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Abstract
We show that it is possible to store a dynamic ordered set S(n, u) of n integers drawn from
a bounded universe of size u in space close to the information-theoretic lower bound and yet
preserve the asymptotic time optimality of the operations. Our results leverage on the Elias-
Fano representation of S(n, u) which takes EF(S(n, u)) = ndlog u

ne+ 2n bits of space and can be
shown to be less than half a bit per element away from the information-theoretic minimum.

Considering a RAM model with memory words of Θ(log u) bits, we focus on the case in which
the integers of S are drawn from a polynomial universe of size u = nγ , for any γ = Θ(1). We
represent S(n, u) with EF(S(n, u)) + o(n) bits of space and: 1. support static predecessor/suc-
cessor queries in O(min{1 + log u

n , log logn}); 2. make S grow in an append-only fashion by
spending O(1) per inserted element; 3. support random access in O(logn/ log logn) worst-
case, insertions/deletions in O(logn/ log logn) amortized and predecessor/successor queries in
O(min{1 + log u

n , log logn}) worst-case time. These time bounds are optimal.
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1 Introduction

The problem we consider is the one of representing in compressed space a dynamic ordered
set S of n integer keys, which is a fundamental textbook problem (see the introduction to
parts III and V of [8]). In general, any self-balancing search tree data structure, e.g., AVL or
Red-Black tree, solves the problem optimally in the comparison model, by implementing all
operations in O(logn) worst-case time and using linear space [8]. However, by exploiting
the fact that the stored keys are integers drawn from a bounded universe of size u, the
problem is known to admit more efficient solutions in terms of asymptotic time complexity
while still retaining linear space [8, 23, 26, 30, 13, 14]. Classical examples include the van
Emde Boas tree [26, 27, 28], x/y-fast trie [30] and the fusion tree [14], that was the first data
structure able to surpass the information-theoretic lower bound, by exhibiting an optimal [13]
amount of time per operation within a number of memory words proportional to the size
of the input. Some efforts have been spent in trying to reduce the space requirements of
the representation [16, 18, 25] but known compressed solutions do not closely match the
information-theoretic lower bound of the underlying integer set.

In this paper we show that it is possible to preserve the optimal bounds for the operations
under almost optimal space requirements. The key ingredient of our data structures is the
Elias-Fano representation of monotone integer sequences [10, 11]. In particular, Elias-Fano
encodes a monotone integer sequence S(n, u) in EF(S(n, u)) = ndlog u

ne+ 2n bits, which can
be shown to be less than half a bit per element away from optimality [10], maintaining the
capability of randomly access an integer in O(1) worst-case time. The query Predecessor,
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48:2 Dynamic Elias-Fano Representation

which, given an integer x, returns max{y ∈ S : y < x}, is possible as well over the compressed
sequence in O(1 + log u

n ) worst-case time. These properties make Elias-Fano extremely
efficient on crucial practical applications, e.g., inverted indexes compression, just to mention
the most noticeable one. Since inverted indexes can indeed be regarded as being a collection
of sorted integer sequences, recent works [29, 20] have shown that Elias-Fano exhibits the
best time/space trade-off thanks to its efficient search capabilities and strong theoretical
guarantees. For this specific application, the operation that has to be supported efficiently
is Successor(x) = min{y ∈ S : y ≥ x}, which is commonly called NextGEQ (Next Greater
or EQual) [29, 20]. Throughout the paper we adopt the classical nomenclature and discuss
Predecessor(x) as it is well known that the twin query Successor(x) is solved in a similar way.

The natural question is whether it is possible to extend the static Elias-Fano representation
to dynamic scenarios, in which integers can also be inserted/deleted in/from S. To this end,
we consider the case in which the n integers of S are drawn from a polynomial universe of
size u = nγ , for any γ = Θ(1). This is the classical operational setting as considered by
Fredman and Saks [13] (list representation problem) and let us concentrate on the typical
case of practical interest. In order to characterize the asymptotic complexity of the data
structures described in the paper and review the literature, we use a RAM model with word
size w = Θ(log u) bits. We also adopt the usual trans-dichotomous assumption [14], making
w grow with n as needed. We maintain S(n, u) using EF(S(n, u)) + o(n) bits of space, hence
introducing a sublinear space overhead with respect to its static Elias-Fano representation,
and show how:
1. static predecessor/successor queries can be supported in O(min{1 + log u

n , log logn})
worst-case time (note that the first term of the bound, i.e., O(1 + log u

n ), is optimal only
for polynomial universes of size u = nγ with 1 ≤ γ ≤ 1 + log logn/ logn);

2. to extend S in an append-only fashion, i.e., by assuming that integers are inserted in the
data structure in sorted order, using a constant amount of work per integer;

3. to maintain S in a fully dynamic way, supporting random access in O(logn/ log logn)
worst-case, insertions/deletions in O(logn/ log logn) amortized and predecessor/successor
queries in O(min{1 + log u

n , log logn}) worst-case time.

2 Related Work

We organize the discussion of the related work in three parts. The first part concerns the
review of the results about the static predecessor problem. The second one explains in details
the (static) Elias-Fano representation of monotone integer sequences because it forms the
backbone of our solutions. The last part finally describes the results closest to our work for
the maintenance of a dynamic integer set.

2.1 Static Predecessor Problem

We could solve the static predecessor problem in O(1) worst-case by storing all results to
every possible query using perfect hashing [12] in O(u) words of space. In order to not
trivialize the problem, assume we have a polynomial space budget, e.g., we deal with a data
structure occupying O(nO(1)) words.

Ajtai [1] proved the first ω(1) lower bound, claiming that ∀w, ∃n that gives Ω(
√

logw)
query time. Only ten years later Beame and Fich [3, 4] proved two strong bounds for any
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cell-probe data structure1. They proved that ∀w, ∃n that gives Ω(logw/ log logw) query time
and that ∀n, ∃w that gives Ω(

√
logn/ log logn) query time. They also gave a static data

structure achieving O(min{logw/ log logw,
√

logn/ log logn}) which is, therefore, optimal.
Building on a long line of research, Pǎtraşcu and Thourp [21, 22] finally proved the following
optimal space-time trade-off for a static data structure taking m = n2aw bits of space, with
a = log m

n − logw

Θ
(

min
{

logw n, log w − logn
a

,
log w

a

log( a
logn log w

a ) ,
log w

a

log(log w
a / log logn

a )

})
(1)

This lower bound holds for cell-probe, RAM, trans-dichotomous RAM, external memory and
communication game models. The first branch of the trade-off indicates that, whenever we
are in RAM or external memory with one integer fitting in one memory word, fusion trees
are optimal, as these require O(logw n) = O(logn/ logw) query time. The second branch
holds for polynomial universes, i.e., whenever u = nγ , for any γ = Θ(1). In such case we have
that w = Θ(log u) = γ logn, therefore y-fast tries [30] and van Emde Boas trees [26, 27, 28]
are optimal with query time O(log log u) = O(log logn). Finally, the last two branches of
the trade-off treat the case for super-polynomial universes. In particular, the third branch
matches the lower bound by Beame and Fich [3, 4] that requires nO(1) words of space; the
fourth branch improves this space occupancy, showing that n1+1/ exp(log1−ε logu) words are
sufficient, for any ε > 0.

2.2 Static Elias-Fano Representation
The integer encoding we describe in this section was independently proposed by Peter
Elias [10] and Robert Mario Fano [11], hence its name. Given a monotonically increasing
sequence S(n, u) of n positive integers drawn from a universe of size u (i.e., S[i−1] ≤ S[i], for
any 1 ≤ i < n, with S[n−1] ≤ u), we write each S[i] in binary using dlog ue bits. Each binary
representation is then split into two parts: a high part consisting in the first dlogne most
significant bits that we call high bits and a low part consisting in the remaining ` = blog u

nc
bits that we similarly call low bits. Let us call hi and `i the values of high and low bits of
S[i] respectively. The Elias-Fano representation of S is given by the encoding of the high and
low parts. The array L = [`0, . . . , `n−1] is stored in fixed-width and represents the encoding
of the low parts. Concerning the high bits, we represent them in negated unary2 using a
bit vector of n+ d u2` e ≤ 2n bits as follows. We start from a 0-valued bit vector H and set
the bit in position hi + i, for all i ∈ [0, n). The effect is that now the k-th unary integer
m of H indicates that m integers of S have high bits equal to k. Finally the Elias-Fano
representation of S is given by the concatenation of H and L and overall takes

EF(S(n, u)) = n
⌈

log u
n

⌉
+ 2n bits. (2)

While we can opt for an arbitrary split ranging from 0 to dlog ue into high and low parts,
it can be shown that the value ` = blog u

nc minimizes the overall space occupancy of the
encoding [10]. As the information theoretic lower bound for a monotone sequence of n

1 In the cell-probe computational model, described by Yao [31], computation is for free given that we
only take into account word reads. It is not a very realistic model of computation, but it is useful to
prove lower bounds because it is a stronger model than RAM and trans-dichotomous RAM.

2 The negated unary representation of an integer x, is the bitwise NOT of its unary representation U(x).
An example: U(5) = 00001 and NOT(U(5)) = 11110.
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48:4 Dynamic Elias-Fano Representation

elements drawn from a universe of size u is dlog
(
u+n
n

)
e ≈ n log u+n

n + n log e bits, it can be
shown that less than half a bit is wasted per element by the space bound in (2) [10]. Since we
set a bit for every i ∈ [0, n) in H and each hi is extracted in O(1) time from S[i], it follows
that S gets encoded with Elias-Fano in Θ(n) time.

Despite the simplicity of the encoding, it is possible to randomly access an integer from a
sequence encoded with Elias-Fano without decompressing it. We refer to this operation as
Access(i) in the following, which returns the i-th (smallest) element of the sequence. The
operation is supported using an auxiliary data structure that is built on bit vector H, able
to efficiently answer Select1(i) queries, that return the position in H of the i-th 1 bit. This
auxiliary data structure is succinct in the sense that it is negligibly small compared to
EF(S(n, u)), requiring only o(n) additional bits [7, 29].

Using the Select1 primitive, it is possible to implement Access(i), which returns S[i] for
any i ∈ [0, n), in O(1). We basically have to re-link together the high and low bits of an
integer, previously split up during the encoding phase. The low bits `i are trivial to retrieve
as we need to read the range of bits [i`, (i+ 1)`) from L. Note that we also need to store
the quantity `: a global redundancy of O(log u) bits is sufficient. The retrieval of the high
bits deserve, instead, a bit more care. Since we write in negated unary how many integers
share the same high part, we have a bit set for every integer of S and a zero for every
distinct high part. Therefore, to retrieve the high bits of the i-th integer, we need to know
how many zeros are present in H[0, Select1(i)). This quantity is evaluated on H in O(1)
as Rank0(Select1(i)) = Select1(i)− i. Notice, therefore, that the succinct rank/select data
structure does not have to support Rank. Finally, linking the high and low bits is as simple
as: Access(i) = ((Select1(i) − i) � `) ∨ `i, where � is the left shift operator and ∨ is the
bitwise OR.

The query Successor(x) is supported in O(1 + log u
n ) time3, as follows. Let hx be the

high bits of x, i.e., its first dlogne most significant bits. Then p1 = Select0(hx) − hx
represents the number of integers in S whose high bits are less than hx. On the other
hand, p2 = Select0(hx + 1) − hx − 1 gives us the position at which the elements having
high bits greater than hx start. These two preliminary operations take O(1). We can now
determine the successor of x by binary searching in this interval which may contain up to
u/n integers. The algorithm for Predecessor(x) runs in a similar way. In particular, it could
be that Predecessor(x) lies before the interval [p1, p2): in this case S[p1 − 1] is the element to
return.

2.3 Dynamic Problems
We now review the most important results concerning the maintenance of a dynamic set of
integers/binary strings, following the chronological order of their proposal.

The van Emde Boas tree is a recursive data structure that maintains S in O(u) words of
space and supports the operations: Search which tests whether a given integer is present or
not in S, Insert/Delete and Predecessor/Successor all in O(logw) worst-case time [26, 27, 28].
Willard [30] improved the space bound to O(n) words by introducing the y-fast trie that
supports Search and Predecessor/Successor queries in O(logw) worst-case time, Insert/Delete
in amortized O(logw) time.

The work by Fredman and Saks [13] is useful to understand which lower bounds apply to
the problem we consider in the paper. They described the list representation problem, i.e., how

3 We report the bound as O(1 + log u
n ), instead of O(log u

n ), to cope with the case n = u.
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to maintain S under the triad of operations Access/Insert/Delete, and proved that it can be
solved in Ω(logn/ log logn) amortized time per operation if w ≤ logγ n for some γ. No space
bound is posed on such problem. Their lower bound does not apply to dynamic predecessor
queries and holds for the cell-probe computational model [31]. Extending the result to the
dynamic predecessor problem, they proved that any cell-probe data structure representing
S using (log u)O(1) bits per memory cell and nO(1) worst-case time for insertions, requires
Ω(
√

logn/ log logn) worst-case query time. They also proved that on a RAM, the dynamic
predecessor problem can be solved in O(min{log logn · logw/ log logw,

√
logn/ log logn}),

using O(n) words. This bound was matched by Andersson and Thorup [2] with the so-called
exponential search tree. This data structure has an optimal bound of O(

√
logn/ log logn)

worst-case time for searching and updating S, using polynomial space. Raman, Raman and
Rao [24] also addressed the list representation problem4 for arrays of length n by providing
two solutions. Their first data structure supports Access in O(1) and Insert/Delete in O(nε)
worst-case time for any fixed positive ε < 1; the second data structure implements all the
three operations in O(logn/ log logn) amortized time. Both data structures use o(n) bits of
redundancy and the time bounds are optimal.

Fredman and Willard [14] showed that dynamic predecessor queries can be answered
in O(logn/ log logn) time by using the fusion tree. This data structure is a B-tree with
branching factor B = Θ(logn) that stores in each internal node a fusion node, a small data
structure able of answering predecessor queries in O(1) for sets up to w1/5 integers. Updating
a fusion node takes, however, O(B4) time. The overall space of the data structure is O(n)
words. The work by Pǎtraşcu and Thorup [23] has recently shown that it is possible to
“dynamize” the fusion node, by supporting Insert and Delete in O(1). As a result, they have
proposed a data structure representing S in O(n) words and optimal O(logn/ logw) running
time for the operations Insert, Delete, Predecessor, Successor, Rank and Select.

We also mention a few additional results, that will be useful in the following. Bille et
al. [5] recently combined the static solution of Demaine and Pǎtraşcu [9] with the one by
Pǎtraşcu and Thorup [23] to support dynamic prefix sums over an array of size n in optimal
O(logn/ log(w/δ)) time per operation and linear space, where δ is the number of bits needed
to encode the quantity that we sum to the elements of the array. Though not devised for
integer sets, the extended CRAM (Compressed Random Access Memory) data structure
described by Jansson, Sadakane and Sung [17] allows a string S of length n to be stored
using its k-th order empirical entropy nHk(S) plus a redundancy of O(n log σ(k log σ + (k +
1) log logn)/ logn) bits for every 0 ≤ k < logσ n, where σ is the size of the alphabet, in
such a way that Insert/Delete of characters and Access to any consecutive logσ n bits are
all supported in optimal O(logn/ log logn) worst-case time. We will exploit the part of
this work dedicated to the memory management. Grossi et al. [15] improved the previous
space bound by using nHk(S) +O(n log logn/ logσ n) bits and maintaining the asymptotic
optimality for all operations. The paper by Navarro and Nekrich [19] illustrates a data
structure supporting Access, Rank/Select queries, as well as symbol insertions/deletions on
S in optimal O(logn/ log logn) time and taking nH0(S) +O(n+ σ(log σ+ log1+ε n)) bits of
space. Of particular interest for our purposes, is the data structure described in Appendix
A.1 concerning the organization of data in small blocks. The high-level idea is to maintain a
tree of constant height with node degree logδ n, for some 0 < δ < 1, and leaves containing
o(logn) elements each. As each internal node can fit in one machine word, the tree supports

4 In their paper [24], the authors refer to the list representation problem, as introduced by Fredman and
Saks [13], as the dynamic array problem. Also, the operation Access is named Index.
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48:6 Dynamic Elias-Fano Representation

basic search operations in O(1) time by using a small pre-computed table. In Section 5 we
will make use of a similar data structure, in order to handle mini blocks of sorted integers,
which avoids the use of pre-computed tables.

3 Static Predecessor Queries in Optimal Time

In this section we are interested in determining the optimal running time of Predecessor for
the Elias-Fano space bound in (2). As mentioned in Section 1, our focus is on polynomial
universes, i.e., u = nγ for any γ = Θ(1), for which the second branch of the time/space
trade-off in (1) becomes optimal. The following theorem shows that adding o(n) bits of
redundancy to EF(S(n, u)) is enough to support Predecessor queries in optimal time.

I Theorem 1. There exists a data structure representing an ordered set S(n, u) of n integers
drawn from a polynomial universe of size u = nγ , for any γ = Θ(1), that takes EF(S(n, u)) +
o(n) bits of space and supports Access in O(1) worst-case and Predecessor/Successor queries
in optimal O(min{1 + log u

n , log logn}) worst-case time.

We resort on the time/space trade-off (1) by Pǎtraşcu and Thorup [21, 22]. In our case,
a = log(dlog u

ne + 2) and w = Θ(log u) = γ logn. In such setting, the second term of the
trade-off becomes log w−logn

a = log((γ−1) logn/ log(dlog u
ne+ 2) = O(log logn). This proves

that y-fast tries and van Emde Boas trees are optimal for static Predecessor queries within
the Elias-Fano space bound. However, such bound only depends on n, whereas the plain
Elias-Fano bound for Predecessor of O(1 + log u

n ), introduced in Subsection 2.2, depends
on both n and u. On the other hand, the relation u = nγ relates the two parameter by
means of the constant γ = Θ(1). It is clear that varying γ one of the two bounds becomes
optimal. Indeed, comparing 1 + log u

n with log logn, we have that 1 + log u
n ≤ log logn

whenever u ≤ n
2 logn, i.e., when nγ−1 ≤ 1

2 logn. From this last condition we derive that
the plain Elias-Fano is faster than van Emde Boas whenever 1 ≤ γ ≤ 1 + log logn

logn . In this
case the static Elias-Fano representation does not need to be augmented. When, instead,
γ > 1 + log logn

logn , the query time O(log logn) is optimal and exponentially better than plain
Elias-Fano. Therefore, O(min{1 + log u

n , log logn}) is an accurate characterization of the
Predecessor time bound.

We are left to describe a data structure matching the bound of O(log logn), within
o(n) bits of additional space. We divide S into dn/ log2 ue blocks of log2 u integers each
(the last block may contain less integers). We can solve Predecessor queries in a block in
O(log log u) = O(log logn) time by applying binary search. Now, we need a data structure
on top of S that allows us to identify the proper block in O(log logn) time. Call the first
element of a block its lower bound. We attach to S an y-fast trie storing the lower bounds of
the blocks. More precisely, each leaf in the y-fast trie holds the lower bound of a block and
its position in S. The integers stored in the y-fast trie are dn/ log2 ue, therefore its space is
O( n

log2 u
log u) = o(n) bits. To identify the block where the predecessor of x lies in, we answer

a partial Predecessor(x) query among the integers stored in the y-fast trie in O(log logn)
worst-case time. The position p in S of the block’s lower bound, associated to the identified
partial answer, indicates that the search must continue in the block S[p,min{p+ log2 u, n}).

Concluding this section, observe that the time bound for Predecessor queries is always at
most O(log logn) except when 1 ≤ γ ≤ 1 + log logn

logn : in this case, the plain Elias-Fano
representation beats the time bound of O(log logn). Therefore, in what follows we report
the bound as O(min{1 + log u

n , log logn}) but discuss the case for γ > 1 + log logn
logn .
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4 Extensible Elias-Fano Representation

When the integers are inserted in sorted order, we obtain an efficient extensible representation
as these can only be added at the end of the sequence by means of an Append operation.
This is a scenario of practical interest as it is the operational setting of append-only inverted
indexes, e.g., the one of Twitter [6].

I Theorem 2. There exists a data structure representing an ordered set S(n, u) of n integers,
drawn from a polynomial universe of size u = nγ , for any γ = Θ(1), that takes EF(S(n, u)) +
o(n) bits of space and supports: Append in O(1) amortized, Access in O(1) worst-case and
Predecessor/Successor queries in optimal O(min{1 + log u

n , log logn}) worst-case time.

We maintain an array B of size m in which integers are appended uncompressed. This
array acts as a buffer, which is periodically encoded with Elias-Fano in Θ(m) time and
dumped, so that new integers can be successfully appended. Each compressed representation
of the buffer is appended in an array of blocks encoded with Elias-Fano. More precisely,
when B becomes full we encode with Elias-Fano its corresponding differential buffer, i.e.,
the buffer whose values are B[i]−B[0], 0 ≤ i < m. Each time the buffer is compressed, we
append in another array C the pair 〈base, low_bits〉 = 〈B[0], dlog(B[m − 1]/m)e〉, i.e., the
buffer lower bound value and the number of bits needed to encode the average gap of the
Elias-Fano representation of the buffer.

Apart from the space taken by the compressed blocks, the space of the data structure is
given by the following contributions:

(m+ 1) log u bits for the buffer B of uncompressed integers and its size;
O(d nme logn) bits for pointers to rank/select data structures, low and high bit arrays;
O(d nme log u) bits for the array C.

Summing up, the redundancy is O((m+1+d nme) log u) bits. We use a buffer of sizem = log2 u

and, as done in Section 3, we index the buffer lower bounds in an y-fast trie. More precisely,
each leaf of the fast trie stores a buffer lower bound and the index of the compressed block to
which the lower bound belongs to. The values stored in the y-fast trie are dn/ log2 ue, thus
requiring o(n) bits of space. The redundancy O((m+ 1 + d nme) log u) becomes o(n) bits for
n = ω(log3 u), which is already satisfied by requiring that γ = Θ(1).

To take into account the space taken by the representation of the blocks, we use the
property that splitting a block encoded with Elias-Fano into two sub-blocks never increases
the cost of representation of the block. This is possible because each sub-block can be
encoded with a universe relative to the sub-block, which is smaller than the original block
universe, by subtracting to each integer the lower bound of the sub-block. The following
property can be easily extended to work with an arbitrary number of splits.
I Property 1. Consider a monotone sequence S of n integers. Let S[i, j) indicate the range
of S delimited by endpoints i and j. Then for any i, k and j such that 0 ≤ i < k < j < n,
we have EF(S[i, k)) + EF(S[k, j)) ≤ EF(S[i, j)).

Proof. Let m and u be respectively size and universe of the sub-sequence S[i, j), and,
similarly, let m1,m2, u1, u2 be the sizes and universes of the two sub-sequences S[i, k) and
S[k, j) respectively. We have that m = m1 + m2 and u = u1 + u2. From Subsection 2.2,
we know that EF(S[i, j)) takes mφ+m+ d u2φ e. Similarly EF(S[i, k)) = m1φ1 +m1 + d u1

2φ1 e
and EF(S[k, j)) = m2φ2 +m2 + d u2

2φ2 e. EF(S[i, k)) and EF(S[k, j)) are minimized by setting
φ1 = blog u1

m1
c and φ2 = blog u2

m2
c respectively [10], therefore, by replacing φ1 and φ2 with φ,

we have that EF(S[i, k))+EF(S[k, j)) ≤ m1φ+m2φ+m1 +m2 +du1
2φ e+d

u2
2φ e = mφ+m+d u2φ e

= EF(S[i, j)). J
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48:8 Dynamic Elias-Fano Representation

The operations are supported as follows. Since we compress the buffer each time it fills
up (by taking Θ(m) time), Append is performed in O(1) amortized time. Appending new
integers in the buffer accumulates a credit of O(log2 u) which largely pays the amortized
cost O(log log u) of inserting a buffer lower bound into the y-fast trie. To Access the i-th
integer, we retrieve the element x in position i − jm from the compressed block of index
j = b imc. This is done in O(1) worst-case time, since we know how many low bits are
required to perform the access by reading C[j].low_bits. We finally return the integer x +
C[j].base. Predecessor queries are supported similarly as in the description of Theorem 1.
Given the integer x, we first resolve a partial Predecessor(x) query in the y-fast trie to
identify the index j of the compressed block in which the predecessor is located. Then we
return C[j].base + Predecessor(x − C[j].base) by binary searching the block of index j in
O(log log u) = O(log logn) worst-case time.

From Theorem 2, the following corollary easily follows.

I Corollary 1. There exists a data structure representing an ordered set S(n, u) of n = ω(log2 u)
integers drawn from a universe of size u that takes EF(S(n, u)) + o(n) bits of space and
supports Append and Access operations in O(1) worst-case time.

Without using the y-fast trie we are able to achieve a worst-case running time for the
Append operation in Corollary 1 by using a classical de-amortization argument (note, however,
that Predecessor queries are not supported in optimal time anymore). We maintain two
buffers, B1 and B2, instead of one. When one is full we use the other to store the elements
that must be appended. Suppose B1 is full. For each of the successive m Append operations,
we compress one element from B1 and append the new integer in B2. These two steps require
O(1) worst-case time each.

5 Dynamic Elias-Fano Representation

In this section we describe how the static Elias-Fano representation can be turned into an
efficient dynamic data structure, i.e., supporting Access, Insert, Delete, Minimum, Maximum,
Predecessor and Successor in optimal time and taking EF(S(n, u)) + o(n) bits of space.

As already discussed in Subsection 2.3, Fredman and Saks [13] proved that O( logn
log logn )

amortized time is optimal for any data structure maintaining a set of integers subject to
Access, Insert and Delete (list representation problem). Their result holds when w ≤ logγ n
for some γ, which covers the case of polynomial universes u = nγ since γ ≤ logγ−1 n, for
any γ ≥ 1 and n ≥ 2. We operate, therefore, in the same setting as Theorems 1 and 2,
considering integers drawn from a polynomial universe of size u = nγ , for any γ = Θ(1). In
this setting, Pǎtraşcu and Thorup [21] showed that O(log logn) query time of y-fast tries
and van Emde Boas trees is optimal for the dynamic predecessor problem too.

I Theorem 3. There exists a data structure representing an ordered set S(n, u) of n integers
drawn from a polynomial universe of size u = nγ , for any γ = Θ(1), that takes EF(S(n, u)) +
o(n) bits of space and supports: Access in O(logn/ log logn) worst-case; Insert/Delete in
O(logn/ log logn) amortized; Minimum/Maximum in O(1) and Predecessor/Successor queries
in O(min{1 + log u

n , log logn}) worst-case time. These time bounds are optimal.

In what follows, we first describe the layout of the data structure and then analyze its space
and time complexities.
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5.1 Data Structure Description
We begin our description by showing how to handle a dynamic collection of mini blocks in
succinct space, which is a key tool to obtain the full dynamic data structure. This result
builds on an idea from [19], Appendix A.1.

5.1.1 Maintaining a Sorted Collection of Mini Blocks
Let C be a collection of k = O(polylogn) blocks of sorted integers, with the following
properties. The blocks of C form a total order, i.e., uj ≤ fj+1, for all j = 1, . . . , k − 1, where
fj and uj indicate, respectively, the first and last element of the j-th block in the total order.
Each block supports random access to its elements in constant time and is of size Θ(b) = ρb

with 1
2 ≤ ρ ≤ 2 and b = O(polylogn).

I Lemma 4. The total order of the blocks of C can be maintained by using a data structure
that takes O(polylogn · log logn) bits of space and supports the following operations in
O(log logn) worst-case time: Search(x) which returns a pointer to the block containing the
integer x; Access(i) which returns the i-th integer of the total order; Insert/Delete of a block.

Pointers of O(log logn) bits to blocks are stored in the leaves of a τ -ary tree T , with
τ = Θ(logσ n) for some 0 < σ < 1. Given that we have O(polylogn) leaves, the height of
T is constant and equal to O(1/σ). T operates as a B-tree, in which internal nodes have
Θ(τ) = ρτ children.

Logically, we divide the information stored at each internal node into two levels of
representation. For each of the two levels we store Θ(τ) pairs, where the i-th pair maintains
information about the sub-tree rooted in the i-th child. The pairs are stored following the
order of the upper bounds of the blocks indexed in the sub-trees rooted in the node’s children.
In the lower level, each pair contains a pointer to the sub-tree rooted in the child and the size
of such sub-tree. The Θ(τ) children sizes are kept in prefix sums to enable binary search. In
the upper level, each pair contains a pointer to the right-most block indexed in the sub-tree
rooted in its child and the size of such sub-tree. Each leaf holds, of course, only the lower level
of information. Each node uses O(τ(log logn + log polylogn)) = O(τ log logn) = o(logn)
bits, thus fitting in (less than) a machine word. The space taken by whole data structure is,
therefore, O(τO(1/σ) log logn) = O(polylogn · log logn) bits.

We now detail how the operations are implemented. To support Search(x), i.e., determin-
ing the block where the integer x is comprised, we percolate T , locating the correct child at
each node in O(log τ) = O(log logn) by binary searching on blocks’ upper bounds. Specific-
ally, if the upper bounds of the i-th block is needed for comparison for some 1 ≤ i ≤ Θ(τ),
we access the block following the pointer (to the right-most block) of the i-th pair stored
in the upper level of the node and we retrieve the upper bound in O(1), given that we also
know the size of the block. When we have to insert/delete an integer, we identify the proper
block of the total order in/from which the integer must be inserted/deleted in O(log logn)
time (as described for the Search operation) and update the pairs along the path from the
root in constant time, as these pairs fits in o(logn) bits overall. If a split or merge of a block
happens, it is handled as usual and solved in a constant number of O(1)-time operations.
During an Access(i) query, we follow the proper root-to-leaf path in T . The traversal of the
data structure does not need to access the blocks directly, but instead uses their sizes to
determine the correct child at each level. By binary searching the sizes, we traverse the data
structure in O(log logn) time. During the traversal of the path we also compute the sum ∆
of the sizes of the preceding blocks by summing to the current value of ∆, at each level, the
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value stored in the (j − 1)-th pair of the lower level if the j-th child is traversed. Finally we
retrieve the (i−∆)-th integer from the identified block in O(1), as the blocks of C support
random access.

5.1.2 Full Data Structure Layout
Let ` be logn/ log logn for the rest of the paper. We logically divide the sorted sequence
S(n, u) into mini blocks of Θ(`) = ρ` integers each. We organize the dynamic layout into
two levels.

Lower level. We group O(log2 n) consecutive mini blocks together and index such collection
using the data structure T described in Lemma 4. We refer to this collection as a “block” and
say that T stores a block of O(log2 n) mini blocks. The set {Tj}k

′

j=1, with k′ = n/O(` log2 n),
of all such data structures forms the lower level of the dynamic layout. Each Tj also stores
the lower bound fj of its block and the number of low bits required by its Elias-Fano
representation in Θ(log u) bits, so that we can subtract fj to all the integers belonging to
the mini blocks of Tj .

Upper level. The set {fj}k
′

j=1 of all the lower bounds of the blocks are indexed using an
y-fast trie. The sizes of the blocks are maintained, instead, using the dynamic prefix sums
data structure described in [5], which is a B-tree in which each node stores a dynamic prefix
sums data structure operating on a small set of integers in O(1) time. In particular we use
the operation Update(i,∆) of P as implemented in [5], which sums to the i-th integer of the
data structure the quantity ∆ (that fits in δ bits) and runs in optimal O(logn/ log(w/δ))
worst-case time. In our setting this operation is supported in O(`) given that δ = ∆ = 1.

These two data structures, respectively named Y and P in the following, form the upper
level of the dynamic layout. The j-th leaf of Y and P stores a O(logn)-bit pointer to the
data structure Tj in the lower level.

To handle the memory allocation for the mini blocks, we employ a different technique to
manage the high and low part of their Elias-Fano representation. Recall from Subsection 2.2
that, given a sequence S(n, u), the high part of EF(S(n, u)) consists in a bitvector of at most
2n bits, whereas the low part is given by a vector of n dlog u

ne-bit integers. In our case, the
high part of each mini block requires at most 2` = O(w) bits and is stored using the data
structure of Theorem 6 from [17] that allows to address and allocate the high part of a mini
block in O(1) worst-case time. The low part of a mini block is instead stored using the data
structure of Corollary 3 from [24] that supports Access in O(1) and Insert/Delete in O(`ε)
worst-case time for any fixed positive ε < 1.

5.2 Space Analysis
The space required by the introduced layout will be clearly given by the contribution of:

the data structures Y and P used in the upper level and the data structures T of Lemma 4
used in the lower level;
the cost of representation of the mini blocks encoded with Elias-Fano;
the overhead given by the mini blocks memory management.

In the following we separately analyze each contribution.

The space taken by the data structures Y and P in the upper level is O( n
` log2 n

log u) = o(n)
bits. All the data structures T of Lemma 4 require O( n

` log2 n
log2 n log logn) = o(n) bits too.



G. E. Pibiri and R. Venturini 48:11

We now analyze the space taken by the encoding of the mini blocks. Since the universe of
representation of a mini block could be as large as the one of its comprising block, i.e., u,
storing the lower bounds of the mini blocks in order to use reduced universes (as already
done for the blocks), would require O(n` log u) bits, which is too much. In what follows we
show that it is not necessary to re-map the mini blocks using Property 1, hence these are
kept encoded with the universe relative to their comprising block, if we carefully set the
number of bits required to represent each low part in the Elias-Fano space bound (2). As
pointed out previously, each low part in the Elias-Fano representation of a sequence S(n, u)
is encoded using dlog u

ne bits, which is the number of bits needed to encode the average gap
u/n of S. The number of bits for the average gap of a block is therefore dme = dlog u

` log2 n
e.

The idea is to choose a number of bits dm′e for the encoding of the average gap of the
mini blocks such that dm′e = dme for a sufficiently long sequence of p insertions/deletions.
After p insertions/deletions have been performed, we rebuild the mini blocks using dme bits
for the average gap. In other words, we want to guarantee that encoding the mini blocks
with dm′e bits for the average gap, instead of dme, does not introduce any extra space.
Since m′ lies in the interval [l, r] = [log u

` log2 n+p , log u
` log2 n−p ], m′ must be chosen in order

to satisfy dme − 1 < m′ < dme, which indeed implies dm′e = dme. Precisely, we satisfy this
condition by fixing m′ = m± θ with dme − l < ±θ < dme − r + 1. To derive this condition,
we distinguish three possible cases.
1. [l, r] ⊂ [dme− 1, dme). In this case the condition dme− 1 < m′ < dme is already satisfied.

The other two cases are symmetric.
2. dle = dme − 1. In this case we set m′ = m+ θ. To let dme − 1 < m′ < dme holds, θ must

be at least dme − l and at most dme+ 1− r.
3. dre = dme+ 1. In this case we set m′ = m− θ. To let dme− 1 < m′ < dme holds, θ must

be at least r − dme − 1 and at most l − dme.
Cases 2. and 3. together yield the condition dme − l < ±θ < dme − r + 1.

Finally, we have to determine the proper number p of insertions/deletions before triggering
the rebuilding of the mini blocks in order to attain to optimal insert/delete amortized time
O(`). As blocks are of size Θ(` log2 n), p is chosen to be O(log2 n).

The techniques used to manage the memory allocation for the mini blocks introduce an
overall redundancy of o(n) bits. Precisely, the data structure of Theorem 6 from [17] has an
overhead of O(w4 + n

logn log2 w) = o(n) bits, while the one of Corollary 3 from [24] uses o(n)
bits by choosing a proper positive ε < 1.

In conclusion, by the above discussion and the use of Property 1, the space taken by the
mini blocks can be safely upper bounded by EF(S(n, u)) and the redundancy sums up to
o(n) bits, so that the whole data structure requires EF(S(n, u)) + o(n) bits of space.

5.3 Operations
In this subsection we describe how the operations of Theorem 3 are implemented. As stated
before, ` is a short-hand for logn/ log logn.

To Access the i-th integer, we first resolve Search(i) on P in O(`): Search(i) = j indicates
that the j-th block contains the i-th integer given that Sum(j − 1) < i ≤ Sum(j), where
Sum(j) equals the sum of the sizes of the first j blocks. We then follow the pointer stored in
the j-th leaf of P, which points to the data structure Tj . We finally Access the integer x of
index i− Sum(j − 1) from Tj in O(log logn) and return x+ fj . The overall complexity is,
therefore, O(`). To Insert/Delete an integer x, we perform the following steps: 1. identify
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the proper data structure Tj by resolving a partial Successor(x) query on Y in O(log logn)
and following the pointer retrieved at the identified leaf of Y; 2. identify the correct mini
block by Search(x− fj) in Tj in O(log logn); 3. Insert/Delete x− fj in Tj by rebuilding the
proper mini block in Θ(`); 4. update P in O(`). During the third step, split or merge of
a mini block can happen and it is handled in O(`) worst-case time by the data structure
Tj ; rebuilding of the mini blocks can happen as pointed out in the previous section and it is
handled in O(`) amortized time. If split/merge of a block happens, the lower bound of the
block is inserted/removed from Y in O(log logn) time. The overall complexity is, therefore,
O(`) amortized. The query Predecessor(x) is supported as follows (Successor(x) runs in a
similar way). We identify the proper data structure Tj in O(log logn) by answering a partial
Predecessor(x) query on Y and following the pointer retrieved at the identified leaf of Y.
Then we identify the proper mini block by Search(x − fj) in Tj in O(log logn) time. We
finally return fj + Predecessor(x− fj) by binary searching on the identified mini block. The
overall complexity is O(log logn) worst-case. The minimum and maximum elements of S
are stored uncompressed using Θ(log u) bits and returned when requested in O(1). Upon
insertion/deletions these are updated as needed.

6 Conclusions

In this paper we have shown how the Elias-Fano representation of a monotone integer
sequence S can be adapted to obtain optimal data structures in terms of query time
and almost optimal in terms of space. In particular, when integers are drawn from a
polynomial universe of size u = nγ , for any γ = Θ(1), our data structures take the same
asymptotic space of the plain, static, Elias-Fano representation, i.e., EF(S(n, u)) + o(n) bits
and support: 1. static Predecessor/Successor queries in optimal worst-case time O(min{1 +
log u

n , log logn}) (Section 3); 2. a O(1) worst-case amount of work for Append when integers
are inserted in sorted order (Section 4); 3. Access in optimal O(logn/ log logn) worst-
case time, Insert/Delete in optimal O(logn/ log logn) amortized time, Predecessor/Successor
queries in optimal O(min{1 + log u

n , log logn}) worst-case time (Section 5).
As a last note, we observe that the data structure described in Section 5 allows us to

support all operations in time O(log log u) when non-polynomial universes are considered,
i.e., when n and u are not necessarily related by means of the formula u = nγ for any
γ = Θ(1). In this setting, the data structure of Lemma 4 will take O(polylog u · log log u)
bits and operate in O(log log u) time. In order to guarantee an overall redundancy of o(n)
bits, we let mini blocks be of size Θ((log log u)2) and group O(log2 u) consecutive mini blocks
into a block. The high part of a mini block fits into one machine word, whereas we can
insert/delete a low part in O((log log u)2ε) for Corollary 3 of [24], which is O(log log u) as
soon as ε < 1

2 . Therefore, the following corollary matches the asymptotic time bounds of
y-fast tries and van Emde Boas trees but in almost optimally compressed space.

I Corollary 2. There exists a data structure representing an ordered set S(n, u) of n integers
drawn from a universe of size u that takes EF(S(n, u))+o(n) bits of space and supports: Access
and Predecessor/Successor queries in O(log log u) worst-case; Insert/Delete in O(log log u)
amortized and Minimum/Maximum in O(1).
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