Burrows-Wheeler Transform and Balanced words

Antonio Restivo and Giovanna Rosone

University of Palermo, Dipartimento di Matematica ed Applicazioni, Via Archirafi 34, 90123 Palermo, ITALY restivo@math.unipa.it

WORDS 2009, 14-18 September

Outline

- In 1994 M. Burrows and D. Wheeler introduced a new data compression method based on a preprocessing of the input string. Such a preprocessing is called Burrows-Wheeler Transform (BWT).
- The application of the BWT produces a clustering effect (occurrences of a given symbol tend to occur in clusters)
- We investigate the clustering effect of BWT and its relation with compression performances.
- In such an investigation we consider notions and introduce techniques that are relevant for combinatorics on words.

Outline

- In 1994 M. Burrows and D. Wheeler introduced a new data compression method based on a preprocessing of the input string. Such a preprocessing is called Burrows-Wheeler Transform (BWT).
- The application of the BWT produces a clustering effect (occurrences of a given symbol tend to occur in clusters).
- We investigate the clustering effect of BWT and its relation with compression performances.
- In such an investigation we consider notions and introduce techniques that are relevant for combinatorics on words.

Outline

- In 1994 M. Burrows and D. Wheeler introduced a new data compression method based on a preprocessing of the input string. Such a preprocessing is called Burrows-Wheeler Transform (BWT).
- The application of the BWT produces a clustering effect (occurrences of a given symbol tend to occur in clusters).
- We investigate the clustering effect of BWT and its relation with compression performances.
- In such an investigation we consider notions and introduce techniques that are relevant for combinatorics on words.

Outline

- In 1994 M. Burrows and D. Wheeler introduced a new data compression method based on a preprocessing of the input string. Such a preprocessing is called Burrows-Wheeler Transform (BWT).
- The application of the BWT produces a clustering effect (occurrences of a given symbol tend to occur in clusters).
- We investigate the clustering effect of BWT and its relation with compression performances.
- In such an investigation we consider notions and introduce techniques that are relevant for combinatorics on words.

How does BWT work?

- BWT takes as input a text v and produces:
- a permutation bwt (v) of the letters of v.
- the index l, that is useful in order to recover the original word v.
- Example:
- Each row of M is a conjugate of v in lexicographic order
- bwt(v) coincides with the last column L of the BW-matrix M.
- The index $!$ is the row of M containing the original sequence.
- Notice that if we except the index, all the mutual conjugate words have the same Burrows-Wheeler Transform.
- Hence, the BWT can be thought as a transformation acting on circular words.

How does BWT work?

- BWT takes as input a text v and produces:
- a permutation bwt (v) of the letters of v.
- the index l, that is useful in order to recover the original word v.
- Example: $v=a b r a c a$
- Each row of M is a conjugate of v in lexicographic order.
- bwt(v) coincides with the last column L of the BW-matrix M.
- The index $!$ is the row of M containing the original sequence.
- Notice that if we except the index, all the mutual conjugate words have the same Burrows-Wheeler Transform.
- Hence, the BWT can be thought as a transformation acting on circular words.

How does BWT work?

- BWT takes as input a text v and produces:
- a permutation bwt (v) of the letters of v.
- the index I, that is useful in order to recover the original word v.
- Example: $v=a b r a c a$
- Each row of M is a conjugate of v in lexicographic order.
- bwt (v) coincides with the last column L of the BW-matrix M.
- The index $/$ is the row of M containing the original sequence.

- Notice that if we except the index, all the mutual conjugate words have the same Burrows-Wheeler Transform.
- Hence, the BWT can be thought as a transformation acting on

How does BWT work?

- BWT takes as input a text v and produces:
- a permutation bwt (v) of the letters of v.
- the index l, that is useful in order to recover the original word v.
- Example: $v=a b r a c a$
- Each row of M is a conjugate of v in lexicographic order.
- bwt (v) coincides with the last column L of the BW-matrix M.
- The index $/$ is the row of M containing the original sequence.

	F				L	
	\downarrow				\downarrow	
	a	a	b	r	a	c
2	a	b	r	a	c	a
3	a	c	a	a	b	r
4	b	r	a	c	a	a
5	c	a	a	b	r	a
6	r	a	c	a	a	b

- Notice that if we except the index, all the mutual conjugate words have the same Burrows-Wheeler Transform.
- Hence, the BWT can be thought as a transformation acting on circular words.

Why Useful?

INTUITION

Let us consider the effect of BWT on an English text:
$v=$ She . . the . . The . . . He . . the . . the . . . the . . . she . . . the . .

The characters preceding he are grouped together inside bwt(v).

Extensive experimental work confirms this "clustering effect" (M. Burrows and D. Wheeler,1994, P. Fenwick, 1996).

Empirical Entropy - Intuition

- $H_{0}(v)$: Maximum compression we can get without context information where a fixed codeword is assigned to each alphabet character (e.g.: Huffman code)
- $H_{k}(v)$: Lower bound for compression with order-k contexts: the codeword representing each symbol depends on the k symbols preceding it
- Traditionally, compression ratio of BWT-based compression algorithms are usually measured by using $H_{k}(s)$ Manzini, 2001,
Ferragina, Giancarlo, Manzini, Sciortino, 2005

Empirical Entropy - Intuition

- $H_{0}(v)$: Maximum compression we can get without context information where a fixed codeword is assigned to each alphabet character (e.g.: Huffman code)
- $H_{k}(v)$: Lower bound for compression with order-k contexts: the codeword representing each symbol depends on the k symbols preceding it
- Traditionally, compression ratio of BWT-based compression algorithms are usually measured by using $H_{k}(s)$ Manzini, 2001, Ferragina, Giancarlo, Manzini, Sciortino, 2005

Empirical Entropy - Intuition

- $H_{0}(v)$: Maximum compression we can get without context information where a fixed codeword is assigned to each alphabet character (e.g.: Huffman code)
- $H_{k}(v)$: Lower bound for compression with order-k contexts: the codeword representing each symbol depends on the k symbols preceding it
- Traditionally, compression ratio of BWT-based compression algorithms are usually measured by using $H_{k}(s)$.
Manzini, 2001,
Ferragina, Giancarlo, Manzini, Sciortino, 2005

Burrows-Wheeler Transform

H. Kaplan, S. Landau and E. Verbin,

They question the effectiveness of $H_{k}(v)$.
Is there a more appropriate statistic?
Our intuition:
the more balanced the input sequences is
the more local similarity we have after BWT.
2007. The more local similarity is found in the BWT of the string, the better the compression is.

Local Entrony: a statistic that measures local similarity.

They get an upper bound of compression ratio in terms of Local Entropy of bwt (v).

Burrows-Wheeler Transform

H. Kaplan, S. Landau and E. Verbin,

They question the effectiveness of $H_{k}(v)$.
Is there a more appropriate statistic?
Our intuition:
the more balanced the input
sequences is
the more local similarity we have
2007. The more local similarity is found in the BWT of the string, the better the compression is.

Local Entropy: a statistic that
measures local similarity.
They get an upper bound of
compression ratio in terms of Local
Entropy of bwt(v).

Burrows-Wheeler Transform

H. Kaplan, S. Landau and E. Verbin,

Is there a more appropriate statistic?
Our intuition:
the more balanced the input
sequences is
the more local similarity we have 2007. The more local similarity is found in the BWT of the string, the better the compression is.

Local Entropy: a statistic that measures local similarity.

They get an upper bound of compression ratio in terms of Local Entropy of bwt(v).

Burrows-Wheeler Transform

They question the effectiveness of $H_{k}(v)$. Is there a more appropriate statistic?

Our intuition
the more balanced the input
sequences is
the more local similarity we have
H. Kaplan, S. Landau and E. Verbin, 2007. The more local similarity is found in the BWT of the string, the better the compression is.

Local Entropy: a statistic that measures local similarity.

They get an upper bound of compression ratio in terms of Local Entropy of bwt(v).

Burrows-Wheeler Transform

They question the effectiveness of $H_{k}(v)$. Is there a more appropriate statistic?

Our intuition: the more balanced the input sequences is
the more local similarity we have after BWT.
H. Kaplan, S. Landau and E. Verbin, 2007. The more local similarity is found in the BWT of the string, the better the compression is.

Local Entropy: a statistic that measures local similarity.

They get an upper bound of compression ratio in terms of Local Entropy of bwt(v).

Balancing

- A (finite or infinite) word v is balanced if for each letter a of the alphabet A and for all factors u and u^{\prime} of v s.t. $|u|=\left|u^{\prime}\right|$ we have that

$$
\left||u|_{a}-\left|u^{\prime}\right|_{a}\right| \leq 1
$$

- A finite word v is circularly balanced if v^{ω} is balanced, i.e. all its conjugates are balanced.

Example

- $w=c a c b c a c$ is a circularly balanced word
- $v=a c a c b b c$ is an unbalanced word.
- $u=$ babaabaab is a balanced but not circularly balanced word.

Denote by \mathcal{B} the set of circularly balanced words.
Laurent Vuillon. Balanced words. Bull. Belg. Math.Soc, 10(5):787-805

Balancing

- A (finite or infinite) word v is balanced if for each letter a of the alphabet A and for all factors u and u^{\prime} of v s.t. $|u|=\left|u^{\prime}\right|$ we have that

$$
\left||u|_{a}-\left|u^{\prime}\right|_{a}\right| \leq 1
$$

- A finite word v is circularly balanced if v^{ω} is balanced, i.e. all its conjugates are balanced.

Example

- $w=c a c b c a c$ is a circularly balanced word
- $v=a c a c b b c$ is an unbalanced word
- $u=$ babaabaab is a balanced but not circularly balanced word.

Denote by \mathcal{B} the set of circularly balanced word's.

Balancing

- A (finite or infinite) word v is balanced if for each letter a of the alphabet A and for all factors u and u^{\prime} of v s.t. $|u|=\left|u^{\prime}\right|$ we have that

$$
\|\left. u\right|_{a}-\left|u^{\prime}\right|_{a} \mid \leq 1
$$

- A finite word v is circularly balanced if v^{ω} is balanced, i.e. all its conjugates are balanced.

Example

- $w=c a c b c a c$ is a circularly balanced word.
- $v=a c a c b b c$ is an unbalanced word.
- $u=$ babaabaab is a balanced but not circularly balanced word.

Denote by \mathcal{B} the set of circularly balanced words.
Laurent Vuillon. Balanced words. Bull. Belg. Math.Soc., 10(5):787-805, 2003.

Constant gap words and Clustered words

- A finite word v is constant gap if, for each letter a, the distance (the number of letters) between two consecutive occurrences of a is constant.

Example

The word abcabdabcabe is constant gap.
> - Constant gap words are a special case of circularly balanced words
> - We remark that in a circularly balanced word, for each letter a, the distance between two consecutive occurrences of a is d or $d+1$ The word v is a clustered word if the number of runs is equal to the size of alphabet.

Example

The word ddddddccccaaaaabbb is a clustered word

Constant gap words and Clustered words

- A finite word v is constant gap if, for each letter a, the distance (the number of letters) between two consecutive occurrences of a is constant.

Example

The word abcabdabcabe is constant gap.

- Constant gap words are a special case of circularly balanced words.
- We remark that in a circularly balanced word, for each letter a, the distance between two consecutive occurrences of a is d or $d+1$.

The word v is a clustered word if the number of runs is equal to the size of alphabet

Example

The word ddddddccccaaaaabbb is a clustered word

Constant gap words and Clustered words

- A finite word v is constant gap if, for each letter a, the distance (the number of letters) between two consecutive occurrences of a is constant.

Example

The word abcabdabcabe is constant gap.

- Constant gap words are a special case of circularly balanced words.
- We remark that in a circularly balanced word, for each letter a, the distance between two consecutive occurrences of a is d or $d+1$.

The word v is a clustered word if the number of runs is equal to the size of alphabet.

Example

The word ddddddccccaaaaabbb is a clustered word.

Distance coding and Local Entropy

Distance coding: for each symbol of the input word, the DC algorithm outputs the distance to the previous occurrence of the same symbol (in circular way).

Example

$$
\begin{array}{cccccccc}
\mathrm{v}= & \mathrm{a} & \mathrm{c} & \mathrm{~b} & \mathrm{c} & \mathrm{a} & \mathrm{a} & \mathrm{~b} \\
\mathrm{dc}(\mathrm{v})= & 1 & 4 & 2 & 1 & 3 & 0 & 3
\end{array}
$$

Let $v=b_{1} b_{2} \cdots b_{n}, b_{i} \in A$ and $d c(v)=d_{1} d_{2} \cdots d_{n}$. Define the Local Entropy of v :

$$
L E(v)=\frac{1}{n} \sum_{i=1}^{n} \log \left(d_{i}+1\right)
$$

Local entropy (LE) was considered by

- J. L. Bentley, D. D. Sleator, R. E. Tarjan, and V. K. Wei, 1986
- G. Manzini, 2001
- H. Kaplan, S. Landau and E. Verbin, 2007

Bounds

Theorem

For any word v one has:

- $\Lambda(v) \leq L E(v) \leq H_{0}(v)$
- $L E(v)=H_{0}(v)$ if and only if v is a constant gap word.
- $L E(v)=\Lambda(v)$ if and only if v is a clustered word.
where

$$
\begin{gathered}
H_{0}(v)=\sum_{a \in A} \frac{|v|_{a}}{|v|} \log \frac{|v|}{|v|_{a}}, \\
\Lambda(v)=\sum_{a \in A} \frac{1}{|v|}\left[\log \left(|v|-|v|_{a}+1\right)\right]
\end{gathered}
$$

Measure

- For any word v :

$$
\delta(v)=\frac{H_{0}(v)-L E(v)}{H_{0}(v)-\Lambda(v)}, \quad \tau(v)=\frac{L E(v)-\Lambda(v)}{H_{0}(v)-\Lambda(v)}
$$

- Now, by using δ and τ, we can test, in a quantitative way, our intuition, i.e. the more is balanced the input sequences the more is local similarity after BWT.
- The experiments reported in the next slide confirm our intuition: actually they show that when $\delta(v)$ is less than 0.23 , then $\tau(b w t(v))$ is less than 0.3 and the BWT-based compressor has good performances.

Experiments

File name	Size	H_{0}	Bst	Gzip	Diff \%	$\delta(v)$	$\tau(b w t(v))$
bible	$4,047,392$	4.343	796,231	$1,191,071$	9.755	0.117	0.233
english	$52,428,800$	4.529	$11,533,171$	$19,672,355$	15.524	0.136	0.238
etext99	$105,277,340$	4.596	$24,949,871$	$39,493,346$	13.814	0.141	0.264
english	$104,857,600$	4.556	$23,993,810$	$39,437,704$	14.728	0.143	0.250
dblp.xml	$52,428,800$	5.230	$4,871,450$	$9,034,902$	7.941	0.152	0.093
dblp.xml	$104,857,600$	5.228	$9,427,936$	$17,765,502$	7.951	0.153	0.090
dblp.xml	$209,715,200$	5.257	$18,522,167$	$35,897,168$	8.285	0.162	0.088
dblp.xml	$296,135,874$	5.262	$25,597,003$	$50,481,103$	8.403	0.164	0.086
world192	$2,473,400$	4.998	430,225	724,606	11.902	0.174	0.183
rctail96	$114,711,151$	5.154	$11,429,406$	$24,007,508$	10.965	0.178	0.097
sprot34.dat	$109,617,186$	4.762	$18,850,472$	$26,712,981$	7.173	0.215	0.206
jdk13c	$69,728,899$	5.531	$3,187,900$	$7,525,172$	6.220	0.224	0.041
howto	$39,886,973$	4.857	$8,713,851$	$12,638,334$	9.839	0.231	0.229
rfc	$116,421,901$	4.623	$17,565,908$	$26,712,981$	7.857	0.239	0.163
w3c2	$104,201,579$	5.954	$7,021,478$	$15,159,804$	7.810	0.246	0.058
chr22.dna	$34,553,758$	2.137	$8,015,707$	$8,870,068$	2.473	0.341	0.575
pitches	$52,428,800$	5.633	$18,651,999$	$16,884,651$	-3.371	0.530	0.344
pitches	$55,832,855$	5.628	$19,475,065$	$16,040,370$	-6.152	0.533	0.337

Practical application: the computation of $\delta(v)$ is a fast test for the choice between bst and gzip.

Extremal case: Balanced words Binary case

- An infinite aperiodic sequence v is balanced if and only if v is a sturmian sequence.
- An infinite periodic sequence v^{ω} is balanced if and only if v is a conjugate of a standard word.

Fibonacci words
$f_{0}=b$

$$
\begin{aligned}
& f_{0}=b \quad f_{1}=a \\
& f_{n+1}=f_{n} f_{n-1}(n \geq 1)
\end{aligned}
$$

$f_{2}=a b$
$f_{3}=a b a$
Standard words
Directive sequence $d_{1}, d_{2}, \ldots, d_{n}, \ldots$, with $d_{1} \geq 0$ and $d_{i}>0$ for

Extremal case: Balanced words Binary case

- An infinite aperiodic sequence v is balanced if and only if v is a sturmian sequence.
- An infinite periodic sequence v^{ω} is balanced if and only if v is a conjugate of a standard word.
Fibonacci words

$$
\begin{array}{ll}
f_{0}=b & f_{0}=b \quad f_{1}=a \\
f_{1}=a & f_{n+1}=f_{n} f_{n-1}(n \geq 1) \\
f_{2}=a b &
\end{array}
$$

Standard words
Directive sequence $d_{1}, d_{2}, \ldots, d_{n}, \ldots$, with $d_{1} \geq 0$ and $d_{i}>0$ for $i=2, \ldots, n, \ldots$

$$
s_{0}=b \quad s_{1}=a \quad s_{n+1}=s_{n}^{d_{n}} s_{n-1} \text { for } n \geq 1
$$

Standard words are special prefixes of Sturmian sequences.

Binary alphabets

Theorem (Mantaci, R. and Sciortino, 2003)

Given a word $v \in\{a, b\}$, the following conditions are equivalent:
(1) $\operatorname{bwt}(v)=b^{p} a^{q}$ with $p, q \geq 1$;
(2) v is a circularly balanced word;
(3) v is a conjugate of a power of a Standard words.

- The words in this theorem correspond to the Christoffel classes investigated in Borel and Reutenauer, 2006.
- They appear in several contexts and applications (G. Castiglione, A. R., M. Sciortino, Circular Sturmian words and Hopcroft algorithm, 2009)
- In alphabets with more than two letters, the notions considered in the previous theorem (or their generalization) do not coincide.

Circularly Balanced words on larger alphabets

- If $|A|>2$, the general structure of circularly balanced words is not known.
E. Altman, B. Gaujal, and A. Hordijk, 2000
R. Mantaci, S. Mantaci, and A. R., 2008
- We note that the notion of circularly balanced words over an alphabet of size larger than two also appears in the statement of the Fraenkel's conjecture.
- As a direct consequence of a result of Graham, one has that balanced sequences on a set of letters having different frequencies must be periodic, i.e. of the form v^{ω}, where v is a circularly balanced word.

Fraenkel's conjecture
Let $A_{k}=\left\{a_{1}, a_{2}, \ldots, a_{k}\right\}$. For each $k>2$, there is only one circularly balanced word $F_{k} \in A_{k}^{*}$, having different frequencies. It is defined recursively as follow $F_{1}=a_{1}$ and $F_{k}=F_{k-1} a_{k} F_{k-1}$ for all $k \geq 2$.

Simple BWT words

In 2008, Simpson and Puglisi introduce the notion of Simple BWT words.

Let v be a word over a finite ordered alphabet $A=\left\{a_{1}, a_{2}, \ldots, a_{k}\right\}$, with
$a_{1}<a_{2}<\ldots<a_{k}$. The word v is a simple BWT word if
$\operatorname{bwt}(v)=a_{k}^{n_{k}} a_{k-1}^{n_{k-1}} \cdots a_{2}^{n_{2}} a_{1}^{n_{1}}$
for some non-negative integers $n_{1}, n_{2}, \ldots, n_{k}$
We denote by S the set of the simple BWT words.

Example

$v=$ acbcbcadad $\in S$, in fact bwt $(v)=$ ddcccbbaaa.
Simpson and Puglisi get a constructive characterization of the set S in the case of three letters alphabet.

Simple BWT words

In 2008, Simpson and Puglisi introduce the notion of Simple BWT words.

Let v be a word over a finite ordered alphabet $A=\left\{a_{1}, a_{2}, \ldots, a_{k}\right\}$, with $a_{1}<a_{2}<\ldots<a_{k}$. The word v is a simple BWT word if

$$
\operatorname{bwt}(v)=a_{k}^{n_{k}} a_{k-1}^{n_{k-1}} \cdots a_{2}^{n_{2}} a_{1}^{n_{1}}
$$

for some non-negative integers $n_{1}, n_{2}, \ldots, n_{k}$.

We denote by S the set of the simple BWT words.

Example
 $v=$ acbcbcadad $\in S$, in fact bwt $(v)=$ ddcccbbaaa
 Simpson and Puglisi get a constructive characterization of the set S in the case of three letters alphabet.

Simple BWT words

In 2008, Simpson and Puglisi introduce the notion of Simple BWT words.

Let v be a word over a finite ordered alphabet $A=\left\{a_{1}, a_{2}, \ldots, a_{k}\right\}$, with $a_{1}<a_{2}<\ldots<a_{k}$. The word v is a simple BWT word if

$$
\operatorname{bwt}(v)=a_{k}^{n_{k}} a_{k-1}^{n_{k-1}} \cdots a_{2}^{n_{2}} a_{1}^{n_{1}}
$$

for some non-negative integers $n_{1}, n_{2}, \ldots, n_{k}$.
We denote by S the set of the simple BWT words.
Example
$v=$ acbcbcadad $\in S$, in fact $\operatorname{bwt}(v)=d d c c c b b a a a$.
Simpson and Puglisi get a constructive characterization of the set S in the case of three letters alphabet.

Simple BWT words

In 2008, Simpson and Puglisi introduce the notion of Simple BWT words.

Let v be a word over a finite ordered alphabet $A=\left\{a_{1}, a_{2}, \ldots, a_{k}\right\}$, with $a_{1}<a_{2}<\ldots<a_{k}$. The word v is a simple BWT word if

$$
\operatorname{bwt}(v)=a_{k}^{n_{k}} a_{k-1}^{n_{k-1}} \cdots a_{2}^{n_{2}} a_{1}^{n_{1}}
$$

for some non-negative integers $n_{1}, n_{2}, \ldots, n_{k}$.
We denote by S the set of the simple BWT words.

Example

$v=a c b c b c a d a d \in S$, in fact $\operatorname{bwt}(v)=d d c c c b b a a a$.
Simpson and Puglisi get a constructive characterization of the set S in the case of three letters alphabet.

Matrix M and R

M												
F_{M}				L_{M}	F_{R}				L_{R}			
a	a	b	r	a	c	b	a	a	c	a	r	
a	b	r	a	c	a	a	r	b	a	a	c	
a	c	a	a	b	r	a	a	c	a	r	b	
b	r	a	c	a	a	r	b	a	a	c	a	
c	a	a	b	r	a	a	c	a	r	b	a	
r	a	c	a	a	b	c	a	r	b	a	a	

The matrix R is obtained from M by a rotation of 180° : it follows that the i th conjugate of M is the reverse of the $(n-i+1)$ th conjugate of R.

A word $v \in S$ if and only if $M=R$.

Matrix M and R

The matrix R is obtained from M by a rotation of 180° : it follows that the i th conjugate of M is the reverse of the $(n-i+1)$ th conjugate of R.

Theorem
A word $v \in S$ if and only if $M=R$.

A word $v \in S$ iff $M=R$

$$
\begin{array}{lllllllllll}
a & c & a & d & a & c & b & b & c & a & d \\
a & c & b & b & c & a & d & a & c & a & d \\
a & d & a & c & a & d & a & c & b & b & c \\
a & d & a & c & b & b & c & a & d & a & c \\
b & b & c & a & d & a & c & a & d & a & c \\
b & c & a & d & a & c & a & d & a & c & b \\
c & a & d & a & c & a & d & a & c & b & b \\
c & a & d & a & c & b & b & c & a & d & a \\
c & b & b & c & a & d & a & c & a & d & a \\
d & a & c & a & d & a & c & b & b & c & a \\
d & a & c & b & b & c & a & d & a & c & a \\
v_{i}=\overparen{v_{n-i+1}} & & & & & & &
\end{array}
$$

$$
\begin{aligned}
& \text { A word } v \in S \text { iff } \\
& M=R
\end{aligned}
$$

a	c	a	d	a	c	b	b	c	a	d
a	c	b	b	c	a	d	a	c	a	d
a	d	a	c	a	d	a	c	b	b	c
a	d	a	c	b	b	c	a	d	a	c
b	b	c	a	d	a	c	a	d	a	c
b	c	a	d	a	c	a	d	a	c	b
c	a	d	a	c	a	d	a	c	b	b
c	a	d	a	c	b	b	c	a	d	a
c	b	b	c	a	d	a	c	a	d	a
d	a	c	a	d	a	c	b	b	c	a
d	a	c	b	b	c	a	d	a	c	a
$v_{i}=\widetilde{v_{n-i+1}}$										

So [v] and its factors are closed under reverse. Under these conditions each conjugate of v has the two palindrome property, i.e. v is product of two palindromes (cf. Simpson and Puglisi, 2008).

Balanced and Simple BWT words

$$
\mathcal{B} \neq \mathcal{S}
$$

The set of circularly balanced words over more than two letters alphabets does not coincide with the set of Simple BWT words.

Example

- $v=c a c b c a c$ is circularly balanced and $b w t(v)=c c c c b a a$
- $w=a b a b c$ is circularly balanced and $b w t(w)=c b a a b$
- $u=a c a c b b c$ is unbalanced and $b w t(u)=c c c b b a a$

A generalization of Sturmian: Episturmian

- An infinite word t on A is episturmian (Droubay, J. Justin, G. Pirillo, 2001) if:
- $F(t)$ (its set of factors) is closed under reversal;
- t has at most one right special factor of each length.
Let s be an infinite word, then a factor u of s is right (resp. left)there exist $x, y \in A, x \neq y$, such that $u x, u y \in F(s)($ resp. $x u, y u \in F(s))$.
The palindromic right-closure $v^{(+)}$of a finite word v is the (unique)shortest palindrome having v as a prefix (A. de Luca, 1997).The iterated palindromic closure function (J. Justin, 2005), denoted byPal, is recursively defined as follows. Set $\operatorname{Pal}(\varepsilon)=\varepsilon$ and, for any word vand letter x, define $\operatorname{Pal}(v x)=(P a l(v) x)^{(+)}$
Amy Glen and Jacques Justin. Episturmian words: a survey. RAIROTheoretical Informatics and Applications, 2009.

A generalization of Sturmian: Episturmian

- An infinite word t on A is episturmian (Droubay, J. Justin, G. Pirillo, 2001) if:
- $F(t)$ (its set of factors) is closed under reversal;
- t has at most one right special factor of each length.

Let s be an infinite word, then a factor u of s is right (resp. left) special if there exist $x, y \in A, x \neq y$, such that $u x$, uy $\in F(s)$ (resp. $x u, y u \in F(s)$).

A generalization of Sturmian: Episturmian

- An infinite word t on A is episturmian (Droubay, J. Justin, G. Pirillo, 2001) if:
- $F(t)$ (its set of factors) is closed under reversal;
- t has at most one right special factor of each length.

Let s be an infinite word, then a factor u of s is right (resp. left) special if there exist $x, y \in A, x \neq y$, such that $u x$, uy $\in F(s)$ (resp. $x u, y u \in F(s)$).
The palindromic right-closure $v^{(+)}$of a finite word v is the (unique) shortest palindrome having v as a prefix (A. de Luca, 1997).

The iterated palindromic closure function (J. Justin, 2005), denoted by Pal, is recursively defined as follows. Set $\operatorname{Pal}(\varepsilon)=\varepsilon$ and, for any word v and letter x, define $\operatorname{Pal}(v x)=(\operatorname{Pal}(v) x)^{(+)}$.

Amy Glen and Jacques Justin. Episturmian words: a survey. RAIRO Theoretical Informatics and Applications, 2009.

A generalization of Standard: Finite epistandard

Rauzy rules.

	Rules	1	2	3	4
R_{0}		a	b	c	d
R_{1}	1	a	$a b$	$a c$	$a d$
R_{2}	1	a	aab	aac	aad
R_{3}	4	aada	aadaab	aadaac	aad
R_{4}	3	aadaacaada	aadaacaadaab	aadaac	aadaacaad

A generalization of Standard: Finite epistandard

Rauzy rules.

	Rules	1	2	3	4
R_{0}		a	b	c	d
R_{1}	1	a	$a b$	$a c$	$a d$
R_{2}	1	a	aab	aac	aad
R_{3}	4	aada	aadaab	aadaac	aad
R_{4}	3	aadaacaada	aadaacaadaab	aadaac	aadaacaad

- Let $|A|=k$. A word $v \in A^{*}$ is called finite epistandard if v is an element of a k-tuples R_{n}, for some $n=1$.

A generalization of Standard: Finite epistandard

Rauzy rules.

	Rules	1	2	3	4
R_{0}		a	b	c	d
R_{1}	1	a	$a b$	$a c$	$a d$
R_{2}	1	a	$a a b$	$a a c$	aad
R_{3}	4	aada	aadaab	aadaac	aad
R_{4}	3	aadaacaada	aadaacaadaab	aadaac	aadaacaad

- Let $|A|=k$. A word $v \in A^{*}$ is called finite epistandard if v is an element of a k-tuples R_{n}, for some $n=1$.
- We denote by $\mathcal{E P}$ the set of words that are powers of a conjugate of a finite epistandard word.

A generalization of Standard: Finite epistandard

Rauzy rules.

	Rules	1	2	3	4
R_{0}		a	b	c	d
R_{1}	1	a	$a b$	$a c$	$a d$
R_{2}	1	a	aab	aac	aad
R_{3}	4	aada	aadaab	aadaac	aad
R_{4}	3	aadaacaada	aadaacaadaab	aadaac	aadaacaad

- Let $|A|=k$. A word $v \in A^{*}$ is called finite epistandard if v is an element of a k-tuples R_{n}, for some $n=1$.
- We denote by $\mathcal{E P}$ the set of words that are powers of a conjugate of a finite epistandard word
- The elements of $\mathcal{E P}$ are closed related to epichristoffel classes (G. Paquin, 2009)

A generalization of Standard: Finite epistandard

Rauzy rules.

	Rules	1	2	3	4
R_{0}		a	b	c	d
R_{1}	1	a	$a b$	$a c$	$a d$
R_{2}	1	a	aab	aac	aad
R_{3}	4	aada	aadaab	aadaac	aad
R_{4}	3	aadaacaada	aadaacaadaab	aadacc	aadaacaad

- Let $|A|=k$. A word $v \in A^{*}$ is called finite epistandard if v is an element of a k-tuples R_{n}, for some $n=1$.
- We denote by $\mathcal{E P}$ the set of words that are powers of a conjugate of a finite epistandard word.
- The elements of $\mathcal{E P}$ are closed related to epichristoffel classes (G. Paquin, 2009)

Balancing and Epistandard

$$
\mathcal{B} \neq \mathcal{E P}
$$

The set of circularly balanced words over more than two letters alphabets does not coincide with the set of conjugate of powers of epistandard words.

Example

- $v=$ aadaacaad is epistandard, but it is not circularly balanced.
- $u=a b c a b d a b c a b e$ is circularly balanced, but it is not epistandard.

Palindromic Richness

Droubay, Justin, Pirillo, 2001:

- The number of distinct palindromic factors (including ε) of a word v is at most $|v|+1$
- A finite word v is (palindromic) rich if it has exactly $|v|+1$ distinct palindromic factors, including ε.
- A factor of finite rich word is rich.
- A infinite word is rich if all of its factors are rich.

Example
 $P(v) \mid=7$.
 A. Glen, J. Justin, S. Widmer, and L. Q. Zamboni. Palindromic richness. European Journal of Combinatorics, 30(2):510-531, 2009.

Palindromic Richness

Droubay, Justin, Pirillo, 2001:

- The number of distinct palindromic factors (including ε) of a word v is at most $|v|+1$
- A finite word v is (palindromic) rich if it has exactly $|v|+1$ distinct palindromic factors, including ε.
- A factor of finite rich word is rich.
- A infinite word is rich if all of its factors are rich.

Example
 A. Glen, J. Justin, S. Widmer, and L. Q. Zamboni. Palindromic richness. European Journal of Combinatorics, 30(2):510-531, 2009.

Palindromic Richness

Droubay, Justin, Pirillo, 2001:

- The number of distinct palindromic factors (including ε) of a word v is at most $|v|+1$
- A finite word v is (palindromic) rich if it has exactly $|v|+1$ distinct palindromic factors, including ε.
- A factor of finite rich word is rich.
- A infinite word is rich if all of its factors are rich.

Example
 A. Glen, J. Justin, S. Widmer, and L. Q. Zamboni. Palindromic richness. European Journal of Combinatorics, 30(2):510-531, 2009.

Palindromic Richness

Droubay, Justin, Pirillo, 2001:

- The number of distinct palindromic factors (including ε) of a word v is at most $|v|+1$
- A finite word v is (palindromic) rich if it has exactly $|v|+1$ distinct palindromic factors, including ε.
- A factor of finite rich word is rich.
- A infinite word is rich if all of its factors are rich.

Example
 A. Glen, J. Justin, S. Widmer, and L. Q. Zamboni. Palindromic richness. European Journal of Combinatorics, 30(2):510-531, 2009.

Palindromic Richness

Droubay, Justin, Pirillo, 2001:

- The number of distinct palindromic factors (including ε) of a word v is at most $|v|+1$
- A finite word v is (palindromic) rich if it has exactly $|v|+1$ distinct palindromic factors, including ε.
- A factor of finite rich word is rich.
- A infinite word is rich if all of its factors are rich.

Example

$v=c c a a c b$ is rich, $|v|=6$, in fact: $P(v)=\{\varepsilon, c, c c, c a a c, a, a a, b\}$, $|P(v)|=7$.
A. Glen, J. Justin, S. Widmer, and L. Q. Zamboni. Palindromic richness. European Journal of Combinatorics, 30(2):510-531, 2009.

Circularly rich words

Lemma (Glen, Justin, Widmer and Zamboni, 2009)

For a finite word v, the following properties are equivalent:
(1) v^{ω} is rich;
(2) v^{2} is rich;
(3) v is a product of two palindromes and all of the conjugates of v (including itself) are rich.

- We say that a finite word v is circularly rich if the infinite word v^{ω} is rich.
- We denote by \mathcal{R} the set of the circularly rich words

Circularly rich words

Lemma (Glen, Justin, Widmer and Zamboni, 2009)

For a finite word v, the following properties are equivalent:
(1) v^{ω} is rich;
(2) v^{2} is rich;
(3) v is a product of two palindromes and all of the conjugates of v (including itself) are rich.

- We say that a finite word v is circularly rich if the infinite word v^{ω} is rich.
- We denote by \mathcal{R} the set of the circularly rich words.

Circularly rich words

Lemma (Glen, Justin, Widmer and Zamboni, 2009)

For a finite word v, the following properties are equivalent:
(1) v^{ω} is rich;
(2) v^{2} is rich;
(3) v is a product of two palindromes and all of the conjugates of v (including itself) are rich.

- We say that a finite word v is circularly rich if the infinite word v^{ω} is rich.
- We denote by \mathcal{R} the set of the circularly rich words.

Balancing and Richness

$$
\mathcal{R} \neq \mathcal{B}
$$

The set of circularly balanced words over more than two letters alphabets does not coincide with the set of circularly rich words.

- The word $w=b b b b b a c a c a$ is circularly rich, but it is not circularly balanced.
- The word $u=$ abcabdabcabe is circularly balanced, but it is not circularly rich.

$\mathcal{S} \cap \mathcal{B}=\mathcal{R} \cap \mathcal{B}=\mathcal{E} \mathcal{P} \cap \mathcal{B}$

Theorem (R., Rosone, 2009)

Let $v \in A^{*}$ be a circularly balanced word over A. The following statements are equivalent:
i) v is a simple BWT word;
ii) v is a circularly rich word;
iii) v is a conjugate of a power of a finite epistandard word.

Proof: $3 \rightarrow 1$: The finite balanced epistandard words belong to \mathcal{S}.

From a result of Paquin and Vuillon (2006), one can prove that each finite balanced epistandard word t is of the form:
i) $t=p a_{2}$, with $p=\operatorname{Pal}\left(a_{1}^{m} a_{k} a_{k-1} \cdots a_{3}\right)$, where $k \geq 3$ and $m \geq 1$;
ii) $t=p a_{2}$, with $p=\operatorname{Pal}\left(a_{1} a_{k} a_{k-1} \cdots a_{k-\ell} a_{1} a_{k-\ell-1} a_{k-\ell-2} \cdots a_{3}\right)$, where $0 \leq \ell \leq k-4$ and $k \geq 4$;
iii) $t=\operatorname{Pal}\left(a_{1} a_{k} a_{k-1} \cdots a_{2}\right)$, where $k \geq 3$ (Fraenkel's words).

In order to prove that t belongs to \mathcal{S} it suffices to show that words of the form i), ii) and iii) have simple BWT

Proof: $3 \rightarrow 1$: The finite balanced epistandard words belong to \mathcal{S}.

From a result of Paquin and Vuillon (2006), one can prove that each finite balanced epistandard word t is of the form:
i) $t=p a_{2}$, with $p=\operatorname{Pal}\left(a_{1}^{m} a_{k} a_{k-1} \cdots a_{3}\right)$, where $k \geq 3$ and $m \geq 1$;
ii) $t=p a_{2}$, with $p=\operatorname{Pal}\left(a_{1} a_{k} a_{k-1} \cdots a_{k-\ell} a_{1} a_{k-\ell-1} a_{k-\ell-2} \cdots a_{3}\right)$, where $0 \leq \ell \leq k-4$ and $k \geq 4$;
iii) $t=\operatorname{Pal}\left(a_{1} a_{k} a_{k-1} \cdots a_{2}\right)$, where $k \geq 3$ (Fraenkel's words).

In order to prove that t belongs to \mathcal{S} it suffices to show that words of the form i), ii) and iii) have simple BWT.

Proof: $2 \leftrightarrow 3$:

v is circularly rich if and only if v is a conjugate of a power of a finite epistandard.

The proof is a consequence of the following results:

- The set of the episturmian sequences is a subset of the set of the rich words (Glen, Justin, Widmer and Zamboni, 2009)
- Recurrent balanced rich infinite words are precisely the balanced episturmian words (Glen, Justin, Widmer and Zamboni, 2009).

Proof: $2 \leftrightarrow 3$:

v is circularly rich if and only if v is a conjugate of a power of a finite epistandard.

The proof is a consequence of the following results:

- The set of the episturmian sequences is a subset of the set of the rich words (Glen, Justin, Widmer and Zamboni, 2009).
- Recurrent balanced rich infinite words are precisely the balanced episturmian words (Glen, Justin, Widmer and Zamboni, 2009)

Proof: $2 \leftrightarrow 3$:

v is circularly rich if and only if v is a conjugate of a power of a finite epistandard.

The proof is a consequence of the following results:

- The set of the episturmian sequences is a subset of the set of the rich words (Glen, Justin, Widmer and Zamboni, 2009).
- Recurrent balanced rich infinite words are precisely the balanced episturmian words (Glen, Justin, Widmer and Zamboni, 2009).

Proof: $1 \rightarrow 3$

Theorem (R., Rosone, 2009)
 If the word w belongs to \mathcal{S} then w is circularly rich.

Example

The word $v=$ acbcbcadad $\in \mathcal{S},|v|=10$, in fact bwt $($ acbcbcadad $)=d d c c c b b a a a\left|P\left(v^{2}\right)\right|=21$, so v is circularly rich.

We note that the converse of this result is false. The word $u=c c a a c c b$ is circularly rich, but $\operatorname{bwt}($ ccaaccb $)=$ cacccba $(u \notin \mathcal{S})$.

Proof: $1 \rightarrow 3$

Theorem (R., Rosone, 2009)
 If the word w belongs to \mathcal{S} then w is circularly rich.

Example

The word $v=$ acbcbcadad $\in \mathcal{S},|v|=10$, in fact bwt $($ acbcbcadad $)=d d c c c b b a a a\left|P\left(v^{2}\right)\right|=21$, so v is circularly rich.

We note that the converse of this result is false. The word $u=c c a a c c b$ is circularly rich, but bwt $(c c a a c c b)=$ cacccba $(u \notin \mathcal{S})$.

Conclusions

Only under the condition of circularly balanced, the following statements are equivalent:

- $v \in \mathcal{S}$ (simple BWT words);
- v is circularly rich,
- v is a conjugate of a power of a finite epistandard.

The following example shows that there exist words unbalanced which belong to $\mathcal{E P} \cap \mathcal{S}: v=$ aadaacaad is not a circularly balanced word: $v \in \mathcal{E P}$ and $v \in \mathcal{S}$.

