in blocks of |Ik| contiguous vertices, say
vik , vik+1, . . . , vik+|Ik|−1, and compute all d-maximal edges which spread
out from that block and have copy-distance within Ik (thus they all have
the same d-cost, say c(Ik)). These edges are kept in memory until they are
used by our bit-optimal parser, and discarded as soon as the first vertex
of the next block, i.e. vik+|Ik|, needs to be processed. The next block of |Ik|
vertices is then fetched and the process repeats. All passes are executed
in parallel to guarantee that all d-maximal edges of vi are available when
processing this vertex. There are n/|Ik| distinct blocks at each pass, and
each d-maximal edge of a vertex is considered in some pass (because it
has d-cost in some Ik). The space is ∑

Q( f ,n)
k=1 |Ik| = O(n) because we keep

one d-maximal edge per vertex at any pass.

2. The second key idea aims at computing the d-maximal edges for that
block of |Ik| contiguous vertices in O(|Ik|) time and space. This is what
we address below, being the most sophisticated technicality of our solu-
tion. As a result, we show that the time complexity of FSG is no more
than ∑

Q( f ,n)
k=1 (n/|Ik|)O(|Ik|) = O(n Q( f , n)), i.e., O(1) amortized time per

d-maximal edge. Combining this fact with the previous observation on
the computation of the `-maximal edges, we get Theorem 7 above.

Consider the kth pass of FSG in which we assume that Ik = [l, r]. Recall that
all distances in Ik can be f -encoded in the same number of, say, c(Ik) bits. Let
B = [i, i + |Ik| − 1] be the block of (indices of) vertices for which we wish to
compute on-the-fly the d-maximal edges of cost c(Ik). This means that the d-
maximal edge from vertex vh, h ∈ B, represents a phrase that starts at T[h]
and has a copy starting in the window (of indices) Wh = [h− r, h− l]. Thus the
distance of that copy can be f -encoded in c(Ik) bits, and so we will say that
the edge has d-cost c(Ik). Since this computation must be done for all vertices
in B, it is useful to consider the window WB = Wi ∪Wi+|Ik|−1 which merges
the first and last window of positions that can be the (copy-)reference of any
d-maximal edge outgoing from B. Note that |WB| = 2|Ik| (see Figure 4.1) and
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it spans all positions where the copy of a d-maximal edge outgoing from B can
occur.

Figure 4.1: Interval B = [i, j] with j = i + |Ik| − 1, window WB and its two
halvesW ′B,W ′′B .

The next fact is crucial to fast compute all these d-maximal edges via indexing
data structures built over T:

Fact 4. If there exists a d-maximal edge outgoing from vh and having d-cost c(Ik),
then this edge can be found by determining a position s ∈ Wh whose suffix Ts shares
the maximum longest common prefix (shortly, Lcp) with Th.

Proof. Among all positions s in Wh take one whose suffix Ts shares the max-
imum Lcp with Th, and let q be the length of this Lcp. Of course, there may
exist many such positions, we take just one of them. The edge (vh, vh+q+1)
has d-cost c(Ik), because s ∈ Wh, and is d-maximal because any other position
s′ ∈ Wh induces an edge (vh, vh+q′+1) whose length q′ ≤ q, by maximality of
q. So any edge (vh, vh+q′′), with q′′ > q, must reference a copy before Wh, if
any. �

Hereafter we call the position s of Fact 4 maximal position for vertex vh, and
note that it does exist only if vh has a d-maximal edge of cost c(Ik). Our algo-
rithm will compute the maximal positions of every vertex vh in B and every
cost c(Ik). If such maximal position does not exist, vh will be assigned an ar-
bitrary position. The net result is that we will generate a supergraph of G̃(T)
which is still guaranteed to have the size stated in Lemma 6 and can be cre-
ated efficiently in O(|Ik|) time and space, for each block of distances Ik, as we
required above.

Fact 4 relates the computation of maximal positions for the vertices in B to
Lcp-computations between suffixes in B and suffixes in WB. Therefore it is
natural to resort some indexing data structure, like the compact trie TB, built
over the suffixes of T which start in the range of positions B ∪WB. Trie TB
takes O(|B| + |WB|) = O(|Ik|) space, and this bound is within our required
space complexity. It is not easy to build TB in O(|Ik|) time and space, because
this time complexity is independent of the length of the indexed suffixes and
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the alphabet size. The proof of this result may be of independent interest, and
it is deferred to Subsection 4.4.3. The key idea there is to deploy the fact that
the algorithm we detail below does not make any assumption on the edge-
ordering of TB, because it just computes (sort of) Lca-queries on its structure.

So, let us assume that we are given the trie TB. We notice that the maximal
position s for a vertex vh in B having d-cost c(Ik) can be computed by finding
the leaf of TB which is labeled with an index s that belongs to the range Wh and has
the maximum Lcp with the leaf labeled h. This actually corresponds to find the
leaf whose label s ∈ Wh and has the deepest Lca with the leaf labeled h. We
need to answer this query in O(1) amortized time per vertex vh, since we aim
at achieving an O(|Ik|) time complexity over all vertices in B. This is not easy
because this is not the classic Lca-query since we do not know s, which is ac-
tually the position we are searching for! Furthermore, since the leaf s is the
closest one to h in TB among the leaves with index in Wh, one could think to
use proper predecessor/successor queries on a suitable dynamic set of suffixes
in Wh. Unfortunately, this would take ω(1) time because of well-known lower
bounds [13]. Therefore, in order to answer this query in constant (amortized)
time per vertex of B, we deploy proper structural properties of the trie TB and
the problem at hand.

Let u be the Lca of the leaves labeled h and s in TB. For simplicity, we assume
that the window Wh strictly precedes B and that s is the unique maximal posi-
tion for vh (our algorithm deals with these cases too, see the proof of Lemma
7). We observe that h must be the smallest index that lies in B and labels a
leaf descending from u in TB. In fact assume, by contradiction, that a smaller
index h′ < h does exist. By definition h′ ∈ B and thus vh would not have a d-
maximal edge of d-cost c(Ik) because it could copy from the closer h′ a possibly
longer phrase, instead of copying from the farther set of positions in Wh. This
observation implies that we have to search only for one maximal position per
node u of TB, and this position refers to the vertex va(u) whose index a(u) is
the smallest one that lies in B and labels a leaf descending from u. Computing
the value a() for all nodes u in TB takes O(|TB|) = O(|Ik|) time and space via
a traversal of the trie TB.

Now we need to compute the maximal position for va(u), for each node u ∈ TB.
We cannot traverse the subtree of u searching for the maximal position for
va(u), because this would take quadratic time complexity overall. Conversely,
we defineW ′B andW ′′B to be the first and the second half ofWB, respectively,
and observe that any window Wh has its left extreme in W ′B and its right ex-
treme inW ′′B (see Figure 4.1). Therefore the window Wa(u) containing the max-
imal position s for va(u) overlaps both W ′B and W ′′B . If s does exist for va(u),
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then s belongs to eitherW ′B or toW ′′B , and the leaf labeled s descends from u.
Hence the maximum (resp. minimum) among the elements inW ′B (resp. W ′′B )
that label leaves descending from u must belong to Wa(u).

This suggests to compute for each node u the rightmost position inW ′B and the
leftmost position in W ′′B that label a leaf descending from u, denoted respec-
tively by max(u) and min(u). This takes O(|Ik|) time with a post-order visit of
TB. We can now efficiently compute mp[h] as the maximal position for vh, if it
exists, or otherwise set mp[h] arbitrarily. We initially set all mp’s entries to nil;
then we visit TB in post-order and perform, at each node u, the following two
checks whenever mp[a(u)] = nil: If min(u) ∈ Wa(u), we set mp[a(u)] = min(u);
if max(u) ∈ Wa(u), we set mp[a(u)] = max(u). At the end of the visit, if mp[a(u)]
is still nil we set mp[a(u)] = a(parent(u)) whenever a(u) 6= a(parent(u)).
This last check is needed (see proof of Lemma 7) to manage the case in which
T[a(u)] can copy the phrase starting at its position from position a(parent(u))
and, additionally, we have that B overlaps WB (which may occur depending
on f ). Since TB has size O(|Ik|), the overall algorithm requires O(|Ik|) time and
space in the worst case, and hence Theorem 7 follows. Correctness follows
from lemma below.

Lemma 7. For each position h ∈ B, if there exists a d-maximal edge outgoing from
vh and having d-cost c(Ik), then mp[h] is equal to its maximal position.

Proof. Recall that B = [i, i + |Ik| − 1] and consider the longest path π =
u1u2 . . . uz in TB that starts from the leaf u1 labeled with h ∈ B and goes upward
until the traversed nodes satisfy the condition a(uj) = h, here j = 1, . . . , z. By
definition of a-value (see above), we know that all leaves descending from uz
and occurring in B are labeled with an index which is larger than h. Clearly, if
parent(uz) does exist, then it is a(parent(uz)) < h. There are two cases for the
final value stored in mp[h].

Case 1. Suppose that mp[h] ∈ Wh. We want to prove that mp[h] is the index of
the leaf which has the deepest Lca with h among all the other leaves labeled
with an index in Wh. Let ux ∈ π be the node in which the value of mp[h] is
assigned. Then, by our algorithm it is a(ux) = h. Assume now that there exists
at least another index in Wh whose leaf has a deeper Lca with leaf h. This Lca
must lie on u1 . . . ux−1, say ul. Since Wh is a window having its left extreme in
W ′B and its right extreme in W ′′B , the value max(ul) or min(ul) must lie in Wh
and thus the algorithm has set mp[h] to one of these positions, because of the
post-order visit of TB and the check on mp[a(ux)] = nil. Therefore mp[h] must
be the index of the leaf having the deepest Lca with h, and thus by Fact 4 it is
its maximal position.
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Case 2. Suppose that mp[h] /∈Wh and, thus, it cannot be a maximal position for
vh. We have to prove that it does not exist a d-maximal edge outgoing from the
vertex vh with cost c(Ik). Let Ts be the suffix in Wh having the maximum Lcp
with Th, and let l be the Lcp-length. Values min(ui) and max(ui) do not belong
to Wh, for any node ui ∈ π with a(ui) = h, otherwise mp[h] would have been
assigned with an index in Wh (contradicting the hypothesis). Thus the value of
mp[h] remains nil up to node uz. This implies that no suffix descending from uz
starts in Wh and, in particular, Ts does not descend from uz. Therefore, the Lca
between leaves h and s is a node in the path from parent(uz) to the root of TB,
and the Lcp(Ta(parent(uz)), Th) ≥ Lcp(Ts, Th) = l. Since a(parent(uz)) < a(uz)
and it belongs to B (by definition of a-value), this position is nearer to h than
any other position in Wh, and shares a longer prefix with Th. So we found a
longer edge from vh with smaller d-cost. This way vh has no d-maximal edge
of cost c(Ik) in G̃(T). �

4.4.3 On the optimal construction of TB

In the discussion above we left out the explanation on how to build TB in
O(|Ik|) time and space, thus within a time complexity which is independent
of the length of the |Ik| indexed suffixes and the alphabet size σ. To achieve
this result we deploy the crucial fact that the algorithm of the previous section
does not make any assumption on the ordering of the edges in TB, because it
just computes (sort of) Lca-queries on its structure.

First of all, we build the suffix array of the whole string T and a data struc-
ture that answers constant-time Lcp-queries between pair of suffixes (see e.g.
[139]). This takes O(n) time and space.

Let us first assume that B and WB are contiguous and form the range [i, i +
3|Ik|− 1]. If we had the sorted sequence of suffixes starting in T[i : i+ 3|Ik|− 1],
we could easily build TB in O(|Ik|) time and space by deploying the above
Lcp-data structure. Unfortunately, it is unclear how to obtain from the suf-
fix array of the whole T, the sorted sub-sequence of suffixes starting in the
range [i, i + 3|Ik| − 1] by taking O(|B|+ |WB|) = O(|Ik|) time (notice that these
suffixes have length Θ(n − i)). We cannot perform a sequence of predeces-
sor/successor queries because they would take ω(1) time each [13]. Con-
versely, we resort the key observation above that TB does not need to be or-
dered, and thus devise a solution which builds an unordered TB in O(|Ik|) time
and space, passing through the construction of the suffix array of a transformed
string. The transformation is simple. We first map the distinct symbols of
T[i, i + 3|Ik| − 1] to the first O(|Ik|) integers. This mapping does not need to re-
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flect their lexicographic order, and thus can be computed in O(|Ik|) time by a
simple scan of those symbols and the use of a table T of size σ = O(n). Then,
we define T̂ as the string T which has been transformed by re-mapping some of
the symbols according to table T (namely, those occurring in T[i : i+ 3|Ik| − 1]).
We can prove the following Lemma.

Lemma 8. Let Ti, . . . , Tj be a contiguous sequence of suffixes in T. The re-mapped
suffixes T̂i . . . T̂j can be lexicographically sorted in O(j− i + 1) time.

Proof. Consider the string of pairs w = 〈T̂[i], bi〉 . . . 〈T̂[j], bj〉$, where bh is 1
if T̂h+1 > T̂j+1, −1 if T̂h+1 < T̂j+1, or 0 if h = j. The ordering of the pairs is
defined component-wise, and we assume that $ is a special “pair” larger than
any other pair in w. For any pair of indices p, q ∈ [1 . . . j− i], it is T̂p+i > T̂q+i
iff wp > wq. In fact, suppose that wp > wq and set r = Lcp(wp, wq). We have
that w[p + r] = 〈T̂[p + i + r], bp+i+r〉 > 〈T̂[q + i + r], bq+i+r〉 = w[q + i + r].
Hence we have that either T̂[p + i + r] > T̂[q + i + r] or bp+i+r > bq+i+r. The
latter actually means that T̂p+i+r+1 > T̂j+1 ≥ T̂q+i+r+1. In any case, it follows
that T̂p+i+r > T̂q+i+r and thus T̂p+i > T̂q+i, since their first r symbols are equal.

This implies that sorting the suffixes T̂i, . . . , T̂j reduces to computing the suffix
array of w, and this takes O(|w|) time given that the alphabet size is O(|w|)
[139]. Clearly, w can be constructed in that time bound because comparing
T̂z with T̂j+1 takes O(1) time via an Lcp-query on T (using the proper data
structure above) and a check at their first mismatch. �

Lemma 8 allows us to generate the compact trie of T̂i, . . . , T̂i+3|Ik|−1, which is
equal to the (unordered) compacted trie of Ti, . . . , Ti+3|Ik|−1 after replacing ev-
ery ID assigned by table T with its original symbol in T. We finally notice that
if B andWB are not contiguous (as instead we assumed above), we can use a
similar strategy to sort separately the suffixes in B and the suffixes inWB, and
then merge these two sequences together by deploying the Lcp-data structure
mentioned at the beginning of this section.

4.5 Some experiments

In this section we provide an experimental support to our findings of Section
4.3, and compare our proposals of Sections 4.2 and 4.4 with some state-of-
the-art compression tools over few freely available text collections. Table 4.1
reports our findings.
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Compressor english sources

gzip -9 37.52% 23.29%
bzip2 -9 28.40% 19.78%
boosterOpt 20.62% 17.36%
Fixed-LZ77 26.19% 24.63%
Rightmost-LZ77 23.81% 20.14%
BitOptimal-LZ77 21.62% 17.62%
Compressor html [19] Avg Dec. time (sec)
gzip -9 20.09% 0.7
bzip2 -9 10.63% 6.3
boosterOpt 3.89% 20.2
Fixed-LZ77 4.98% 0.8
Rightmost-LZ77 4.27% 0.9
BitOptimal-LZ77 3.87% 0.9

Table 4.1: Each text collection consists of 50 Mbytes of data. All the experi-
ments were executed on a 2.6 GHz Pentium 4, with 1.5 GB of main
memory, and running Fedora Linux.

Let us first consider algorithm Fixed-LZ77, which uses an unbounded win-
dow and equal-length encoders for the distance of the copied phrases. Its com-
pression performance shows that an unbounded window may introduce a sig-
nificant compression gain wrt to a bounded one, as used by gzip and bzip2
(see e.g. html), thus witnessing the presence in current (Web/text) collections
of surprisingly many long repetitions at large distances. This motivates our
main study for M = n, even if our results extend to the bounded-window case
too.

Then we consider Rightmost-LZ77 (Section 4.2), which uses an unbounded
window and selects the rightmost copy of the currently longest phrase. As
expected, this parsing combined with the use of variable-length encoders im-
proves Fixed-LZ77, thus sustaining in practice the starting point of our the-
oretical investigation.

Finally, we tested our bit-optimal compressor BitOptimal-LZ77 finding that
it improves Rightmost-LZ77, as theoretically predicted in Lemma 4. Sur-
prisingly, BitOptimal-LZ77 significantly improves bzip2 (which uses a
bounded window) and comes close to the booster (which uses an unbounded
window [43]). Additionally, since BitOptimal-LZ77 adopts the same de-
compression algorithm of gzip, it retains its fast decompression speed which is at
least one order of magnitude faster than decompressing bzip2’s or booster’s
compressed files. This is a nice combination which makes BitOptimal-LZ77
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practically relevant for a wide range of applications in which the paradigm
is “compress once & decompress many times” (like in Web search engines
and IR systems), or where the decompression system is less powerful than the
compressor one (like a server that distributes data to clients, possibly mobile
phones).



CHAPTER

FIVE

Fast random access on compressed
data

Starting from [52] and [81, 145], the design of compressed (self)indexes for
strings became an active field of research (some of these results will be pre-
sented in Chapters 6 and 7). The key problem addressed in these papers con-
sists of representing a string T[1, n] drawn from an alphabet Σ of size σ within
compressed space, and still be able to solve the Text Searching Problem in ef-
ficient time, without incurring in the whole decompression of the compressed
data. In these results, compressed space usually means space close to the k-th
order empirical entropy of T, and efficient time means something depending
on the length of the searched string and as much independent as possible of
T’s length.

Recently, Sadakane and Grossi [148] addressed the foundational problem of
designing a compressed storage scheme for a string T in which the query op-
eration to be supported is the retrieval of any `-long substring of T in optimal
O(1 + `

logσ n ) time. The previous known solutions [134] were based on com-
pressed indexes. The main drawback of these solutions is given by the fact
that they incur in an additional sub-logarithmic time overhead. Instead, the
Sadakane-Grossi’s storage scheme achieves the optimal time bound and occu-
pies a number of bits upper bounded by the following function:1 nHk(T) +
O( n

logσ n ((k + 1) log σ + log log n), where, as usual, Hk(T) is the k-th order en-
tropy of string T (recall Definition 2.4.3). This storage scheme is based on a

1As stated in [79], the term (k + 1) log σ appears erroneously as k in [148]. We therefore use
the correct bound in this chapter.
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sophisticated combination of various techniques: Ziv-Lempel’s string encod-
ing [167], succinct dictionaries [143], and some novel succinct data structures
for supporting navigation and path-decoding in LZ-tries. Since storing T by
means of a plain array of symbols takes Θ(n log σ) bits, the scheme in [148] is
effective when k = o(logσ n).

González and Navarro [79] proposed a simpler storage scheme achieving the
same query time and a slightly improved space bound:

nHk(T) + O(
n

logσ n
(k log σ + log log n) ) (5.0.1)

This storage scheme exploits a statistical encoder (namely, Arithmetic) on most
of T’s substrings but, unlike [148], requires to fix the order k of the entropy
bound in advance.

In what follows we propose a very simple storage scheme that: (1) drops the
use of any compressor (either statistical or LZ-like), and deploys only binary
encodings and tables; (2) matches the space bound of Eqn. (5.0.1) simultane-
ously over all k = o(logσ n). We then exploit this storage scheme to achieve
two corollary results. The first one provides a novel bound in terms of Hk(T)
on the compression ratio achievable by any 0-th order compressor applied on
blocks of l contiguous symbols of T, with k ≤ l (see Theorem 10). The sec-
ond result shows that our storage scheme can be used upon the string Bwt(T)
in order to achieve an interesting compressed-space bound which depends on
the k-th order entropy of both the strings T and Bwt(T) (see Theorem 11).

Recently, Theorem 10 has been used in [77] to design a scheme which achieves
the same query time and has a slightly improved space bound. Essentially,
they use our construction combined with recent techniques in a way that al-
lows them to remove the term O( n

logσ n log log n) in Eqn. (5.0.1), so that its space
bound becomes nHk(T) +O( n

logσ n k log σ) bits. This implies that their solution

is better than ours only for very small value of k (namely, k = o( log log n
log σ )).

5.1 Our storage scheme for strings

Let T[1, n] be a string drawn from an alphabet Σ, and assume that n is a mul-
tiple of b = b1

2 logσ nc. If this is not the case, we append to T the missing
symbols taking them as the special null symbol.2 We partition T into blocks

2This will add to the entropy estimation a negligible additive term equal to
O(log σ logσ n) = O(log n) bits.
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Ti of size b each. Let S be the set of distinct blocks of T. The number of all
blocks is n

b ; the number of distinct blocks is |S| = O(σb) = O(n1/2). We de-
fine B = [ε, 0, 1, 00, 01, 10, 11, 000, . . .] to denote the infinite sequence of binary
strings ordered first by length and then lexicographically by their content, with
ε denotes the empty string.

The encoding scheme. We sort the elements of S per decreasing frequency
of occurrence in T’s partition. Let r(Ti) be the rank of the block Ti in this
ordering, and let r−1(j) be its inverse function (namely, the one that returns
the block having the given rank j). The storage scheme for T consists of the
following information.

• Each block Ti is assigned a codeword enc(i) consisting of the binary
string that has rank r(Ti) in B. It is simple to see that |enc(i)| ≤ log i ≤
1
2 log n. Of course, enc(i) is not a uniquely decodable code, but the addi-
tional tables built below will allow us to decode it in constant time and
within a space bounded by Eqn. (5.0.1).

• We build a bit sequence V obtained by juxtaposing the binary encodings
of all T’s blocks in the order of their appearance in T. Namely V =
enc(1) · · · enc(n

b ).

• We store r−1 as a table of O(σb) entries, taking O(σb log n) = o(n) bits.

• To guarantee constant-time access to the encodings of T’s blocks and to
ensure their decodings, we use a two-level storage scheme for the start-
ing positions of encs (see [128]). Specifically, we logically group every
c = Θ(log n) contiguous blocks into one superblock, having thus size
bc log σ = Θ(log2 n) bits. Table DSblk[1, n

bc ] stores the starting position
of the encoding of every super-block in V, and table Dblk[1, n

b ] stores the
starting position in V of the encoding of every block relative to the begin-
ning of its enclosing super-block. Note that the starting position of each
super-block is no more than |V| = O(n

b log n) = O(n log σ), whereas
the relative position of each block within its super-block is O(log2 n).
Consequently, tables DSblk and Dblk occupy O( n

bc log |V|+ n
b log log n) =

O(
n log log n

logσ n ) bits overall, and guarantee a constant-time access to every

codeword enc(i) and its length.3

Theorem 8. Our storage scheme encodes T[1, n] in |V|+O(
n log log n

logσ n ) bits, which is
upper bounded by Eqn. (5.0.1), simultaneously over all k = o(logσ n).

3It suffices to compute the starting position of enc(i) and enc(i + 1), if any.
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Proof. For every position i, k ≤ i ≤ n, let us denote by fi denotes the empirical
probability of seeing T[i] after the k-order context T[i− k, i− 1]. According to
Definition 2.4.3, this can be rephrased by saying that fi is the frequency of
occurrence of symbol T[i] within uT, where u = T[i− k, i− 1]. It is easy to see
that a (semi-static) k-order modeler can compute all the frequencies fi via two
passes over T, hence in O(n) time.

Arithmetic encoding is the most effective statistical encoder [164]. Given the
fis, it represents the string T with a range of size F = f1 × f2 × · · · × fn. It
is well known [164] that 2 + log(1/F) = 2 + ∑n

i=1 log(1/ fi) bits are enough
to distinguish a number within that range. The binary representation of this
number is the Arithmetic compression of T. If we compute ∑n

i=k+1 log(1/ fi),
and then group all the terms referring to the same k-th order context, we obtain
a summation upper bounded by nHk(T) (see Eqn. (2.4.3)). Additionally, since
fi ≥ 1/n, we have that ∑k

i=1 log(1/ fi) = O(k log n). As a result, a (semi-static)
k-th order Arithmetic encoder compresses the whole T within nHk(T) + 2 +
O(k log n) bits.

Let us introduce a compressor E that encodes each block Ti of T individually:
the first k symbols of Ti are represented explicitly, the remaining b− k symbols
of Ti are compressed via the above k-order Arithmetic encoder (hence using
their k-th order frequencies f s). It is easy to observe that the codeword so as-
signed to Ti uniquely identifies it. This blocking approach increases the above
Arithmetic encoding of the whole T by O((n/b)k log σ) bits, which accounts
for the cost of explicitly storing the first k symbols of each Ti.

To show that the string V produced by our storage scheme enc is shorter than
the compressed string produced by E, it suffices to note that the codewords
assigned by E are a subset of B, whereas the codewords assigned by enc are
the first |S| binary strings of B. Given that B is the set of the shortest code-
words assignable to S ’s strings, our encoding enc is better than E because it
follows the golden rule of data compression: it assigns shorter codewords to
more frequent symbols. Summing up the cost of the block’s encodings and the
space occupancy of the decoding table, we get the space bound of Eqn. (5.0.1),
whenever k = o(logσ n) and independently of it. �

We now show how to decode in constant time a generic block Tk. This will be
enough to prove the result for any `-long substring of T. We first derive the
starting position p(k) of the string enc(k) that encodes Tk in V. Namely, we
compute the super-block number h = dk/ce containing enc(k), and its starting
bit-position y = DSblk[h] within V. Then, we compute x = Dblk[k] as the rela-
tive bit-position of enc(k) within its enclosing super-block. Thus p(k) = x + y.
Similarly, we derive the starting position p(k+ 1) of enc(k+ 1) in V (if any, oth-
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erwise we set p(k + 1) = |V|+ 1). We can thus fetch enc(k) = V[p(k), p(k +
1)− 1] in constant time since |enc(k)| = p(k + 1)− p(k) = O(log n) bits.

We finally decode enc(k) as follows. Let v be the integer value represented by
the binary string enc(k), where v = 0 if enc(k) = ε. Because of the canonical
ordering of S , Tk is computed as the block having rank z = 2|enc(k)| + v. That
is, Tk = r−1(z).

Theorem 9. Our storage scheme retrieves any substring of T of length ` in optimal
O(1 + `

logσ n ) time.

Proof. The algorithm described above allows to retrieve any block Tk in con-
stant time. The theorem follows by observing that any `-long substring T[j, j+
l − 1] spans O(1 + l

logσ n ) blocks of T. �

5.2 Huffman on blocks of symbols

It is well-known that the Huffman compressor cannot represent a symbol with
less than one bit. To circumvent this, the string T is usually partitioned into
n
l blocks of length l each, and then Huffman is applied onto the alphabet Σl
of these new symbols, i.e. l-long blocks. This blocking strategy spreads the
per-symbol inefficiency over the entire block, thus reducing it to 1

l bits. It is
natural to ask what is the compression ratio of this block-Huffman algorithm.
The following theorem bounds the 0-th order entropy of Tl by the k-th order
empirical entropy of original string T.

Theorem 10. H0(Tl) ≤ lHk(T) + O(k log σ), simultaneously over all k ≤ l.

Proof. Consider the compressor E in the proof of Theorem 8. E does not
depend on the size of the blocks in which T has been decomposed. Hence,
we can set b = l, apply E onto the blocked T and thus assign a distinct
prefix-free codeword to each distinct block in S (i.e. symbol of Σl). As seen
in that proof, the space necessary to represent the whole Tl is bounded by
nHk(T) + O((n/l)k log σ) bits. The stated theorem follows by the classical
Information-Theory lower bound, since every prefix-free encoder needs on Tl
at least |Tl|H0(Tl) =

n
l H0(Tl) bits. �

We note that the case k = 0 of Theorem 10 has been proved in [145]. Given The-
orem 10, the output produced by Huffman over Tl is bounded by n

l H0(Tl) +
n
l ≤ nHk(T) + O(n

l (k log σ + 1)).
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5.3 BWT compression and access

In this section we show that our storage scheme can be used upon the string
Bwt(T) in order to achieve an interesting compressed-space bound which de-
pends on both Hk(T) and Hk(Bwt(T)). The relation between these two en-
tropies will be commented below.

Theorem 11. Our storage scheme applied on the string L = Bwt(T) takes no more
than min{nHk(L), nHk(T)}+ o(n log σ) bits, simultaneously over all k = o(logσ n).
Any `-long substring of L can be retrieved in optimal O(1 + `

logσ n ) time.

Proof. Let Ck(j) be the k-long prefix of the j-th row ofMT. By the properties of
Bwt(T) (see Section 2.4.2), Ck(j) follows L[j] in T and thus Ck(j) is the following
k-long context of L[j]. The Definition 2.4.3 of Hk(T) can changed by replacing
the notion of preceding k-long contexts with the one of following k-long contexts.
The difference between these two quantities results negligible [52]. Therefore,
to ease our discussion we consider the following k-long contexts and work with
Hk(T) as it were defined over them.

We partition L into substrings of length b = b 1
2 logσ nc, say L1L2 . . . Ln/b (called

hereafter blocks). Note that each block Li corresponds to a range of b rows in
the BWT-matrix MT. We say that the block Li is k-prefix-equal if all rows in
MT[(i − 1)b + 1, ib] have the same prefix of length k. Otherwise, Li is said
to be k-prefix-different. The total number of k-prefix-different blocks is O(σk),
because that is the number of distinct strings of length k over Σ. Moreover, we
note that the first k symbols of T belong to k-prefix-different blocks because of
the special symbol $.

To prove the Theorem we consider a preliminary encoding scheme for L’s
blocks. A k-prefix-different block Li is written without any compression as k
occurrences of a special null symbol plus Li itself. This takes O((b+ k) log σ) =
O(log n + k log σ) bits. Since there are O(σk) k-prefix-different blocks and we
assumed k = o(logσ n), the (plain) encoding of the k-prefix-different blocks
takes O(σk log n) = o(n) bits.

As far as k-prefix-equal blocks are concerned, we encode a block Li as follows:
we write explicitly the k-long following context shared by all Li’s symbols,
using k log σ bits; and then use a k-th order Arithmetic encoder on the individ-
ual symbols of Li. This encoder computes for any symbol L[j] the empirical
probability f j of seeing this symbol followed by the context Ck(j) in T. In the
proof of Theorem 8, we considered f as the preceding contexts and showed
that a (semi-static) k-th order Arithmetic encoder that uses the f s, compresses
T within Hk(T) + (n/b)k log σ) + O(k log n) + 2 bits. Here we are compress-
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ing L, which is a permutation of string T, and we are considering the following
contexts of T’s symbols. Given our comment above on the definition of Hk(T),
we can conclude that this bound still holds for the Arithmetic encoder applied
on L. Summing up, the space required by this encoding scheme over all blocks
of L is nHk(T) + O((n/b)k log σ) bits.

Let us now take our storage scheme enc of Section 5.1, apply it onto string L,
and compare the length of the resulting compressed string against the previ-
ous encoding. By Theorem 8, we know that enc encodes L within nHk(L) +
O((n/b)k log σ) bits, and this proves one part of the theorem. As far as the
other term Hk(T) is concerned, we observe that any block Li may occur many
times in the partition of L and each occurrence may have associated a different
k-long following context. As a result, the above scheme encodes all occur-
rences of Li with at most O(σk) different codewords, because it has at most
σk distinct k-contexts (as a k-prefix-equal block) and at most σk plain encod-
ings (as a k-prefix-different block). If we re-assign to all these codewords the
shortest one, we have that each distinct block of L gets one codeword in B.
Following an argument similar to the one used in the proof of Theorem 8, this
encoding of L’s blocks is worse than enc because this latter assigns the shortest
codewords of B to the distinct blocks of L. Therefore enc takes no more than
nHk(T) + O((n/b)k log σ) bits. �

The relation between Hk(T) and Hk(L) is not fully known. In [79] they proved
that H1(L) ≤ 1 + Hk(T) log σ + o(1) for any k < (1− ε) logσ n and any con-
stant 0 < ε < 1. Actually the gap may be quite large. For example, let us
consider the string T = (bba)m and set k = 1. By Eqn. 2.4.3 we have

nH1(T) = (m− 1)H0(bm−1) + 2mH0((ba)m) = 2m = 2
3 n

On the other hand, since L = Bwt(T) = b2mam, we have

nH1(L) = (m− 1)H0(am−1) + 2mH0(b2m−1a)
= −(2m− 1) log 2m−1

2m − log 1
2m

= 2m log 2m− (2m− 1) log(2m− 1)
= O(log n)

which is exponentially smaller than nH1(T), for any m > 1. On the other side,
we show an example in which nH1(L) > nH1(T). Let T = (a1a2 . . . am)m and
k = 1. We have nH1(T) = 0. Since L = Bwt(T) = am

mam
1 . . . am

m−1, we have

nH1(L) = −(m− 1)((m− 1) log m−1
m + log 1

m ) = Θ(
√

n log
√

n)
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SIX

Experiments on compressed full-text
indexing

Most of the manipulations required over texts involve, sooner or later, search-
ing those (usually long) sequences for (usually short) pattern sequences. Not
surprisingly, text searching and processing has been a central issue in Com-
puter Science research since its beginnings.

Despite the increase in processing speeds, sequential text searching long ago
ceased to be a viable alternative for many applications, and indexed text search-
ing has become mandatory. A text index is a data structure built over a text
which significantly speeds up searches for arbitrary patterns, at the cost of
some additional space. The inverted list structure (see e.g. [164]) is an ex-
tremely popular index to handle so-called “natural language” texts, due to
its simplicity, low space requirements, and fast query execution. An inverted
list is essentially a table recording the positions of the occurrences of every
distinct word in the indexed text. Thus every word-based query is already
pre-computed, and phrase queries are carried out via list intersections. These
design features made inverted lists the de facto choice for the implementation
of Web search engines and IR systems (see e.g. [164], [168], and references
therein).

There are contexts, however, in which either the texts or the queries cannot
be factored out into sequences of words, or it is the case that the number of
distinct words is so large that indexing all of them in a table would be too
much space consuming. Typical examples include bio-informatics, computa-
tional linguistics, multimedia databases, and search engines for agglutinating
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and Far East languages. In these cases texts and queries must be modeled as
arbitrarily long sequences of symbols and an index for these types of texts, in
order to be efficient, must be able to search and retrieve any substring of any
length. These are nowadays the so called full-text indexes.

As we altready discussed in Section 2.3, classical full-text indexes wasted a lot
of space: Data structures like suffix trees and suffix arrays require at the very
least four times the text size (plus text) to achieve reasonable efficiency [2, 83].
Several engineered versions achieved relevant, yet not spectacular, reductions
in space [5, 74, 95, 99, 100]. For example, space consumptions like 2.5 times the
text size, plus text, were reported (see survey by [133]).

Although space consumption by itself is not usually a problem today given
the availability of cheap massive storage, the access speed of that storage has
not improved much, while CPU speeds have been doubling every 24 months,
as well the sizes of the various (internal) memory levels. Given that nowadays
an access to the disk can be up to one million times slower than main memory,
it is often mandatory to fit the index in internal memory and leave as few data
as possible onto disk.

A folklore alternative way to further reduce the space of full-text indexes are
the so-called q-gram indexes [93, 112, 132, 140, 155, 158, 163] (more references
in [133]). This can be seen as an adaptation of the inverted-list scheme that
takes as a “word” any q-gram occurring in the indexed text (i.e., any substring
of length q), and stores all occurrences of these q-grams within a table. Queries
are solved by intersecting/joining lists of q-gram occurrences depending on
whether the query pattern is longer/shorter than q. In principle this index
can take as much as four times the text size, as each text position starts a q-
gram and thus spends one integer in some list. The space can be alleviated
by several means, already explored in the cited papers: (1) compressing the
inverted lists, since they contain increasing numbers, as done for classical in-
verted indexes [164]; (2) indexing spaced text q-grams, while still finding all
the occurrences, e.g. [155]; (3) using block-addressing, first introduced to reduce
the space of natural-language indexes [120] and later extended to q-gram in-
dexes, e.g. [112, 140]. In block-addressing the text is divided into blocks and
the index only points to the blocks where the q-grams appear. This permits
achieving very little index space at the price of having to scan the candidate
text blocks. Hence the text must be separately available in a form that permits
fast scanning. Block-addressing has been successfully combined with the com-
pression of the text in the case of natural language [135], but not in general text
as far as we know. Besides needing the text in plain form, these indexes do not
offer relevant worst-case search time guarantees.
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This situation is drastically changed in the last decade [134]. Starting in the
year 2000, a rapid sequence of achievements showed how to relate informa-
tion theory with string matching concepts. The regularities in compressible
texts were exploited to reduce index occupancy without impairing the query
efficiency. The overall result has been the design of full-text indexes whose size
is proportional to that of the compressed text. Moreover, those indexes are able
to reproduce any text portion without accessing the original text, and thus they
replace the text — hence the name self-indexes. This way compressed full-text self-
indexes (compressed indexes, for short) allow one to add search and random
access functionalities to compressed data with a negligible penalty in time and
space performance. For example, it is feasible today to index the 3 GB Human
genome on a 1 GB RAM desktop PC.

The content of this chapter is primarly devoted to a practical study of this
novel technology. Although a comprehensive survey of theoretical aspects
has recently appeared [134], the algorithmics underlying these compressed in-
dexes require for their implementation a significant programming skill, a deep
engineering effort, and a strong algorithmic background. To date only isolated
implementations and focused comparisons of compressed indexes have been
reported, and they missed a common API, which prevented their re-use or
deploy within other applications. The present work has therefore a threefold
purpose:

Algorithmic Engineering. We review the most successful compressed indexes
that have been implemented so far, and present them in a way that may be
useful for software developers, by focusing on implementation choices as well
as on their limitations. We think that this point of view complements [134]
and fixes the state-of-the-art for this technology, possibly stimulating improve-
ments in the design of such sophisticated algorithmic tools. In addition, we in-
troduce two novel implementations of compressed indexes. These correspond
to new versions of the FM-Index data structure, one of which combines the
best existing theoretical guarantees with a competitive space/time tradeoff in
practice.

Experimental. We experimentally compare a selected subset of implementa-
tions. This serves not only to help programmers in choosing the best index
for their needs, but also gives a grasp of the practical relevance of this novel
algorithmic technology.

Technology Transfer. We introduce the Pizza&Chili site1, which was devel-

1Available at two mirrors: pizzachili.dcc.uchile.cl and
pizzachili.di.unipi.it
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oped with the aim of providing publicly available implementations of com-
pressed indexes. Each implementation is well-tuned and adheres to a suitable
API of functions which should, in our intention, allow any programmer to eas-
ily plug the provided compressed indexes within his/her own software. The
site also offers a collection of texts and tools for experimenting and validating
the proposed compressed indexes. We hope that this simple API and the good
performance of those indexes will spread their use in several applications.

The use of compressed indexes is obviously not limited to plain text search-
ing. Every time one needs to store a set of strings which must be subsequently
accessed for query-driven or id-driven string retrieval, one can use a com-
pressed index with the goal of squeezing the dictionary space without slow-
ing down the query performance. This is the subtle need that any program-
mer faces when implementing hash tables, tries or other indexing data struc-
tures. Actually, the use of compressed indexes has been successfully extended
to handle several other more sophisticated data structures, such as dictionary
indexes [56, 59] (see Chapter 7), labeled trees [48, 50], graphs [38], etc. Deal-
ing with all those applications is out of the scope of this chapter, whose main
goal is to address the above three issues, and comment on the experimental
behavior of this new algorithmic technology.

This chapter is organized as follows. Section 6.1 explains the key concep-
tual ideas underlying the most relevant compressed indexes. Section 6.2 de-
scribes how the indexes implement those basic ideas. Section 6.3 presents the
Pizza&Chili site, and the next Section 6.4 comments on a large suite of exper-
iments aimed at comparing the most successful implementations of the com-
pressed indexes present in this web site.

6.1 Basics and background

We recall from Section 2.3 that the text searching problem is then stated as fol-
lows. Given a text string T[1, n] and a pattern P[1, p], we wish to answer the
following queries: (1) count the number of occurrences (occ) of P in T; (2) locate
the occ positions in T where P occurs. In this chapter we assume that T can
be preprocessed, and an index is built on it, in order to speed up the execu-
tion of subsequent queries. We assume that the cost of index construction is
amortized over sufficiently many searches, as otherwise sequential searching
is preferable.

In the case of self-indexes, which replace the text, a third operation of interest
is (3) extract the substring T[l : r], given positions l and r in T.
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In Section 2.3 we described suffix trees and suffix arrays which are the most
important classical full-text indexes whose main drawback is their space occu-
pancy (namely, Θ(n log n) bits).

6.1.1 Backward Search

In Section 2.3.2 we described the classical binary-search method over suffix
arrays. Here we review an alternative approach which has been recently pro-
posed in [52], hereafter named backward search. For any i = p, p− 1, . . . , 1, this
search algorithm keeps the interval SA[Firsti : Lasti] storing all text suffixes
which are prefixed by P[i : p]. This is done via two main steps:

Initial step. We have i = p, so that it suffices to access a precomputed table
that stores the pair [Firstp, Lastp] for all possible symbols P[p] ∈ Σ.

Inductive step. Let us assume to have computed the interval SA[Firsti+1 :
Lasti+1], whose suffixes are prefixed by P[i + 1 : p]. The present step deter-
mines the next interval SA[Firsti : Lasti] for P[i : p] from the previous interval
and the next pattern symbol P[i]. The implementation is not obvious, and
leads to different realizations of backward searching in several compressed
indexes, with various time performances.

The backward-search algorithm is executed by decreasing i until either an
empty interval is found (i.e. Firsti > Lasti), or SA[First1 : Last1] contains
all pattern occurrences. In the former case no pattern occurrences are found;
in the latter case the algorithm has found occ = Last1 − First1 + 1 pattern oc-
currences.

6.1.2 Rank Query

Given a string S[1, n], function RANKx(S, i) returns the number of times sym-
bol x appears in the prefix S[1 : i]. Rank queries are central to compressed
indexing, so it is important to understand how they are implemented and how
much space/time they need. We have two cases depending on the alphabet of
S. For the aims of this chapter it suffices to pose our attention on practical im-
plementations and defer the discussion on theoretical results to next chapter
which is more focused on theoretical aspects.

Rank over Binary Sequences. In this case there exist simple and practical
constant-time solutions using o(n) bits of space in addition to S [128]. We
cover only RANK1 as RANK0(S, i) = i− RANK1(S, i). The solution partitions S
into blocks of size s, and stores explicit answers for rank-queries done at block
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beginnings. One of the best practical implementations of the idea [78] solves
RANK1(S, i) by summing two quantities: (1) the pre-computed answer for the
prefix of S which ends at the beginning of the block enclosing S[i], plus (2)
the relative rank of S[i] within its block. The latter is computed via a byte-wise
scanning of the block, using small precomputed tables. This solution involves
a space/time tradeoff related to s, but nonetheless its query-time performance
is rather satisfactory already with 5% space overhead on top of S.

Rank over General Sequences. Given a sequence S[1, n] over an alphabet of
size σ, the wavelet tree [62, 81] is a perfect binary tree of height Θ(log σ), built
on the alphabet symbols, such that the root represents the whole alphabet and
each leaf represents a distinct alphabet symbol. If a node v represents alphabet
symbols in the range Σv = [i, j], then its left child vl represents Σvl = [i, i+j

2 ]

and its right child vr represents Σvr = [ i+j
2 + 1, j]. We associate to each node v

the subsequence Sv of S formed by the symbols in Σv. Sequence Sv is not really
stored at the node, but it is replaced by a bit sequence Bv such that Bv[i] = 0 iff
Sv[i] is a symbol whose leaf resides in the left subtree of v. Otherwise, Bv[i] is
set to 1.

The power of the wavelet tree is to reduce rank operations over general al-
phabets to rank operations over a binary alphabet, so that the rank-machinery
above can be used in each wavelet-tree node. Precisely, let us answer the query
RANKc(S, i). We start from the root v of the wavelet tree (with associated vec-
tor Bv), and check which subtree encloses the queried symbol c. If c descends
into the right subtree, we set i = RANK1(Bv, i) and move to the right child of v.
Similarly, if c belongs to the left subtree, we set i = RANK0(Bv, i) and go to the
left child of v. We repeat this until we reach the leaf that represents c, where
the current i value is the answer to RANKc(S, i). Since any binary-rank takes
O(1) time, the overall rank operation takes O(log σ) time.

We note that the wavelet tree can replace S as well: to obtain S[i], we start from
the root v of the wavelet tree. If Bv[i] = 0, then we set i = RANK0(Bv, i) and
go to the left child. Similarly, if Bv[i] = 1, then we set i = RANK1(Bv, i) and
go to the right child. We repeat this until we reach a leaf, where the symbol
associated to the leaf is the answer. Again, this takes O(log σ) time.

The wavelet tree requires comparable space to the original sequence, as it re-
quires n log σ (1 + o(1)) bits of space. A practical way to reduce the space
occupancy to the zero-order entropy of S is to replace the balanced tree struc-
ture by the Huffman tree of S. Now we have to follow the binary Huffman
code of a symbol to find its place in the tree. It is not hard to see that the total
number of bits required by such a tree is at most n(H0(S) + 1) + o(n log σ) and
the average time taken by rank and access operations is O(H0(S)), where H0
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is the zero-th order empirical entropy of S (see next section). This structure is
the key tool in our implementation of SSA or AF-index (Section 6.4).

6.2 Compressed Indexes

Compressed indexes provide a viable alternative to classical indexes that are
parsimonious in space and efficient in query time. They have undergone sig-
nificant development in the last years, so that we count now in the literature
many solutions that offer a plethora of space-time tradeoffs [134]. In theoreti-
cal terms, the most succinct indexes achieve nHk(T) + o(n log σ) bits of space,
and for a fixed ε > 0, require O(p log σ) counting time, O(log1+ε n) time per
located occurrence, and O(` log σ+ log1+ε n) time to extract a substring of T of
length `.2 This is a surprising result because it shows that whenever T[1, n] is
compressible it can be indexed into smaller space than its plain form and still
offer search capabilities in efficient time.

In the following we review the most competitive compressed indexes for which
there is an implementation we are aware of. We will review the FM-index
family, which builds on the BWT and backward searching; Sadakane’s Com-
pressed Suffix Array (CSA), which is based on compressing the suffix array via
a so-called Ψ function that captures text regularities; and the LZ-index, which
is based on Lempel-Ziv compression. All of them are self-indexes in that they
include the indexed text, which therefore may be discarded.

6.2.1 The FM-index Family

The FM-index is composed of a compressed representation of Bwt(T) plus aux-
iliary structures for efficiently computing generalized rank queries on it. The
main idea [52] is to obtain a text index from the BWT and then use backward
searching for identifying the pattern occurrences (Sections 6.1.1 and 2.4.2).
Several variants of this algorithmic scheme do exist [51, 52, 53, 114] which
induce several time/space tradeoffs for the counting, locating, and extracting
operations.

Counting. The counting procedure takes a pattern P and obtains the interval
SA[First : Last] of text suffixes prefixed by it (or, which is equivalent, the inter-
val of rows of the matrixMT prefixed by P, see Section 2.4.2). Figure 6.1 gives

2These locating and extracting complexities are better than those reported in [53], and can

be obtained by setting the sampling step to log1+ε n
log σ .
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the pseudocode to compute First and Last.

Algorithm FM-count(P[1, p])

1. i = p, First = 1, Last = n;

2. while ((First ≤ Last) and (i ≥ 1)) do

3. c = P[i];

4. First = C[c] + RANKc(L, First− 1) + 1;

5. Last = C[c] + RANKc(L, Last);

6. i = i− 1;

7. if (Last < First) then return “no rows prefixed by P” else return [First, Last];

Figure 6.1: Algorithm to get the interval SA[First : Last] of text suffixes pre-
fixed by P, using an FM-index.

The algorithm is correct: Let [Firsti+1, Lasti+1] be the range of rows in MT
that start with P[i + 1 : p], and we wish to know which of those rows are
preceded by P[i]. These correspond precisely to the occurrences of P[i] in
Bwt(T)[Firsti+1 : Lasti+1]. Those occurrences, mapped to the first column
of MT, form a (contiguous) range that is computed with a rationale similar
to that for LF(·) in Section 2.4.2, and thus via a just two rank operations on
Bwt(T).

Locating. Algorithm in Figure 6.2 obtains the position of the suffix that pre-
fixes the i-th row ofMT. The basic idea is to logically mark a suitable set of
rows of MT, and keep for each of them their position in T (that is, we store
the corresponding SA values). Then, FM-locate(i) scans the text T backwards
using the LF-mapping until a marked row i′ is found, and then it reports
SA[i′] + t, where t is the number of backward steps used to find such i′. To
compute the positions of all occurrences of a pattern P, it is thus enough to call
FM-locate(i) for every First ≤ i ≤ Last.

The sampling rate ofMT’s rows, hereafter denoted by sSA, is a crucial param-
eter that trades space for query time. Most FM-index implementations mark
all the SA[i] that are a multiple of sSA, via a bitmap B[1, n]. All the marked
SA[i]s are stored contiguously in suffix array order, so that if B[i] = 1 then
one finds the corresponding SA[i] at position RANK1(B, i) in that contiguous
storage. This guarantees that at most sSA LF-steps are necessary for locating
the text position of any occurrence. The extra space is n log n

sSA
+ n + o(n) bits.

A way to avoid the need of bitmap B is to choose a symbol c having some
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Algorithm FM-locate(i)

1. i′ = i, t = 0;

2. while SA[i′] is not explicitly stored do

3. i′ = LF(i′);

4. t = t + 1;

5. return SA[i′] + t;

Figure 6.2: Algorithm to obtain SA[i] using an FM-index.

suitable frequency in T, and then store SA[i] if Bwt(T)[i] = c [51]. Then the
position of SA[i] in the contiguous storage is RANKc(Bwt(T), i), so no extra
space is needed other than Bwt(T). In exchange, there is no guarantee of find-
ing a marked cell after a given number of steps.

Extracting. The same text sampling mechanism used for locating permits ex-
tracting text substrings. Given sSA, we store the positions i such that SA[i] is a
multiple of sSA now in the text order (previously we followed the SA-driven
order). To extract T[l : r], we start from the first sample that follows the area
of interest, that is, sample number d = d(r + 1)/sSAe. From it we obtain the
desired text backwards with the same mechanism for inverting the BWT (see
Section 2.4.2), here starting with the value i stored for the d-th sample. We
need at most sSA + r− l + 1 applications of the LF-step.

6.2.2 Implementing the FM-index

All the query complexities are governed by the time required to obtain C[c],
Bwt(T)[i], and RANKc(Bwt(T), i) (all of them implicit in LF as well). While C
is a small table of σ log n bits, the other two are problematic. Counting requires
up to 2p calls to RANKc, locating requires sSA calls to RANKc and Bwt(T), and
extracting ` symbols requires sSA + ` calls to RANKc and Bwt(T). In what
follows we briefly comment on the solutions adopted to implement those basic
operations.

The original FM-index implementation (FM-index [51]) compressed Bwt(T) by
splitting it into blocks and using independent zero-order compression on each
block. Values of RANKc are precomputed for all block beginnings, and the
rest of the occurrences of c from the beginning of the block to any position
i are obtained by sequentially decompressing the block. The same traversal
finds Bwt(T)[i]. This is very space-effective: It approaches in practice the k-th
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order entropy because the partition into blocks takes advantage of the local
compressibility of Bwt(T). On the other hand, the time to decompress the
block makes computation of RANKc relatively expensive. For locating, this
implementation marks the BWT positions where some chosen symbol c occurs,
as explained above.

A very simple and effective alternative to represent Bwt(T) has been pro-
posed with the Succinct Suffix Array (SSA) [53, 114]. It uses a Huffman-shaped
wavelet tree, plus the marking of one out-of sSA text positions for locating
and extracting. The space is n(H0(T) + 1) + o(n log σ) bits, and the average
time to determine RANKc(Bwt(T), i) and Bwt(T)[i] is O(H0(T) + 1). The space
bound is not appealing because of the zero-order compression, but the relative
simplicity of this index makes it rather fast in practice. In particular, it is an
excellent option for DNA text, where the k-th order compression is not much
better than the zero-th order one, and the small alphabet makes H0(T) ≤ log σ

small too.

The Run-Length FM-index (RLFM) [114] has been introduced to achieve k-th or-
der compression by applying run-length compression to Bwt(T) prior to build-
ing a wavelet tree on it. The BWT generates long runs of identical symbols
on compressible texts, which makes the RLFM an interesting alternative in
practice. The price is that the mappings from the original to the run-length
compressed positions slow down the query operations a bit, in comparison to
the SSA.

6.2.3 The Compressed Suffix Array (CSA)

The compressed suffix array (CSA) was not originally a self-index, and re-
quired O(n log σ) bits of space [82]. Sadakane [144, 145] then proposed a vari-
ant which is a self-index and achieves space bound in term of 0-order entropy.
The result in [81] described the first index that achieves high-order compres-
sion.

The CSA represents the suffix array SA[1, n] by a sequence of numbers Ψ(i),
such that SA[Ψ(i)] = SA[i] + 1. It is not hard to see [82] that Ψ is piecewise
monotone increasing in the areas of SA where the suffixes start with the same
symbol. In addition, there are long runs where Ψ(i + 1) = Ψ(i) + 1, and these
runs can be mapped one-to-one to the runs in Bwt(T) [134]. These proper-
ties permit a compact representation of Ψ and its fast access. Essentially, we
differentially encode Ψ(i) − Ψ(i − 1), run-length encode the long runs of 1’s
occurring over those differences, and for the rest use an encoding favoring
small numbers. Absolute samples are stored at regular intervals to permit the
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efficient decoding of any Ψ(i). The sampling rate (hereafter denoted by sΨ)
gives a space/time tradeoff for accessing and storing Ψ. In [145] it is shown
that the index requires O(nH0(T) + n log log σ) bits of space. The analysis has
been then improved in [134] to nHk(T) + O(n log log σ) for any k ≤ α logσ n
and constant 0 < α < 1.

Counting. The CSA [145] used the classical binary searching to count the num-
ber of pattern occurrences in T. The actual implementation, proposed in [144],
uses backward searching (Section 6.1.1): Ψ is used to obtain [Firsti, Lasti] from
[Firsti+1, Lasti+1] in O(log n) time, for a total of O(p log n) counting time. Pre-
cisely, let SA[Firsti : Lasti] be the range of suffixes SA[j] that start with P[i]
and such that SA[j] + 1 (= SA[Ψ(j)]) starts with P[i + 1 : p]. The former is
equivalent to the condition [Firsti, Lasti] ⊆ [C[P[i]] + 1, C[P][i] + 1]]. The latter
is equivalent to saying that Firsti+1 ≤ Ψ(j) ≤ Lasti+1. Since Ψ(i) is monotoni-
cally increasing in the range C[P[i]] < j ≤ C[P[i] + 1] (since the first symbols of
suffixes in SA[Firsti : Lasti] are the same), we can binary search this interval to
find the range [Firsti, Lasti]. Fig. 6.3 shows the pseudocode for counting using
the CSA.

Algorithm CSA-count(P[1 : p])

1. i = p , First = 1, Last = n;

2. while ((First ≤ Last) and (i ≥ 1)) do

3. c = P[i];

4. [First, Last] = [min, max] {j ∈ [C[c] + 1, C[c + 1]], Ψ(j) ∈ [First, Last]};

5. i = i− 1;

6. if (Last < First) then return “no rows prefixed by P” else return [First, Last];

Figure 6.3: Algorithm to get the interval SA[First, Last] prefixed by P, using
the CSA. The [min, max] interval is obtained via binary search.

Locating. Locating is similar to the FM-index, in that the suffix array is sam-
pled at regular intervals of size sSA. However, instead of using the LF-mapping
to traverse the text backwards, this time we use Ψ to traverse the text for-
ward, given that SA[Ψ(i)] = SA[i] + 1. This points out an interesting du-
ality between the FM-index and the CSA. Yet, there is a fundamental differ-
ence: function LF(·) is implicitly stored and calculated on the fly over Bwt(T),
while function Ψ(·) is explicitly stored. The way these functions are calcu-
lated/stored makes the CSA a better alternative for large alphabets.
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Extracting. Given C and Ψ, we can obtain T[SA[i] : n] symbolwise from i, as
follows. The first symbol of the suffix pointed to by SA[i], namely, T[SA[i]], is
the symbol c such that C[c] < i ≤ C[c + 1], because all the suffixes SA[C[c] +
1], . . . , SA[C[c + 1]] start with symbol c. Now, ir order to obtain the next sym-
bol, T[SA[i] + 1], we compute i′ = Ψ(i) and use the same procedure above
to obtain T[SA[i′]] = T[SA[i] + 1], and so on. The binary search in C can be
avoided by representing it as a bit vector D[1, n] such that D[C[c]] = 1, thus
c = RANK1(D, i).

Now, given a text substring T[l : r] to extract, we must first find the i such that
l = SA[i] and then we can apply the procedure above. Again, we sample the
text at regular intervals by storing the i values such that SA[i] is a multiple of
sSA. To extract T[l : r] we actually extract T[bl/sSAc · sSA : r], so as to start
from the preceding sampled position. This takes sSA + r − l + 1 applications
of Ψ.

6.2.4 The Lempel-Ziv Index

The Lempel-Ziv index (LZ-index) is a compressed self-index based on a Lempel-
Ziv partitioning of the text. There are several members of this family (e.g.,
[8, 52, 131]), we focus on the versions described in [8, 131] and available in the
Pizza&Chili site. This index uses LZ78 parsing [167] to generate a partitioning
of T[1 : n] into n′ phrases, T = Z1, . . . , Zn′ . These phrases are all different, and
each phrase Zi is formed by appending a single symbol to a previous phrase
Zj, j < i (except for a virtual empty phrase Z0). Since it holds Zi = Zj · c, for
some j < i and c ∈ Σ, the set is prefix-closed. We can then build a trie on these
phrases, called LZ78-trie, which consists of n′ nodes, one per phrase.

The original LZ-index [131] is formed by (1) the LZ78 trie; (2) a trie formed
with the reverse phrases Zr

i , called the reverse trie; (3) a mapping from phrase
identifiers i to the LZ78 trie node that represents Zi; and (4) a similar mapping
to Zr

i in the reverse phrases. The tree shapes in (1) and (2) are represented
using parentheses and the encoding proposed in [130] so that they take O(n′)
bits and constant time to support various tree navigation operations. Yet, we
must also store the phrase identifier in each trie node, which accounts for the
bulk of the space for the tries. Overall, we have 4n′ log n′ bits of space, which
can be bounded by 4nHk(T) + o(n log σ) for k = o(logσ n) [134]. This can
be reduced to (2 + ε)nHk(T) + o(n log σ) by noticing that the mapping (3) is
essentially the inverse permutation of the sequence of phrase identifiers in (1),
and similarly (4) with (2) [7]. It is possible to represent a permutation and its
inverse using (1 + ε)n′ log n′ bits of space and access the inverse permutation



6.2. Compressed Indexes 83

in O(1/ε) time [129].

An occurrence of P in T can be found according to one of the following situa-
tions:

1. P lies within a phrase Zi. Unless the occurrence is a suffix of Zi, since
Zi = Zj · c, P also appears within Zj, which is the parent of Zi in the LZ78
trie. A search for Pr in the reverse trie finds all the phrases that have P
as a suffix. Then the node mapping permits, from the phrase identifiers
stored in the reverse trie, to reach their corresponding LZ78 nodes. All
the subtrees of those nodes are occurrences.

2. P spans two consecutive phrases. This means that, for some j, P[1 : j] is a
suffix of some Zi and P[j + 1 : p] is a prefix of Zi+1. For each j, we search
for Pr[1 : j] in the reverse trie and P[j + 1 : p] in the LZ78 trie, choosing
the smaller subtree of the two nodes we arrived at. If we choose the
descendants of the reverse trie node for Pr[1 : j], then for each phrase
identifier i that descends from the node, we check whether i+ 1 descends
from the node that corresponds to P[j + 1 : p] in the LZ78 trie. This can
be done in constant time by comparing preorder numbers.

3. P spans three or more nodes. This implies that some phrase is completely
contained in P, and since all phrases are different, there are only O(p2)
different phrases to check, one per substring of P. Those are essentially
verified one by one.

Notice that the LZ-index carries out counting and locating simultaneously,
which renders the LZ-index not competitive for counting alone. Extracting
text is done by traversing the LZ78 paths upwards from the desired phrases,
and then using mapping (3) to continue with the previous or next phrases. The
LZ-index is very competitive for locating and extracting.

6.2.5 Novel Implementations

We introduce two novel compressed index implementations in this chapter.
Both are variants of the FM-index family. The first one is interesting because
it is a re-engineering of the first reported implementation of a self-index [51].
The second is relevant because it implements the self-index offering the best
current theoretical space/time guarantees. It is fortunate, as it does not always
happen, that theory and practice marry well and this second index is also rel-
evant in the practical space/time tradeoff map.
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The FMI-2

As the original FM-index [51], the FMI-2 adopts a two-level bucketing scheme
for implementing efficient rank and access operations onto Bwt(T). In detail,
string Bwt(T) is partitioned into buckets and superbuckets: a bucket consists
of lb symbols, a superbucket consists of lsb buckets. Additionally, the FMI-
2 maintains two tables: Table Tsb stores, for each superbucket and for each
symbol c, the number of occurrences of c before that superbucket in Bwt(T);
table Tb stores, for each bucket and for each symbol c, the number of occur-
rences of c before that bucket and up to the beginning of its superbucket. In
other words, Tsb stores the value of the ranking function up to the beginning
of superbuckets; whereas Tb stores the ranking function up to the beginning
of buckets and relative to their enclosing superbuckets. Finally, every bucket is
individually compressed using the sequence of zero-order compressors: MTF,
RLE, Huffman (as in bzip2). This compression strategy does not guarantee
that the space of FMI-2 is bounded by the kth order entropy of T. Neverthe-
less, the practical performance is close to the one achievable by the best known
compressors, and can be traded by tuning parameters lb and lsb.

The main difference between the original FM-index and the novel FMI-2 lies
in the strategy adopted to select the rows/positions of T which are explicitly
stored. The FMI-2 marks logically and uniformly the text T by adding a special
symbol every sSA symbols of the original text. This way, all of theMT’s rows
that start with that special symbol are contiguous, and thus their positions can
be stored and accessed easily.

The count algorithm is essentially a backward search (Algorithm 6.1), mod-
ified to take into account the presence of special symbols added to the in-
dexed text. To search for a pattern P[1 : p], the FMI-2 actually searches for
min{p − 1, sSA} patterns obtained by inserting the special symbols in P at
each sSA-th position, and searches for the pattern P itself. This search is im-
plemented in parallel over all patterns above by exploiting the fact that, at any
step i, we have to search either for P[p − i] or for the special symbol. As a
result, the overall search cost is quadratic in the pattern length, and the output
is now a set of at most p ranges of rows.

Therefore, the FMI-2 is slower in counting than the original FM-index, but
locating is faster, and this is crucial because this latter operation is usually
the bottleneck of compressed indexes. Indeed the locate algorithm proceeds
for at most sSA phases. Let S0 be the range of rows to be located, eventually
identified via a count operation. At a generic phase k, Sk contains the rows
that may be reached in k backward steps from the rows in S0. Sk consists of a
set of ranges of rows, rather than a single range. To maintain the invariant, the
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algorithm picks up a range of Sk, say [a, b], and determines the z ≤ σ distinct
symbols that occur in the substring Bwt(T)[a : b] via two bucket scans and
some accesses to tables Tsb and Tb. Then it executes z backward steps, one per
such symbols, thus determining z new ranges of rows (to be inserted in Sk+1)
which are at distance k + 1 from the rows in S0. The algorithm cycles over all
ranges of Sk to form the new set Sk+1. Notice that if the rows of a range start
with the special symbol, their positions in the indexed text are explicitly stored,
and can be accessed in constant time. Then, the position of the corresponding
rows in S0 can be inferred by summing k to those values. Notice that this
range can be dropped from Sk. After no more than sSA phases the set Sk will
be empty.

The Alphabet-Friendly FM-index

The Alphabet-Friendly FM-index (AF-index) [53] resorts to the definition of k-
th order entropy (see Section 2.4.1) by encoding each substring wT up to its
zero-order entropy. Since all the wT are contiguous in Bwt(T) (regardless of
which k value we are considering), it suffices to split Bwt(T) into blocks given
by the k-th order contexts, for any desired k, and to use a Huffman-shaped
wavelet tree (see Section 6.1.2) to represent each such block. In addition, we
need all RANKc values precomputed for every block beginning, as the lo-
cal wavelet trees can only answer RANKc within their blocks. In total, this
achieves nHk(T) + o(n log σ) bits, for moderate and fixed k ≤ α logσ n and
0 < α < 1. Actually the AF-index does better, by splitting Bwt(T) in an optimal
way, thus guaranteeing that the space bound above holds simultaneously for
every k. This is done by resorting to the idea of compression boosting [43].

The compression booster finds the optimal partitioning of Bwt(T) into t non-
empty blocks, s1, . . . , st, assuming that each block sj will be represented using
|sj|H0(sj) + f (|sj|) bits of space, where f (· ) is a nondecreasing concave func-
tion supplied as a parameter. Given that the partition is optimal, it can be
shown that the resulting space is upper bounded by nHk + σk f (n/σk) bits si-
multaneously for every k. That is, the index is not built for any specific k.

As explained, the AF-index represents each block sj by means of a Huffman-
shaped wavelet tree wtj, which will take at most |sj|(H0(sj) + 1) + σ log n bits.
The last term accounts for the storage of the Huffman code. In addition, for
each block j we store an array Cj[c], which tells the RANKc values up to block
j. This accounts for other σ log n bits per block. Finally, we need a bitmap
R[1, n] indicating the starting positions of the t blocks in Bwt(T). Overall, the
formula giving the excess of storage over the entropy for block j is f (|sj|) =
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2|sj|+ 2σ log n.

To carry out any operation at position i, we start by computing the block
where position i lies, j = RANK1(R, i), and the starting position of that block,
i′ = SELECT1(R, j). (This tells the position of the j-th 1 in R. As it is a sort of
inverse of RANK, it is computed by binary search over RANK values.) Hence
Bwt(T)[i] = sj[i′′], where i′′ = i− i′ + 1 is the offset of i within block j. Then,
the different operations are carried out as follows.

• For counting, we use the algorithm of Fig. 6.1. In this case, we have
RANKc(Bwt(T), i)= Cj[c] + RANKc(sj, i′′), where the latter is computed
using the wavelet tree wtj of sj.

• For locating, we use the algorithm of Fig. 6.2. In this case, we have
c = Bwt(T)[i] = sj[i′′]. To compute sj[i′′], we also use the wavelet tree wtj
of sj.

• For extracting, we proceed similarly as for locating, as explained in Sec-
tion 6.2.1.

As a final twist, R is actually stored using 2
√

nt rather than n bits. We cut R
into

√
nt chunks of length

√
n/t. There are at most t chunks which are not

all zeros. Concatenating them all requires only
√

nt bits. A second bitmap
of length

√
nt indicates whether each chunk is all-zero or not. It is easy to

translate rank/select operations into this representation.

6.3 The Pizza&Chili Site

The Pizza&Chili site has two mirrors: one in Chile and one in Italy3. Its ultimate
goal is to push towards the technology transfer of this fascinating algorithmic
technology lying at the crossing point of data compression and data structure
design. In order to achieve this goal, the Pizza&Chili site offers publicly avail-
able and highly tuned implementations of various compressed indexes. The
implementations follow a suitable C/C++ API of functions which should, in
our intention, allow any programmer to plug easily the provided compressed
indexes within his/her own software. The site also offers a collection of texts
for experimenting with and validating the compressed indexes. In detail, it
offers three kinds of material:

3http://pizzachili.dcc.uchile.cl and http://pizzachili.di.unipi.it.
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• A set of compressed indexes which are able to support the search func-
tionalities of classical full-text indexes (e.g., substring searches), but re-
quiring succinct space occupancy and offering, in addition, some text
access operations that make them useful within text retrieval and data
mining software systems.

• A set of text collections of various types and sizes useful to test experi-
mentally the available (or new) compressed indexes. The text collections
have been selected to form a representative sample of different applica-
tions where indexed text searching might be useful. The size of these
texts is large enough to stress the impact of data compression over mem-
ory usage and CPU performance. The goal of experimenting with this
testbed is to conclude whether, or not, compressed indexing is beneficial
over uncompressed indexing approaches, like suffix trees and suffix ar-
rays. And, in case it is beneficial, which compressed index is preferable
according to the various applicative scenarios represented by the testbed.

• Additional material useful to experiment with compressed indexes, such
as scripts for their automatic validation and efficiency test over the avail-
able text collections.

The Pizza&Chili site hopes to mimic the success and impact of other initiatives,
such as data-compression.info and the Calgary and Canterbury corpora, just to
cite a few. Actually, the Pizza&Chili site is a mix, as it offers both software
and testbeds. Several people have already contributed to make this site work
and, hopefully, many more will contribute to turn it into a reference for all re-
searchers and software developers interested in experimenting and develop-
ing the compressed-indexing technology. The API we propose is thus intended
to ease the deployment of this technology in real software systems, and to pro-
vide a reference for any researcher who wishes to contribute to the Pizza&Chili
repository with his/her new compressed index.

6.3.1 Indexes

The Pizza&Chili site provides several index implementations, all adhering to
a common API. All indexes, except CSA and LZ-index, are built through the
deep-shallow algorithm of Manzini and Ferragina [124] which constructs the
Suffix Array data structure using little extra space and is fast in practice.

• The Suffix Array [119] is a plain implementation of the classical index
(see Section 2.3.2), using either n log n bits of space or simply n computer
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integers, depending on the version. This was implemented by Rodrigo
González.

• The SSA [53, 114] uses a Huffman-based wavelet tree over the string
Bwt(T) (Section 6.2.1). It achieves zero-order entropy in space with lit-
tle extra overhead and striking simplicity. It was implemented by Veli
Mäkinen and Rodrigo González.

• The AF-index [53] combines compression boosting [43] with the above
wavelet tree data structure (Section 6.2.5). It achieves high-order com-
pression, at the cost of being more complex than SSA. It was imple-
mented by Rodrigo González.

• The RLFM [114] is an improvement over the SSA (Section 6.2.1), which
exploits the equal-letter runs of the BWT to achieve k-th order compres-
sion, and in addition uses a Huffman-shaped wavelet tree. It is slightly
larger than the AF-index. It was implemented by Veli Mäkinen and Ro-
drigo González.

• The FMI-2 (Section 6.2.5) is an engineered implementation of the orig-
inal FM-index [51], where a different sampling strategy is designed in
order to improve the performance of the locating operation. It was im-
plemented by Paolo Ferragina and Rossano Venturini.

• The CSA [144, 145] is the variant using backward search (Section 6.2.3). It
achieves high-order compression and is robust for large alphabets. It was
implemented by Kunihiko Sadakane and adapted by Rodrigo González
to adhere the API of the Pizza&Chili site. To construct the suffix array, it
uses the qsufsort by Jesper Larsson and Kunihiko Sadakane [111].

• The LZ-index [8, 131] is a compressed index based on LZ78 compression
(Section 6.2.4), implemented by Diego Arroyuelo and Gonzalo Navarro.
It achieves high-order compression, yet with relatively large constants. It
is slow for counting but very competitive for locating and extracting.

These implementations support any byte-based alphabet of size up to 255 sym-
bols: one symbol is automatically reserved by the indexes as the terminator
“$”.

6.3.2 Texts

We have chosen the texts forming the Pizza&Chili collection by following three
basic considerations. First, we wished to cover a representative set of applica-
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tion areas where the problem of full-text indexing might be relevant, and for
each of them we selected texts freely available on the Web. Second, we aimed
at having one file per text type in order to avoid unreadable tables of many
results. Third, we have chosen the size of the texts to be large enough in order
to make indexing relevant and compression apparent. These are the current
collections provided in the repository:

• dna (DNA sequences). This file contains bare DNA sequences without
descriptions, separated by newline, obtained from files available at the
Gutenberg Project site: namely, from 01hgp10 to 21hgp10, plus 0xhgp10
and 0yhgp10. Each of the four DNA bases is coded as an uppercase letter
A,G,C,T, and there are a few occurrences of other special symbols.

• english (English texts). This file is the concatenation of English texts
selected from the collections etext02—etext05 available at the Gutenberg
Project site. We deleted the headers related to the project so as to leave
just the real text.

• pitches (MIDI pitch values). This file is a sequence of pitch values
(bytes whose values are in the range 0-127, plus a few extra special val-
ues) obtained from a myriad of MIDI files freely available on the Internet.
The MIDI files were converted into the IRP format by using the semex
tool by Kjell Lemstrom [113]. This is a human-readable tuple format,
where the 5th column is the pitch value. The pitch values were coded in
one byte each and concatenated all together.

• proteins (protein sequences). This file contains bare protein sequences
without descriptions, separated by newline, obtained from the Swis-
sprot database (ftp.ebi.ac.uk/ pub/databases/swissprot/). Each
of the 20 amino acids is coded as an uppercase letter.

• sources (source program code). This file is formed by C/Java source
codes obtained by concatenating all the .c, .h, .C and .java files of the linux-
2.6.11.6 (ftp.kernel.org) and gcc-4.0.0 (ftp.gnu.org) distributions.

• xml (structured text). This file is in XML format and provides biblio-
graphic information on major computer science journals and proceed-
ings. It was downloaded from the DBLP archive at dblp.uni-trier.de.

For the experiments we have limited the short file pitches to its initial 50 MB,
whereas all the other long files have been cut down to their initial 200 MB. We
show now some statistics on those files. These statistics and the tools used to
compute them are also available at the Pizza&Chili site.
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Table 6.1: General statistics for our indexed texts.
Text Size (MB) Alphabet size Inv. match prob.
dna 200 16 3.86
english 200 225 15.12
pitches 50 133 40.07
proteins 200 25 16.90
sources 200 230 24.81
xml 200 96 28.65

Table 6.2: Ideal compressibility of our indexed texts. For every k-th order
model, with 0 ≤ k ≤ 4, we report the number of distinct contexts
of length k, and the empirical entropy Hk, measured as number of
bits per input symbol.

1st order 2nd order 3rd order 4th order
Text log σ H0 H1 # H2 # H3 # H4 #

dna 4.000 1.974 1.930 16 1.920 152 1.916 683 1.910 2222
english 7.814 4.525 3.620 225 2.948 10829 2.422 102666 2.063 589230
pitches 7.055 5.633 4.734 133 4.139 10946 3.457 345078 2.334 3845792
proteins 4.644 4.201 4.178 25 4.156 607 4.066 11607 3.826 224132
sources 7.845 5.465 4.077 230 3.102 9525 2.337 253831 1.852 1719387
xml 6.585 5.257 3.480 96 2.170 7049 1.434 141736 1.045 907678

Table 6.1 summarizes some general characteristics of the selected files. The
last column, inverse match probability, is the reciprocal of the probability of
matching between two randomly chosen text symbols. This may be considered
as a measure of the effective alphabet size — indeed, on a uniformly distributed
text, it would be precisely the alphabet size.

Table 6.2 provides some information about the compressibility of the texts by
reporting the value of Hk for 0 ≤ k ≤ 4, measured as number of bits per in-
put symbol. As a comparison on the real compressibility of these texts, Table
6.3 shows the performance of three well-known compressors (sources avail-
able in the site): gzip (Lempel-Ziv-based compressor), bzip2 (BWT-based
compressor), and ppmdi (k-th order modeling compressor). Notice that, as
k grows, the value of Hk decreases but the size of the dictionary of length-k
contexts grows significantly, eventually approaching the size of the text to be
compressed. Typical values of k for ppmdi are around 5 or 6. It is interesting to
note in Table 6.3 that the compression ratios achievable by the tested compres-
sors may be superior to H4, because they use (explicitly or implicitly) longer
contexts.
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Table 6.3: Real compressibility of our indexed texts, as achieved by the best-
known compressors: gzip (option -9), bzip2 (option -9), and
ppmdi (option -l 9).

Text H4 gzip bzip2 ppmdi

dna 1.910 2.162 2.076 1.943
english 2.063 3.011 2.246 1.957
pitches 2.334 2.448 2.890 2.439
proteins 3.826 3.721 3.584 3.276
sources 1.852 1.790 1.493 1.016
xml 1.045 1.369 0.908 0.745

6.4 Experimental Results

In this section we report experimental results from a subset of the compressed
indexes available at the Pizza&Chili site. We restricted our experiments to a
few indexes: Succinct Suffix Array (version SSA v2 in Pizza&Chili), Alphabet-
Friendly FM-index (version AF-index v2 in Pizza&Chili), Compressed Suffix
Array (CSA in Pizza&Chili), and LZ-index (version LZ-index4 in Pizza&Chili),
because they are the best representatives of the three classes of compressed
indexes we discussed in Section 6.2. This small number will provide us with a
succinct, yet significant, picture of the performance of all known compressed
indexes [134].

There is no need to say that further algorithmic engineering of the indexes
experimented in this chapter, as well of the other indexes available in the
Pizza&Chili site, could possibly change the charts and tables shown below.
However, we believe that the overall conclusions drawn from our experiments
should not change significantly, unless new algorithmic ideas are devised for
them. Indeed, the following list of experimental results has a twofold goal:
on one hand, to quantify the space and time performance of compressed in-
dexes over real datasets, and on the other hand, to motivate further algorith-
mic research by highlighting the limitations of the present indexes and their
implementations.

Table 6.4 shows the parameters used to construct the indexes in our exper-
iments. The SSA and AF-index have a sampling rate parameter sSA that
trades locating and extracting time for space. More precisely, they need O(sSA)
accesses to the wavelet tree for locating, and O(sSA + r− l + 1) accesses to ex-
tract Tl,r, in exchange for n log n

sSA
additional bits of space. We can remove those

structures if we are only interested in counting.

The CSA has two space/time tradeoffs. A first one, sΨ, governs the access
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Table 6.4: Parameters used for the different indexes in our experiments. The
cases of multiple values correspond to space/time tradeoff curves.

Index count locate / extract
AF-index − sSA = {4, 16, 32, 64, 128, 256}
CSA sΨ = {128} sSA = {4, 16, 32, 64, 128, 256}; sΨ = {128}
LZ-index ε = {1

4} ε = {1, 1
2 , 1

3 , 1
4 , 1

5 , 1
10 , 1

20}
SSA − sSA = {4, 16, 32, 64, 128, 256}

time to Ψ, which is O(sΨ) in exchange for n log n
sΨ

bits of space required by the
samples. The second, sSA, affects locating and extracting time just as above.
For pure counting we can remove the sampling related to sSA, whereas for
locating the best is to use the default value (given by Sadakane) of sΨ = 128.
The best choice for extracting is less clear, as it depends on the length of the
substring to extract.

Finally, the LZ-index has one parameter ε which trades counting/locating
time for space occupancy: The cost per candidate occurrence is multiplied by
1
ε , and the additional space is 2εnHk(T) bits. No structure can be removed in
the case of counting, but space can be halved if the extract operation is the only
one needed (just remove the reverse trie).

All the experiments were executed on a 2.6 GHz Pentium 4, with 1.5 GB of
main memory, and running Fedora Linux. The searching and building algo-
rithms for all compressed indexes were coded in C/C++ and compiled with
gcc or g++ version 4.0.2.

6.4.1 Construction

Table 6.5 shows construction time and peak of memory usage during construc-
tion for one collection, namely english, as all the others give roughly simi-
lar results. In order to fairly evaluate the time and space consumption of the
algorithm needed to construct the suffix array underlying the CSA implemen-
tation, we replaced the construction algorithm proposed by [111] and used in
the original implementation by Sadakane (see Section 6.3.1), with the faster
algorithm proposed by [124] and used by all other compressed SA-based in-
dexes.4 The bulk of the time of SSA and CSA is that of suffix array construction
(prior to its compression). The AF-index takes much more time because it
needs to run the compression boosting algorithm over the suffix array. The

4We note that this change was done just for timing measurements, the code available on
the Pizza&Chili site still uses Larsson-Sadakane’s algorithm because this was the choice of the
CSA’s implementor.
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Table 6.5: Time and peak of main memory usage required to build the vari-
ous indexes over the 200 MB file english. The indexes are built
using the default value for the locate tradeoff (that is, sSA = 64 for
AF-index and SSA; sSA = 64 and sΨ = 128 for CSA; and ε = 1

4 for
the LZ-index).

Index Build Time (sec) Main Memory Usage (MB)
AF-index 772 1, 751
CSA 233 1, 801
LZ-index 198 1, 037
SSA 217 1, 251

LZ-index spends most of the time in parsing the text and creating the LZ78
and reverse tries. In all cases construction times are practical, 1–4 sec/MB with
our machine.

The memory usage might be problematic, as it is 5–9 times the text size. Albeit
the final index is small, one needs much memory to build it first5. This is
a problem of compressed indexes, which is attracting a lot of practical and
theoretical research [6, 89, 110, 117].

Note we have given construction time and space for just one parameter setting
per index. The reason is that time and space for construction is mostly insen-
sitive to these parameters. They imply sparser or denser sampling of suffix
arrays and permutations, but those sampling times are negligible compared
to suffix array and trie construction times, and sampling does not affect peak
memory consumption either.

6.4.2 Counting

We searched for 50, 000 patterns of length p = 20, randomly chosen from the
indexed texts. The average counting time was then divided by p to display
counting time per symbol. This is appropriate because the counting time of
the indexes is linear in m, and 20 is sufficiently large to blur small constant
overheads. The exception is the LZ-index, whose counting time is superlin-
ear in p, and not competitive at all for this task.

Table 6.6 shows the results on this test. The space of the SSA, AF-index, and
CSA does not include what is necessary for locating and extracting. We can
see that, as expected, the AF-index is always smaller than the SSA, yet they
are rather close on dna and proteins (where the zero-order entropy is not

5In particular, this limited us to indexing up to 200 MB of text in our machine.
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Table 6.6: Experiments on the counting of pattern occurrences. Time is mea-
sured in microseconds per pattern symbol. The space usage is ex-
pressed as a fraction of the original text size. We put in boldface
those results that lie within 10% of the best space/time tradeoffs.

SSA AF-index CSA LZ-index plain SA
Text Time Space Time Space Time Space Time Space Time Space

dna 0.956 0.29 1.914 0.28 5.220 0.46 43.896 0.93 0.542 5
english 2.147 0.60 2.694 0.42 4.758 0.44 68.774 1.27 0.512 5
pitches 2.195 0.74 2.921 0.66 3.423 0.63 55.314 1.95 0.363 5
proteins 1.905 0.56 3.082 0.56 6.477 0.67 47.030 1.81 0.479 5
sources 2.635 0.72 2.946 0.49 4.345 0.38 162.444 1.27 0.499 5
xml 2.764 0.69 2.256 0.34 4.321 0.29 306.711 0.71 0.605 5

much larger than higher-order entropies). The space usages of the AF-index
and the CSA are similar and usually the best, albeit the CSA predictably loses
in counting time on smaller alphabets (dna, proteins), due to its O(p log n)
rather than O(p log σ) complexity. The CSA takes advantage of larger alpha-
bets with good high-order entropies (sources, xml), a combination where the
AF-index, despite of its name, profits less. Note that the space performance
of the CSA on those texts confirms that its space occupancy is related to the
high-order entropy.

With respect to time, the SSA is usually the fastest thanks to its simplicity.
Sometimes the AF-index gets close and it is actually faster on xml. The CSA
is rarely competitive for counting, and the LZ-index is well out of bounds for
this experiment. Notice that the plain suffix array (last column in Table 6.6) is
2–6 times faster than any compressed index, but its space occupancy can be up
to 18 times larger.

6.4.3 Locate

We locate sufficient random patterns of length 5 to obtain a total of 2–3 million
occurrences per text (see Table 6.7). This way we are able to evaluate the aver-
age cost of a single locate operation, by making the impact of the counting cost
negligible. Figures 6.4 and 6.5 report the time/space tradeoffs achieved by the
different indexes for the locate operation.

We remark that the implemented indexes include the sampling mechanism for
locate and extract as a single module, and therefore the space for both oper-
ations is included in these plots. Therefore, the space could be reduced if we
only wished to locate. However, as extracting snippets of pattern occurrences
is an essential functionality of a self-index, we consider that the space for effi-
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∗ AF-index + CSA
2 LZ-index × SSA

Figure 6.4: Space-time tradeoffs for locating occurrences of patterns of length
5.
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∗ AF-index + CSA
2 LZ-index × SSA

Figure 6.5: Space-time tradeoffs for locating occurrences of patterns of length
5.
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Table 6.7: Number of searched patterns of length 5 and total number of lo-
cated occurrences.

Text # patterns # occurrences
dna 10 2, 491, 410
english 100 2, 969, 876
pitches 200 2, 117, 347
proteins 3, 500 2, 259, 125
sources 50 2, 130, 626
xml 20 2, 831, 462

Table 6.8: Locate time required by plain SA in microseconds per occur-
rence, with p = 5. We recall that this implementation requires 5
bytes per indexed symbol.

dna english pitches proteins sources xml

plain SA 0.005 0.005 0.006 0.007 0.007 0.006

cient extraction should always be included.6

The comparison shows that usually CSA can achieve the best results with min-
imum space, except on dna where the SSA performs better as expected (given
its query time complexity, (see Section 6.2.2), and on proteins for which the
suffix-array-based indexes perform similarly (and the LZ-index does much
worse). The CSA is also the most attractive alternative if we fix that the space
of the index should be equal to that of the text (recall that it includes the text),
dna and xml being the exceptions, where the LZ-index is superior.

The LZ-index can be much faster than the others if one is willing to pay for
some extra space. The exceptions are pitches, where the CSA is superior,
and proteins, where the LZ-index performs poorly. This may be caused
by the large number of patterns that were searched to collect the 2–3 million
occurrences (see Table 6.7), as the counting is expensive on the LZ-index.

Table 6.8 shows the locate time required by an implementation of the classical
suffix array: it is between 100 and 1000 times faster than any compressed in-
dex, but always 5 times larger than the indexed text. Unlike counting, where
compressed indexes are comparable in time with classical ones, locating is
much slower on compressed indexes. This comes from the fact that each lo-
cate operation (except on the LZ-index) requires to perform several random
memory accesses, depending on the sampling step. In contrast, all the occur-
rences are contiguous in a classical suffix array. As a result, the compressed

6Of course, we could have a sparser sampling for extraction, but we did not want to com-
plicate the evaluation more than necessary.
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indexes are currently very efficient in case of selective queries, but traditional
indexes become more effective when locating many occurrences. This fact has
triggered recent research activity on this subject but a deeper understanding
on index performance on hierarchical memories is still needed.

6.4.4 Extract

We extracted substrings of length 512 from random text positions, for a total
of 5 MB of extracted text. Fig.ures 6.6 and 6.7 report the time/space tradeoffs
achieved by the tested indexes. We still include both space to locate and ex-
tract, but we note that the sampling step affects only the time to reach the text
segment to extract from the closest sample, and afterwards the time is inde-
pendent of the sampling. We chose length 512 to smooth out the effect of this
sampling.

The comparison shows that, for extraction purposes, the CSA is better for
sources and xml, whereas the SSA is better on dna and proteins. On
english and pitches both are rather similar, albeit the CSA is able to op-
erate on reduced space. On the other hand, the LZ-index is much faster than
the others on xml, english and sources, if one is willing to pay some addi-
tional space.7

It is difficult to compare these times with those of a classical index, because
the latter has the text readily available. Nevertheless, we note that the times
are rather good: using the same space as the text (and some times up to half
the space) for all the functionalities implemented, the compressed indexes are
able to extract around 1 MB/sec, from arbitrary positions. This shows that
self-indexes are appealing as compressed-storage schemes with the support of
random accesses for snippet extraction.

6.4.5 Final comparison

In Table 6.9 we summarize our experimental results by showing the most
promising compressed index(es) depending on the text type and task.

For counting, the best indexes are SSA and AF-index. This stems from the fact
that they achieve very good zero- or high-order compression of the indexed
text, while their average counting complexity is O(p(H0(T)+ 1)). The SSA has
the advantage of a simpler search mechanism, but the AF-index is superior

7Actually the LZ-index is not plotted for pitches and proteins because it needs more
than 1.5 times the text size.
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∗ AF-index + CSA
2 LZ-index × SSA

Figure 6.6: Space-time tradeoffs for extracting text symbols.
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∗ AF-index + CSA
2 LZ-index × SSA

Figure 6.7: Space-time tradeoffs for extracting text symbols.
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Table 6.9: The most promising indexes given the size and time they obtain for
each operation/text.

dna english pitches proteins sources xml

COUNT
SSA SSA AF-index SSA CSA AF-index

- AF-index SSA - AF-index -

LOCATE
LZ-index CSA CSA SSA CSA CSA

SSA LZ-index - - LZ-index LZ-index

EXTRACT
SSA CSA CSA SSA CSA CSA

- LZ-index - - LZ-index LZ-index

for texts with small high-order entropy (i.e. xml, sources, english). The
CSA usually loses because of its O(p log n) counting complexity.

For locating and extracting, which are LF-computation intensive, AF-index
is hardly better than simpler SSA because the benefit of a denser sampling
does not compensate for the presence of many wavelet trees. The SSA wins
for small-alphabet data, like dna and proteins. Conversely, for all other
high-order compressible texts the CSA is better than the other approaches. We
also notice that the LZ-index is a very competitive choice when extra space
is allowed and the texts are highly compressible.

The ultimate moral is that there is not a clear winner for all text collections, and
that this is not to be taken as a static, final result, because the area is developing
fast. Nonetheless, our current results provide an upper bound on what these
compressed indexes can achieve in practice:

Count We can compress the text within 30%–50% of its original size, and
search for 20,000–50,000 patterns of 20 chars each within a second.

Locate We can compress the text within 40%–80% of its original size, and lo-
cate about 100,000 pattern occurrences per second.

Extract We can compress the text within 40%–80% of its original size, and de-
compress its symbols at a rate of about 1 MB/second.

The above figures show that the compressed full-text indexes are from one
(count) to three (locate) orders of magnitudes slower than what one can achieve
with a plain suffix array, at the benefit of using up to 18 times less space. This
slowdown is due to the fact that search operations in compressed indexes ac-
cess the memory in a non-local way thus eliciting many cache/IO misses, with
a consequent degradation of the overall time performance. Nonetheless com-
pressed indexes achieve a (search/extract) throughput which is significant and
may match the efficiency specifications of most software tools which run on a
commodity PC.





CHAPTER

SEVEN

Dictionary indexes

String processing and searching tasks are at the core of modern Web search,
information retrieval and data mining applications. Most of such tasks boil
down to some basic algorithmic primitives which involve a large dictionary
of strings having variable length. Typical examples include: pattern matching
(exact, approximate, with wild-cards,...), the ranking of a string in a sorted dic-
tionary, or the selection of the i-th string from it. While it is easy to imagine
uses of pattern matching primitives in real applications, such as search en-
gines and text mining tools, rank/select operations appear uncommon. How-
ever they are quite often used (probably, unconsciously!) by programmers to
replace long strings with unique IDs which are easier and faster to be pro-
cessed and compressed. In this context ranking a string means mapping it to
its unique ID, whereas selecting the i-th string means retrieving it from its ID
(i.e. its ranked position i).

As strings are getting longer and longer, and dictionaries of strings are getting
larger and larger, it becomes crucial to devise implementations for the above
primitives which are fast and work in compressed space. This is the topic of the
present chapter that actually addresses the design of compressed data struc-
tures for the so called tolerant retrieval problem, defined as follows [121]. Let
S be a sorted dictionary of m strings having total length n and drawn from an
arbitrary alphabet Σ of size σ. The tolerant retrieval problem consists of prepro-
cessing S in order to efficiently support the following WILDCARD(P) query
operation: search for the strings in S which match the pattern P ∈ (Σ ∪ {∗})+.
Symbol ∗ is the so called wild-card symbol, and matches any substring of Σ∗.
In principle, the pattern P might contain several occurrences of ∗; however, for
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practical reasons, it is common to restrict the attention to the following signif-
icant cases:

• MEMBERSHIP query determines whether a pattern P ∈ Σ+ occurs in S .
Here P does not include wild-cards.

• PREFIX query determines all strings in S which are prefixed by string α.
Here P = α∗ with α ∈ Σ+.

• SUFFIX query determines all strings in S which are suffixed by string β.
Here P = ∗β with β ∈ Σ+.

• SUBSTRING query determines all strings in S which have γ as a sub-
string. Here P = ∗γ∗ with γ ∈ Σ+.

• PREFIXSUFFIX query is the most sophisticated one and asks for all strings
in S that are prefixed by α and suffixed by β. Here P = α ∗ β with α, β ∈
Σ+.

We extend the tolerant retrieval problem to include the following two basic
primitives:

• RANKSTRING(P) computes the rank of string P ∈ Σ+ within the (sorted)
dictionary S .

• SELECTSTRING(i) retrieves the i-th string of the (sorted) dictionary S .

There are two classical approaches to string searching: Hashing and Tries
[10]. Hashing supports only the exact MEMBERSHIP query; its more sophis-
ticated variant called minimal ordered perfect hashing [164] supports also the
RANKSTRING operation but only on strings of S . All other queries need how-
ever the inefficient scan of the whole dictionary!

Tries are more powerful in searching than hashing, but they introduce extra
space and fail to provide an efficient solution to the PREFIXSUFFIX query. In
fact, the search for P = α ∗ β needs to visit the subtrie descending from the
trie-path labeled α, in order to find the strings that are suffixed by β. Such a
brute-force visit may cost Θ(|S|) time independently of the number of query
answers (cfr [9]). We can circumvent this limitation by using the sophisticated
approach proposed in [47] which builds two tries, one storing the strings of S
and the other storing their reversals, and then reduce the PREFIXSUFFIX query
to a geometric 2D-range query, which is eventually solved via a proper efficient
geometric data structure in O(|α|+ |β|+ polylog(n)) time. The overall space
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occupancy would be Θ(n log n) bits, with a large constant hidden in the big-O
notation due to the presence of the two tries and the geometric data structure.

Recently Manning et al. [121] resorted the Permuterm index of Garfield [68] as
a time-efficient and elegant solution to the tolerant retrieval problem above.
The idea is to take every string s ∈ S , append a special symbol $, and then
consider all the cyclic rotations of s$. The dictionary of all rotated strings is
called the permuterm dictionary, and is then indexed via any data structure that
supports prefix searches, e.g. the trie. The key to solve the PREFIXSUFFIX query
is to rotate the query string α ∗ β$ so that the wild-card symbol appears at the
end, namely β$α∗. Finally, it suffices to perform a prefix-query for β$α over
the permuterm dictionary. As a result, the Permuterm index allows to reduce
any query of the Tolerant Retrieval problem on the dictionary S to a prefix query over
its permuterm dictionary. The limitation of this elegant approach relies in its
space occupancy, as “its dictionary becomes quite large, including as it does all
rotations of each term.” [121]. In practice, one memory word per rotated string
(and thus 4 bytes per symbol) is needed to index it, for a total of Ω(n log n) bits.

In this chapter we propose the Compressed Permuterm Index which solves the
tolerant retrieval problem in time proportional to the length of the queried
string P, and space close to the k-th order empirical entropy of the dictionary
S . The time complexity matches the one achieved by the (uncompressed) Per-
muterm index. The space complexity is close to the k-th order empirical en-
tropy of the dictionary S . In addition, we devise a dynamic Compressed Per-
muterm Index that is able to maintain the dictionary S under insertions and
deletions of an individual string s in O(|s|(1 + log σ/ log log n) log n) time.
All query operations are slowed down by a multiplicative factor of at most
O((1 + log σ/ log log n) log n). The space occupancy is still close to the k-th
order empirical entropy of the dictionary S .

Our result is based on a variant of the Burrows-Wheeler Transform here ex-
tended to work on a dictionary of strings of variable length. We prove new
properties of such BWT, and show that known (dynamic) compressed indexes
may be easily adapted to solve efficiently the (dynamic) Tolerant Retrieval
problem.

We finally complement our theoretical study with a significant set of exper-
iments over large dictionaries of URLs, hosts and terms, and compare our
Compressed Permuterm index against some classical approaches to the Tol-
erant Retrieval problem mentioned in [121, 164] such as tries and front-coded
dictionaries. Experiments will show that tries are fast but much space con-
suming; conversely our compressed permuterm index allows to trade query
time by space occupancy, resulting as fast as Front-Coding in searching the
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Algorithm Backward search(Q[1, q])

1. i = q, c = Q[q], First = C[c] + 1, Last = C[c + 1];

2. while ((First ≤ Last) and (i ≥ 2)) do

3. c = Q[i− 1];

4. First = C[c] + RANKc(L, First− 1) + 1;

5. Last = C[c] + RANKc(L, Last);

6. i = i− 1;

7. if (Last < First) then return “no rows prefixed by Q” else return [First, Last].

Figure 7.1: The algorithm to find the range [First, Last] of rows of MT pre-
fixed by Q[1, q].

dictionary but more than 50% smaller in space occupancy— thus being close
to gzip, bzip2 and ppmdi. This way the compressed permuterm index of-
fers a plethora of solutions for the Tolerant Retrieval problem which may well
adapt to different applicative scenarios.

7.1 Background

The Backward Search algorithm of the FM-index family has been already in-
tensivelly discussed in previous chapter (see Section 6.2.1). Since our solution
is based on it, we report here the pseudocode of this algorithm (Algorithm
7.1). Chapter 6 was primarly focused on practical solutions, thus, we pre-
sented only practical solutions to provide RANK and SELECT queries. The
literature offers also many theoretical solutions for this problem having often
better time/space bounds (see e.g. [11, 134] and references therein). We do not
want to enter into details on this topic and, thus, we just summarize below the
ones having best bounds.

Lemma 9. Let T[1, n] be a string over alphabet Σ of size σ and let L = Bwt(T) be its
BW-transform.

1. For σ = O(polylog(n)), there exists a data structure which supports RANK

queries and the retrieval of any symbol of L in constant time, by using nHk(T)+
o(n) bits of space, for any k ≤ α logσ n and 0 < α < 1 [53, Theorem 5].

2. For general Σ, there exists a data structure which supports RANK queries and
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the retrieval of any symbol of L in O(log log σ) time, by using nHk(T) + n ·
o(log σ) bits of space, for any k ≤ α logσ n and 0 < α < 1 [11, Theorem 4.2].

By plugging Lemma 9 into Backward search, the authors of [11, 53] obtained:

Theorem 12. Given a text T[1, n] drawn from an alphabet Σ of size σ, there exists
a compressed index that takes q× trank time to support Backward search(Q[1, q]),
where trank is the time cost of a single RANK operation over L = Bwt(T). The space
usage is bounded by nHk(T) + lspace bits, for any k ≤ α logσ n and 0 < α < 1, where
lspace is o(n) when σ = O(polylog(n)) and n · o(log σ) otherwise. �

As we have already seen in previous chapter, compressed indexes support
also other operations, like locate and display of pattern occurrences, which
are slower than Backward search in that they require polylog(n) time per
occurrence. One positive feature of our compressed permuterm index is that
it will not need these (sophisticated) data structures, and thus it will not incur
in this polylog-slowdown.

7.2 Compressed Permuterm Index

The way in which the Permuterm dictionary is computed, immediately sug-
gests that there should be a relation between the BWT and the Permuterm dic-
tionary of the string set S . In both cases we talk about cyclic rotations of strings,
but in the former we refer to just one string, whereas in the latter we refer to a
dictionary of strings of possibly different lengths. The notion of BWT for a set
of strings has been considered in [122] for the purpose of string compression
and comparison. Here, we are interested in the compressed indexing of the
string dictionary S , which introduces more challenges. Surprisingly enough
the solution we propose is novel, simple, and efficient in time and space; fur-
thermore, it admits an effective dynamization.

7.2.1 A simple, but inefficient solution

Let S = {s1, s2, . . . , sm} be the lexicographically sorted dictionary of strings to
be indexed. Let $ (resp. #) be a symbol smaller (resp. larger) than any other
symbol of Σ. We consider the doubled strings ŝi = si$si. It is easy to note that
any pattern searched by PREFIXSUFFIX(P) matches si if, and only if, the rotation
of P mentioned in the Introduction is a substring of ŝi. For example, the query
PREFIXSUFFIX(α ∗ β) matches si iff the rotated string β$α occurs as a substring
of ŝi.
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Consequently, the simplest approach to solve the Tolerant Retrieval problem
with compressed indexes seems to boil down to the indexing of the string
ŜD = #ŝ1#ŝ2 · · · #ŝm# by means of the data structure of Theorem 12. Un-
fortunately, this approach suffers of subtle inefficiencies in the indexing and
searching steps. To see them, let us “compare” string ŜD against string SD =
$s1$s2$ . . . $sm−1$sm$#, which is a serialization of the dictionary S (and it will
be at the core of our approach, see below). We note that the “duplication” of si
within ŝi: (1) doubles the string to be indexed, because |ŜD| = 2|SD| − 1; and
(2) doubles the space bound of compressed indexes evaluated in Theorem 12,
because |ŜD|Hk(ŜD) ∼= 2|SD|Hk(SD)±m(k log σ + 2), where the second term
comes from the presence of symbol # which introduces new k-long substrings
in the computation of Hk(ŜD). Point (1) is a limitation for building large static
compressed indexes in practice, being their construction space a primary con-
cern [139]; point (2) will be experimentally investigated in Section 7.4 where
we show that a compressed index built on ŜD may be up to 1.9 times larger
than a compressed index built on SD.

7.2.2 A simple and efficient solution

Unlike the previous solution, our Compressed Permuterm index works on the
plain string SD, and is built in three steps (see Figure 7.2):

1. Build the string SD = $s1$s2$ . . . $sm−1$sm$#. Recall that the dictionary
strings are lexicographically ordered, and that symbol $ (resp. #) is as-
sumed to be smaller (resp. larger) than any other symbol of Σ.

2. Compute L = Bwt(SD).

3. Build a compressed data structure to support RANK queries over the
string L (Lemma 9).

Our goal is to turn every wild-card search over the dictionary S into a sub-
string search over the string SD. Some of the required queries are immediately
implementable as substring searches over SD (and thus they can be supported
supported by procedure Backward search and the RANKSTRING data struc-
ture built on L). But the sophisticated PREFIXSUFFIX query needs a different
approach because it requires to simultaneously match a prefix and a suffix of a
dictionary string, which are possibly far apart from each other in SD. In or-
der to circumvent this limitation, we prove a novel property of Bwt(SD) and
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F L jump2end

$ hat$hip$hope$hot$ # ⇓
$ hip$hope$hot$#$ha t ⇓
$ hope$hot$#$hat$hi p ⇓
$ hot$#$hat$hip$hop e ⇓
$ #$hat$hip$hope$ho t
a t$hip$hope$hot$#$ h
e $hot$#$hat$hip$ho p
h at$hip$hope$hot$# $
h ip$hope$hot$#$hat $
h ope$hot$#$hat$hip $
h ot$#$hat$hip$hope $
i p$hope$hot$#$hat$ h
o pe$hot$#$hat$hip$ h
o t$#$hat$hip$hope$ h
p $hope$hot$#$hat$h i
p e$hot$#$hat$hip$h o
t $hip$hope$hot$#$h a
t $#$hat$hip$hope$h o
# $hat$hip$hope$hot $

Figure 7.2: Given the dictionary S = {hat, hip, hope, hot}, we build the
string SD = $hat$hip$hope$hot$#, and then compute its BW-
transform. Arrows denote the positions incremented by the func-
tion jump2end.

deploy it to design a function, called jump2end, that allows to modify the pro-
cedure Backward search of Figure 7.1 in a way that is suitable to support effi-
ciently the PREFIXSUFFIX query. The main idea is that when Backward search
reaches the beginning of some dictionary string, say si, then it “jumps” to
the last symbol of si rather than continuing onto the last symbol of its previ-
ous string in S , i.e. the last symbol of si−1. Surprisingly enough, function
jump2end(i) consists of one line of code:

if 1 ≤ i ≤ m then return(i + 1) else return(i)

and its correctness derives from the following two Lemmas. (Refer to Fig-
ure 7.2 for an illustrative example.)

Lemma 10. Given the sorted dictionary S , and the way string SD is built, matrix
MSD satisfies the following properties:

• The first row ofMSD is prefixed by $s1$, thus it ends with symbol L[1] = #.

• For any 2 ≤ i ≤ m, the i-th row ofMSD is prefixed by $si$ and thus it ends
with the last symbol of si−1, i.e. L[i] = si−1[|si−1|].
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• The (m + 1)-th row of MSD is prefixed by $#$s1$, and thus it ends with the
last symbol of sm, i.e. L[m + 1] = sm[|sm|].

Proof. The three properties come from the sorted ordering of the dictionary
strings in SD, from the fact that symbol $ (resp. #) is the smallest (resp. largest)
alphabet symbol, from the cyclic rotation of the rows inMSD , and from their
lexicographic ordering. �

The previous Lemma immediately implies the “locality” property deployed
by function jump2end(i):

Lemma 11. Any row i ∈ [1, m] is prefixed by $si$ and the next row (i + 1) ends
with the last symbol of si.

We are now ready to design the procedures for pattern searching and for dis-
playing the strings of S . As we anticipated above the main search procedure,
called BackPerm search, is derived from the original Backward search of Fig-
ure 7.1 by adding one step which makes proper use of jump2end:

3′: First = jump2end(First); Last = jump2end(Last);

It is remarkable that the change is minimal (just one line of code!) and takes
constant time, because jump2end takes O(1) time. Let us now comment on
the correctness of the new procedure BackPerm search(β$α) in solving the
sophisticated query PREFIXSUFFIX(α ∗ β). We note that BackPerm search pro-
ceeds as the standard Backward search for all symbols Q[i] 6= $. In fact, the
rows involved in these search steps do not belong to the range [1, m], and thus
jump2end is ineffective. When Q[i] = $, the range [First, Last] is formed by
rows which are prefixed by $α. By Lemma 11 we know that these rows are
actually prefixed by strings $sj, with j ∈ [First, Last], and thus these strings
are in turn prefixed by $α. Given that [First, Last] ⊂ [1, m], Step 3′ moves this
range of rows to [First+ 1, Last+ 1], and thus identifies the new block of rows
which are ended by the last symbols of those strings sj (Lemma 11). After that,
BackPerm search continues by scanning backward the symbols of β (no other
$ symbol is involved), thus eventually finding the rows prefixed by β$α.

Figure 7.3 shows the pseudo-code of two other basic procedures: Back step(i)
and Display string(i). The former procedure is a slight variation of the backward
step implemented by any current compressed index based on BWT (see Chap-
ter 6), here modified to support a leftward cyclic scan of every dictionary string.
Precisely, if F[i] is the j-th symbol of some dictionary string s, then Back step(i)
returns the row prefixed by the (j − 1)-th symbol of that string if j > 1 (this
is a standard backward step), otherwise it returns the row prefixed by the last
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Algorithm Back step(i)

1. Compute L[i];

2. return C[L[i]] + RANKL[i](L, i);

Algorithm Display string(i)

1. // Go back to the preceding $, let it be at row ki
while (F[i] 6= $) do i = Back step(i);

2. i = jump2end(i);

3. s = empty string;

4. // Construct s = ski

while(L[i] 6= $) { s = L[i] · s; i = Back step(i); };

5. return(s);

Figure 7.3: Algorithm Back step is the one devised in [52] for standard com-
pressed indexes. Algorithm Display string(i) retrieves the string
containing the symbol F[i].

symbol of s (by means of jump2end). Procedure Display string(i) builds upon
Back step(i) and retrieves the string s, namely the dictionary string that con-
tains the symbol F[i].

Using the data structures of Lemma 9 for supporting RANK queries over the
string L = Bwt(SD), we obtain:

Theorem 13. Let SD be the string built upon a dictionary S of m strings having total
length n and drawn from an alphabet Σ of size σ, such that σ = polylog(n). We can
design a Compressed Permuterm index such that:

• Procedure Back step(i) takes O(1) time.

• Procedure BackPerm search(Q[1, q]) takes O(q) time.

• Procedure Display string(i) takes O(|s|) time, if s is the string containing sym-
bol F[i].

Space occupancy is bounded by nHk(SD) + o(n) bits, for any k ≤ α logσ n and
0 < α < 1.

Proof. For the time complexity, we observe that function jump2end takes con-
stant time, and it is invoked O(1) times at each possible iteration of proce-
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dures BackPerm search and Display string. Moreover, Back step takes con-
stant time, by Lemma 9. For the space complexity, we use the data structure of
Lemma 9 (case 1) to support RANK queries on the string L = Bwt(SD). �

If σ = Ω(polylog(n)), the above time bounds must be multiplied by a fac-
tor O(log log σ) and the space bound has an additive term of n · o(log σ) bits
(Lemma 9, case 2).

We are left with detailing the implementation of WILDCARD, RANKSTRING

and SELECTSTRING queries for the Tolerant Retrieval problem. As it is stan-
dard in the Compressed Indexing literature we distinguish between two sub-
problems: counting the number of dictionary strings that match the given wild-
card query P, and retrieving these strings. Based on the Compressed Per-
muterm index of Theorem 13 we have:

• MEMBERSHIP query invokes procedure BackPerm search($P$), then sim-
ply checks if First < Last.

• PREFIX query invokes procedure BackPerm search($α) and returns the
value Last − First + 1 as the number of dictionary strings prefixed by
α. These strings can be retrieved by applying Display string(i), for each
i ∈ [First, Last].

• SUFFIX query invokes procedure BackPerm search(β$) and returns the
value Last − First + 1 as the number of dictionary strings suffixed by
β. These strings can be retrieved by applying Display string(i), for each
i ∈ [First, Last].

• SUBSTRING query invokes procedure BackPerm search(γ) and returns
the value Last−First+ 1 as the number of occurrences of γ as a substring
of S ’s strings.1 Unfortunately, the efficient retrieval of these strings can-
not be through the execution of Display string, as we did for the queries
above. A dictionary string s may now be retrieved multiple times if γ

occurs many times as a substring of s. To circumvent this problem we
design a simple time-optimal retrieval, as follows. We use a bit vector V
of size Last− First + 1, initialized to 0. The execution of Display string
is modified so that V[j− First] is set to 1 when a row j within the range
[First, Last] is visited during its execution. In order to retrieve once all
dictionary strings that contain γ, we scan through i ∈ [First, Last] and
invoke the modified Display string(i) only if V[i − First] = 0. It is easy

1This is different from the problem of efficiently counting the number of strings containing
γ. Our index does not solve this interesting problem (cfr. [147] and references therein).
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to see that if i1, i2, . . . , ik ∈ [First, Last] are the rows of MSD denoting
the occurrences of γ in some dictionary string s (i.e. F[ij] is a symbol
of s), only Display string(i1) is fully executed, thus taking O(|s|) time.
For all the other rows ij, with j > 1, we find V[ij − First] = 1 and thus
Display string(ij) is not invoked.

• PREFIXSUFFIX query invokes BackPerm search(β$α) and returns the va-
lue Last− First + 1 as the number of dictionary strings which are pre-
fixed by α and suffixed β. These strings can be retrieved by applying
Display string(i), for each i ∈ [First, Last].

• RANKSTRING(P) invokes BackPerm search($P$) and returns the value
First, if First < Last, otherwise P 6∈ S (see Lemma 10) and thus the
lexicographic position of P in S can be discovered by means of a slight
variant of Backward search whose details are given in Figure 7.5 (see
Section 7.3.2 for further comments).

• SELECTSTRING(i) invokes Display string(i) provided that 1 ≤ i ≤ m (see
Lemma 10).

Theorem 14. Let S be a dictionary of m strings having total length n, drawn from an
alphabet Σ of size σ such that σ = polylog(n). Our Compressed Permuterm index
ensures that:

• If P[1, p] is a pattern with one-single wild-card, the query WILDCARD(P)
takes O(p) time to count the number of occurrences of P in S , and O(Locc)
time to retrieve the dictionary strings matching P, where Locc is their total
length.

• SUBSTRING(γ) takes O(|γ|) time to count the number of occurrences of γ as
a substring of S ’s strings, and O(Locc) time to retrieve the dictionary strings
having γ as a substring, where Locc is their total length.

• RANKSTRING(P[1, p]) takes O(p) time.

• SELECTSTRING(i) takes O(|si|) time.

The space occupancy is bounded by nHk(SD) + o(n) bits, for any k ≤ α logσ n and
0 < α < 1.

According to Lemma 9 (case 2), if σ = Ω(polylog(n)) the above time bounds
must be multiplied by O(log log σ) and the space bound has an additive term
of n · o(log σ) bits. We remark that our Compressed Permuterm index can
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support all wild-card searches without using any locate-data structure, which
is known to be the main bottleneck of current compressed indexes [134]: it
implies the polylog-term in their query bounds and most of the o(n log σ) term
of their space cost. The net result is that our Compressed Permuterm index
achieves in practice space occupancy much closer to known compressors and
very fast queries, as we will experimentally show in Section 7.4.

A comment is in order at this point. Instead of introducing function jump2end
and then modify the Backward search procedure, we could have modified
L = Bwt(SD) just as follows: cyclically rotate the prefix L[1, m + 1] of one
single step (i.e. move L[1] = # to position L[m + 1]). This way, we are actually
plugging Lemma 11 directly into the string L. It is thus possible to show that the
compressed index of Theorem 12 applied on the rotated L, is equivalent to the
compressed permuterm index introduced above. The performance in practice
of this variation are slightly better since the computation of jump2end is no
longer required. This is the implementation we used in the experiments of
Section 7.4.

7.3 Dynamic Compressed Permuterm Index

In this section we deal with the dynamic Tolerant Retrieval problem in which
the dictionary S changes over the time under two update operations:

• INSERTSTRING(W) inserts the string W in S .

• DELETESTRING(j) removes the j-th lexicographically smallest string sj
from S .

The problem of maintaining a compressed index over a dynamically changing
collection of strings, has been addressed in e.g. [25, 52, 116]. In those papers
the design of dynamic Compressed Indexes boils down to the design of dy-
namic compressed data structures for supporting Rank/Select operations.
Here we adapt those solutions to the design of our dynamic Compressed Per-
muterm Index by showing that the insertion/deletion of an individual string
s in/from S can be implemented via an optimal number O(|s|) of basic in-
sert/delete operations of single symbols in the compressed RANK/SELECT data
structure built on L = Bwt(SD). Precisely, we will consider the following two
basic update operations:

• INSERT(L, i, c) inserts symbol c between symbols L[i] and L[i + 1].
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• DELETE(L, i) removes the ith symbol L[i].

The literature provides several dynamic data structures for supporting RANK

queries and the above two update operations, with various time/space trade-
offs. The best known results are currently due to [80]:

Lemma 12. Let S[1, s] be a string drawn from an alphabet Σ of size σ and let L =
Bwt(S) be its BW-Transform. There exists a dynamic data structure that supports
RANK, SELECT and ACCESS operations in L taking O((1 + log σ/ log log s) log s)
time, and maintains L under insert and delete operations of single symbols in O((1 +
log σ/ log log s) log s) time. The space required by this data structure is nHk(S) +
o(n log σ) bits, for any k < α logσ s and constant 0 < α < 1.

Our dynamic Compressed Permuterm Index is designed upon the above dy-
namic data structures, in a way that any improvement to Lemma 12 will pos-
itively reflect onto an improvement to our bounds. Therefore we will in-
dicate the time complexities of our algorithms as a function of the number
of INSERT and DELETE operations executed onto the changing string L =
Bwt(SD). We also notice that these operations will change not only L but also
the string F (which is the lexicographically sorted version of L, see Section
2.4.2). The maintenance of L will be discussed in the next subsections; while
for F we will make use of the solution proposed in [116, Section 7] that takes
σ log s + o(σ log s) bits and implements in O(log s) time the following query
and update operations: C[c] returns the number of symbols in F smaller than
c; deleteF(c) removes from F an occurrence of symbol c; and insertF(c)
adds an occurrence of symbol c in F.

The next two subsections detail our implementations of INSERTSTRING and
DELETESTRING. The former is a slight modified version of the algorithm in-
troduced in [25], here adapted to deal with the specialties of our dictionary
problem: namely, the dictionary strings forming SD must be kept in lexico-
graphic order. The latter coincides with the algorithm presented in [116] for
which we prove an additional property (Lemma 13) which is a key for using
this result as is in our context.

7.3.1 Deleting one dictionary string

The operation DELETESTRING(j) requires to delete the string sj from the dic-
tionary S , and thus recompute the BW-transform L′ of the new string SD′ =
$s1$ . . . $sj−1$sj+1$ . . . $sm$#. The key property we deploy next is that this re-
moval does not impact on the ordering of the rows ofMSD which do not refer
to suffixes of $sj.
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Algorithm DELETESTRING(j)

1. prev = j + 1; next = n; c = $;

2. while (next 6= j) do

3. next = Back step(prev);

4. deleteF(c); c = L[prev]; DELETE(L, prev);

5. if prev < next then next = next− 1;

6. prev = next;

Figure 7.4: Algorithm to delete the string $sj from SD.

Lemma 13. The removal from L of the symbols of $sj gives the correct string Bwt(SD′).

Proof. It is enough to prove that the removal of $sj will not influence the order
between any pair of rows i′ < i′′ in MSD . Take i′, i′′ as two rows which are
not deleted from MSD , and thus do not start/end with symbols of $sj. We
compare the suffix of SD corresponding to the i′-th row, say Si′ , and the suffix
of SD corresponding to the i′′-th row, say Si′′ . We recall that these are increasing
strings, in that they are composed by the dictionary strings which are arranged
in increasing lexicographic order and they are separated by the special symbol
$ (see Section 7.2.2). Since all dictionary strings are distinct, the mismatch
between Si′ and Si′′ occurs before the second occurrence of $ in them. Let
us denote the prefix of Si′ and Si′′ preceding the second occurrence of $ with
α′$s′$ and α′′$s′′$, respectively, where α′, α′′ are (possibly empty) suffixes of
dictionary strings, and s′, s′′ are dictionary strings. If the mismatch occurs in
α′ or α′′ we are done, because they are not suffixes of $sj (by the assumption),
and therefore they are not interested by the deletion process. If the mismatch
occurs in s′ or s′′ and they are both different of sj, we are also done. The trouble
is when s′ = sj or s′′ = sj. We consider the first case, because the second is
similar. This case occurs when |α′| = |α′′|, so that the order between Si′ and
Si′′ is given by the order of s′ vs s′′. If s′ = sj, then the order of the two rows is
then given by comparing sj+1 and s′′. Since s′ < s′′ (because Si′ < Si′′) and sj+1
is the smallest dictionary string greater than s′, we have that sj+1 ≤ s′′, and the
thesis follows. �

Given this property, we can use the same string-deletion algorithm of [116] to
remove all symbols of $sj from L and F. (Figure 7.4 reports the pseudo-code of
this algorithm, for the sake of completeness.)
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Algorithm LexOrder(W[1, w])

1. i = w, c = W[w], First = C[c] + 1;

2. while (i ≥ 1) do

3. c = W[i− 1];

4. First = C[c] + RANKc(L, First− 1) + 1;

5. i = i− 1;

6. return RANK$(L, First− 1) + 1

Figure 7.5: Algorithm LexOrder(W[1, w]) returns the lexicographic position
of W in S .

7.3.2 Inserting one dictionary string

An implementation of INSERTSTRING(W) for standard compressed indexes
was described in [25]. Here we present a slightly modified version of that
algorithm which correctly deals with the maintenance of the lexicographic
ordering of the dictionary strings in SD, and the re-computation of its BW-
transform. We recall that this order is crucial for the correctness of most of our
query operations.

Let j be the lexicographic position of the string W in S . INSERTSTRING(W)
requires to recompute the BWT L′ of the new string SD′ = $s1$ . . . $sj−1$W$
sj$sj+1$ . . . $sm$#. For this purpose, we can use the reverse of Lemma 13 in
order to infer that this insertion does not affect the ordering of the rows already
inMSD . Thus INSERTSTRING(W) boils down to insert just the symbols of W in
their correct positions within L (and, accordingly, in F). This is implemented in
two main steps: first, we find the lexicographic position of W in S (Algorithm
LexOrder(W)); and then, we deploy this position to infer the positions in L
where all symbols of W have to be inserted (Algorithm INSERTSTRING).

The pseudo-code in Figure 7.5 details algorithm LexOrder(W) which assumes
that any symbol of W already occurs in the dictionary strings. If this is not the
case, we set c = W[x] as the leftmost symbol of W which does not occur in any
string of S , and set c′ as the smallest symbol which is lexicographically greater
than c and occurs in S . If LexOrder is correct, then LexOrder(W[1, x − 1]c′)
returns the lexicographic position of W in S .

Lemma 14. Given a string W[1, w] whose symbols occurs in S , LexOrder(W) re-
turns the lexicographic position of W among the strings in S .
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Algorithm INSERTSTRING(W[1, w], j)

1. i = w, First = j + 1, f = $;

2. while (i ≥ 1) do

3. c = W[i];

4. INSERT(L, First, c); insertF( f );

5. First = C[c] + RANKc(L, First− 1) + 1;

6. f = c , i = i− 1;

7. INSERT(L, First, $); insertF( f );

Figure 7.6: Algorithm to insert string $W[1, w] by knowing its lexicographi-
cally order j among the strings in S .

Proof. Its correctness derives from the correctness of Backward search. At
any step i, First points to the first row ofMSD which is prefixed by the suffix
W[w− i, w]$. If such a row does not exist, First points to the first row ofMSD
which is lexicographically greater than W[w− i, w]$. �

Now we have all the ingredients to describe algorithm INSERTSTRING(W).
Suppose that j is the value returned by LexOrder(W[1, w]). We have to insert
the symbol W[i] preceding any suffix W[i + 1, w] in its correct position of L′ =
Bwt(SD′) and update the string F too. The algorithm in Figure 7.6 starts from
the last symbol W[w], and inserts it at the (j + 1)-th position of Bwt(SD) (by
Lemma 11). It also inserts the symbol $ in F, since it is the first symbol of
the (j + 1)-th row. After that, the algorithm performs a backward step from
the (j + 1)-th row with the symbol W[w] in order to find the position in L
where W[w− 1] should be inserted. Accordingly, the symbol W[w] is inserted
in F too. These insertions are executed in L and F until all positions of W
are processed. Step 7 completes the process by inserting the special symbol
$. Overall, INSERTSTRING executes an optimal number of inserts of single
symbols in L and F. We then use the dynamic data structures of Lemma 12
to dynamically maintain L, and the solution of [116, Section 7] to maintain F,
thus obtaining:

Theorem 15. Let S be a dynamic dictionary of m strings having total length n,
drawn from an alphabet Σ of size σ. The Dynamic Compressed Permuterm index sup-
ports all queries of the Tolerant Retrieval problem with a slowdown factor of O((1 +
log σ/ log log n) log n) with respect to its static counterpart (see Theorem 14). Addi-
tionally, it can support INSERTSTRING(W) in O(|W|(1 + log σ/ log log n) log n)
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time; and DELETESTRING(j) in O(|sj|(1 + log σ/ log log n) log n)) time.

The space occupancy is bounded by nHk(SD) + o(n log σ) bits, for any k ≤ α logσ n
and 0 < α < 1.

We point out again that any improvement to Lemma 12 will positively affect
the dynamic bounds above.

7.4 Experimental Results

We downloaded from http://law.dsi.unimi.it/ various crawls of the
web—namely, arabic-2005, indocina-2004, it-2004, uk-2005, web-
base-2001 [19]. We extracted from uk-2005 about 190Mb of distinct urls,
and we derived from all crawls about 34Mb of distinct host-names. The dic-
tionary of urls and hosts have been lexicographically sorted by reversed host
names in order to maximize the longest common-prefix (shortly, lcp) shared
by strings adjacent in the lexicographic order. We have also built a dictionary
of (alphanumeric) terms by parsing the TREC collection WT10G and by drop-
ping (spurious) terms longer than 50 symbols. These three dictionaries are
representatives of string sets usually manipulated in Web search and mining
engines.

Table 7.1 reports some statistics on these three dictionaries: DictUrl (the dic-
tionary of urls), DictHost (the dictionary of hosts), and DictTerm (the dic-
tionary of terms). In particular lines 3-5 describe the composition of the dic-
tionaries at the string level, lines 6-8 account for the repetitiveness in the dictio-
naries at the string-prefix level (which affects the performance of front-coding
and trie, see below), and the last three lines account for the repetitiveness in
the dictionaries at the sub-string level (which affects the performance of com-
pressed indexes). It is interesting to note that the Total lcp varies between
55–69% of the dictionary size, whereas the amount of compression achieved
by gzip, bzip2 and ppmdi is superior and reaches 67–92%. This proves that
there is much repetitiveness in these dictionaries not only at the string-prefix
level but also within the strings. The net consequence is that compressed in-
dexes, which are based on the Burrows-Wheeler Transform (and thus have the
same bzip2-core), should achieve on these dictionaries significant compres-
sion, much better than the one achieved by front-coding based schemes!

In Tables 7.2 and 7.3 we test the time and space performance of three (com-
pressed) solutions to the Tolerant Retrieval problem:

CPI is our Compressed Permuterm Index of Section 7.2.2. In order to com-
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Statistics DictUrl DictHost DictTerm

Size (Mb) 190 34 118
σ 95 52 36
# strings 3, 034, 144 1, 778, 927 10, 707, 681
Avg len strings 64.92 18.91 10.64
Max len strings 1, 138 180 50
Avg lcp 45.85 11.25 6.81
Max lcp 720 69 49
Total lcp 68.81% 55.27% 58.50%
gzip -9 11.49% 23.77% 29.50%
bzip2 -9 10.86% 24.03% 32.58%
ppmdi -l 9 8.32% 19.08% 29.06%

Table 7.1: Statistics on our three dictionaries.

Method DictUrl DictHost DictTerm

Trie 1374.29% 1793.19% 1727.93%
FC-32 109.95% 113.22% 106.45%
FC-128 107.41% 109.91% 102.10%
FC-1024 106.67% 108.94% 100.84%
CPI-AFI 49.72% 47.48% 52.24%
CPI-CSA-64 37.82% 56.36% 73.98%
CPI-CSA-128 31.57% 50.11% 67.73%
CPI-CSA-256 28.45% 46.99% 64.61%
CPI-FMI-256 24.27% 40.68% 55.41%
CPI-FMI-512 18.94% 34.58% 47.80%
CPI-FMI-1024 16.12% 31.45% 44.13%

Table 7.2: Space occupancy is reported as a percentage of the original dictio-
nary size. Recall that Trie and Fc are built on both the dictio-
nary strings and their reversals, in order to support PREFIXSUFFIX

queries.



7.4. Experimental Results 121

DictUrl DictHost DictTerm
Method 10 60 5 15 5 10
Trie 0.1 0.2 0.4 0.5 1.2 0.9
FC-32 1.3 0.4 1.5 1 2.5 1.7
FC-128 3.2 1.0 3.4 1.8 4.6 2.8
FC-1024 26.6 5.2 24.6 11.0 25.0 14.6
CPI-AFI 1.8 2.9 1.6 2.5 2.9 3.0
CPI-CSA-64 4.9 5.6 4.3 5.2 5.4 5.7
CPI-CSA-128 7.3 8.0 6.9 7.6 7.6 8.3
CPI-CSA-256 11.8 14.1 11.8 12.5 12.8 13.2
CPI-FMI-256 11.9 9.8 19.3 15.5 22.5 20.1
CPI-FMI-512 16.2 13.4 28.4 23.1 34.2 30.3
CPI-FMI-1024 24.1 20.7 46.4 38.4 57.6 50.1

Table 7.3: Timings are given in µsecs/char averaged over one million of
searched patterns, whose length is reported at the top of each col-
umn. Value b denotes in CPI-FMI-b the bucket size of the FM-
index, in CPI-CSA-b the sample rate of the function Ψ [44], and
in FC-b the bucket size of the front-coding scheme. We recall that
b allows in all these solutions to trade space occupancy per query
time.
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press the string SD and implement procedures BackPerm search and
Display string, we modified three types of compressed indexes available
under the Pizza&Chili site [44] and discussed in Chapter 6, which
represent the best choices in this setting. Namely CSA, FM-index v2
(shortly FMI), and the alphabet-friendly FM-index (shortly AFI). We te-
sted three variants of CSA and FMI by properly setting their parameter
which allows to trade space occupancy by query performance.

FC data structure applies front-coding to groups of b adjacent strings in the
sorted dictionary, and then keeps explicit pointers to the beginners of
every group [164].

Trie is the ternary search tree of Bentley and Sedgewick which “combines the
time efficiency of digital tries with the space efficiency of binary search
trees” [17].2

Theorem 14 showed that Cpi supports efficiently all queries of the Tolerant
Retrieval problem. The same positive feature does not hold for the other two
data structures. In fact Fc and Trie support only prefix searches over the in-
dexed strings. Therefore, in order to implement the PREFIXSUFFIX query, we
need to build these data structures twice— one on the strings of S and the
other on their reversals. This doubles the space occupancy, and slows down the
search performance because we need to first make two prefix-searches, one
for P’s prefix α and the other for P’s suffix β, and then we need to intersect
the two candidate lists of answers. If we wish to also support the rank/select
primitives, we need to add some auxiliary data that keep information about
the left-to-right numbering of trie leaves, thus further increasing the space oc-
cupancy of the trie-based solution. In Table 7.2 we account for such “space
doubling”, but not for the auxiliary data, thus giving an advantage in space
to these data structures wrt Cpi. It is evident the large space occupancy of
ternary search trees because of the use of pointers and the explicit storage of
the dictionary strings (without any compression). As predicted from the statis-
tics of Table 7.1, Fc achieves a compression ratio of about 40% on the original
dictionaries, but more than 60% on their reversal. Further, we note that Fc
space improves negligibly if we vary the bucket size b from 32 to 1024 strings,
and achieves the best space/time trade-off when b = 32.3 In summary, the
space occupancy of the Fc solution is more than the original dictionary size,
if we wish to support all queries of the Tolerant Retrieval problem! As far as

2Code at http://www.cs.princeton.edu/∼rs/strings/.
3A smaller b would enlarge the extra-space dedicated to pointers, a larger b would impact

seriously on the time efficiency of the prefix searches.
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the variants of Cpi are concerned, we note that their space improvement is
significant: a multiplicative factor from 2 to 7 wrt Fc, and from 40 to 86 wrt
Trie.

In Section 7.2.1 we mentioned another simple solution to the Tolerant Retrieval
problem which was based on the compressed indexing of the string ŜD, built
by juxtaposing twice every string of S . In that section we argued that this so-
lution is inefficient in indexing time and compressed-space occupancy because
of this “string duplication” process. Here we investigate experimentally our
conjecture by computing and comparing the k-th order empirical entropy of
the two strings ŜD and SD. As predicted theoretically, the two entropy values
are close for all three dictionaries, thus implying that the compressed indexing
of ŜD should require about twice the compressed indexing of SD (recall that
|ŜD| = 2|SD| − 1). To check this, we have then built two FM-indexes: one on
ŜD and the other on SD, by varying S over the three dictionaries. We found
that the space occupancy of the FM-index built on ŜD is a factor 1.6–1.9 worse
than our Cpi-Fmi built on SD. So we were right when in Section 7.2.1 we
conjectured the inefficiency of the compressed indexing of ŜD.

We have finally tested the time efficiency of the above indexing data struc-
tures over a P4 2.6 GHz machine, with 1.5 Gb of internal memory and run-
ning Linux kernel 2.4.20. We executed a large set of experiments by varying
the searched-pattern length, and by searching one million patterns per length.
Since the results were stable over all these timings, we report in Table 7.3 only
the most significant ones by using the notation microsecs per searched symbol
(shortly µs/char): this is obtained by dividing the overall time of an experi-
ment by the total length of the searched patterns. We remark that the timings
in Table 7.3 account for the cost of searching a pattern prefix and a pattern
suffix of the specified length. While this is the total time taken by our Cpi to
solve a PREFIXSUFFIX query, the timings for Fc and Trie are optimistic evalu-
ations because they should also take into account the time needed to intersect
the candidate list of answers returned by the prefix/suffix queries! Keeping
this in mind, we look at Table 7.3 and note that Cpi allows to trade space
occupancy per query time: we can go from a space close to gzip–ppmdi and
access time of 20–57 µs/char (i.e. CPI-FMI-1024), to an access time similar to
Fc of few µs/char but using less than half of its space (i.e. CPI-AFI). Which
variant of Cpi to choose depends on the application for which the Tolerant
Retrieval problem must be solved.

We finally notice that, of course, any improvement to compressed indexes
[134] will immediately and positively impact onto our Cpi, both in theory
and in practice. Overall our experiments show that Cpi is a novel compressed
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storage scheme for string dictionaries which is fast in supporting the sophisti-
cated searches of the Tolerant Retrieval problem, and is as compact as the best
known compressors!

7.5 Further considerations

In [121] the more sophisticated wild-card query P = α ∗ β ∗γ is also considered
and implemented by intersecting the set of strings containing γ$α with the set
of strings containing β. Our compressed permuterm index allows to avoid the
materialization of these two sets by working only on the compressed index built
on the string SD. The basic idea consists of the following steps:

• Compute [First′, Last′] = BackPerm search(γ$α);

• Compute [First′′, Last′′] = BackPerm search(β);

• For each r ∈ [First′, Last′] repeatedly apply Back step of Figure 7.2 until
it finds a row which either belongs to [First′′, Last′′] or to [1, m] (i.e. starts
with $).

• In the former case r is an answer to WILDCARD(P), in the latter case it is
not.

The number of Back step’s invocations depends on the length of the dictionary
strings which match the query PREFIXSUFFIX(α ∗γ). In practice, it is possible to
engineer this paradigm to reduce the total number of Back steps (see Chapter
6, FM-indexV2). The above scheme can be also used to answer more complex
queries as P = α ∗ β1 ∗ β2 ∗ . . . ∗ βk ∗ γ, with possibly empty α and γ. The
efficiency depends on the selectivity of the individual queries PREFIXSUFFIX(α ∗
γ) and SUBSTRING(βi), for i = 1, . . . , k.

It would be then interesting to extend our results in two directions, either by
proving guaranteed and efficient worst-case bounds for queries with multi-
ple wild-card symbols, or by turning our Compressed Permuterm index in a
I/O-conscious or, even better, cache-oblivious compressed data structure. This
latter issue actually falls in the key challenge of current data structural design:
does it exist a cache-oblivious compressed index?
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EIGHT

Future directions of research

We conclude the thesis by presenting some of the most important open prob-
lems of this fascinating field of research.

Exact optimal partitioning. In Chapter 3 we have investigated the problem of
partitioning an input string T in such a way that compressing individually its
parts via a base-compressor C gets a compressed output that is shorter than
applying C over the entire T at once. We provide an algorithm which is guar-
anteed to compute in O(n log1+ε n) time a partition of T whose compressed
output is guaranteed to be no more than (1+ ε)-worse the optimal one, where
ε may be any positive constant. An interesting open question consists in un-
derstanding if it is possible to design an o(n2) time solution for computing the
exact optimal partition.

Speeding up solutions of dynamic programming recurrences. Many appli-
cations require to solve efficiently dynamic programming recurrences (see [71]
and references therein). The simplest type of recurrence, called 1D/1D, have
the form E[j] = mini<j(E[i] + c(i, j)) and is used as a building block to solve
more sophisticated recurrences. The trivial algorithm solves such recurrences
in quadratic time and, by simple argumentations, it has been shown that this
algorithm is optimal for general cost functions c(). Nevertheless, subquadratic
solutions can be obtained whenever the cost function c() has particular prop-
erties that can be exploited. For example, in literature are known efficient al-
gorithms that permit to solve these recurrences even in linear time provided
that the cost function c() satisfies a property called quadrangle inequality or
some of its variants. However, properties related to quadrangle inequality
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may not hold in many contexts. As an example consider the recurrences that
come out in the two problems addressed in chapters 3 and 4. Our efficient
algorithms have been obtained by showing that dynamic programming recur-
rences can be solved/approximated in subquadratic time even when function
c() is increasing without requiring properties related to quadrangle inequality.
We believe that this research can be refined and integrated in order to better
understand which are necessary and/or sufficient properties that function c()
must be satisfied in order to guarantee subquadratic solutions.

Random Access in compressed strings in RAM model. The scheme presented
in Chapter 5 is very simple and, as deeply illustrated in [148], may find suc-
cessful applications into many other interesting contexts (see [12, 15, 27, 39, 61,
87, 91, 92, 136, 148] and references therein). However, all known solutions are
far from being usable in practice because of the additive term o(n log σ) which
usually dominates the k-th order entropy term. More research is still needed to
either to reduce the lower order term as much as possible (e.g., removing the
factor k log σ in the term O( n

logσ n k log σ) would be a valuable improvement), or
to show a lower bound related to k-th order entropy. Since our storage scheme,
unlike [79, 148], does not use any sophisticated data compression machinery,
we are led to think that there is room for improvement.

Random Access in compressed string on External-Memory model. This prob-
lem extends the one stated in the previous point to the External-Memory mo-
del, for which the complexity of retrieving a substring from T is measured in
terms of I/Os. In this scenario a time optimal solution is one that retrieves
any B logσ n consecutive symbols of T with O(1) disk accesses. The scheme
we presented in Chapter 5 might work well in the external-memory model
too, except for three main inefficiencies: (1) its blocking approach reduces the
overall compression ratio by posing a limit to the value k which is too small
for common alphabet sizes, since it must be o(logσ n); (2) it does not com-
pletely exploit the fact that internal-memory operations have no cost; (3) the
table used for block-compression may not fit in the internal memory, and thus
may force us to reduce furthermore the block size. Following the definition of
kth order empirical entropy (see Section 2.4.1), we can obtain an I/O conscious
and more space-efficient scheme by storing in internal memory the model cor-
responding to all contexts occurring in T, and then compressing any symbol
of T according to its preceding context and its number of occurrences. Clearly,
this model could be very large and thus not fit in internal memory. An in-
teresting open problem is therefore how to prune the whole model in order
to fit it in internal memory and achieve the maximum compression among all
models which satisfy that space-bound. As proved in [43], a further difficulty
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arises from the fact that the best possible compression ratio is not necessarily
achieved by considering contexts of the same length.

Faster COUNT queries. The time complexity of COUNT procedure of (com-
pressed) full-text indexes is non optimal in the RAM model. An interest-
ing open problem concerns the possibility of designing a compressed full-
text index that supports COUNT(P[1, p]) in (close to) optimal time (namely,
O( p

logσ n )). The first result in this direction appeared in [82] in which it has
been shown how to build a non compressed full-text index on T that requires
(ε−1 + O(1))n log σ bits of space and performs counting operations in O(1)
time if p = o(logσ n) or O( p

logσ n + logε
σ n) time otherwise, for any fixed value

of 0 < ε < 1. A step forward has been done in [81] that proposes a compressed
full-text index that occupies ε−1nHk +O(n log log n

logε
σ n ) bits of space keeping a sim-

ilar time complexity, for any fixed value of 0 < ε < 1
3 .

Faster LOCATE queries. Another open challenge concerning compressed in-
dexes is to fasten their locate queries in order to achieve the optimal O(occ)
time bound. The best known results are two indexes due to He et al. [85]
and Ferragina and Manzini [52]. The former considers only binary texts and
locates the occ occurrences of a pattern P[1, p] in O(p + occ) time for large
enough p and 2n + o(n) bits of space (so it is not compressed); while the latter
has no restriction on p but requires space O(nHk(T) logε n) + o(n log σ) bits
(which has the extra log-factor in front of the optimal nHk(T) term). Is it pos-
sible to achieve O(p + occ) (or even better O( p

logσ n + occ)) searching time and
O(nHk(T)) + o(n log σ) bits of space in the worst case? This result would be
provably better than classical data structures.

Compressed indexes on External-Memory model. The memory of current
PCs is hierarchical so that, in order to achieve effective algorithmic perfor-
mance, cache-aware or even cache-oblivious solutions should be designed.
Although their small space requirements might permit compressed indexes
to fit in main memory, there will always be cases where they have to oper-
ate on external memory. The most attractive full-text indexes for secondary
memory are the String B-tree [45], the Self-adjusting Suffix Tree [106] and the
two cache-oblivious String B-trees [16, 46]. Unfortunately these data structures
do not achieve higher order entropy. A recent result [88] shows that a text T
can be indexed in O(n(Hk(T) + 1)) + o(n log σ) bits and such that all occur-

rences of a pattern P[1, p] in T can be reported in O(p/(B logσ n) + log4 n
log log n +

occ logB n) I/Os where occ is the number of occurrences of P in T. Thus, the
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index achieves optimal query I/O performance with respect to the length P
(namely, O(p/B) I/Os but not with respect to the number of its occurrences.
Unfortunately, [27] noted that lower bounds in range searching data structures
suggest that the last term O(occ logB n) cannot be improved to O(occ/B) by oc-
cupying O(n log σ) bits of space. This implies that there are only two ways to
improve the above index: 1) reduce the middle polylogarithmic term, and 2)
reduce the space term from O(n(Hk(T) + 1)) to exactly nHk(T).

Space efficient Bwt construction. An interesting problem of great practical
significance concerns the auxiliary space needed to build the compressed in-
dexes. We require a space efficient computation of the Bwt, since many such
indexes are based on it. The Bwt of a string T can be stored using n log σ bits
but the linear time algorithms used to construct it make use of auxiliary ar-
rays (i.e. suffix array) whose storage takes Θ(n log n) bits. This poses a serious
limitation to the size of the largest Bwt that can be computed efficiently in in-
ternal memory. The problem of space and time efficient computation of large
Bwt is still open even if interesting preliminary results are proposed in [89, 96].
Other approaches (e.g., the one described in Chapter 7) process the text from
left to right by adding one symbol at a time to the partial Bwt. The space re-
quired by such solutions is nHk(T) + o(n log σ) bits but their time complexity
is not linear (namely, O(n(1 + log σ/ log log n) log n)). We also mention the
result in [40] that proposes an algorithm that requires just o(n) bits of auxil-
iary space (here original text is replaced with its Bwt) and computes the Bwt in
O(n log1+ε n) time, for any ε > 0. A natural question arises: Is it possible to
build the Bwt of a string T in linear time using O(n log σ) (or better O(nHk(T)))
bits of auxiliary space?
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[28] R. Cilibrasi and P. M. B. Vitányi. Clustering by compression. IEEE Trans-
actions on Information Theory, 51(4):1523–1545, 2005.

[29] M. Cohn and R. Khazan. Parsing with prefix and suffix dictionaries. In
Proceedings of IEEE Data Compression Conference (DCC), pages 180–189,
1996.

[30] R. Cole, T. Kopelowitz, and M. Lewenstein. Suffix trays and suffix trists:
Structures for faster text indexing. In Proceedings of the 33th International
Colloquium on Automata, Languages and Programming (ICALP), pages 358–
369, 2006.

[31] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to
Algorithms, Second Edition. The MIT Press and McGraw-Hill Book Com-
pany, 2001.



132 References

[32] G. Cormode and S. Muthukrishnan. Substring compression problems.
In Proceedings of the 16th Annual ACM-SIAM Symposium on Discrete Algo-
rithms (SODA), pages 321–330, 2005.

[33] M. Crochemore, L. Ilie, and W. F. Smyth. A simple algorithm for com-
puting the Lempel-Ziv factorization. In Proceedings of the IEEE Data Com-
pression Conference (DCC), pages 482–488, 2008.

[34] M. Crochemore and W. Rytter. Jewels of Stringology. World Scientific
Publishing Company, 2003.

[35] S. Dasgupta, C. Papadimitriou, and U. Vazirani. Algorithms. McGraw-
Hill Science/Engineering/Math, 2006.

[36] P. Elias. Universal codeword sets and representations of the integers.
IEEE Transactions on Information Theory, 21(2):194–203, 1975.

[37] M. Farach-Colton. Optimal suffix tree construction with large alphabets.
In Proceedings of the 38th Annual Symposium Foundation Compututer Sci-
ence (FOCS), pages 137–143, 1997.

[38] A. Farzan and I. J. Munro. Succinct representations of arbitrary graphs.
In Proceedings of the 16th Annual European Symposium on Algorithms (ESA),
pages 393–404, 2008.

[39] P. Ferragina and J. Fischer. Suffix arrays on words. In Proceedings of the
18th Annual Symposium on Combinatorial Pattern Matching (CPM), pages
328–339, 2007.

[40] P. Ferragina, T. Gagie, and G. Manzini. Lightweight data indexing and
compression in external memory. In Proceedings of the 10th Latin American
Symposium on Theoretical Informatics (LATIN), 2010 (to appear).

[41] P. Ferragina, R. Giancarlo, and G. Manzini. The engineering of a com-
pression boosting library: Theory vs practice in BWT compression. In
Proceedings of the 14th European Symposium on Algorithms (ESA), pages
756–767. LNCS vol. 4168, 2006.

[42] P. Ferragina, R. Giancarlo, and G. Manzini. The myriad virtues of
wavelet trees. Information and Computation, 207:849–866, 2009.

[43] P. Ferragina, R. Giancarlo, G. Manzini, and M. Sciortino. Boosting textual
compression in optimal linear time. Journal of the ACM, 52:688–713, 2005.



References 133

[44] P. Ferragina, R. González, G. Navarro, and R. Venturini. Compressed
text indexes: From theory to practice. ACM Journal of Experimental Algo-
rithmics, 13, 2008.

[45] P. Ferragina and R. Grossi. The string B-tree: A new data structure for
string search in external memory and its applications. Journal of ACM,
46(2):236–280, 1999.

[46] P. Ferragina, R. Grossi, A. Gupta, R. Shah, and J. S. Vitter. On searching
compressed string collections cache-obliviously. In Proceedings of the 27-
th ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database
Systems (PODS), pages 181–190, 2008.

[47] P. Ferragina, N. Koudas, S. Muthukrishnan, and D. Srivastava. Two-
dimensional substring indexing. Journal of Computer System Science,
66(4):763–774, 2003.

[48] P. Ferragina, F. Luccio, G. Manzini, and S. Muthukrishnan. Structuring
labeled trees for optimal succinctness, and beyond. In Proceedings of the
46th IEEE Symposium on Foundations of Computer Science (FOCS), pages
184–193, 2005.

[49] P. Ferragina, F. Luccio, G. Manzini, and S. Muthukrishnan. Compressing
and searching XML data via two zips. In Proceedings of the 15th Interna-
tional World Wide Web Conference (WWW), pages 751–760, 2006.

[50] P. Ferragina, F. Luccio, G. Manzini, and S. Muthukrishnan. Compressing
and searching XML data via two zips. In Proceedings of the 15th World
Wide Web Conference (WWW), pages 751–760, 2006.

[51] P. Ferragina and G. Manzini. An experimental study of an opportunistic
index. In Proceedings of the 12th Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA), pages 269–278, 2001.

[52] P. Ferragina and G. Manzini. Indexing compressed text. Journal of the
ACM, 52(4):552–581, 2005.
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[115] V. Mäkinen and G. Navarro. Position-restricted substring searching. In
Proceedings of the 7th Latin American Symposium on Theoretical Informatics
(LATIN), pages 703–714. LNCS vol. 3887, 2006.
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