
Efficient Multi-Vector Dense Retrieval
with Bit Vectors

Franco Maria Nardini1[0000−0003−3183−334X],
Cosimo Rulli1[0000−0003−0194−361X], and
Rossano Venturini2[0000−0002−9830−3936]

1 ISTI-CNR, Pisa, Italy {name.surname}@isti.cnr.it
2 University of Pisa, Italy rossano.venturini@unipi.it

Abstract. Dense retrieval techniques employ pre-trained large language
models to build a high-dimensional representation of queries and pas-
sages. These representations compute the relevance of a passage w.r.t. to
a query using efficient similarity measures. In this line, multi-vector rep-
resentations show improved effectiveness at the expense of a one-order-
of-magnitude increase in memory footprint and query latency by encod-
ing queries and documents on a per-token level. Recently, PLAID has
tackled these problems by introducing a centroid-based term representa-
tion to reduce the memory impact of multi-vector systems. By exploiting
a centroid interaction mechanism, PLAID filters out non-relevant doc-
uments, thus reducing the cost of the successive ranking stages. This
paper proposes “Efficient Multi-Vector dense retrieval with Bit vectors”
(EMVB), a novel framework for efficient query processing in multi-vector
dense retrieval. First, EMVB employs a highly efficient pre-filtering step
of passages using optimized bit vectors. Second, the computation of the
centroid interaction happens column-wise, exploiting SIMD instructions,
thus reducing its latency. Third, EMVB leverages Product Quantization
(PQ) to reduce the memory footprint of storing vector representations
while jointly allowing for fast late interaction. Fourth, we introduce a
per-document term filtering method that further improves the efficiency
of the last step. Experiments on MS MARCO and LoTTE show that
EMVB is up to 2.8× faster while reducing the memory footprint by
1.8× with no loss in retrieval accuracy compared to PLAID.

Keywords: Dense Retrieval · Multi-vector · Efficiency · Bit Vectors.

1 Introduction

The introduction of pre-trained large language models (LLM) has remarkably
improved the effectiveness of information retrieval systems [13,8,26,2], thanks to
the well-known ability of LLMs to model semantic and context [12,1,3]. In dense
retrieval, LLMs have been successfully exploited to learn high-dimensional dense
representations of passages and queries. These learned representations allow an-
swering the user query through fast similarity operations, i.e., inner product or
L2 distance. In this line, multi-vector techniques [14,20] employ an LLM to build

2 F. M. Nardini et al.

a dense representation for each token of a passage. These approaches offer supe-
rior effectiveness compared to single-vector techniques [24,27] or sparse retrieval
techniques [5]. In this context, the similarity between the query and the passage
is measured by using the late interaction mechanism [14,20], which works by
computing the sum of the maximum similarities between each term of the query
and each term of a candidate passage. The improved effectiveness of multi-vector
retrieval system comes at the price of its increased computational burden. First,
producing a vector for each token causes the number of embeddings to be or-
ders of magnitude larger than in a single-vector representation. Moreover, due
to the large number of embeddings, identifying the candidate documents3 is
time-consuming. In addition, the late interaction step requires computing the
maximum similarity operator between all the candidate embeddings and the
query, which is also time-consuming.

Early multi-vector retrieval systems, i.e., ColBERT [14], exploit an inverted
index to store the embeddings and retrieve the candidate passages. Then, the
representations of passages are retrieved and employed to compute the max-
similarity score with the query. Despite being quite efficient, this approach re-
quires maintaining the full-precision representation of each document term in
memory. On MS MARCO [17], a widely adopted benchmark dataset for passage
retrieval, the entire collection of embeddings used by ColBERT requires more
than 140 GB [14] to be stored. ColBERTv2 [20] introduces a centroid-based
compression technique to store the passage embeddings efficiently. Each embed-
ding is stored by saving the id of the closest centroid and then compressing the
residual (i.e., the element-wise difference) by using 1 or 2 bits per component.
ColBERTv2 saves up to 10× space compared to ColBERT while being signifi-
cantly more inefficient on modern CPUs, requiring up to 3 seconds to perform
query processing on CPU [19]. The reduction of query processing time is achieved
by Santhanam et al. with PLAID [19]. PLAID takes advantage of the embed-
ding compressor of ColBERTv2 and also uses the centroid-based representation
to discard non-relevant passages (centroid interaction [19]), thus performing the
late interaction exclusively on a carefully selected batch of passages. PLAID al-
lows for massive speedup compared to ColBERTv2, but its average query latency
can be up to 400 msec. on CPU with single-thread execution [19].

This paper presents EMVB, a novel framework for efficient query processing
with multi-vector dense retrieval. First, we identify the most time-consuming
steps of PLAID. These steps are i) extracting the top-nprobe closest centroids
for each query term during the candidate passage selection, ii) computing the
centroid interaction mechanism, and iii) decompression of the quantized residu-
als. Our method tackles the first and the second steps by introducing a highly
efficient passage filtering approach based on optimized bit vectors. Our filter
identifies a small set of crucial centroid scores, thus tearing down the cost of
top-nprobe extraction. At the same time, it reduces the amount of passages for
which we have to compute the centroid interaction. Moreover, we introduce a
highly efficient column-wise reduction exploiting SIMD instructions to speed up

3 the terms “document” and “passage” are used interchangeably in this paper.

Efficient Multi-Vector Dense Retrieval with Bit Vectors 3

this step. Finally, we improve the efficiency of the late interaction by introducing
Product Quantization (PQ) [9]. PQ allows to obtain in pair or superior perfor-
mance compared to the bitwise compressor of PLAID while being up to 3×
faster. Finally, to further improve the efficiency of the last step of our pipeline,
we introduce a dynamic passage-term-selection criterion for late interaction, thus
reducing the cost of this step up to 30%.

We experimentally evaluate EMVB against PLAID on two datasets: MS
MARCO passage [17] (for in-domain evaluation) and LoTTE [20] (for out-of-
domain evaluation). Results on MS MARCO show that EMVB is up to 2.8×
faster while reducing the memory footprint by 1.8× with no loss in retrieval ac-
curacy compared to PLAID. On the out-of-domain evaluation, EMVB delivers
up to 2.9× speedup compared to PLAID, with a minimal loss in retrieval quality.

The rest of this paper is organized as follows. In Section 2, we discuss the
related work. In Section 3 we describe PLAID [19], the current state-of-the-art
in multi-vector dense retrieval. We introduce EMVB in Section 4 and we exper-
imentally evaluate it against PLAID in Section 5. Finally, Section 6 concludes
our work.

2 Related Work

Dense retrieval encoders can be broadly classified into single-vector and multi-
vector techniques. Single-vector encoders allow the encoding of an entire passage
in a single dense vector [11]. In this line, ANCE [25] and STAR/ADORE [26]
employ hard negatives to improve the training of dense retrievers by teaching
them to distinguish between lexically-similar positive and negative passages.
Multi-vector encoders have been introduced with ColBERT. The limitations of
ColBERT and the efforts done to overcome them (ColBERTv2, PLAID) have
been discussed in Section 1. COIL [6] rediscover the lessons of classical retrieval
systems (e.g., BM25) by limiting the token interactions to lexical matching be-
tween queries and documents. CITADEL [16] is a recently proposed approach
that introduces conditional token interaction by using dynamic lexical routing.
Conditional token interaction means that the relevance of the query of a specific
passage is estimated by only looking at some of their tokens. These tokens are
selected by the so-called lexical routing, where a module of the ranking architec-
ture is trained to determine which of the keys, i.e., words in the vocabulary, are
activated by a query/passage. CITADEL significantly reduces the execution time
on GPU, but turns out to be 2× slower than PLAID con CPU, at the same re-
trieval quality. Multi-vector dense retrieval is also exploited in conjunction with
pseudo-relevance feedback both in ColBERT-PRF [23] and in CWPRF [22],
showing that their combination boosts the effectiveness of the model.
Our Contribution: This work advances the state of the art of multi-vector
dense retrieval by introducing EMVB, a novel framework that allows to speed up
the retrieval performance of the PLAID pipeline significantly. To the best of our
knowledge, this work is the first in the literature that proposes a highly efficient
document filtering approach based on optimized bit vectors, a column-wise SIMD

4 F. M. Nardini et al.

reduction to retrieve candidate passages and a late interaction mechanism that
combines product quantization with a per-document term filtering.

3 Multi-vector Dense Retrieval

Consider a passage corpus P with nP passages. In a multi-vector dense retrieval
scenario, an LLM encodes each token in P into a dense d-dimensional vector
Tj . For each passage P , a dense representation P = {Tj}, with j = 0, . . . , nt, is
produced, where nt is the number of tokens in the passage P . Employing a token-
level dense representation allows for boosting the effectiveness of the retrieval
systems [14,20,19]. On the other hand, it produces significantly large collections
of d-dimensional vectors posing challenges to the applicability of such systems in
real-world search scenarios both in terms of space (memory requirements) and
time (latency of the query processor). To tackle the problem of memory require-
ments, ColBERTv2 [20] and successively PLAID [19] exploit a centroid-based
vector compression technique. First, the K-means algorithm is employed to de-
vise a clustering of the d-dimensional space by identifying the set of k centroids
C = {Ci}nc

i=1. Then, for each vector x, the residual r between x and its closest
centroid C̄ is computed so that r = x − C̄. The residual r is compressed into
r̃ using a b-bit encoder that represents each dimension of r using b bits, with
b ∈ {1, 2}. The memory impact of storing a d-dimensional vector is given by
⌈log2 |C|⌉ bits for the centroid index and d × b bits for the compressed resid-
ual. This approach requires a time-expensive decompression phase to restore the
approximate full-precision vector representation given the centroid id and the
residual coding. For this reason, PLAID aims at decompressing as few candidate
documents as possible. This is achieved by introducing a high-quality filtering
step based on the centroid-approximated embedding representation, named cen-
troid interaction [19]. In detail, the PLAID retrieval engine is composed of four
different phases [19]. The first one regards the retrieval of the candidate pas-
sages. A list of candidate passages is built for each centroid. A passage belongs to
a centroid Ci candidate list if one or more tokens have Ci as its closest centroid.
For each query term qi, with i = 1, . . . , nq, the top-nprobe closest centroids are
computed, according to the dot product similarity measure. The set of unique
documents associated with the top-nprobe centroids then moves to a second
phase that acts as a filtering phase. In this phase, a token embedding Tj with
j = 1, . . . , np is approximated using its closest centroid C̄Tj . Hence, its distance
with the i-th query term qi is approximated with

qi · Tj ≃ qi · C̄Tj = T̃i,j . (1)

Consider a candidate passage P composed of np tokens. The approximated score
of P consists in computing the dot product qi · C̄Tj for all the query terms qi
and all the closest centroids of each token belonging to the passage, i.e.,

S̄q,P =

nq∑
i=1

max
j=1...nt

qi · C̄Tj (2)

Efficient Multi-Vector Dense Retrieval with Bit Vectors 5

The third phase, named decompression, aims at reconstructing the full-precision
representation of P by combining the centroids and the residuals. This is done
on the top-ndocs passages selected according to the filtering phase [19]. In the
fourth phase, PLAID recomputes the final score of each passage with respect to
the query q using the decompressed—full-precision—representation according to
late interaction mechanism (Equation 3). Passages are then ranked according to
their similarity score and the top-k passages are selected.

Sq,P =

nq∑
i=1

max
j=1...nt

qi · Tj . (3)

PLAID execution time. We provide a breakdown of PLAID execution time
across its different phases, namely retrieval, filtering, decompression, and late
interaction. This experiment is conducted using the experimental settings de-
tailed in Section 5. We report the execution time for different values of k, i.e.,
the number of retrieved passages.

0 50 100 150 200 250 300
Execution time (msec.)

k = 1000

k = 100

k = 10 Retrieval
Filtering
Decompression
Late Interaction

Fig. 1: Breakdown of the PLAID average query latency (in milliseconds) on CPU
across its four phases.

4 EMVB

We now present EMVB, our novel framework for efficient multi-vector dense
retrieval. First, EMVB introduces a highly efficient pre-filtering phase that ex-
ploits optimized bit vectors. Second, we improve the efficiency of the centroid
interaction step (Equation 1) by introducing column-wise max reduction with
SIMD instructions. Third, EMVB leverages Product Quantization (PQ) to re-
duce the memory footprint of storing the vector representations while jointly
allowing for a fast late interaction phase. Fourth, PQ is applied in conjunction
with a novel per-passage term filtering approach that allows for further improv-
ing the efficiency of the late interaction. In the following subsections, we detail
these four contributions behind EMVB.

6 F. M. Nardini et al.

4.1 Retrieval of Candidate Passages

Figure 1 shows that a consistent part of the computation required by PLAID
is spent on the retrieval phase. We further break down these steps to evidence
its most time-consuming part. The retrieval consists of i) computing the dis-
tances between the incoming query and the set of centroids, ii) extracting the
top-nprobe closest centroids for each query term. The former step is efficiently
carried out by leveraging high-performance matrix multiplication tools (e.g., In-
tel MKL [18,21]). In the latter step, PLAID extracts the top-nprobe centroids
using the numpy topk function, which implements the quickselect algorithm.
Selecting the top-nprobe within the |C| = 218 centroids for each of the nq query
terms costs up to 3× the matrix multiplication done in the first step. In Sec-
tion 4.2, we show that our pre-filtering inherently speeds up the top-nprobe
selection by tearing down the number of evaluated elements. In practice, we
show how to efficiently filter out those centroids whose score is below a certain
threshold and then execute quickselect exclusively on the surviving ones. As a
consequence, in EMVB the cost of the top-nprobe extraction becomes negligible,
being two orders of magnitude faster than the top-nprobe extraction on the full
set of centroids.

4.2 Efficient Pre-Filtering of Candidate Passages

Figure 1 shows that the candidate filtering phase can be significantly expensive,
especially for large values of k. In this section, we propose a pre-filtering approach
based on a novel bit vector representation of the centroids that efficiently allows
the discarding of non-relevant passages.

Given a passage P , our pre-filtering consists in determining whether T̃i,j ,
for i = 1, . . . , nq, j = 1, . . . , nt is large or not. Recall that T̃i,j represents the
approximate score of the j-th token of passage P with respect to the i-th term of
the query qi, as defined in Equation 1. This can be obtained by checking whether
C̄T

j —the centroid associated with Tj—belongs to the set of the closest centroids
of qi. We introduce closethi , the set of centroids whose scores are greater than a
certain threshold th with respect to a query term qi. Given a passage P , we define
the list of centroids ids IP , where IjP is the centroid id of C̄Tj . The similarity
of a passage with respect to a query can be estimated with our novel filtering
function F (P, q) ∈ [0, nq] with the following equation:

F (P, q) =

nq∑
i=1

1(∃ j s.t. IjP ∈ closethi). (4)

For a passage P , this counts how many query terms have at least one similar
passage term in P , where “similar” describes the belonging of Tj to closethi .

In Figure 2 (left), we compare the performance of our novel pre-filter working
on top of the centroid interaction mechanism (orange, blue, green lines) against
the performance of the centroid interaction mechanism on the entire set of can-
didate documents (red dashed line) on the MS MARCO dataset. The plot shows

Efficient Multi-Vector Dense Retrieval with Bit Vectors 7

1000 2000 3000 4000 5000
#Scored Passages

0.8575

0.8600

0.8625

0.8650
R@

10
0

0.3
0.4

0.5
w/o pre-filtering

0.2 0.4 0.6
Threshold value

2.5

5.0

7.5

10.0

Ti
m

e
(m

s)

Naive IF
Branchless
VecBranchless
Vectorized IF

Fig. 2: R@100 with various values of the threshold (left). Comparison of different
algorithms to construct closethi , for different values of th (right).

that our pre-filtering allows to efficiently discard non-relevant passages without
harming the recall of the successive centroid interaction phase. For example,
we can narrow the candidate passage set to just 1000 elements using th = 0.4
without any loss in R@100. In the remainder of this section, we show how to
implement this pre-filter efficiently.

Building the bit vectors. Given th, the problem of computing closethi is con-
ceptually simple. Yet, an efficient implementation carefully considering modern
CPUs’ features is crucial for fast computation of Equation 4.

Let CS = q · CT , with CS ∈ [−1, 1]nq×|C| be the score matrix between the
query q and the set of centroids C (both matrices are L2 normalized), where nq

is the number of query tokens, and |C| is the number of centroids. In the naïve
if -based solution, we scan the i-th row of CS and select those j s.t. CSi,j > th. It
is possible to speed up this approach by taking advantage of SIMD instructions.
In particular, the _mm512_cmp_epi32_mask allows one to compare 16 fp32
values at a time and store the comparison result in a mask variable. If mask ==
0, we can skip to the successive 16 values because the comparison has failed for all
the current js. Otherwise, we extract those indexes J = {j ∈ [0, 15] |maskj = 1}.

The efficiency of such if -based algorithms mainly depends on the branch mis-
prediction ratio. Modern CPUs speculate on the outcome of the if before the con-
dition itself is computed by recognizing patterns in the execution flow of the al-
gorithm. When the wrong branch is predicted, a control hazard happens, and the
pipeline is flushed with a delay of 15−20 clock cycles, i.e., about 10 ns. We tackle
the inefficiency of branch misprediction by proposing a branchless algorithm. The
branchless algorithm employs a pointer p addressing a pre-allocated buffer. While
scanning CSi,j , it writes j in the position indicated by p. Then, it sums to p the
result of the comparison: 1 if CSi,j > th, 0 otherwise. At the successive iteration,
if the result of the comparison was 0, j + 1 will override j. Otherwise, it will be
written in the successive memory location, and j will be saved in the buffer. The
branchless selection does not present any if instruction and consequently does
not contain any branch in its execution flow. The branchless algorithm can be
implemented more efficiently by leveraging SIMD instructions. In particular, the
above-mentioned _mm512_cmp_epi32_mask instruction allows to compare 16

8 F. M. Nardini et al.

fp32 values at the time, and the _mm512_mask_compressstore allows to
extract J in a single instruction.

Figure 2 (right) presents a comparison of our different approaches, namely
“Naïve IF”, the “Vectorized IF”, the “Branchless”, and the “VecBranchless” de-
scribed above. Branchless algorithms present a constant execution time, regard-
less of the value of the threshold, while if -based approaches offer better perfor-
mances as the value of th increases. With th ≥ 0.3, “Vectorized IF” is the most
efficient approach, with a speedup up to 3× compared to its naïve counterpart.
Fast set membership. Once closethi is computed, we have to efficiently com-
pute Equation 4. Here, given IP as a list of integers, we have to test if at least
one of its members IjP belongs to closethi , with i = 1, . . . , nq. This can be effi-
ciently done using bit vectors for representing closethi . A bit vector maps a set
of integers up to N into an array of N bits, where the e-th bit is set to one if
and only if the integer e belongs to the set. Adding and searching any integer e
can be performed in constant time with bit manipulation operators. Moreover,
bit vectors require N bits to be stored. In our case, since we have |C| = 218, a
bit vector only requires 32K bytes to be stored.

Since we search through all the nq bit vectors at a time, we can further exploit
the bit vector representation by stacking the bit vectors vertically (Figure 3).
This allows to search a centroid index through all the closethi at a time. The bits
corresponding to the same centroid for different query terms are consecutive and
fit a 32-bit word. This way, we can simultaneously test the membership for all the
queries in constant time with a single bitwise operation. In detail, our algorithm
works by initializing a mask m of nq = 32 bits at zeros (Step 1, Figure 3). Then,
for each term in the candidate documents, it performs a bitwise xor between the
mask and the 32-bit word representing the membership to all the query terms
(Step 2, Figure 3). Hence, Equation 4 can be obtained by counting the number
of 1s in m at the end of the execution with the popcnt operation featured by
modern CPUs (Step 3, Figure 3).

Figure 4 (up) shows that our “Vectorized” set membership implementation
delivers a speedup ranging from 10× to 16× a “Baseline” relying on a naïve
usage of bit vectors. In particular, our bit vector-based pre-filtering can be up
to 30× faster than the centroid-interaction proposed in PLAID [19], cf. Figure 4
(down).

4.3 Fast Filtering of Candidate Passages

Our pre-filtering approach allows us to efficiently filter out non-relevant passages
and is employed upstream of PLAID’s centroid interaction (Equation 2). We now
show how to improve the efficiency of the centroid interaction itself.

Consider a passage P and its associated centroid scores matrix P̃ = qi · C̄Tj .
Explicitly building this matrix allows to reuse it in the scoring phase, in place of
the costly decompression step (Section 4.4). To build P̃ , we transpose CS into
CST of size |C| × nq. The i-th row of CST allows access to all the nq query
terms scores for the i-th centroids. Given the ids of the closest centroids for

Efficient Multi-Vector Dense Retrieval with Bit Vectors 9

32 bit
word

<latexit sha1_base64="WHJBvBpnRXVrWLl+Un2QQ21GOWM=">AAACDnicbVDLSsNAFJ3UV62vqEs3wSK4KokUdVl047KCfUAbwmQ6bYdOZsLMTaGE/IMf4FY/wZ249Rf8An/DSZuFbT1w4XDOvdzDCWPONLjut1Xa2Nza3invVvb2Dw6P7OOTtpaJIrRFJJeqG2JNORO0BQw47caK4ijktBNO7nO/M6VKMymeYBZTP8IjwYaMYDBSYNv9CMMYICVcapoFLLCrbs2dw1knXkGqqEAzsH/6A0mSiAogHGvd89wY/BQrYITTrNJPNI0xmeAR7RkqcES1n86TZ86FUQbOUCozApy5+vcixZHWsyg0m3lOverl4n9eL4HhrZ8yESdABVk8GibcAenkNTgDpigBPjMEE8VMVoeMscIETFlLX0IpJ4BDnZlmvNUe1kn7quZd1+qP9WrjruiojM7QObpEHrpBDfSAmqiFCJqiF/SK3qxn6936sD4XqyWruDlFS7C+fgHXAJ1Y</latexit> cl
os

e i

<latexit sha1_base64="+zA9WCbmsi3CaRUR5MMKYqzir5I=">AAACDnicbVDLSsNAFJ3UV62vqEs3g0VwVRIp6rLoxmUF+4A2hMl02g6dZMLMTaGE/IMf4FY/wZ249Rf8An/DSZuFbT1w4XDOvdzDCWLBNTjOt1Xa2Nza3invVvb2Dw6P7OOTtpaJoqxFpZCqGxDNBI9YCzgI1o0VI2EgWCeY3Od+Z8qU5jJ6glnMvJCMIj7klICRfNvuhwTGACkVUrPMd3y76tScOfA6cQtSRQWavv3TH0iahCwCKojWPdeJwUuJAk4Fyyr9RLOY0AkZsZ6hEQmZ9tJ58gxfGGWAh1KZiQDP1b8XKQm1noWB2cxz6lUvF//zegkMb72UR3ECLKKLR8NEYJA4rwEPuGIUxMwQQhU3WTEdE0UomLKWvgRSToAEOjPNuKs9rJP2Vc29rtUf69XGXdFRGZ2hc3SJXHSDGugBNVELUTRFL+gVvVnP1rv1YX0uVktWcXOKlmB9/QJ7750f</latexit> cl
os

e 0

…

Stacked
Bit Vectors m = 0

<latexit sha1_base64="qVJeDwx3vQfHIlarPh7qHfgClCk=">AAACCHicbVBLSgNBFOyJvxh/UZduGoPgKsxIUJdBNy4jmA9khtDT6SRNerqH7jdiGHIBD+BWj+BO3HoLT+A17ElmYRILHhRV7/GKCmPBDbjut1NYW9/Y3Cpul3Z29/YPyodHLaMSTVmTKqF0JySGCS5ZEzgI1ok1I1EoWDsc32Z++5Fpw5V8gEnMgogMJR9wSsBKvh8RGAGkT0pPe+WKW3VnwKvEy0kF5Wj0yj9+X9EkYhKoIMZ0PTeGICUaOBVsWvITw2JCx2TIupZKEjETpLPMU3xmlT4eKG1HAp6pfy9SEhkziUK7mWU0y14m/ud1ExhcBymXcQJM0vmjQSIwKJwVgPtcMwpiYgmhmtusmI6IJhRsTQtfQqXGQEKTNeMt97BKWhdV77Jau69V6jd5R0V0gk7ROfLQFaqjO9RATURRjF7QK3pznp1358P5nK8WnPzmGC3A+foFRAebeg==</latexit>xor

<latexit sha1_base64="Sme7+HmbqHHTyJXkkzlD+gh6mdg=">AAACE3icbVBLSgNBFOyJvxh/UXHlpjEIcRNmJKgbISiIywjmA0kIPZ1O0qSne+h+I4RhjuEB3OoR3IlbD+AJvIY9SRYmseBBUfUeryg/FNyA6347mZXVtfWN7GZua3tndy+/f1A3KtKU1agSSjd9YpjgktWAg2DNUDMS+II1/NFt6jeemDZcyUcYh6wTkIHkfU4JWKmbP7q7xu2AwBAgDlVIJSTF4KybL7gldwK8TLwZKaAZqt38T7unaBQwCVQQY1qeG0InJho4FSzJtSPDQkJHZMBalkoSMNOJJ/ETfGqVHu4rbUcCnqh/L2ISGDMOfLuZJjWLXir+57Ui6F91Yi7DCJik00f9SGBQOO0C97hmFMTYEkI1t1kxHRJNKNjG5r74So2A+CaxzXiLPSyT+nnJuyiVH8qFys2soyw6RieoiDx0iSroHlVRDVEUoxf0it6cZ+fd+XA+p6sZZ3ZziObgfP0CaVeeoQ==</latexit>

F = popcnt(m)

<latexit sha1_base64="qVJeDwx3vQfHIlarPh7qHfgClCk=">AAACCHicbVBLSgNBFOyJvxh/UZduGoPgKsxIUJdBNy4jmA9khtDT6SRNerqH7jdiGHIBD+BWj+BO3HoLT+A17ElmYRILHhRV7/GKCmPBDbjut1NYW9/Y3Cpul3Z29/YPyodHLaMSTVmTKqF0JySGCS5ZEzgI1ok1I1EoWDsc32Z++5Fpw5V8gEnMgogMJR9wSsBKvh8RGAGkT0pPe+WKW3VnwKvEy0kF5Wj0yj9+X9EkYhKoIMZ0PTeGICUaOBVsWvITw2JCx2TIupZKEjETpLPMU3xmlT4eKG1HAp6pfy9SEhkziUK7mWU0y14m/ud1ExhcBymXcQJM0vmjQSIwKJwVgPtcMwpiYgmhmtusmI6IJhRsTQtfQqXGQEKTNeMt97BKWhdV77Jau69V6jd5R0V0gk7ROfLQFaqjO9RATURRjF7QK3pznp1358P5nK8WnPzmGC3A+foFRAebeg==</latexit>xor
1

2

3

0 0 01
0 0 0 0

1 000

0 1 00

1 00 1

Fig. 3: Vectorized Fast Set Mem-
bership algorithm based on bit
vectors.

0.2 0.4 0.6
th

0.5
1.0
1.5

Ti
m

e
pe

r
do

c
(

s)

Baseline
Vectorized

10

20

Ti
m

e
pe

r
qu

er
y

(m
s)

2000 4000 6000 8000 10000
#Candidate Documents

10
20

Ti
m

e
pe

r
qu

er
y

(m
s)PLAID

Ours

Fig. 4: Vectorized vs naïve Fast Set
Membership (up). Ours vs PLAID fil-
tering (down).

each passage term (defined as IP in Section 4.2) we retrieve the scores for each
centroid id. We build P̃T—P̃ transposed—to allow the CPU to read and write
contiguous memory locations. This grants more than 2× speedup compared to
processing P̃ . We now have P̃T of shape nt × nq. We need to max-reduce along
the columns and then sum the obtained values to implement Equation 2. This
is done by iterating on the P̃T rows and packing them into AVX512 registers.
Given that nq = 32, each AVX512 register can contain 512/32 = 16 floating
point values, so we need 2 registers for each row. We pack the first row into
max_l and max_h. All the successive rows are packed into current_l and cur-
rent_h. At each iteration, we compare max_l with current_l and max_h with
current_h using the _mm512_cmp_ps_mask AVX512 instruction described be-
fore. The output mask m is used to update the max_l and max_h by employ-
ing the _mm512_mask_blend_ps instruction. The _mm512_cmp_ps_mask
has throughput 2 on IceLake Xeon CPUs, so each row of P̃ is compared with
max_l and max_h in the same clock cycle, on two different ports. The same
holds for the _mm512_mask_blend_ps instruction, entailing that the max-
reduce operation happens in 2 clock cycles without considering the memory
loading. Finally, max_l and max_h are summed together, and the function
_mm512_reduce_add_ps is used to ultimate the computation.

We implement PLAID’s centroid interaction in C++ and we compare its
filtering time against our SIMD-based solution. The results of the comparison
are reported for different values of candidate documents in Figure 4 (down).
Thanks to the proficient read-write pattern and the highly efficient column-wise
max-reduction, our method can be up to 1.8× faster than the filtering proposed
in PLAID.

10 F. M. Nardini et al.

4.4 Late Interaction

The b-bit residual compressor proposed in previous approaches [20,19] requires a
costly decompression step before the late interaction phase. Figure 1 shows that
in PLAID decompressing the vectors costs up to 5× the late interaction phase.

We propose compressing the residual r by employing Product Quantization
(PQ) [9]. PQ allows the computation of the dot product between an input query
vector q and the compressed residual rpq without decompression. Consider a
query q and a candidate passage P . We decompose the computation of the max
similarity operator (Equation 3) into

Sq,P =

nq∑
i=1

max
j=1...nt

(qi · C̄Tj + qi · rTj) ≃
nq∑
i=1

max
j=1...nt

(qi · C̄Tj + qi · rTj
pq), (5)

where and rTj = Tj−C̄Tj . On the one hand, this decomposition allows to exploit
the pre-computed P̃ matrix. On the other hand, thanks to PQ, it computes the
dot product between the query and the residuals without decompression.

We replace PLAID’s residual compression with PQ, particularly with JMPQ
[4], which optimizes the codes of product quantization during the fine-tuning of
the language model for the retrieval task. We tested m = {16, 32}, where m is the
number of sub-spaces used to partition the vectors [9]. We experimentally verify
that PQ reduces the latency of the late interaction phase up to 3.6× compared
to PLAID b-bit compressor. Moreover, it delivers the same (m = 16) or superior
performance (m = 32) in terms of MRR@10 when leveraging the JMPQ version.

We propose to further improve the efficiency of the scoring phase by hinging
on the properties of Equation 5. We experimentally observe that, in many cases,
qi · C̄T

j > qi · r
Tj
pq , meaning that the max operator on j, in many cases, is lead by

the score between the query term and the centroid, rather than the score between
the query term and the residual. We argue that it is possible to compute the
scores on the residuals only for a reduced set of document terms J̄i, where i
identifies the index of the query term. In particular, J̄i = {j|qi · C̄T

j > thr},
where thr is a second threshold that determines whether the score with the
centroid is sufficiently large. With the introduction of this new per-term filter,
Equation 5 now becomes computing the max operator on the set of passages in
J̄i, i.e.,

Sq,P =

nq∑
i=1

max
j∈J̄i

(qi · C̄Tj + qi · rTj
pq). (6)

In practice, we compute the residual scores only for those document terms
whose centroid score is large enough. If J̄i = ∅, we compute Sq,P as in Equa-
tion 5. Figure 5 (left) reports the effectiveness of our approach. On the y-axis, we
report the percentage of the original effectiveness, computed as the ratio between
the MRR@10 computed with Equation 6 and Equation 5. Filtering document
terms according to Equation 6 does not harm the retrieval quality, as it delivers
substantially the same MRR@10 of Equation 5. On the right side of Figure 5,
we report the percentage of scored terms compared to the number of document

Efficient Multi-Vector Dense Retrieval with Bit Vectors 11

0.4 0.5 0.6
thr

0.998

0.999

1.000
%

 o
rig

in
al

ef
fe

ct
iv

en
es

s
#Docs

64
128
256

512
1024
2048

0.4 0.5 0.6
thr

0.3

0.4

0.5

0.6

%
 sc

or
ed

 te
rm

s

Fig. 5: Performance of our dynamic term-selection filtering for different values
of thr, in terms of percentage of original effectiveness (left) and in terms of
percentage of original number of scored terms (right). The percentage of original
effectiveness is computed as the ratio between the MRR@10 computed with
Equation 6 and Equation 5.

terms computed using Equation 5. With thr = 0.5, we are able to reduce the
number of scored terms of at least 30% (right) without any performance degra-
dation in terms of MRR@10.

5 Experimental Evaluation

Experimental Settings. This section compares our methodology against the
state-of-the-art engine for multi-vector dense retrieval, namely PLAID [19]. We
conduct experiments on the MS MARCO passages dataset [17] for the in-domain
evaluation and on LoTTE [20] for the out-of-domain evaluation. We generate
the embeddings for MS MARCO using the ColBERTv2 model. The generated
dataset is composed of about 600M d-dimensional vectors, with d = 128. Prod-
uct Quantization is implemented using the FAISS [10] library, and optimized
using the JMPQ technique [4] on MS MARCO. The C++ implementation of
EMVB will be made publicly available upon publication of this work. We com-
pare EMVB against the original PLAID implementation [19], which also imple-
ments its core components in C++. Experiments are conducted on an Intel Xeon
Gold 5318Y CPU clocked at 2.10 GHz, equipped with the AVX512 instruction
set, with single-thread execution. Code is compiled using GCC 11.3.0 (with -O3
compilation options) on a Linux 5.15.0-72 machine. When running experiments
with AVX512 instruction on 512-bit registers, we ensure not to incur in the
frequency scaling down event reported for Intel CPUs [15].

Evaluation. Table 1 compares EMVB against PLAID on the MS MARCO
dataset, in terms of memory requirements (num. of bytes per embedding), aver-
age query latency (in milliseconds), MRR@10, and Recall@100, and 1000.

Results show that EMVB delivers superior performance along both the eval-
uated trade-offs. With m = 16, EMVB almost halves the per-vector memory

12 F. M. Nardini et al.

k Method Latency (msec.) Bytes MRR@10 R@100 R@1000

10
PLAID 131 (1.0×) 36 39.4 - -
EMVB (m=16) 62 (2.1×) 20 39.4 - -
EMVB (m=32) 61 (2.1×) 36 39.7 - -

100
PLAID 180 (1.0×) 36 39.8 90.6 -
EMVB (m=16) 68 (2.6×) 20 39.5 90.7 -
EMVB (m=32) 80 (2.3×) 36 39.9 90.7 -

1000
PLAID 260 (1.0×) 36 39.8 91.3 97.5
EMVB (m=16) 93 (2.8×) 20 39.5 91.4 97.5
EMVB (m=32) 104 (2.5×) 36 39.9 91.4 97.5

Table 1: Comparison between EMVB and PLAID in terms of average query
latency, number of bytes per vector embeddings, MRR, and Recall on MS
MARCO.

burden compared to PLAID, while being up to 2.8× faster with almost no per-
formance degradation regarding retrieval effectiveness. By doubling the number
of sub-partitions per vector, i.e., m = 32, EMVB outperforms the performance
of PLAID in terms of MRR and Recall with the same memory footprint with
up to 2.5× speed up.

Table 2 compares EMVB and PLAID in the out-of-domain evaluation on
the LoTTE dataset. As in PLAID [19], we employ Success@5 and Success@100
as retrieval quality metrics. On this dataset, EMVB offers slightly inferior per-
formance in terms of retrieval quality. Recall that JMPQ [4] cannot be applied
in the out-of-domain evaluation due to the lack of training queries. Instead, we
employ Optimized Product Quantization (OPQ) [7], which searches for an opti-
mal rotation of the dataset vectors to reduce the quality degradation that comes
with PQ. To mitigate the retrieval quality loss, we only experiment PQ with
m = 32, given that an increased number of partitions offers a better represen-
tation of the original vector. On the other hand, EMVB can offer up to 2.9×
speedup compared to PLAID. This larger speedup compared to MS MARCO is
due to the larger average document lengths in LoTTE. In this context, filtering
nonrelevant documents using our bit vector-based approach has a remarkable
impact on efficiency. Observe that for the out-of-domain evaluation, our pre-
filtering method could be ingested into PLAID. This would allow to maintain
the PLAID accuracy together with EMVB efficiency. Combinations of PLAID
and EMVB are left for future work.

6 Conclusion

We presented EMVB, a novel framework for efficient multi-vector dense retrieval.
EMVB advances PLAID, the current state-of-the-art approach, by introducing
four novel contributions. First, EMVB employs a highly efficient pre-filtering step
of passages using optimized bit vectors for speeding up the candidate passage

Efficient Multi-Vector Dense Retrieval with Bit Vectors 13

k Method Latency (msec.) Bytes Success@5 Success@100

10 PLAID 131 (1.0×) 36 69.1 -
EMVB (m=32) 82 (1.6×) 36 69.0 -

100 PLAID 202 (1.0×) 36 69.4 89.9
EMVB (m=32) 129 (1.6×) 36 69.0 89.9

1000 PLAID 411 (1.0×) 36 69.6 90.5
EMVB (m=32) 142 (2.9×) 36 69.0 90.1

Table 2: Comparison between EMVB and PLAID in terms of average query
latency, number of bytes per vector embeddings, Success@5, and Success@100
on LoTTE.

filtering phase. Second, the computation of the centroid interaction is carried
out with reduced precision. Third, EMVB leverages Product Quantization to
reduce the memory footprint of storing vector representations while jointly al-
lowing for fast late interaction. Fourth, we introduce a per-passage term filter for
late interaction, thus reducing the cost of this step of up to 30%. We experimen-
tally evaluate EMVB against PLAID on two publicly available datasets, i.e., MS
MARCO and LoTTE. Results show that, in the in-domain evaluation, EMVB is
up to 2.8× faster, and it reduces by 1.8× the memory footprint with no loss in
retrieval quality compared to PLAID. In the out-of-domain evaluation, EMVB
is up to 2.9× faster with little or no retrieval quality degradation.

7 Acknowledgements

This work was partially supported by the EU - NGEU, by the PNRR - M4C2
- Investimento 1.3, Partenariato Esteso PE00000013 - “FAIR - Future Artifi-
cial Intelligence Research” - Spoke 1 “Human-centered AI” funded by the Eu-
ropean Commission under the NextGeneration EU program, by the PNRR
ECS00000017 Tuscany Health Ecosystem Spoke 6 “Precision medicine & per-
sonalized healthcare”, by the European Commission under the NextGeneration
EU programme, by the Horizon Europe RIA “Extreme Food Risk Analytics”
(EFRA), grant agreement n. 101093026, by the “Algorithms, Data Structures
and Combinatorics for Machine Learning” (MIUR-PRIN 2017), and by the “Al-
gorithmic Problems and Machine Learning” (MIUR-PRIN 2022).

References

1. Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Nee-
lakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot
learners. Advances in Neural Information Processing Systems (NIPS) (2020)

2. Bruch, S., Lucchese, C., Nardini, F.M.: Efficient and effective tree-based and neural
learning to rank. Found. Trends Inf. Retr. (2023)

14 F. M. Nardini et al.

3. Dai, D., Sun, Y., Dong, L., Hao, Y., Sui, Z., Wei, F.: Why can gpt learn in-
context? language models secretly perform gradient descent as meta optimizers.
arXiv preprint arXiv:2212.10559 (2022)

4. Fang, Y., Zhan, J., Liu, Y., Mao, J., Zhang, M., Ma, S.: Joint optimization of multi-
vector representation with product quantization. In: Natural Language Processing
and Chinese Computing (2022)

5. Formal, T., Piwowarski, B., Clinchant, S.: Splade: Sparse lexical and expansion
model for first stage ranking. In: Proceedings of the 44th International ACM SIGIR
Conference on Research and Development in Information Retrieval (2021)

6. Gao, L., Dai, Z., Callan, J.: Coil: Revisit exact lexical match in information retrieval
with contextualized inverted list. In: Conference of the North American Chapter
of the Association for Computational Linguistics: Human Language Technologies
(2021)

7. Ge, T., He, K., Ke, Q., Sun, J.: Optimized product quantization. IEEE Transac-
tions on Pattern Analysis and Machine Intelligence (2013)

8. Guu, K., Lee, K., Tung, Z., Pasupat, P., Chang, M.: Retrieval augmented language
model pre-training. In: Proceedings of the International Conference on Machine
Learning (ICML) (2020)

9. Jegou, H., Douze, M., Schmid, C.: Product quantization for nearest neighbor
search. IEEE Transactions on Pattern Analysis and Machine Intelligence (2010)

10. Johnson, J., Douze, M., Jegou, H.: Billion-scale similarity search with gpus. IEEE
Transactions on Big Data (2021)

11. Karpukhin, V., Oguz, B., Min, S., Lewis, P., Wu, L., Edunov, S., Chen, D., Yih,
W.t.: Dense passage retrieval for open-domain question answering. In: Proceedings
of the 2020 Conference on Empirical Methods in Natural Language Processing
(EMNLP). Association for Computational Linguistics (2020)

12. Kenton, J.D.M.W.C., Toutanova, L.K.: Bert: Pre-training of deep bidirectional
transformers for language understanding. In: Proceedings of NAACL-HLT (2019)

13. Khattab, O., Potts, C., Zaharia, M.: Baleen: Robust multi-hop reasoning at
scale via condensed retrieval. Advances in Neural Information Processing Systems
(NIPS) (2021)

14. Khattab, O., Zaharia, M.: Colbert: Efficient and effective passage search via con-
textualized late interaction over bert. In: Proceedings of the 43rd International
ACM SIGIR conference on research and development in Information Retrieval.
pp. 39–48 (2020)

15. Lemire, D., Downs, T.: Avx-512: when and how to use these
new instructions (2023), https://lemire.me/blog/2018/09/07/
avx-512-when-and-how-to-use-these-new-instructions/

16. Li, M., Lin, S.C., Oguz, B., Ghoshal, A., Lin, J., Mehdad, Y., Yih, W.t., Chen,
X.: Citadel: Conditional token interaction via dynamic lexical routing for efficient
and effective multi-vector retrieval. arXiv e-prints (2022)

17. Nguyen, T., Rosenberg, M., Song, X., Gao, J., Tiwary, S., Majumder, R., Deng,
L.: Ms marco: A human-generated machine reading comprehension dataset

18. Qian, G., Sural, S., Gu, Y., Pramanik, S.: Similarity between euclidean and cosine
angle distance for nearest neighbor queries. In: Proceedings of the 2004 ACM
symposium on Applied computing (2004)

19. Santhanam, K., Khattab, O., Potts, C., Zaharia, M.: Plaid: an efficient engine for
late interaction retrieval. In: Proceedings of the 31st ACM International Conference
on Information & Knowledge Management (2022)

https://lemire.me/blog/2018/09/07/avx-512-when-and-how-to-use-these-new-instructions/
https://lemire.me/blog/2018/09/07/avx-512-when-and-how-to-use-these-new-instructions/

Efficient Multi-Vector Dense Retrieval with Bit Vectors 15

20. Santhanam, K., Khattab, O., Saad-Falcon, J., Potts, C., Zaharia, M.: Colbertv2:
Effective and efficient retrieval via lightweight late interaction. In: Proceedings
of the 2022 Conference of the North American Chapter of the Association for
Computational Linguistics: Human Language Technologies (2022)

21. Wang, E., Zhang, Q., Shen, B., Zhang, G., Lu, X., Wu, Q., Wang, Y.: Intel math
kernel library. In: High-Performance Computing on the Intel® Xeon Phi™ (2014)

22. Wang, X., MacAvaney, S., Macdonald, C., Ounis, I.: Effective contrastive weighting
for dense query expansion. In: Proceedings of the 61st Annual Meeting of the
Association for Computational Linguistics (2023)

23. Wang, X., Macdonald, C., Tonellotto, N., Ounis, I.: Colbert-prf: Semantic pseudo-
relevance feedback for dense passage and document retrieval. ACM Transactions
on the Web 17(1), 1–39 (2023)

24. Xiong, L., Xiong, C., Li, Y., Tang, K.F., Liu, J., Bennett, P.N., Ahmed, J., Over-
wijk, A.: Approximate nearest neighbor negative contrastive learning for dense text
retrieval. In: International Conference on Learning Representations

25. Xiong, L., Xiong, C., Li, Y., Tang, K.F., Liu, J., Bennett, P.N., Ahmed, J., Over-
wijk, A.: Approximate nearest neighbor negative contrastive learning for dense text
retrieval. In: International Conference on Learning Representations (2020)

26. Zhan, J., Mao, J., Liu, Y., Guo, J., Zhang, M., Ma, S.: Optimizing dense retrieval
model training with hard negatives. In: Proceedings of the 44th International ACM
SIGIR Conference on Research and Development in Information Retrieval (2021)

27. Zhan, J., Mao, J., Liu, Y., Guo, J., Zhang, M., Ma, S.: Learning discrete repre-
sentations via constrained clustering for effective and efficient dense retrieval. In:
Proceedings of the Fifteenth ACM International Conference on Web Search and
Data Mining. pp. 1328–1336 (2022)

	Efficient Multi-Vector Dense Retrievalwith Bit Vectors

