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Outline

In 1994 M. Burrows and D. Wheeler introduced a new data
compression method based on a preprocessing of the input string.
Such a preprocessing is called Burrows-Wheeler Transform (BWT).

The application of the BWT produces a clustering effect (occurrences
of a given symbol tend to occur in clusters).

We investigate the clustering effect of BWT and its relation with
compression performances.

In such an investigation we consider notions and introduce techniques
that are relevant for combinatorics on words.
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How does BWT work?

BWT takes as input a text v and produces:
a permutation bwt(v) of the letters of v .
the index I , that is useful in order to recover the original word v .

Example: v = abraca

Each row of M is a conjugate of v in
lexicographic order.

bwt(v) coincides with the last column L of
the BW-matrix M.

The index I is the row of M containing the
original sequence.

M
F L
↓ ↓

1 a a b r a c
I → 2 a b r a c a

3 a c a a b r
4 b r a c a a
5 c a a b r a
6 r a c a a b

Notice that if we except the index, all the mutual conjugate words
have the same Burrows-Wheeler Transform.

Hence, the BWT can be thought as a transformation acting on
circular words.
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Why Useful?

INTUITION
Let us consider the effect of BWT on an English text:

v = She . . . the . . .The . . .He . . . the . . . the . . . the . . . she . . . the . . .

F L
↓ ↓

he · · · t
he · · · s
he · · · t
he · · · t

...
...

he · · · t
he · · · T
He · · ·
he · · · S

The characters preceding he
are grouped together inside
bwt(v).

Extensive experimental work confirms this “clustering effect” (M. Burrows
and D. Wheeler,1994, P. Fenwick, 1996).



Empirical Entropy - Intuition

H0(v): Maximum compression we can get without context
information where a fixed codeword is assigned to each alphabet
character (e.g.: Huffman code)

Hk(v): Lower bound for compression with order-k contexts: the
codeword representing each symbol depends on the k symbols
preceding it

Traditionally, compression ratio of BWT-based compression
algorithms are usually measured by using Hk(s).
Manzini, 2001,
Ferragina, Giancarlo, Manzini, Sciortino, 2005
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Burrows-Wheeler Transform

v BWT bwt(v)

They question the effectiveness of
Hk(v).
Is there a more appropriate statistic?

Our intuition:
the more balanced the input
sequences is
the more local similarity we have
after BWT.

H. Kaplan, S. Landau and E. Verbin,
2007. The more local similarity is
found in the BWT of the string, the
better the compression is.

Local Entropy: a statistic that
measures local similarity.

They get an upper bound of
compression ratio in terms of Local
Entropy of bwt(v).
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Balancing

A (finite or infinite) word v is balanced if for each letter a of the
alphabet A and for all factors u and u′ of v s.t. |u| = |u′| we have
that

||u|a − |u′|a| ≤ 1

A finite word v is circularly balanced if vω is balanced, i.e. all its
conjugates are balanced.

Example

w = cacbcac is a circularly balanced word.

v = acacbbc is an unbalanced word.

u = babaabaab is a balanced but not circularly balanced word.

Denote by B the set of circularly balanced words.

Laurent Vuillon. Balanced words. Bull. Belg. Math.Soc., 10(5):787–805,
2003.
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Constant gap words and Clustered words

A finite word v is constant gap if, for each letter a, the distance (the
number of letters) between two consecutive occurrences of a is
constant.

Example

The word abcabdabcabe is constant gap.

Constant gap words are a special case of circularly balanced words.

We remark that in a circularly balanced word, for each letter a, the
distance between two consecutive occurrences of a is d or d + 1.

The word v is a clustered word if the number of runs is equal to the size of
alphabet.

Example

The word ddddddccccaaaaabbb is a clustered word.
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Distance coding and Local Entropy

Distance coding: for each symbol of the input word, the DC algorithm
outputs the distance to the previous occurrence of the same symbol (in
circular way).

Example

v= a c b c a a b
dc(v)= 1 4 2 1 3 0 3

Let v = b1b2 · · · bn, bi ∈ A and dc(v) = d1d2 · · · dn. Define the Local
Entropy of v :

LE (v) =
1

n

n∑
i=1

log(di + 1)

Local entropy (LE) was considered by

J. L. Bentley, D. D. Sleator, R. E. Tarjan, and V. K. Wei,1986

G. Manzini, 2001

H. Kaplan, S. Landau and E. Verbin, 2007



Bounds

Theorem

For any word v one has:

Λ(v) ≤ LE (v) ≤ H0(v)

LE (v) = H0(v) if and only if v is a constant gap word.

LE (v) = Λ(v) if and only if v is a clustered word.

where

H0(v) =
∑
a∈A

|v |a
|v |

log
|v |
|v |a

,

Λ(v) =
∑
a∈A

1

|v |
[log(|v | − |v |a + 1)]



Measure

For any word v :

δ(v) = H0(v)−LE(v)
H0(v)−Λ(v) , τ(v) = LE(v)−Λ(v)

H0(v)−Λ(v)

Now, by using δ and τ , we can test, in a quantitative way, our
intuition, i.e. the more is balanced the input sequences the more is
local similarity after BWT.

The experiments reported in the next slide confirm our intuition:
actually they show that when δ(v) is less than 0.23, then τ(bwt(v)) is
less than 0.3 and the BWT-based compressor has good performances.



Experiments

File name Size H0 Bst Gzip Diff % δ(v) τ(bwt(v))
bible 4,047,392 4.343 796,231 1,191,071 9.755 0.117 0.233

english 52,428,800 4.529 11,533,171 19,672,355 15.524 0.136 0.238
etext99 105,277,340 4.596 24,949,871 39,493,346 13.814 0.141 0.264
english 104,857,600 4.556 23,993,810 39,437,704 14.728 0.143 0.250

dblp.xml 52,428,800 5.230 4,871,450 9,034,902 7.941 0.152 0.093
dblp.xml 104,857,600 5.228 9,427,936 17,765,502 7.951 0.153 0.090
dblp.xml 209,715,200 5.257 18,522,167 35,897,168 8.285 0.162 0.088
dblp.xml 296,135,874 5.262 25,597,003 50,481,103 8.403 0.164 0.086
world192 2,473,400 4.998 430,225 724,606 11.902 0.174 0.183
rctail96 114,711,151 5.154 11,429,406 24,007,508 10.965 0.178 0.097

sprot34.dat 109,617,186 4.762 18,850,472 26,712,981 7.173 0.215 0.206
jdk13c 69,728,899 5.531 3,187,900 7,525,172 6.220 0.224 0.041
howto 39,886,973 4.857 8,713,851 12,638,334 9.839 0.231 0.229

rfc 116,421,901 4.623 17,565,908 26,712,981 7.857 0.239 0.163
w3c2 104,201,579 5.954 7,021,478 15,159,804 7.810 0.246 0.058

chr22.dna 34,553,758 2.137 8,015,707 8,870,068 2.473 0.341 0.575
pitches 52,428,800 5.633 18,651,999 16,884,651 -3.371 0.530 0.344
pitches 55,832,855 5.628 19,475,065 16,040,370 -6.152 0.533 0.337

Practical application: the computation of δ(v) is a fast test for the choice
between bst and gzip.



Extremal case: Balanced words
Binary case

An infinite aperiodic sequence v is balanced if and only if v is a
sturmian sequence.

An infinite periodic sequence vω is balanced if and only if v is a
conjugate of a standard word.

Fibonacci words
f0 = b
f1 = a
f2 = ab
f3 = aba

f0 = b f1 = a
fn+1 = fnfn−1 (n ≥ 1)

Standard words
Directive sequence d1, d2, . . . , dn, . . ., with d1 ≥ 0 and di > 0 for
i = 2, . . . , n, . . ..

s0 = b s1 = a sn+1 = sdnn sn−1 for n ≥ 1

Standard words are special prefixes of Sturmian sequences.
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Binary alphabets

Theorem (Mantaci, R. and Sciortino, 2003)

Given a word v ∈ {a, b}, the following conditions are equivalent:

1 bwt(v) = bpaq with p, q ≥ 1;

2 v is a circularly balanced word;

3 v is a conjugate of a power of a Standard words.

The words in this theorem correspond to the Christoffel classes
investigated in Borel and Reutenauer, 2006.

They appear in several contexts and applications (G. Castiglione, A.
R., M. Sciortino, Circular Sturmian words and Hopcroft algorithm,
2009)

In alphabets with more than two letters, the notions considered in the
previous theorem (or their generalization) do not coincide.



Circularly Balanced words on larger alphabets

If |A| > 2, the general structure of circularly balanced words is not
known.
E. Altman, B. Gaujal, and A. Hordijk, 2000
R. Mantaci, S. Mantaci, and A. R., 2008

We note that the notion of circularly balanced words over an alphabet
of size larger than two also appears in the statement of the Fraenkel’s
conjecture.

As a direct consequence of a result of Graham, one has that balanced
sequences on a set of letters having different frequencies must be
periodic, i.e. of the form vω, where v is a circularly balanced word.

Fraenkel’s conjecture
Let Ak = {a1, a2, . . . , ak}. For each k > 2, there is only one circularly
balanced word Fk ∈ A∗k , having different frequencies. It is defined
recursively as follow F1 = a1 and Fk = Fk−1akFk−1 for all k ≥ 2.



Simple BWT words

In 2008, Simpson and Puglisi introduce the notion of Simple BWT words.

Let v be a word over a finite ordered alphabet A = {a1, a2, . . . , ak}, with
a1 < a2 < . . . < ak . The word v is a simple BWT word if

bwt(v) = ankk a
nk−1

k−1 · · · a
n2
2 an1

1

for some non-negative integers n1, n2, . . . , nk .

We denote by S the set of the simple BWT words.

Example

v = acbcbcadad ∈ S , in fact bwt(v) = ddcccbbaaa.

Simpson and Puglisi get a constructive characterization of the set S in the
case of three letters alphabet.
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Matrix M and R

M
FM LM

a a b r a c
a b r a c a
a c a a b r
b r a c a a
c a a b r a
r a c a a b

R
FR LR

b a a c a r
a r b a a c
a a c a r b
r b a a c a
a c a r b a
c a r b a a

The matrix R is obtained from M by a rotation of 180◦: it follows that the
ith conjugate of M is the reverse of the (n − i + 1)th conjugate of R.

Theorem

A word v ∈ S if and only if M = R.
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A word v ∈ S iff
M = R

a c a d a c b b c a d
a c b b c a d a c a d
a d a c a d a c b b c
a d a c b b c a d a c
b b c a d a c a d a c
b c a d a c a d a c b
c a d a c a d a c b b
c a d a c b b c a d a
c b b c a d a c a d a
d a c a d a c b b c a
d a c b b c a d a c a

vi = ṽn−i+1

So [v ] and its factors are closed under reverse. Under these conditions
each conjugate of v has the two palindrome property, i.e. v is product of
two palindromes (cf. Simpson and Puglisi, 2008).
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Balanced and Simple BWT words

B 6= S

The set of circularly balanced words over more than two letters alphabets
does not coincide with the set of Simple BWT words.

Example

v = cacbcac is circularly balanced and bwt(v) = ccccbaa

w = ababc is circularly balanced and bwt(w) = cbaab

u = acacbbc is unbalanced and bwt(u) = cccbbaa



A generalization of Sturmian: Episturmian

An infinite word t on A is episturmian (Droubay, J. Justin, G. Pirillo,
2001) if:

F (t) (its set of factors) is closed under reversal;
t has at most one right special factor of each length.

Let s be an infinite word, then a factor u of s is right (resp. left) special if
there exist x , y ∈ A, x 6= y , such that ux , uy ∈ F (s) (resp. xu, yu ∈ F (s)).

The palindromic right-closure v (+) of a finite word v is the (unique)
shortest palindrome having v as a prefix (A. de Luca, 1997).

The iterated palindromic closure function (J. Justin, 2005), denoted by
Pal , is recursively defined as follows. Set Pal(ε) = ε and, for any word v
and letter x , define Pal(vx) = (Pal(v)x)(+).

Amy Glen and Jacques Justin. Episturmian words: a survey. RAIRO
Theoretical Informatics and Applications, 2009.
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2001) if:

F (t) (its set of factors) is closed under reversal;
t has at most one right special factor of each length.

Let s be an infinite word, then a factor u of s is right (resp. left) special if
there exist x , y ∈ A, x 6= y , such that ux , uy ∈ F (s) (resp. xu, yu ∈ F (s)).

The palindromic right-closure v (+) of a finite word v is the (unique)
shortest palindrome having v as a prefix (A. de Luca, 1997).
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A generalization of Standard: Finite epistandard

Rauzy rules.

Rules 1 2 3 4

R0 a b c d

R1 1 a ab ac ad

R2 1 a aab aac aad

R3 4 aada aadaab aadaac aad

R4 3 aadaacaada aadaacaadaab aadaac aadaacaad

Let |A| = k . A word v ∈ A∗ is called finite epistandard if v is an
element of a k-tuples Rn, for some n = 1.

We denote by EP the set of words that are powers of a conjugate of
a finite epistandard word.

The elements of EP are closed related to epichristoffel classes (G.
Paquin, 2009)
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The elements of EP are closed related to epichristoffel classes (G.
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Balancing and Epistandard

B 6= EP

The set of circularly balanced words over more than two letters alphabets
does not coincide with the set of conjugate of powers of epistandard
words.

Example

v = aadaacaad is epistandard, but it is not circularly balanced.

u = abcabdabcabe is circularly balanced, but it is not epistandard.



Palindromic Richness

Droubay, Justin, Pirillo, 2001:

The number of distinct palindromic factors (including ε) of a word v
is at most |v |+ 1

A finite word v is (palindromic) rich if it has exactly |v |+ 1 distinct
palindromic factors, including ε.

A factor of finite rich word is rich.

A infinite word is rich if all of its factors are rich.

Example

v = ccaacb is rich, |v | = 6, in fact: P(v) = {ε, c , cc , caac , a, aa, b},
|P(v)| = 7.

A. Glen, J. Justin, S. Widmer, and L. Q. Zamboni. Palindromic richness.
European Journal of Combinatorics, 30(2):510–531, 2009.
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Circularly rich words

Lemma (Glen, Justin, Widmer and Zamboni, 2009)

For a finite word v, the following properties are equivalent:

1 vω is rich;

2 v 2 is rich;

3 v is a product of two palindromes and all of the conjugates of v
(including itself) are rich.

We say that a finite word v is circularly rich if the infinite word vω is
rich.

We denote by R the set of the circularly rich words.
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Lemma (Glen, Justin, Widmer and Zamboni, 2009)

For a finite word v, the following properties are equivalent:

1 vω is rich;

2 v 2 is rich;

3 v is a product of two palindromes and all of the conjugates of v
(including itself) are rich.

We say that a finite word v is circularly rich if the infinite word vω is
rich.

We denote by R the set of the circularly rich words.



Balancing and Richness

R 6= B

The set of circularly balanced words over more than two letters alphabets
does not coincide with the set of circularly rich words.

The word w = bbbbbacaca is circularly rich, but it is not circularly
balanced.

The word u = abcabdabcabe is circularly balanced, but it is not
circularly rich.



S ∩ B = R∩ B = EP ∩ B

Theorem (R., Rosone, 2009)

Let v ∈ A∗ be a circularly balanced word over A. The following statements
are equivalent:

i) v is a simple BWT word;

ii) v is a circularly rich word;

iii) v is a conjugate of a power of a finite epistandard word.



Proof: 3→ 1: The finite balanced epistandard words
belong to S.

From a result of Paquin and Vuillon (2006), one can prove that each finite
balanced epistandard word t is of the form:

i) t = pa2, with p = Pal(am1 akak−1 · · · a3), where k ≥ 3 and m ≥ 1;

ii) t = pa2, with p = Pal(a1akak−1 · · · ak−`a1ak−`−1ak−`−2 · · · a3),
where 0 ≤ ` ≤ k − 4 and k ≥ 4;

iii) t = Pal(a1akak−1 · · · a2), where k ≥ 3 (Fraenkel’s words).

In order to prove that t belongs to S it suffices to show that words of the
form i), ii) and iii) have simple BWT.
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Proof: 2↔ 3:
v is circularly rich if and only if v is a conjugate of a power
of a finite epistandard.

The proof is a consequence of the following results:

The set of the episturmian sequences is a subset of the set of the rich
words (Glen, Justin, Widmer and Zamboni, 2009).

Recurrent balanced rich infinite words are precisely the balanced
episturmian words (Glen, Justin, Widmer and Zamboni, 2009).
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Proof: 1→ 3

Theorem (R., Rosone, 2009)

If the word w belongs to S then w is circularly rich.

Example

The word v = acbcbcadad ∈ S, |v | = 10, in fact
bwt(acbcbcadad) = ddcccbbaaa |P(v 2)| = 21, so v is circularly rich.

We note that the converse of this result is false. The word u = ccaaccb is
circularly rich, but bwt(ccaaccb) = cacccba (u /∈ S).
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Conclusions

Only under the condition of circularly balanced, the following statements
are equivalent:

v ∈ S (simple BWT words);

v is circularly rich,

v is a conjugate of a power of a finite epistandard.

REP

S

B

The following example shows that there exist words unbalanced which
belong to EP ∩ S: v = aadaacaad is not a circularly balanced word:
v ∈ EP and v ∈ S.
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