
Compression based on Multi-string BWT

Giovanna Rosone

University of Pisa, Italy

17th Workshop on Compression, Text, and Algorithms

Concepción-Chile, November 11th, 2022

Introduction

Common thread

Next-generation DNA sequencing

The advent of “next-generation” DNA sequencing (NGS) technologies has meant that very
large collections of DNA sequences are commonplace and their compression is always more
important.

−→ Compression

Compression based on Multi-string BWT November 11th, 2022 2 / 33

Introduction

NGS compression - FASTA and FastQ formats
headers

bases

quality
scores

Compression

Lossless
does not lose any data
during compression

Lossy
permanently eliminates

some information

Headers
• By exploiting structure

and high redundancy

Bases
• Reference-based
• Reference-free

Quality score
• Read-based
• not using biological information

Quality score is an
integer (character in
ASCII) that expresses
error probability on the
Phred scale
Qphred = −10log10p
where p is the error
probability.

Compression based on Multi-string BWT November 11th, 2022 3 / 33

Introduction

This talk

Describe strategies for the compression of sequences (FASTA or FASTQ files) of very large
collections that exploit the properties of the Burrows-Wheeler Transform:

Bases: reference-free (not relying on external information):

lossless in terms of bases;
lossy in terms of input order of the strings in the collection.

Quality scores: (lossy) smooth of quality scores (read-based, i.e. using biological information)

Bases and quality scores: modifying both components, bases and quality scores, at the same
time (reference-free and read-based):

lossy in terms of bases;
lossy in terms of quality scores.

Compression based on Multi-string BWT November 11th, 2022 4 / 33

Introduction The Extended Burrows-Wheeler Transform

The Burrows-Wheeler Transform (BWT)

The Burrows-Wheeler Transform is a reversible transformation that takes as input a string v
and produces:

a permutation bwt(v) of the symbols of v, obtained as concatenation of the last symbols
of the lexicographically sorted list of its cyclic rotations.

the index I is the position in the sorted list containing the original string.

Example: v = mathematics.
m a t h e m a t i c s

a t h e m a t i c s m
t h e m a t i c s m a
h e m a t i c s m a t
e m a t i c s m a t h
m a t i c s m a t h e
a t i c s m a t h e m
t i c s m a t h e m a
i c s m a t h e m a t
c s m a t h e m a t i
s m a t h e m a t i c

L
↓

1 a t h e m a t i c s m
2 a t i c s m a t h e m
3 c s m a t h e m a t i
4 e m a t i c s m a t h
5 h e m a t i c s m a t
6 i c s m a t h e m a t

I →

7 m a t h e m a t i c s
8 m a t i c s m a t h e
9 s m a t h e m a t i c

10 t h e m a t i c s m a
11 t i c s m a t h e m a

Output: bwt(v) = L = mmihttsecaa and I = 7.

Compression based on Multi-string BWT November 11th, 2022 5 / 33

Introduction The Extended Burrows-Wheeler Transform

The Burrows-Wheeler Transform (BWT)

The Burrows-Wheeler Transform is a reversible transformation that takes as input a string v
and produces:

a permutation bwt(v) of the symbols of v, obtained as concatenation of the last symbols
of the lexicographically sorted list of its cyclic rotations.

the index I is the position in the sorted list containing the original string.

Example: v = mathematics.
m a t h e m a t i c s

a t h e m a t i c s m
t h e m a t i c s m a
h e m a t i c s m a t
e m a t i c s m a t h
m a t i c s m a t h e
a t i c s m a t h e m
t i c s m a t h e m a
i c s m a t h e m a t
c s m a t h e m a t i
s m a t h e m a t i c

L
↓

1 a t h e m a t i c s m
2 a t i c s m a t h e m
3 c s m a t h e m a t i
4 e m a t i c s m a t h
5 h e m a t i c s m a t
6 i c s m a t h e m a t

I →

7 m a t h e m a t i c s
8 m a t i c s m a t h e
9 s m a t h e m a t i c

10 t h e m a t i c s m a
11 t i c s m a t h e m a

Output: bwt(v) = L = mmihttsecaa and I = 7.

Compression based on Multi-string BWT November 11th, 2022 5 / 33

Introduction The Extended Burrows-Wheeler Transform

The Burrows-Wheeler Transform (BWT)

The Burrows-Wheeler Transform is a reversible transformation that takes as input a string v
and produces:

a permutation bwt(v) of the symbols of v, obtained as concatenation of the last symbols
of the lexicographically sorted list of its cyclic rotations.

the index I is the position in the sorted list containing the original string.

Example: v = mathematics.
m a t h e m a t i c s
a t h e m a t i c s m
t h e m a t i c s m a
h e m a t i c s m a t
e m a t i c s m a t h
m a t i c s m a t h e
a t i c s m a t h e m
t i c s m a t h e m a
i c s m a t h e m a t
c s m a t h e m a t i
s m a t h e m a t i c

L
↓

1 a t h e m a t i c s m
2 a t i c s m a t h e m
3 c s m a t h e m a t i
4 e m a t i c s m a t h
5 h e m a t i c s m a t
6 i c s m a t h e m a t

I →

7 m a t h e m a t i c s
8 m a t i c s m a t h e
9 s m a t h e m a t i c

10 t h e m a t i c s m a
11 t i c s m a t h e m a

Output: bwt(v) = L = mmihttsecaa and I = 7.

Compression based on Multi-string BWT November 11th, 2022 5 / 33

Introduction The Extended Burrows-Wheeler Transform

The Burrows-Wheeler Transform (BWT)

The Burrows-Wheeler Transform is a reversible transformation that takes as input a string v
and produces:

a permutation bwt(v) of the symbols of v, obtained as concatenation of the last symbols
of the lexicographically sorted list of its cyclic rotations.

the index I is the position in the sorted list containing the original string.

Example: v = mathematics.
m a t h e m a t i c s
a t h e m a t i c s m
t h e m a t i c s m a
h e m a t i c s m a t
e m a t i c s m a t h
m a t i c s m a t h e
a t i c s m a t h e m
t i c s m a t h e m a
i c s m a t h e m a t
c s m a t h e m a t i
s m a t h e m a t i c

L
↓

1 a t h e m a t i c s m
2 a t i c s m a t h e m
3 c s m a t h e m a t i
4 e m a t i c s m a t h
5 h e m a t i c s m a t
6 i c s m a t h e m a t

I →

7 m a t h e m a t i c s
8 m a t i c s m a t h e
9 s m a t h e m a t i c

10 t h e m a t i c s m a
11 t i c s m a t h e m a

Output: bwt(v) = L = mmihttsecaa and I = 7.

Compression based on Multi-string BWT November 11th, 2022 5 / 33

Introduction The Extended Burrows-Wheeler Transform

The Burrows-Wheeler Transform (BWT)

The Burrows-Wheeler Transform is a reversible transformation that takes as input a string v
and produces:

a permutation bwt(v) of the symbols of v, obtained as concatenation of the last symbols
of the lexicographically sorted list of its cyclic rotations.

the index I is the position in the sorted list containing the original string.

Example: v = mathematics.
m a t h e m a t i c s
a t h e m a t i c s m
t h e m a t i c s m a
h e m a t i c s m a t
e m a t i c s m a t h
m a t i c s m a t h e
a t i c s m a t h e m
t i c s m a t h e m a
i c s m a t h e m a t
c s m a t h e m a t i
s m a t h e m a t i c

L
↓

1 a t h e m a t i c s m
2 a t i c s m a t h e m
3 c s m a t h e m a t i
4 e m a t i c s m a t h
5 h e m a t i c s m a t
6 i c s m a t h e m a t

I →7 m a t h e m a t i c s
8 m a t i c s m a t h e
9 s m a t h e m a t i c

10 t h e m a t i c s m a
11 t i c s m a t h e m a

Output: bwt(v) = L = mmihttsecaa and I = 7.

Compression based on Multi-string BWT November 11th, 2022 5 / 33

Introduction The Extended Burrows-Wheeler Transform

The Burrows-Wheeler Transform (BWT)

The Burrows-Wheeler Transform is a reversible transformation that takes as input a string v
and produces:

a permutation bwt(v) of the symbols of v, obtained as concatenation of the last symbols
of the lexicographically sorted list of its cyclic rotations.

the index I is the position in the sorted list containing the original string.

Example: v = mathematics.
m a t h e m a t i c s
a t h e m a t i c s m
t h e m a t i c s m a
h e m a t i c s m a t
e m a t i c s m a t h
m a t i c s m a t h e
a t i c s m a t h e m
t i c s m a t h e m a
i c s m a t h e m a t
c s m a t h e m a t i
s m a t h e m a t i c

L
↓

1 a t h e m a t i c s m
2 a t i c s m a t h e m
3 c s m a t h e m a t i
4 e m a t i c s m a t h
5 h e m a t i c s m a t
6 i c s m a t h e m a t

I →7 m a t h e m a t i c s
8 m a t i c s m a t h e
9 s m a t h e m a t i c

10 t h e m a t i c s m a
11 t i c s m a t h e m a

Output: bwt(v) = L = mmihttsecaa and I = 7.

Compression based on Multi-string BWT November 11th, 2022 5 / 33

Introduction The Extended Burrows-Wheeler Transform

The Burrows-Wheeler Transform (BWT)

The Burrows-Wheeler Transform is a reversible transformation that takes as input a string v
and produces:

a permutation bwt(v) of the symbols of v, obtained as concatenation of the last symbols
of the lexicographically sorted list of its cyclic rotations.

the index I is the position in the sorted list containing the original string.

Example: v = mathematics.
m a t h e m a t i c s
a t h e m a t i c s m
t h e m a t i c s m a
h e m a t i c s m a t
e m a t i c s m a t h
m a t i c s m a t h e
a t i c s m a t h e m
t i c s m a t h e m a
i c s m a t h e m a t
c s m a t h e m a t i
s m a t h e m a t i c

L
↓

1 a t h e m a t i c s m
2 a t i c s m a t h e m
3 c s m a t h e m a t i
4 e m a t i c s m a t h
5 h e m a t i c s m a t
6 i c s m a t h e m a t

I →7 m a t h e m a t i c s
8 m a t i c s m a t h e
9 s m a t h e m a t i c

10 t h e m a t i c s m a
11 t i c s m a t h e m a

Output: bwt(v) = L = mmihttsecaa and I = 7.

Compression based on Multi-string BWT November 11th, 2022 5 / 33

Introduction The Extended Burrows-Wheeler Transform

The (extended) Burrows-Wheeler Transform

The Extended Burrows-Wheeler Transform (eBWT)

1 define a new order relation (called ω-order) on the cyclic rotations [Mantaci, Restivo, R.
and Sciortino, 2007];

2 append end-markers to each string and use the lexicographic order on the suffixes (called
multi-string BWT or eBWT).

eBWT properties

the strings belonging to S are not concatenated;

reversible transformation (that produces a permutation of the symbols of the input string
collection)

produces a clustering effect (reduces the number of runs);

strings can be added/removed (dynamic BWT);

reconstruction of the entire collection or an its subset.

Compression based on Multi-string BWT November 11th, 2022 6 / 33

Introduction The Extended Burrows-Wheeler Transform

The (extended) Burrows-Wheeler Transform

The Extended Burrows-Wheeler Transform (eBWT)

1 define a new order relation (called ω-order) on the cyclic rotations [Mantaci, Restivo, R.
and Sciortino, 2007];

2 append end-markers to each string and use the lexicographic order on the suffixes (called
multi-string BWT or eBWT).

eBWT properties

the strings belonging to S are not concatenated;

reversible transformation (that produces a permutation of the symbols of the input string
collection)

produces a clustering effect (reduces the number of runs);

strings can be added/removed (dynamic BWT);

reconstruction of the entire collection or an its subset.

Compression based on Multi-string BWT November 11th, 2022 6 / 33

Introduction The Extended Burrows-Wheeler Transform

The (extended) Burrows-Wheeler Transform

The Extended Burrows-Wheeler Transform (eBWT)

1 define a new order relation (called ω-order) on the cyclic rotations [Mantaci, Restivo, R.
and Sciortino, 2007];

2 append end-markers to each string and use the lexicographic order on the suffixes (called
multi-string BWT or eBWT).

eBWT properties

the strings belonging to S are not concatenated;

reversible transformation (that produces a permutation of the symbols of the input string
collection)

produces a clustering effect (reduces the number of runs);

strings can be added/removed (dynamic BWT);

reconstruction of the entire collection or an its subset.

Compression based on Multi-string BWT November 11th, 2022 6 / 33

Introduction The Extended Burrows-Wheeler Transform

The (extended) Burrows-Wheeler Transform

The Extended Burrows-Wheeler Transform (eBWT)

1 define a new order relation (called ω-order) on the cyclic rotations [Mantaci, Restivo, R.
and Sciortino, 2007];

2 append end-markers to each string and use the lexicographic order on the suffixes (called
multi-string BWT or eBWT).

eBWT properties

the strings belonging to S are not concatenated;

reversible transformation (that produces a permutation of the symbols of the input string
collection)

produces a clustering effect (reduces the number of runs);

strings can be added/removed (dynamic BWT);

reconstruction of the entire collection or an its subset.

Compression based on Multi-string BWT November 11th, 2022 6 / 33

Introduction The Extended Burrows-Wheeler Transform

The (extended) Burrows-Wheeler Transform

The Extended Burrows-Wheeler Transform (eBWT)

1 define a new order relation (called ω-order) on the cyclic rotations [Mantaci, Restivo, R.
and Sciortino, 2007];

2 append end-markers to each string and use the lexicographic order on the suffixes (called
multi-string BWT or eBWT).

eBWT properties

the strings belonging to S are not concatenated;

reversible transformation (that produces a permutation of the symbols of the input string
collection)

produces a clustering effect (reduces the number of runs);

strings can be added/removed (dynamic BWT);

reconstruction of the entire collection or an its subset.

Compression based on Multi-string BWT November 11th, 2022 6 / 33

Introduction The Extended Burrows-Wheeler Transform

The (extended) Burrows-Wheeler Transform

The Extended Burrows-Wheeler Transform (eBWT)

1 define a new order relation (called ω-order) on the cyclic rotations [Mantaci, Restivo, R.
and Sciortino, 2007];

2 append end-markers to each string and use the lexicographic order on the suffixes (called
multi-string BWT or eBWT).

eBWT properties

the strings belonging to S are not concatenated;

reversible transformation (that produces a permutation of the symbols of the input string
collection)

produces a clustering effect (reduces the number of runs);

strings can be added/removed (dynamic BWT);

reconstruction of the entire collection or an its subset.

Compression based on Multi-string BWT November 11th, 2022 6 / 33

Introduction The Extended Burrows-Wheeler Transform

The (extended) Burrows-Wheeler Transform

The Extended Burrows-Wheeler Transform (eBWT)

1 define a new order relation (called ω-order) on the cyclic rotations [Mantaci, Restivo, R.
and Sciortino, 2007];

2 append end-markers to each string and use the lexicographic order on the suffixes (called
multi-string BWT or eBWT).

eBWT properties

the strings belonging to S are not concatenated;

reversible transformation (that produces a permutation of the symbols of the input string
collection)

produces a clustering effect (reduces the number of runs);

strings can be added/removed (dynamic BWT);

reconstruction of the entire collection or an its subset.

Compression based on Multi-string BWT November 11th, 2022 6 / 33

Introduction The Extended Burrows-Wheeler Transform

The (extended) Burrows-Wheeler Transform

The Extended Burrows-Wheeler Transform (eBWT)

1 define a new order relation (called ω-order) on the cyclic rotations [Mantaci, Restivo, R.
and Sciortino, 2007];

2 append end-markers to each string and use the lexicographic order on the suffixes (called
multi-string BWT or eBWT).

eBWT properties

the strings belonging to S are not concatenated;

reversible transformation (that produces a permutation of the symbols of the input string
collection)

produces a clustering effect (reduces the number of runs);

strings can be added/removed (dynamic BWT);

reconstruction of the entire collection or an its subset.

Compression based on Multi-string BWT November 11th, 2022 6 / 33

Introduction How computing the EBWT?

Multi-string BWT

We build the multi-string BWT:

appending a distinct end-marker to each string of the collection S;

without concatenating the strings in S;

using the lexicographic order of the suffixes of the strings in the collection.

Given strings collection S = {S1, S2, . . . , Sm} on an alphabet Σ, one obtains the ordered
collection:

S′ = {S1$1, S2$2, . . . , Sm$m}
where

$1 < $2 < · · · < $m < a, for each a ∈ Σ and $i /∈ Σ for each j = 1 . . .m.

Remark

One can also obtain the BWT of a string collection in other ways “almost” equivalents.
Indeed, one could concatenate the input strings separating them with different end-markers and apply the
single-string BWT.

Compression based on Multi-string BWT November 11th, 2022 7 / 33

Introduction How computing the EBWT?

How does multi-string BWT [Bauer et. al, CPM 2011, TCS 2013] work?

Given S = {GGAA, TCCT ,GCCT , TTCT}:
Sort all the suffixes (resp. cyclic rotations)a of
the strings in S′ = {Si$i|Si ∈ S} (in our case:
S′ =
{GGAA$1, TCCT$2, GCCT$3, TTCT$4}

Output the string obtained by concatenating
the symbols that (circularly) precede each first
symbol of the suffixes (resp. last symbol of
the rotations) in the sorted list.

Output:

ebwt(S′) = ATTTAGTGCCTG$3$1CCC$2T$4.

Remark: Colors and Suffixes for clarity only.

awhen appending a different dollar to the strings in
S, the ω-order coincides with the lexicographical order.

Multi-string BWT Sorted Suffixes Sorted Cyclic Rotations

A

$1 $1GGAA

T

$2 $2TCCT

T

$3 $3GCCT

T

$4 $4TTCT

A

A$1 A$1GGA

G

AA$1 AA$1GG

T

CCT$2 CCT$2T

G

CCT$3 CCT$3G

C

CT$2 CT$2TC

C

CT$3 CT$3GC

T

CT$4 CT$4TT

G

GAA$1 GAA$1G

$3

GCCT$3 GCCT$3

$1

GGAA$1 GGAA$1

C

T$2 T$2TCC

C

T$3 T$3GCC

C

T$4 T$4TTC

$2

TCCT$2 TCCT$2

T

TCT$4 TCT$4T

$4

TTCT$4 TTCT$4

Compression based on Multi-string BWT November 11th, 2022 8 / 33

Introduction How computing the EBWT?

How does multi-string BWT [Bauer et. al, CPM 2011, TCS 2013] work?

Given S = {GGAA, TCCT ,GCCT , TTCT}:
Sort all the suffixes (resp. cyclic rotations)a of
the strings in S′ = {Si$i|Si ∈ S} (in our case:
S′ =
{GGAA$1, TCCT$2, GCCT$3, TTCT$4}

Output the string obtained by concatenating
the symbols that (circularly) precede each first
symbol of the suffixes (resp. last symbol of
the rotations) in the sorted list.

Output:

ebwt(S′) = ATTTAGTGCCTG$3$1CCC$2T$4.

Remark: Colors and Suffixes for clarity only.

awhen appending a different dollar to the strings in
S, the ω-order coincides with the lexicographical order.

Multi-string BWT Sorted Suffixes Sorted Cyclic Rotations

A

$1 $1GGAA

T

$2 $2TCCT

T

$3 $3GCCT

T

$4 $4TTCT

A

A$1 A$1GGA

G

AA$1 AA$1GG

T

CCT$2 CCT$2T

G

CCT$3 CCT$3G

C

CT$2 CT$2TC

C

CT$3 CT$3GC

T

CT$4 CT$4TT

G

GAA$1 GAA$1G

$3

GCCT$3 GCCT$3

$1

GGAA$1 GGAA$1

C

T$2 T$2TCC

C

T$3 T$3GCC

C

T$4 T$4TTC

$2

TCCT$2 TCCT$2

T

TCT$4 TCT$4T

$4

TTCT$4 TTCT$4

Compression based on Multi-string BWT November 11th, 2022 8 / 33

Introduction How computing the EBWT?

How does multi-string BWT [Bauer et. al, CPM 2011, TCS 2013] work?

Given S = {GGAA, TCCT ,GCCT , TTCT}:
Sort all the suffixes (resp. cyclic rotations)a of
the strings in S′ = {Si$i|Si ∈ S} (in our case:
S′ =
{GGAA$1, TCCT$2, GCCT$3, TTCT$4}

Output the string obtained by concatenating
the symbols that (circularly) precede each first
symbol of the suffixes (resp. last symbol of
the rotations) in the sorted list.

Output:

ebwt(S′) = ATTTAGTGCCTG$3$1CCC$2T$4.

Remark: Colors and Suffixes for clarity only.

awhen appending a different dollar to the strings in
S, the ω-order coincides with the lexicographical order.

Multi-string BWT Sorted Suffixes Sorted Cyclic Rotations
A $1 $1GGAA
T $2 $2TCCT
T $3 $3GCCT
T $4 $4TTCT
A A$1 A$1GGA
G AA$1 AA$1GG
T CCT$2 CCT$2T
G CCT$3 CCT$3G
C CT$2 CT$2TC
C CT$3 CT$3GC
T CT$4 CT$4TT
G GAA$1 GAA$1G
$3 GCCT$3 GCCT$3
$1 GGAA$1 GGAA$1
C T$2 T$2TCC
C T$3 T$3GCC
C T$4 T$4TTC
$2 TCCT$2 TCCT$2
T TCT$4 TCT$4T
$4 TTCT$4 TTCT$4

Compression based on Multi-string BWT November 11th, 2022 8 / 33

Introduction How computing the EBWT?

How does multi-string BWT [Bauer et. al, CPM 2011, TCS 2013] work?

Given S = {GGAA, TCCT ,GCCT , TTCT}:
Sort all the suffixes (resp. cyclic rotations)a of
the strings in S′ = {Si$i|Si ∈ S} (in our case:
S′ =
{GGAA$1, TCCT$2, GCCT$3, TTCT$4}

Output the string obtained by concatenating
the symbols that (circularly) precede each first
symbol of the suffixes (resp. last symbol of
the rotations) in the sorted list.

Output:

ebwt(S′) = ATTTAGTGCCTG$3$1CCC$2T$4.

Remark: Colors and Suffixes for clarity only.

awhen appending a different dollar to the strings in
S, the ω-order coincides with the lexicographical order.

Multi-string BWT Sorted Suffixes Sorted Cyclic Rotations
A $1 $1GGAA
T $2 $2TCCT
T $3 $3GCCT
T $4 $4TTCT
A A$1 A$1GGA
G AA$1 AA$1GG
T CCT$2 CCT$2T
G CCT$3 CCT$3G
C CT$2 CT$2TC
C CT$3 CT$3GC
T CT$4 CT$4TT
G GAA$1 GAA$1G
$3 GCCT$3 GCCT$3
$1 GGAA$1 GGAA$1
C T$2 T$2TCC
C T$3 T$3GCC
C T$4 T$4TTC
$2 TCCT$2 TCCT$2
T TCT$4 TCT$4T
$4 TTCT$4 TTCT$4

Compression based on Multi-string BWT November 11th, 2022 8 / 33

Introduction How computing the EBWT?

Properties and Reversibility - LF mapping

F is the concatenation of the first symbols of each suffix
in the sorted list.

The last symbol of Sj (just before the $j), for each
Sj ∈ S (j = 1, . . . ,m), is L[j].

LF Mapping: For each symbol t, the i-th occurrence of t
in L corresponds to the i-th occurrence of t in F ;

πLF =

(
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
5 15 16 17 6 12 18 13 7 8 19 14 3 1 9 10 11 2 20 4

)
For all i = 1, . . . , n the symbol F [i] (circularly) follows
L[i] in the original (corresponding) string.

S3$3 =

GCC

T

$3

Cycle decomposition of πLF :
πLF =

(1 5 6 12 14)(2 15 9 7 18)

(3

16 10 8 13

)

(4 17 11 19 20)

{GGAA$1, TCCT$2, GCCT$3, TTCT$4}

L = ATTTAGTGCCTG$3$1CCC$2T$4

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20

F
$1
$2
$3
$4
A
A
C
C
C
C
C
G
G
G
T
T
T
T
T
T

L
A
T
T
T
A
G
T
G
C
C
T
G
$3
$1
C
C
C
$2
T
$4

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20

Compression based on Multi-string BWT November 11th, 2022 9 / 33

Introduction How computing the EBWT?

Properties and Reversibility - LF mapping

F is the concatenation of the first symbols of each suffix
in the sorted list.

The last symbol of Sj (just before the $j), for each
Sj ∈ S (j = 1, . . . ,m), is L[j].

LF Mapping: For each symbol t, the i-th occurrence of t
in L corresponds to the i-th occurrence of t in F ;

πLF =

(
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
5 15 16 17 6 12 18 13 7 8 19 14 3 1 9 10 11 2 20 4

)
For all i = 1, . . . , n the symbol F [i] (circularly) follows
L[i] in the original (corresponding) string.

S3$3 =

GCC

T

$3

Cycle decomposition of πLF :
πLF =

(1 5 6 12 14)(2 15 9 7 18)

(3 16

10 8 13

)

(4 17 11 19 20)

{GGAA$1, TCCT$2, GCCT$3, TTCT$4}

L = ATTTAGTGCCTG$3$1CCC$2T$4

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20

F
$1
$2
$3
$4
A
A
C
C
C
C
C
G
G
G
T
T
T
T
T
T

L
A
T
T
T
A
G
T
G
C
C
T
G
$3
$1
C
C
C
$2
T
$4

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20

Compression based on Multi-string BWT November 11th, 2022 9 / 33

Introduction How computing the EBWT?

Properties and Reversibility - LF mapping

F is the concatenation of the first symbols of each suffix
in the sorted list.

The last symbol of Sj (just before the $j), for each
Sj ∈ S (j = 1, . . . ,m), is L[j].

LF Mapping: For each symbol t, the i-th occurrence of t
in L corresponds to the i-th occurrence of t in F ;

πLF =

(
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
5 15 16 17 6 12 18 13 7 8 19 14 3 1 9 10 11 2 20 4

)
For all i = 1, . . . , n the symbol F [i] (circularly) follows
L[i] in the original (corresponding) string.

S3$3 =

GC

CT

$3

Cycle decomposition of πLF :
πLF =

(1 5 6 12 14)(2 15 9 7 18)

(3 16

10 8 13

)

(4 17 11 19 20)

{GGAA$1, TCCT$2, GCCT$3, TTCT$4}

L = ATTTAGTGCCTG$3$1CCC$2T$4

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20

F
$1
$2
$3
$4
A
A
C
C
C
C
C
G
G
G
T
T
T
T
T
T

L
A
T
T
T
A
G
T
G
C
C
T
G
$3
$1
C
C
C
$2
T
$4

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20

Compression based on Multi-string BWT November 11th, 2022 9 / 33

Introduction How computing the EBWT?

Properties and Reversibility - LF mapping

F is the concatenation of the first symbols of each suffix
in the sorted list.

The last symbol of Sj (just before the $j), for each
Sj ∈ S (j = 1, . . . ,m), is L[j].

LF Mapping: For each symbol t, the i-th occurrence of t
in L corresponds to the i-th occurrence of t in F ;

πLF =

(
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
5 15 16 17 6 12 18 13 7 8 19 14 3 1 9 10 11 2 20 4

)
For all i = 1, . . . , n the symbol F [i] (circularly) follows
L[i] in the original (corresponding) string.

S3$3 =

GC

CT

$3

Cycle decomposition of πLF :
πLF =

(1 5 6 12 14)(2 15 9 7 18)

(3 16 10

8 13

)

(4 17 11 19 20)

{GGAA$1, TCCT$2, GCCT$3, TTCT$4}

L = ATTTAGTGCCTG$3$1CCC$2T$4

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20

F
$1
$2
$3
$4
A
A
C
C
C
C
C
G
G
G
T
T
T
T
T
T

L
A
T
T
T
A
G
T
G
C
C
T
G
$3
$1
C
C
C
$2
T
$4

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20

Compression based on Multi-string BWT November 11th, 2022 9 / 33

Introduction How computing the EBWT?

Properties and Reversibility - LF mapping

F is the concatenation of the first symbols of each suffix
in the sorted list.

The last symbol of Sj (just before the $j), for each
Sj ∈ S (j = 1, . . . ,m), is L[j].

LF Mapping: For each symbol t, the i-th occurrence of t
in L corresponds to the i-th occurrence of t in F ;

πLF =

(
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
5 15 16 17 6 12 18 13 7 8 19 14 3 1 9 10 11 2 20 4

)
For all i = 1, . . . , n the symbol F [i] (circularly) follows
L[i] in the original (corresponding) string.

S3$3 =

G

CCT

$3

Cycle decomposition of πLF :
πLF =

(1 5 6 12 14)(2 15 9 7 18)

(3 16 10

8 13

)

(4 17 11 19 20)

{GGAA$1, TCCT$2, GCCT$3, TTCT$4}

L = ATTTAGTGCCTG$3$1CCC$2T$4

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20

F
$1
$2
$3
$4
A
A
C
C
C
C
C
G
G
G
T
T
T
T
T
T

L
A
T
T
T
A
G
T
G
C
C
T
G
$3
$1
C
C
C
$2
T
$4

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20

Compression based on Multi-string BWT November 11th, 2022 9 / 33

Introduction How computing the EBWT?

Properties and Reversibility - LF mapping

F is the concatenation of the first symbols of each suffix
in the sorted list.

The last symbol of Sj (just before the $j), for each
Sj ∈ S (j = 1, . . . ,m), is L[j].

LF Mapping: For each symbol t, the i-th occurrence of t
in L corresponds to the i-th occurrence of t in F ;

πLF =

(
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
5 15 16 17 6 12 18 13 7 8 19 14 3 1 9 10 11 2 20 4

)
For all i = 1, . . . , n the symbol F [i] (circularly) follows
L[i] in the original (corresponding) string.

S3$3 =

G

CCT

$3

Cycle decomposition of πLF :
πLF =

(1 5 6 12 14)(2 15 9 7 18)

(3 16 10 8

13

)

(4 17 11 19 20)

{GGAA$1, TCCT$2, GCCT$3, TTCT$4}

L = ATTTAGTGCCTG$3$1CCC$2T$4

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20

F
$1
$2
$3
$4
A
A
C
C
C
C
C
G
G
G
T
T
T
T
T
T

L
A
T
T
T
A
G
T
G
C
C
T
G
$3
$1
C
C
C
$2
T
$4

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20

Compression based on Multi-string BWT November 11th, 2022 9 / 33

Introduction How computing the EBWT?

Properties and Reversibility - LF mapping

F is the concatenation of the first symbols of each suffix
in the sorted list.

The last symbol of Sj (just before the $j), for each
Sj ∈ S (j = 1, . . . ,m), is L[j].

LF Mapping: For each symbol t, the i-th occurrence of t
in L corresponds to the i-th occurrence of t in F ;

πLF =

(
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
5 15 16 17 6 12 18 13 7 8 19 14 3 1 9 10 11 2 20 4

)
For all i = 1, . . . , n the symbol F [i] (circularly) follows
L[i] in the original (corresponding) string.

S3$3 = GCCT

$3

Cycle decomposition of πLF :
πLF =

(1 5 6 12 14)(2 15 9 7 18)

(3 16 10 8

13

)

(4 17 11 19 20)

{GGAA$1, TCCT$2, GCCT$3, TTCT$4}

L = ATTTAGTGCCTG$3$1CCC$2T$4

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20

F
$1
$2
$3
$4
A
A
C
C
C
C
C
G
G
G
T
T
T
T
T
T

L
A
T
T
T
A
G
T
G
C
C
T
G
$3
$1
C
C
C
$2
T
$4

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20

Compression based on Multi-string BWT November 11th, 2022 9 / 33

Introduction How computing the EBWT?

Properties and Reversibility - LF mapping

F is the concatenation of the first symbols of each suffix
in the sorted list.

The last symbol of Sj (just before the $j), for each
Sj ∈ S (j = 1, . . . ,m), is L[j].

LF Mapping: For each symbol t, the i-th occurrence of t
in L corresponds to the i-th occurrence of t in F ;

πLF =

(
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
5 15 16 17 6 12 18 13 7 8 19 14 3 1 9 10 11 2 20 4

)
For all i = 1, . . . , n the symbol F [i] (circularly) follows
L[i] in the original (corresponding) string.

S3$3 = GCCT

$3

Cycle decomposition of πLF :
πLF =

(1 5 6 12 14)(2 15 9 7 18)

(3 16 10 8 13)

(4 17 11 19 20)

{GGAA$1, TCCT$2, GCCT$3, TTCT$4}

L = ATTTAGTGCCTG$3$1CCC$2T$4

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20

F
$1
$2
$3
$4
A
A
C
C
C
C
C
G
G
G
T
T
T
T
T
T

L
A
T
T
T
A
G
T
G
C
C
T
G
$3
$1
C
C
C
$2
T
$4

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20

Compression based on Multi-string BWT November 11th, 2022 9 / 33

Introduction How computing the EBWT?

Properties and Reversibility - LF mapping

F is the concatenation of the first symbols of each suffix
in the sorted list.

The last symbol of Sj (just before the $j), for each
Sj ∈ S (j = 1, . . . ,m), is L[j].

LF Mapping: For each symbol t, the i-th occurrence of t
in L corresponds to the i-th occurrence of t in F ;

πLF =

(
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
5 15 16 17 6 12 18 13 7 8 19 14 3 1 9 10 11 2 20 4

)
For all i = 1, . . . , n the symbol F [i] (circularly) follows
L[i] in the original (corresponding) string.

S3$3 = GCCT$3
Cycle decomposition of πLF :
πLF =

(1 5 6 12 14)(2 15 9 7 18)

(3 16 10 8 13)

(4 17 11 19 20)

{GGAA$1, TCCT$2, GCCT$3, TTCT$4}

L = ATTTAGTGCCTG$3$1CCC$2T$4

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20

F
$1
$2
$3
$4
A
A
C
C
C
C
C
G
G
G
T
T
T
T
T
T

L
A
T
T
T
A
G
T
G
C
C
T
G
$3
$1
C
C
C
$2
T
$4

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20

Compression based on Multi-string BWT November 11th, 2022 9 / 33

Introduction How computing the EBWT?

Properties and Reversibility - LF mapping

F is the concatenation of the first symbols of each suffix
in the sorted list.

The last symbol of Sj (just before the $j), for each
Sj ∈ S (j = 1, . . . ,m), is L[j].

LF Mapping: For each symbol t, the i-th occurrence of t
in L corresponds to the i-th occurrence of t in F ;

πLF =

(
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
5 15 16 17 6 12 18 13 7 8 19 14 3 1 9 10 11 2 20 4

)
For all i = 1, . . . , n the symbol F [i] (circularly) follows
L[i] in the original (corresponding) string.

S3$3 = GCCT$3
Cycle decomposition of πLF :
πLF =

(1 5 6 12 14)(2 15 9 7 18)

(3 16 10 8 13)

(4 17 11 19 20)

{GGAA$1, TCCT$2, GCCT$3, TTCT$4}

L = ATTTAGTGCCTG$3$1CCC$2T$4

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20

F
$1
$2
$3
$4
A
A
C
C
C
C
C
G
G
G
T
T
T
T
T
T

L
A
T
T
T
A
G
T
G
C
C
T
G
$3
$1
C
C
C
$2
T
$4

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20

Compression based on Multi-string BWT November 11th, 2022 9 / 33

Introduction How computing the EBWT?

Properties and Reversibility - LF mapping

F is the concatenation of the first symbols of each suffix
in the sorted list.

The last symbol of Sj (just before the $j), for each
Sj ∈ S (j = 1, . . . ,m), is L[j].

LF Mapping: For each symbol t, the i-th occurrence of t
in L corresponds to the i-th occurrence of t in F ;

πLF =

(
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
5 15 16 17 6 12 18 13 7 8 19 14 3 1 9 10 11 2 20 4

)
For all i = 1, . . . , n the symbol F [i] (circularly) follows
L[i] in the original (corresponding) string.

S3$3 = GCCT$3
Cycle decomposition of πLF :
πLF = (1 5 6 12 14)(2 15 9 7 18)(3 16 10 8 13)(4 17 11 19 20)

{GGAA$1, TCCT$2, GCCT$3, TTCT$4}

L = ATTTAGTGCCTG$3$1CCC$2T$4

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20

F
$1
$2
$3
$4
A
A
C
C
C
C
C
G
G
G
T
T
T
T
T
T

L
A
T
T
T
A
G
T
G
C
C
T
G
$3
$1
C
C
C
$2
T
$4

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20

Compression based on Multi-string BWT November 11th, 2022 9 / 33

Applications Compression of DNA bases

Compression of DNA string

First Goal

Compression of DNA bases by using multi-string BWT.

Compression based on Multi-string BWT November 11th, 2022 10 / 33

Applications Compression of DNA bases

Why BWT and multi-string BWT?

Why?

The motivation is the clustering effect that the BWT/eBWT produces, i.e. the
BWT/eBWT reduces the number of the runs of the same symbol.

The BWT/eBWT groups symbols with a similar context close together.

Example of clustering effect

When v = mathematics (11 runs), we have:

bwt(v) = mmihttsecaa

(8 runs)

Multi-string BWT

we use m distinct end-markers for a collection of m strings;

the collection is ordered.

Is it a problem in terms of the number of runs?

Compression based on Multi-string BWT November 11th, 2022 11 / 33

Applications Compression of DNA bases

Why BWT and multi-string BWT?

Why?

The motivation is the clustering effect that the BWT/eBWT produces, i.e. the
BWT/eBWT reduces the number of the runs of the same symbol.

The BWT/eBWT groups symbols with a similar context close together.

Example of clustering effect

When v = mathematics (11 runs), we have:

bwt(v) = mmihttsecaa

(8 runs)

Multi-string BWT

we use m distinct end-markers for a collection of m strings;

the collection is ordered.

Is it a problem in terms of the number of runs?

Compression based on Multi-string BWT November 11th, 2022 11 / 33

Applications Compression of DNA bases

Why BWT and multi-string BWT?

Why?

The motivation is the clustering effect that the BWT/eBWT produces, i.e. the
BWT/eBWT reduces the number of the runs of the same symbol.

The BWT/eBWT groups symbols with a similar context close together.

Example of clustering effect

When v = mathematics (11 runs), we have:

bwt(v) = mmihttsecaa

(8 runs)

Multi-string BWT

we use m distinct end-markers for a collection of m strings;

the collection is ordered.

Is it a problem in terms of the number of runs?

Compression based on Multi-string BWT November 11th, 2022 11 / 33

Applications Compression of DNA bases

Why BWT and multi-string BWT?

Why?

The motivation is the clustering effect that the BWT/eBWT produces, i.e. the
BWT/eBWT reduces the number of the runs of the same symbol.

The BWT/eBWT groups symbols with a similar context close together.

Example of clustering effect

When v = mathematics (11 runs), we have:

bwt(v) = mmihttsecaa

(8 runs)

Multi-string BWT

we use m distinct end-markers for a collection of m strings;

the collection is ordered.

Is it a problem in terms of the number of runs?

Compression based on Multi-string BWT November 11th, 2022 11 / 33

Applications Compression of DNA bases

Why BWT and multi-string BWT?

Why?

The motivation is the clustering effect that the BWT/eBWT produces, i.e. the
BWT/eBWT reduces the number of the runs of the same symbol.

The BWT/eBWT groups symbols with a similar context close together.

Example of clustering effect

When v = mathematics (11 runs), we have:

bwt(v) = mmihttsecaa

(8 runs)

Multi-string BWT

we use m distinct end-markers for a collection of m strings;

the collection is ordered.

Is it a problem in terms of the number of runs?

Compression based on Multi-string BWT November 11th, 2022 11 / 33

Applications Compression of DNA bases

Why BWT and multi-string BWT?

Why?

The motivation is the clustering effect that the BWT/eBWT produces, i.e. the
BWT/eBWT reduces the number of the runs of the same symbol.

The BWT/eBWT groups symbols with a similar context close together.

Example of clustering effect

When v = mathematics (11 runs), we have:

bwt(v) = mmihttsecaa

(8 runs)

Multi-string BWT

we use m distinct end-markers for a collection of m strings;

the collection is ordered.

Is it a problem in terms of the number of runs?

Compression based on Multi-string BWT November 11th, 2022 11 / 33

Applications Compression of DNA bases

Why BWT and multi-string BWT?

Why?

The motivation is the clustering effect that the BWT/eBWT produces, i.e. the
BWT/eBWT reduces the number of the runs of the same symbol.

The BWT/eBWT groups symbols with a similar context close together.

Example of clustering effect

When v = mathematics (11 runs), we have:

bwt(v) = mmihttsecaa (8 runs)

Multi-string BWT

we use m distinct end-markers for a collection of m strings;

the collection is ordered.

Is it a problem in terms of the number of runs?

Compression based on Multi-string BWT November 11th, 2022 11 / 33

Applications Compression of DNA bases

Why BWT and multi-string BWT?

Why?

The motivation is the clustering effect that the BWT/eBWT produces, i.e. the
BWT/eBWT reduces the number of the runs of the same symbol.

The BWT/eBWT groups symbols with a similar context close together.

Example of clustering effect

When v = mathematics (11 runs), we have:

bwt(v) = mmihttsecaa (8 runs)

Multi-string BWT

we use m distinct end-markers for a collection of m strings;

the collection is ordered.

Is it a problem in terms of the number of runs?

Compression based on Multi-string BWT November 11th, 2022 11 / 33

Applications Compression of DNA bases

Distinct end-markers in multi-string BWT

First problem

The use of distinct end-marker symbols increases the size of the alphabet and makes
compression more difficult.

Solution

We use implicit distinct end-markers, i.e. $i = $ for each i: we use the position of the strings
in the collection in order to establish the order relation between two identical suffixes:

$i < $j when i < j.

Compression based on Multi-string BWT November 11th, 2022 12 / 33

Applications Compression of DNA bases

Distinct end-markers in multi-string BWT

First problem

The use of distinct end-marker symbols increases the size of the alphabet and makes
compression more difficult.

Solution

We use implicit distinct end-markers, i.e. $i = $ for each i: we use the position of the strings
in the collection in order to establish the order relation between two identical suffixes:

$i < $j when i < j.

Compression based on Multi-string BWT November 11th, 2022 12 / 33

Applications Compression of DNA bases

Ordered collection

Second problem

The use of ordered and (implicit or explicit) distinct end-marker symbols
makes the multiset an ordered collection (the identical or similar sequences
could be distant in the collection, by increasing the number of runs).

This can make the difference in the clustering effect
(in terms of number of runs)!!!

Idea

We can reorder the strings reducing the number of runs!

eBWT Sorted suffix
. . .

T GACA..
A GACG..
A GATAG $p
C GATAG $q
A GATAG $r
A GATAG $s
C GATAG $t
T GATTTC..
T GATTTGAT..

. . .

where p < q < r < s < t

Compression based on Multi-string BWT November 11th, 2022 13 / 33

Applications Compression of DNA bases

Ordered collection

Second problem

The use of ordered and (implicit or explicit) distinct end-marker symbols
makes the multiset an ordered collection (the identical or similar sequences
could be distant in the collection, by increasing the number of runs).

This can make the difference in the clustering effect
(in terms of number of runs)!!!

Idea

We can reorder the strings reducing the number of runs!

eBWT Sorted suffix
. . .

T GACA..
A GACG..
A GATAG $p
C GATAG $q
A GATAG $r
A GATAG $s
C GATAG $t
T GATTTC..
T GATTTGAT..

. . .

where p < q < r < s < t

Compression based on Multi-string BWT November 11th, 2022 13 / 33

Applications Compression of DNA bases

Example: Two different reordering of the input strings

S = {TAGACCT, TACCACT,GAGACCT}

EBWT Sorted Suffixes
T $
T $
T $
T ACCACT$
G ACCT$
G ACCT$
C ACT$
T AGACCT$
G AGACCT$
C CACT$
A CCACT$
A CCT$
A CCT$
C CT$
A CT$
C CT$
A GACCT$
A GACCT$
$ GAGACCT$
C T$
C T$
C T$
$ TACCACT$
$ TAGACCT$

S′ = {TACCACT, TAGACCT,GAGACCT}

EBWT Sorted Suffixes
T $
T $
T $
T ACCACT$
G ACCT$
G ACCT$
C ACT$
T AGACCT$
G AGACCT$
C CACT$
A CCACT$
A CCT$
A CCT$
A CT$
C CT$
C CT$
A GACCT$
A GACCT$
$ GAGACCT$
C T$
C T$
C T$
$ TACCACT$
$ TAGACCT$

Compression based on Multi-string BWT November 11th, 2022 14 / 33

Applications Compression of DNA bases

Example: Two different reordering of the input strings

S = {TAGACCT, TACCACT,GAGACCT}

EBWT Sorted Suffixes
T $
T $
T $
T ACCACT$
G ACCT$
G ACCT$
C ACT$
T AGACCT$
G AGACCT$
C CACT$
A CCACT$
A CCT$
A CCT$
C CT$
A CT$
C CT$
A GACCT$
A GACCT$
$ GAGACCT$
C T$
C T$
C T$
$ TACCACT$
$ TAGACCT$

S′ = {TACCACT, TAGACCT,GAGACCT}

EBWT Sorted Suffixes
T $
T $
T $
T ACCACT$
G ACCT$
G ACCT$
C ACT$
T AGACCT$
G AGACCT$
C CACT$
A CCACT$
A CCT$
A CCT$
A CT$
C CT$
C CT$
A GACCT$
A GACCT$
$ GAGACCT$
C T$
C T$
C T$
$ TACCACT$
$ TAGACCT$

Compression based on Multi-string BWT November 11th, 2022 14 / 33

Applications Compression of DNA bases

Example: Two different reordering of the input strings

S = {TAGACCT, TACCACT,GAGACCT}

EBWT Sorted Suffixes
T $
T $
T $
T ACCACT$
G ACCT$
G ACCT$
C ACT$
T AGACCT$
G AGACCT$
C CACT$
A CCACT$
A CCT$
A CCT$
C CT$
A CT$
C CT$
A GACCT$
A GACCT$
$ GAGACCT$
C T$
C T$
C T$
$ TACCACT$
$ TAGACCT$

S′ = {TACCACT, TAGACCT,GAGACCT}

EBWT Sorted Suffixes
T $
T $
T $
T ACCACT$
G ACCT$
G ACCT$
C ACT$
T AGACCT$
G AGACCT$
C CACT$
A CCACT$
A CCT$
A CCT$
A CT$
C CT$
C CT$
A GACCT$
A GACCT$
$ GAGACCT$
C T$
C T$
C T$
$ TACCACT$
$ TAGACCT$

Compression based on Multi-string BWT November 11th, 2022 14 / 33

Applications Compression of DNA bases

SAP-interval and SAP array [Cox, Bauer, Jakobi and R., 2012]
Ordered collection: S = {TAGACCT, TACCACT,GAGACCT}

SAP-array
0
1
1
0
0
1
0
0
1
0
0
0
1
0
1
1
0
1
0
0
1
1
0
1

EBWT Suffixes
T $
T $
T $
T ACCACT$
G ACCT$
G ACCT$
C ACT$
T AGACCT$
G AGACCT$
C CACT$
A CCACT$
A CCT$
A CCT$
C CT$
A CT$
C CT$
A GACCT$
A GACCT$
$ GAGACCT$
C T$
C T$
C T$
$ TACCACT$
$ TAGACCT$

Property

In regions of the eBWT, named SAP-interval (Same-As-Previous)a

where the associated suffixes are the same, the ordering of the symbols
in eBWT depends on the ordering of the strings in the collection.

a
Related to SAP-intervals: the tuples described in [Bentley et al., ESA 2020] and the interesting intervals defined

in [Cenzato and Lipták, CPM 2022].

The SAP-intervals can be represented as a binary array, called
SAP-array: SAP [i] = 1 if BWT [i] is associated with the suffix at
position i (in the list of sorted suffixes) which is same as its previous
suffix (at position i− 1) up to the end-markers; and SAP [i] = 0
otherwise.

Compression based on Multi-string BWT November 11th, 2022 15 / 33

Applications Compression of DNA bases

SAP-interval and SAP array [Cox, Bauer, Jakobi and R., 2012]
Ordered collection: S = {TAGACCT, TACCACT,GAGACCT}

SAP-array
0
1
1
0
0
1
0
0
1
0
0
0
1
0
1
1
0
1
0
0
1
1
0
1

EBWT Suffixes
T $
T $
T $
T ACCACT$
G ACCT$
G ACCT$
C ACT$
T AGACCT$
G AGACCT$
C CACT$
A CCACT$
A CCT$
A CCT$
C CT$
A CT$
C CT$
A GACCT$
A GACCT$
$ GAGACCT$
C T$
C T$
C T$
$ TACCACT$
$ TAGACCT$

Property

In regions of the eBWT, named SAP-interval (Same-As-Previous)a

where the associated suffixes are the same, the ordering of the symbols
in eBWT depends on the ordering of the strings in the collection.

a
Related to SAP-intervals: the tuples described in [Bentley et al., ESA 2020] and the interesting intervals defined

in [Cenzato and Lipták, CPM 2022].

The SAP-intervals can be represented as a binary array, called
SAP-array: SAP [i] = 1 if BWT [i] is associated with the suffix at
position i (in the list of sorted suffixes) which is same as its previous
suffix (at position i− 1) up to the end-markers; and SAP [i] = 0
otherwise.

Compression based on Multi-string BWT November 11th, 2022 15 / 33

Applications Compression of DNA bases

SAP-interval and SAP array [Cox, Bauer, Jakobi and R., 2012]
Ordered collection: S = {TAGACCT, TACCACT,GAGACCT}

SAP-array
0
1
1
0
0
1
0
0
1
0
0
0
1
0
1
1
0
1
0
0
1
1
0
1

EBWT Suffixes
T $
T $
T $
T ACCACT$
G ACCT$
G ACCT$
C ACT$
T AGACCT$
G AGACCT$
C CACT$
A CCACT$
A CCT$
A CCT$
C CT$
A CT$
C CT$
A GACCT$
A GACCT$
$ GAGACCT$
C T$
C T$
C T$
$ TACCACT$
$ TAGACCT$

Property

In regions of the eBWT, named SAP-interval (Same-As-Previous)a

where the associated suffixes are the same, the ordering of the symbols
in eBWT depends on the ordering of the strings in the collection.

a
Related to SAP-intervals: the tuples described in [Bentley et al., ESA 2020] and the interesting intervals defined

in [Cenzato and Lipták, CPM 2022].

The SAP-intervals can be represented as a binary array, called
SAP-array: SAP [i] = 1 if BWT [i] is associated with the suffix at
position i (in the list of sorted suffixes) which is same as its previous
suffix (at position i− 1) up to the end-markers; and SAP [i] = 0
otherwise.

Compression based on Multi-string BWT November 11th, 2022 15 / 33

Applications Compression of DNA bases

SAP-interval and SAP array [Cox, Bauer, Jakobi and R., 2012]
Ordered collection: S = {TACCACT, TAGACCT,GAGACCT}

SAP-array
0
1
1
0
0
1
0
0
1
0
0
0
1
0
1
1
0
1
0
0
1
1
0
1

EBWT Suffixes
T $
T $
T $
T ACCACT$
G ACCT$
G ACCT$
C ACT$
T AGACCT$
G AGACCT$
C CACT$
A CCACT$
A CCT$
A CCT$
A CT$
C CT$
C CT$
A GACCT$
A GACCT$
$ GAGACCT$
C T$
C T$
C T$
$ TACCACT$
$ TAGACCT$

Property

In regions of the eBWT, named SAP-interval (Same-As-Previous)a

where the associated suffixes are the same, the ordering of the symbols
in eBWT depends on the ordering of the strings in the collection.

a
Related to SAP-intervals: the tuples described in [Bentley et al., ESA 2020] and the interesting intervals defined

in [Cenzato and Lipták, CPM 2022].

The SAP-intervals can be represented as a binary array, called
SAP-array: SAP [i] = 1 if BWT [i] is associated with the suffix at
position i (in the list of sorted suffixes) which is same as its previous
suffix (at position i− 1) up to the end-markers; and SAP [i] = 0
otherwise.

Compression based on Multi-string BWT November 11th, 2022 15 / 33

Applications Compression of DNA bases

How to reorder strings [Cox, Bauer, Jakobi and R., 2012]
{TAGACCT, TACCACT,GAGACCT}

↓
{

TACCACT, TAGACCT,GAGACCT}

SAP-array
0
1
1
0
0
1
0
0
1
0
0
0
1
0
1
1
0
1
0
0
1
1
0
1

eBWT Sorted Suffixes
T $
T $
T $
T ACCACT$
G ACCT$
G ACCT$
C ACT$
T AGACCT$
G AGACCT$
C CACT$
A CCACT$
A CCT$
A CCT$

C

↘

A CT$
A

↗

C CT$
C CT$
A GACCT$
A GACCT$
$ GAGACCT$
C T$
C T$
C T$
$ TACCACT$
$ TAGACCT$

How can we reorder the strings reducing the number of runs?

Pre-processing?
No, reading both the BWT and its SAP-array, one can sort
the symbols within the SAP interval and output a modified
BWT.
In alternative, one can reorder on-the-fly during the building
of the eBWT. How?

By using BEETL-BCRext [Bauer, Cox and R., CPM 2011], we can
swap the sequences TAGACCT and TACCACT in the ordered
collection by swapping the symbols C and A directly in the eBWT
during its construction [Cox, Bauer, Jakobi and R, 2012].

The rest of eBWT is unaffected by this change in ordering
lossless: the strings are not modified, we can only lose the
original position of the strings in the collection.

Compression based on Multi-string BWT November 11th, 2022 16 / 33

Applications Compression of DNA bases

How to reorder strings [Cox, Bauer, Jakobi and R., 2012]
{TAGACCT, TACCACT,GAGACCT}

↓
{

TACCACT, TAGACCT,GAGACCT}

SAP-array
0
1
1
0
0
1
0
0
1
0
0
0
1
0
1
1
0
1
0
0
1
1
0
1

eBWT Sorted Suffixes
T $
T $
T $
T ACCACT$
G ACCT$
G ACCT$
C ACT$
T AGACCT$
G AGACCT$
C CACT$
A CCACT$
A CCT$
A CCT$

C

↘

A CT$
A

↗

C CT$
C CT$
A GACCT$
A GACCT$
$ GAGACCT$
C T$
C T$
C T$
$ TACCACT$
$ TAGACCT$

How can we reorder the strings reducing the number of runs?

Pre-processing?
No, reading both the BWT and its SAP-array, one can sort
the symbols within the SAP interval and output a modified
BWT.
In alternative, one can reorder on-the-fly during the building
of the eBWT. How?

By using BEETL-BCRext [Bauer, Cox and R., CPM 2011], we can
swap the sequences TAGACCT and TACCACT in the ordered
collection by swapping the symbols C and A directly in the eBWT
during its construction [Cox, Bauer, Jakobi and R, 2012].

The rest of eBWT is unaffected by this change in ordering
lossless: the strings are not modified, we can only lose the
original position of the strings in the collection.

Compression based on Multi-string BWT November 11th, 2022 16 / 33

Applications Compression of DNA bases

How to reorder strings [Cox, Bauer, Jakobi and R., 2012]
{TAGACCT, TACCACT,GAGACCT}

↓
{

TACCACT, TAGACCT,GAGACCT}

SAP-array
0
1
1
0
0
1
0
0
1
0
0
0
1
0
1
1
0
1
0
0
1
1
0
1

eBWT Sorted Suffixes
T $
T $
T $
T ACCACT$
G ACCT$
G ACCT$
C ACT$
T AGACCT$
G AGACCT$
C CACT$
A CCACT$
A CCT$
A CCT$

C

↘

A CT$
A

↗

C CT$
C CT$
A GACCT$
A GACCT$
$ GAGACCT$
C T$
C T$
C T$
$ TACCACT$
$ TAGACCT$

How can we reorder the strings reducing the number of runs?

Pre-processing?
No, reading both the BWT and its SAP-array, one can sort
the symbols within the SAP interval and output a modified
BWT.
In alternative, one can reorder on-the-fly during the building
of the eBWT. How?

By using BEETL-BCRext [Bauer, Cox and R., CPM 2011], we can
swap the sequences TAGACCT and TACCACT in the ordered
collection by swapping the symbols C and A directly in the eBWT
during its construction [Cox, Bauer, Jakobi and R, 2012].

The rest of eBWT is unaffected by this change in ordering
lossless: the strings are not modified, we can only lose the
original position of the strings in the collection.

Compression based on Multi-string BWT November 11th, 2022 16 / 33

Applications Compression of DNA bases

How to reorder strings [Cox, Bauer, Jakobi and R., 2012]
{TAGACCT, TACCACT,GAGACCT}

↓
{

TACCACT, TAGACCT,GAGACCT}

SAP-array
0
1
1
0
0
1
0
0
1
0
0
0
1
0
1
1
0
1
0
0
1
1
0
1

eBWT Sorted Suffixes
T $
T $
T $
T ACCACT$
G ACCT$
G ACCT$
C ACT$
T AGACCT$
G AGACCT$
C CACT$
A CCACT$
A CCT$
A CCT$

C

↘

A CT$
A

↗

C CT$
C CT$
A GACCT$
A GACCT$
$ GAGACCT$
C T$
C T$
C T$
$ TACCACT$
$ TAGACCT$

How can we reorder the strings reducing the number of runs?

Pre-processing?
No, reading both the BWT and its SAP-array, one can sort
the symbols within the SAP interval and output a modified
BWT.
In alternative, one can reorder on-the-fly during the building
of the eBWT. How?

By using BEETL-BCRext [Bauer, Cox and R., CPM 2011], we can
swap the sequences TAGACCT and TACCACT in the ordered
collection by swapping the symbols C and A directly in the eBWT
during its construction [Cox, Bauer, Jakobi and R, 2012].

The rest of eBWT is unaffected by this change in ordering
lossless: the strings are not modified, we can only lose the
original position of the strings in the collection.

Compression based on Multi-string BWT November 11th, 2022 16 / 33

Applications Compression of DNA bases

How to reorder strings [Cox, Bauer, Jakobi and R., 2012]
{TAGACCT, TACCACT,GAGACCT}

↓
{

TACCACT, TAGACCT,GAGACCT}

SAP-array
0
1
1
0
0
1
0
0
1
0
0
0
1
0
1
1
0
1
0
0
1
1
0
1

eBWT Sorted Suffixes
T $
T $
T $
T ACCACT$
G ACCT$
G ACCT$
C ACT$
T AGACCT$
G AGACCT$
C CACT$
A CCACT$
A CCT$
A CCT$

C

↘

A CT$
A

↗

C CT$
C CT$
A GACCT$
A GACCT$
$ GAGACCT$
C T$
C T$
C T$
$ TACCACT$
$ TAGACCT$

How can we reorder the strings reducing the number of runs?

Pre-processing?
No, reading both the BWT and its SAP-array, one can sort
the symbols within the SAP interval and output a modified
BWT.
In alternative, one can reorder on-the-fly during the building
of the eBWT. How?

By using BEETL-BCRext [Bauer, Cox and R., CPM 2011], we can
swap the sequences TAGACCT and TACCACT in the ordered
collection by swapping the symbols C and A directly in the eBWT
during its construction [Cox, Bauer, Jakobi and R, 2012].

The rest of eBWT is unaffected by this change in ordering
lossless: the strings are not modified, we can only lose the
original position of the strings in the collection.

Compression based on Multi-string BWT November 11th, 2022 16 / 33

Applications Compression of DNA bases

How to reorder strings [Cox, Bauer, Jakobi and R., 2012]
{TAGACCT, TACCACT,GAGACCT}

↓
{TACCACT, TAGACCT,GAGACCT}

SAP-array
0
1
1
0
0
1
0
0
1
0
0
0
1
0
1
1
0
1
0
0
1
1
0
1

eBWT Sorted Suffixes
T $
T $
T $
T ACCACT$
G ACCT$
G ACCT$
C ACT$
T AGACCT$
G AGACCT$
C CACT$
A CCACT$
A CCT$
A CCT$

C ↘ A CT$
A ↗ C CT$

C CT$
A GACCT$
A GACCT$
$ GAGACCT$
C T$
C T$
C T$
$ TACCACT$
$ TAGACCT$

How can we reorder the strings reducing the number of runs?

Pre-processing?
No, reading both the BWT and its SAP-array, one can sort
the symbols within the SAP interval and output a modified
BWT.
In alternative, one can reorder on-the-fly during the building
of the eBWT. How?

By using BEETL-BCRext [Bauer, Cox and R., CPM 2011], we can
swap the sequences TAGACCT and TACCACT in the ordered
collection by swapping the symbols C and A directly in the eBWT
during its construction [Cox, Bauer, Jakobi and R, 2012].

The rest of eBWT is unaffected by this change in ordering
lossless: the strings are not modified, we can only lose the
original position of the strings in the collection.

Compression based on Multi-string BWT November 11th, 2022 16 / 33

Applications Compression of DNA bases

How to reorder strings [Cox, Bauer, Jakobi and R., 2012]
{TAGACCT, TACCACT,GAGACCT}

↓
{TACCACT, TAGACCT,GAGACCT}

SAP-array
0
1
1
0
0
1
0
0
1
0
0
0
1
0
1
1
0
1
0
0
1
1
0
1

eBWT Sorted Suffixes
T $
T $
T $
T ACCACT$
G ACCT$
G ACCT$
C ACT$
T AGACCT$
G AGACCT$
C CACT$
A CCACT$
A CCT$
A CCT$

C ↘ A CT$
A ↗ C CT$

C CT$
A GACCT$
A GACCT$
$ GAGACCT$
C T$
C T$
C T$
$ TACCACT$
$ TAGACCT$

How can we reorder the strings reducing the number of runs?

Pre-processing?
No, reading both the BWT and its SAP-array, one can sort
the symbols within the SAP interval and output a modified
BWT.
In alternative, one can reorder on-the-fly during the building
of the eBWT. How?

By using BEETL-BCRext [Bauer, Cox and R., CPM 2011], we can
swap the sequences TAGACCT and TACCACT in the ordered
collection by swapping the symbols C and A directly in the eBWT
during its construction [Cox, Bauer, Jakobi and R, 2012].

The rest of eBWT is unaffected by this change in ordering
lossless: the strings are not modified, we can only lose the
original position of the strings in the collection.

Compression based on Multi-string BWT November 11th, 2022 16 / 33

Applications Compression of DNA bases

Experiments [Cox, Bauer, Jakobi and R., 2012]
60× coverage of error-free from the E.coli genomea.

Gzip, Bzip2, PPMd (default) and PPMd (large) show compression achieved on
the raw sequence data. BWT, BWT-SAP and BWT-RLO give compression
results on the BWT using PPMd (default) as second-stage compressor.

a
subsampled this into datasets as small as 10×

PPMd - 45× human dataseta

Two heuristics that do not need to explicitly compute the
SAP array, but modify EBWT construction algorithm by
using an extra bit that tracks whether each suffix is “Same
As Previous”):

Strategy RLO: (reverse lexicographic order, colex-order):
This ensures EBWT symbols associated
with such suffixes are grouped together
(see [Heng Li, 2014] for an efficient
implementation in internal memory, also for
long reads).

Strategy SAP: Approximation of the RLO: the symbols
are not always permuted according to
colex-order.

Outcome is EBWT of a permuted read collection.

Can verify by inverting the EBWT.

a
Reads trimmed by following the strategy described for bwa which removed

1.3% of the bases.

Compression based on Multi-string BWT November 11th, 2022 17 / 33

Applications Compression of DNA bases

Experiments [Cox, Bauer, Jakobi and R., 2012]
60× coverage of error-free from the E.coli genomea.

Gzip, Bzip2, PPMd (default) and PPMd (large) show compression achieved on
the raw sequence data. BWT, BWT-SAP and BWT-RLO give compression
results on the BWT using PPMd (default) as second-stage compressor.

a
subsampled this into datasets as small as 10×

PPMd - 45× human dataseta

Two heuristics that do not need to explicitly compute the
SAP array, but modify EBWT construction algorithm by
using an extra bit that tracks whether each suffix is “Same
As Previous”):

Strategy RLO: (reverse lexicographic order, colex-order):
This ensures EBWT symbols associated
with such suffixes are grouped together
(see [Heng Li, 2014] for an efficient
implementation in internal memory, also for
long reads).

Strategy SAP: Approximation of the RLO: the symbols
are not always permuted according to
colex-order.

Outcome is EBWT of a permuted read collection.

Can verify by inverting the EBWT.

a
Reads trimmed by following the strategy described for bwa which removed

1.3% of the bases.

Compression based on Multi-string BWT November 11th, 2022 17 / 33

Applications Compression of DNA bases

Experiments [Cox, Bauer, Jakobi and R., 2012]
60× coverage of error-free from the E.coli genomea.

Gzip, Bzip2, PPMd (default) and PPMd (large) show compression achieved on
the raw sequence data. BWT, BWT-SAP and BWT-RLO give compression
results on the BWT using PPMd (default) as second-stage compressor.

a
subsampled this into datasets as small as 10×

PPMd - 45× human dataseta

Two heuristics that do not need to explicitly compute the
SAP array, but modify EBWT construction algorithm by
using an extra bit that tracks whether each suffix is “Same
As Previous”):

Strategy RLO: (reverse lexicographic order, colex-order):
This ensures EBWT symbols associated
with such suffixes are grouped together
(see [Heng Li, 2014] for an efficient
implementation in internal memory, also for
long reads).

Strategy SAP: Approximation of the RLO: the symbols
are not always permuted according to
colex-order.

Outcome is EBWT of a permuted read collection.

Can verify by inverting the EBWT.

a
Reads trimmed by following the strategy described for bwa which removed

1.3% of the bases.

Compression based on Multi-string BWT November 11th, 2022 17 / 33

Applications Compression of DNA bases

Optimal BWT in terms of input order permutation

Can we swap the strings obtaining the minimum number of runs?

[Bentley, Gibney, and Thankachan, ESA 2020] show as compute the permutation of the input
collection which yields the minimum number of runs of the resulting BWT.

One can compute the optimal BWT using the BWT and the SAP-array
(preliminary results in [Cenzato and Lipták, WCTA 2022])
Extended work: [Cenzato, Guerrini, Lipták and R., submitted].

Compression based on Multi-string BWT November 11th, 2022 18 / 33

Applications Compression of quality scores

Adaptive (lossy) compression of quality scores in BEETL
[Janin, R. and Cox, 2014]

Second Goal

An adaptive and reference-free approach to lossy quality-score compression.

Insight

Discard the quality scores that are associated with bases that are “not interesting”.

Insight

If a base in a read can, with high probability, be predicted by the context of bases that are
next to it, then the base itself is imparting little additional information and its quality score
can be discarded or aggressively compressed at little detriment to downstream analysis.

Q: What do we mean by “not interesting”?

A: How about “not likely to be important for downstream variant calling”.
Compression based on Multi-string BWT November 11th, 2022 19 / 33

Applications Compression of quality scores

Adaptive (lossy) compression of quality scores in BEETL
[Janin, R. and Cox, 2014]

Second Goal

An adaptive and reference-free approach to lossy quality-score compression.

Insight

Discard the quality scores that are associated with bases that are “not interesting”.

Insight

If a base in a read can, with high probability, be predicted by the context of bases that are
next to it, then the base itself is imparting little additional information and its quality score
can be discarded or aggressively compressed at little detriment to downstream analysis.

Q: What do we mean by “not interesting”?

A: How about “not likely to be important for downstream variant calling”.
Compression based on Multi-string BWT November 11th, 2022 19 / 33

Applications Compression of quality scores

Adaptive (lossy) compression of quality scores in BEETL
[Janin, R. and Cox, 2014]

Second Goal

An adaptive and reference-free approach to lossy quality-score compression.

Insight

Discard the quality scores that are associated with bases that are “not interesting”.

Insight

If a base in a read can, with high probability, be predicted by the context of bases that are
next to it, then the base itself is imparting little additional information and its quality score
can be discarded or aggressively compressed at little detriment to downstream analysis.

Q: What do we mean by “not interesting”?

A: How about “not likely to be important for downstream variant calling”.
Compression based on Multi-string BWT November 11th, 2022 19 / 33

Applications Compression of quality scores

Adaptive (lossy) compression of quality scores in BEETL
[Janin, R. and Cox, 2014]

Second Goal

An adaptive and reference-free approach to lossy quality-score compression.

Insight

Discard the quality scores that are associated with bases that are “not interesting”.

Insight

If a base in a read can, with high probability, be predicted by the context of bases that are
next to it, then the base itself is imparting little additional information and its quality score
can be discarded or aggressively compressed at little detriment to downstream analysis.

Q: What do we mean by “not interesting”?

A: How about “not likely to be important for downstream variant calling”.
Compression based on Multi-string BWT November 11th, 2022 19 / 33

Applications Compression of quality scores

Which scores to keep? [Janin, R. and Cox, 2014]
Genoma

PEACHxBANANAxAPPLExPEARxTANGERINExORANGExPEACHxBANANAxPEAR

Reads collection
HxBANANAx PLExPEARx INExORANG BANANAxPE

PEACHxBAN PPLExPEAR GERINExOR HxBANANAx
BANANAxAP PEARxTANG RINExORAN xPEACHxBA

EACHxBANA LExPEARxT ERINExORA PEACHxBAN

BANAN is always followed by A to make BANANA.

Symbols that follow BANAN are “not interesting”.

See BANAN in a read → discard or smooth the quality score of next base.

PEA could be the start of either PEACH or PEAR.

Symbols that follow PEA are “interesting”.

See PEA in a read → keep quality score of next base.

These patterns can be inferred from the reads, don’t need to know genome.

Compression based on Multi-string BWT November 11th, 2022 20 / 33

Applications Compression of quality scores

Which scores to keep? [Janin, R. and Cox, 2014]
Genoma

PEACHxBANANAxAPPLExPEARxTANGERINExORANGExPEACHxBANANAxPEAR

Reads collection
HxBANANAx PLExPEARx INExORANG BANANAxPE

PEACHxBAN PPLExPEAR GERINExOR HxBANANAx
BANANAxAP PEARxTANG RINExORAN xPEACHxBA

EACHxBANA LExPEARxT ERINExORA PEACHxBAN

BANAN is always followed by A to make BANANA.

Symbols that follow BANAN are “not interesting”.

See BANAN in a read → discard or smooth the quality score of next base.

PEA could be the start of either PEACH or PEAR.

Symbols that follow PEA are “interesting”.

See PEA in a read → keep quality score of next base.

These patterns can be inferred from the reads, don’t need to know genome.

Compression based on Multi-string BWT November 11th, 2022 20 / 33

Applications Compression of quality scores

Which scores to keep? [Janin, R. and Cox, 2014]
Genoma

PEACHxBANANAxAPPLExPEARxTANGERINExORANGExPEACHxBANANAxPEAR

Reads collection
HxBANANAx PLExPEARx INExORANG BANANAxPE

PEACHxBAN PPLExPEAR GERINExOR HxBANANAx
BANANAxAP PEARxTANG RINExORAN xPEACHxBA

EACHxBANA LExPEARxT ERINExORA PEACHxBAN

BANAN is always followed by A to make BANANA.

Symbols that follow BANAN are “not interesting”.

See BANAN in a read → discard or smooth the quality score of next base.

PEA could be the start of either PEACH or PEAR.

Symbols that follow PEA are “interesting”.

See PEA in a read → keep quality score of next base.

These patterns can be inferred from the reads, don’t need to know genome.

Compression based on Multi-string BWT November 11th, 2022 20 / 33

Applications Compression of quality scores

Which scores to keep? [Janin, R. and Cox, 2014]
Genoma

PEACHxBANANAxAPPLExPEARxTANGERINExORANGExPEACHxBANANAxPEAR

Reads collection
HxBANANAx PLExPEARx INExORANG BANANAxPE

PEACHxBAN PPLExPEAR GERINExOR HxBANANAx
BANANAxAP PEARxTANG RINExORAN xPEACHxBA

EACHxBANA LExPEARxT ERINExORA PEACHxBAN

BANAN is always followed by A to make BANANA.

Symbols that follow BANAN are “not interesting”.

See BANAN in a read → discard or smooth the quality score of next base.

PEA could be the start of either PEACH or PEAR.

Symbols that follow PEA are “interesting”.

See PEA in a read → keep quality score of next base.

These patterns can be inferred from the reads, don’t need to know genome.

Compression based on Multi-string BWT November 11th, 2022 20 / 33

Applications Compression of quality scores

Which scores to keep? [Janin, R. and Cox, 2014]
Genoma

PEACHxBANANAxAPPLExPEARxTANGERINExORANGExPEACHxBANANAxPEAR

Reads collection
HxBANANAx PLExPEARx INExORANG BANANAxPE

PEACHxBAN PPLExPEAR GERINExOR HxBANANAx
BANANAxAP PEARxTANG RINExORAN xPEACHxBA

EACHxBANA LExPEARxT ERINExORA PEACHxBAN

BANAN is always followed by A to make BANANA.

Symbols that follow BANAN are “not interesting”.

See BANAN in a read → discard or smooth the quality score of next base.

PEA could be the start of either PEACH or PEAR.

Symbols that follow PEA are “interesting”.

See PEA in a read → keep quality score of next base.

These patterns can be inferred from the reads, don’t need to know genome.

Compression based on Multi-string BWT November 11th, 2022 20 / 33

Applications Compression of quality scores

Which scores to keep? [Janin, R. and Cox, 2014]
Genoma

PEACHxBANANAxAPPLExPEARxTANGERINExORANGExPEACHxBANANAxPEAR

Reads collection
HxBANANAx PLExPEARx INExORANG BANANAxPE

PEACHxBAN PPLExPEAR GERINExOR HxBANANAx
BANANAxAP PEARxTANG RINExORAN xPEACHxBA

EACHxBANA LExPEARxT ERINExORA PEACHxBAN

BANAN is always followed by A to make BANANA.

Symbols that follow BANAN are “not interesting”.

See BANAN in a read → discard or smooth the quality score of next base.

PEA could be the start of either PEACH or PEAR.

Symbols that follow PEA are “interesting”.

See PEA in a read → keep quality score of next base.

These patterns can be inferred from the reads, don’t need to know genome.

Compression based on Multi-string BWT November 11th, 2022 20 / 33

Applications Compression of quality scores

Which scores to keep? [Janin, R. and Cox, 2014]
Genoma

PEACHxBANANAxAPPLExPEARxTANGERINExORANGExPEACHxBANANAxPEAR

Reads collection
HxBANANAx PLExPEARx INExORANG BANANAxPE

PEACHxBAN PPLExPEAR GERINExOR HxBANANAx
BANANAxAP PEARxTANG RINExORAN xPEACHxBA

EACHxBANA LExPEARxT ERINExORA PEACHxBAN

BANAN is always followed by A to make BANANA.

Symbols that follow BANAN are “not interesting”.

See BANAN in a read → discard or smooth the quality score of next base.

PEA could be the start of either PEACH or PEAR.

Symbols that follow PEA are “interesting”.

See PEA in a read → keep quality score of next base.

These patterns can be inferred from the reads, don’t need to know genome.

Compression based on Multi-string BWT November 11th, 2022 20 / 33

Applications Compression of quality scores

Which scores to keep? [Janin, R. and Cox, 2014]
Genoma

PEACHxBANANAxAPPLExPEARxTANGERINExORANGExPEACHxBANANAxPEAR

Reads collection
HxBANANAx PLExPEARx INExORANG BANANAxPE

PEACHxBAN PPLExPEAR GERINExOR HxBANANAx
BANANAxAP PEARxTANG RINExORAN xPEACHxBA

EACHxBANA LExPEARxT ERINExORA PEACHxBAN

BANAN is always followed by A to make BANANA.

Symbols that follow BANAN are “not interesting”.

See BANAN in a read → discard or smooth the quality score of next base.

PEA could be the start of either PEACH or PEAR.

Symbols that follow PEA are “interesting”.

See PEA in a read → keep quality score of next base.

These patterns can be inferred from the reads, don’t need to know genome.

Compression based on Multi-string BWT November 11th, 2022 20 / 33

Applications Compression of quality scores

Which scores to keep? [Janin, R. and Cox, 2014]
Genoma

PEACHxBANANAxAPPLExPEARxTANGERINExORANGExPEACHxBANANAxPEAR

Reads collection
HxBANANAx PLExPEARx INExORANG BANANAxPE

PEACHxBAN PPLExPEAR GERINExOR HxBANANAx
BANANAxAP PEARxTANG RINExORAN xPEACHxBA

EACHxBANA LExPEARxT ERINExORA PEACHxBAN

BANAN is always followed by A to make BANANA.

Symbols that follow BANAN are “not interesting”.

See BANAN in a read → discard or smooth the quality score of next base.

PEA could be the start of either PEACH or PEAR.

Symbols that follow PEA are “interesting”.

See PEA in a read → keep quality score of next base.

These patterns can be inferred from the reads, don’t need to know genome.

Compression based on Multi-string BWT November 11th, 2022 20 / 33

Applications Compression of quality scores

QS string and LCP array

Let S = {S1, S2, . . . , Sm}.

Let {Sq
1 , S

q
2 , . . . , S

q
m} be the ordered multi-set of

associated quality scores.

LCP[i]: length of Longest Common Prefix
between the i-th and the (i− 1)-th
suffix;

LCP-interval[i,j]: if LCP [i] < c, LCP [h] ≥ c for
h = i+ 1, . . . , j, LCP [j + 1] < c.

QS[i]: quality score associated with eBWT[i];

QS(S′) LCP(S′) eBWT(S′) Sorted suffixes

= 0 G $1
; 0 G $2
¡ 0 G $3
? 0 T ACATAG$1
! 4 T ACATG$3
@ 2 T AG$1

1 $1 ATACATAG$1
F 3 C ATAG$1
+ 2 C ATG$2
¿ 3 C ATG$3
? 0 A CATAG$1

3 $2 CATG$2
@ 3 A CATG$3
B 0 A G$1
; 1 T G$2
F 1 T G$3
, 0 A TACATAG$1

5 $3 TACATG$3
D 2 A TAG$1
! 1 A TG$2
& 1 A TG$3

Compression based on Multi-string BWT November 11th, 2022 21 / 33

Applications Compression of quality scores

QS string and LCP array

Let S = {S1, S2, . . . , Sm}.

Let {Sq
1 , S

q
2 , . . . , S

q
m} be the ordered multi-set of

associated quality scores.

LCP[i]: length of Longest Common Prefix
between the i-th and the (i− 1)-th
suffix;

LCP-interval[i,j]: if LCP [i] < c, LCP [h] ≥ c for
h = i+ 1, . . . , j, LCP [j + 1] < c.

QS[i]: quality score associated with eBWT[i];

QS(S′) LCP(S′) eBWT(S′) Sorted suffixes

= 0 G $1
; 0 G $2
¡ 0 G $3
? 0 T ACATAG$1
! 4 T ACATG$3
@ 2 T AG$1

1 $1 ATACATAG$1
F 3 C ATAG$1
+ 2 C ATG$2
¿ 3 C ATG$3
? 0 A CATAG$1

3 $2 CATG$2
@ 3 A CATG$3
B 0 A G$1
; 1 T G$2
F 1 T G$3
, 0 A TACATAG$1

5 $3 TACATG$3
D 2 A TAG$1
! 1 A TG$2
& 1 A TG$3

Compression based on Multi-string BWT November 11th, 2022 21 / 33

Applications Compression of quality scores

QS string and LCP array

Let S = {S1, S2, . . . , Sm}.

Let {Sq
1 , S

q
2 , . . . , S

q
m} be the ordered multi-set of

associated quality scores.

LCP[i]: length of Longest Common Prefix
between the i-th and the (i− 1)-th
suffix;

LCP-interval[i,j]: if LCP [i] < c, LCP [h] ≥ c for
h = i+ 1, . . . , j, LCP [j + 1] < c.

QS[i]: quality score associated with eBWT[i];

QS(S′) LCP(S′) eBWT(S′) Sorted suffixes

= 0 G $1
; 0 G $2
¡ 0 G $3
? 0 T ACATAG$1
! 4 T ACATG$3
@ 2 T AG$1

1 $1 ATACATAG$1
F 3 C ATAG$1
+ 2 C ATG$2
¿ 3 C ATG$3
? 0 A CATAG$1

3 $2 CATG$2
@ 3 A CATG$3
B 0 A G$1
; 1 T G$2
F 1 T G$3
, 0 A TACATAG$1

5 $3 TACATG$3
D 2 A TAG$1
! 1 A TG$2
& 1 A TG$3

Compression based on Multi-string BWT November 11th, 2022 21 / 33

Applications Compression of quality scores

QS string and LCP array

Let S = {S1, S2, . . . , Sm}.

Let {Sq
1 , S

q
2 , . . . , S

q
m} be the ordered multi-set of

associated quality scores.

LCP[i]: length of Longest Common Prefix
between the i-th and the (i− 1)-th
suffix;

LCP-interval[i,j]: if LCP [i] < c, LCP [h] ≥ c for
h = i+ 1, . . . , j, LCP [j + 1] < c.

QS[i]: quality score associated with eBWT[i];

QS(S′) LCP(S′) eBWT(S′) Sorted suffixes

= 0 G $1
; 0 G $2
¡ 0 G $3
? 0 T ACATAG$1
! 4 T ACATG$3
@ 2 T AG$1

1 $1 ATACATAG$1
F 3 C ATAG$1
+ 2 C ATG$2
¿ 3 C ATG$3
? 0 A CATAG$1

3 $2 CATG$2
@ 3 A CATG$3
B 0 A G$1
; 1 T G$2
F 1 T G$3
, 0 A TACATAG$1

5 $3 TACATG$3
D 2 A TAG$1
! 1 A TG$2
& 1 A TG$3

Compression based on Multi-string BWT November 11th, 2022 21 / 33

Applications Compression of quality scores

Smoothing quality scores in BEETL [Janin, R. and Cox, 2014]

Sketch

Smoothing criteria based on parameters c, s:
IF LCP-value of LCP-interval ≥ c
AND length of LCP-interval ≥ s
AND all characters in LCP-interval are the same
THEN smooth

QS eBWT LCP Sorted suffixes
. . .

; T GAC..
¡ G 2 GATACAT..
5 G 4 GATAGATA..
? G 7 GATAGATTA..
= G 8 GATAGATTT..
& G 3 GATTACAT..
@ G 5 GATTAGATA..
@ A 1 GCTTAGATA..

. . .

In this
example
c = 3
s = 4

Phrased in terms of the reads:

If any pattern of length c occurs at least s times and is always preceded by the same symbol,
then smooth the quality scores of those occurrences of that symbol.

How to smooth?

We first compute the mean estimate error rate by converting each quality score to an error
probability, taking the mean of these values and then converting back to Phred score (which
we note is not the same as taking the mean of the quality scores).

Compression based on Multi-string BWT November 11th, 2022 22 / 33

Applications Compression of quality scores

Smoothing quality scores in BEETL [Janin, R. and Cox, 2014]

Sketch

Smoothing criteria based on parameters c, s:
IF LCP-value of LCP-interval ≥ c
AND length of LCP-interval ≥ s
AND all characters in LCP-interval are the same
THEN smooth

QS eBWT LCP Sorted suffixes
. . .

; T GAC..
Q G 2 GATACAT..
Q G 4 GATAGATA..
Q G 7 GATAGATTA..
Q G 8 GATAGATTT..
Q G 3 GATTACAT..
Q G 5 GATTAGATA..
@ A 1 GCTTAGATA..

. . .

In this
example
c = 3
s = 4

Phrased in terms of the reads:

If any pattern of length c occurs at least s times and is always preceded by the same symbol,
then smooth the quality scores of those occurrences of that symbol.

How to smooth?

We first compute the mean estimate error rate by converting each quality score to an error
probability, taking the mean of these values and then converting back to Phred score (which
we note is not the same as taking the mean of the quality scores).

Compression based on Multi-string BWT November 11th, 2022 22 / 33

Applications Compression of qs with noise reduction of the bases

Smoothing QS with bases noise reduction [Guerrini, Louza and R., 2022]

Next goal

Compress a FASTQ file by

smoothing the quality scores

applying a noise reduction on corresponding bases,

while keeping variant calling performance comparable to original data.

FASTQ BFQzip

Positional

Cluster

Detecting

Smoothing

and Noise

Reduction

FASTQ

Rewriting

(LF-mapping)

Compression

Output

Compression based on Multi-string BWT November 11th, 2022 23 / 33

Applications Compression of qs with noise reduction of the bases

Smoothing QS with bases noise reduction [Guerrini, Louza and R., 2022]

Next goal

Compress a FASTQ file by

smoothing the quality scores

applying a noise reduction on corresponding bases,

while keeping variant calling performance comparable to original data.

FASTQ BFQzip

Positional

Cluster

Detecting

Smoothing

and Noise

Reduction

FASTQ

Rewriting

(LF-mapping)

Compression

Output

Compression based on Multi-string BWT November 11th, 2022 23 / 33

Applications Compression of qs with noise reduction of the bases

Positional Clustering framework [Prezza, Pisanti, R. and Sciortino, 2019]

Designed to overcome the limitation of fixing a-priori the context
length (for instance in the approaches based on LCP-interval).

A eBWT positional cluster eBWT[i, j] is a maximal substring s.t
for all i < r ≤ j, LCP [r] is not a local minimum.

Automatically detects, in a data-driven way, the length k of the
common context that differs cluster by cluster.

Short random contexts can be excluded by setting a minimum
value km.

Note. The value km and the shared context length k are likely to differ
in most clusters.

eBWT LCP Sorted suffixes

G 0 $1
G 0 $2
G 0 $3
T 0 ACATAG$1
G 4 ACATG$3
T 1 AG$1
$1 2 AGACATAG$1
C 1 ATAG$1
C 2 ATG$2
C 3 ATG$3
A 0 CATAG$1
$2 3 CATG$2
A 4 CATG$3
A 0 G$1
T 1 G$2
T 1 G$3
A 1 GACATAG$1
$3 0 TACATG$3
A 2 TAG$1
A 1 TG$2
A 2 TG$3

Compression based on Multi-string BWT November 11th, 2022 24 / 33

Applications Compression of qs with noise reduction of the bases

Positional Clustering framework [Prezza, Pisanti, R. and Sciortino, 2019]

Designed to overcome the limitation of fixing a-priori the context
length (for instance in the approaches based on LCP-interval).

A eBWT positional cluster eBWT[i, j] is a maximal substring s.t
for all i < r ≤ j, LCP [r] is not a local minimum.

Automatically detects, in a data-driven way, the length k of the
common context that differs cluster by cluster.

Short random contexts can be excluded by setting a minimum
value km.

Note. The value km and the shared context length k are likely to differ
in most clusters.

eBWT LCP Sorted suffixes

G 0 $1
G 0 $2
G 0 $3
T 0 ACATAG$1
G 4 ACATG$3
T 1 AG$1
$1 2 AGACATAG$1
C 1 ATAG$1
C 2 ATG$2
C 3 ATG$3
A 0 CATAG$1
$2 3 CATG$2
A 4 CATG$3
A 0 G$1
T 1 G$2
T 1 G$3
A 1 GACATAG$1
$3 0 TACATG$3
A 2 TAG$1
A 1 TG$2
A 2 TG$3

Compression based on Multi-string BWT November 11th, 2022 24 / 33

Applications Compression of qs with noise reduction of the bases

Positional Clustering framework [Prezza, Pisanti, R. and Sciortino, 2019]

Designed to overcome the limitation of fixing a-priori the context
length (for instance in the approaches based on LCP-interval).

A eBWT positional cluster eBWT[i, j] is a maximal substring s.t
for all i < r ≤ j, LCP [r] is not a local minimum.

Automatically detects, in a data-driven way, the length k of the
common context that differs cluster by cluster.

Short random contexts can be excluded by setting a minimum
value km.

Note. The value km and the shared context length k are likely to differ
in most clusters.

eBWT LCP Sorted suffixes

G 0 $1
G 0 $2
G 0 $3
T 0 ACATAG$1
G 4 ACATG$3
T 1 AG$1
$1 2 AGACATAG$1
C 1 ATAG$1
C 2 ATG$2
C 3 ATG$3
A 0 CATAG$1
$2 3 CATG$2
A 4 CATG$3
A 0 G$1
T 1 G$2
T 1 G$3
A 1 GACATAG$1
$3 0 TACATG$3
A 2 TAG$1
A 1 TG$2
A 2 TG$3

Compression based on Multi-string BWT November 11th, 2022 24 / 33

Applications Compression of qs with noise reduction of the bases

Noise reduction

We expect equal symbols inside positional clusters:
1 A frequent symbol is a symbol occurring in the cluster over some threshold.

2 A noisy base in a cluster C is a non-frequent symbol whose all occurrences in C have no
high quality scores.

QS eBWT LCP Sorted suffix
. . .

; T GACA..
F A 3 GACG..
¡ C 2 GATACAA..
E C 4 GATAGATA..
? C 7 GATAGATCA..
! G 7 GATAGATTA..
= C 5 GATAGG..
& T 3 GATTACAT..
@ T 5 GATTAGATA..

. . .Idea. Noisy bases are more likely noise introduced during sequencing.

=⇒ In any cluster, replace noisy bases with a predicted base.

Do not account for clusters with more than two frequent symbols.
Compression based on Multi-string BWT November 11th, 2022 25 / 33

Applications Compression of qs with noise reduction of the bases

Noise reduction

We expect equal symbols inside positional clusters:
1 A frequent symbol is a symbol occurring in the cluster over some threshold.

2 A noisy base in a cluster C is a non-frequent symbol whose all occurrences in C have no
high quality scores.

QS eBWT LCP Sorted suffix
. . .

; T GACA..
F A 3 GACG..
¡ C 2 GATACAA..
E C 4 GATAGATA..
? C 7 GATAGATCA..
! G 7 GATAGATTA..
= C 5 GATAGG..
& T 3 GATTACAT..
@ T 5 GATTAGATA..

. . .

Low quality score

Idea. Noisy bases are more likely noise introduced during sequencing.

=⇒ In any cluster, replace noisy bases with a predicted base.

Do not account for clusters with more than two frequent symbols.
Compression based on Multi-string BWT November 11th, 2022 25 / 33

Applications Compression of qs with noise reduction of the bases

Noise reduction: two cases

1. Unique frequent symbol ⇒ replace noisy bases with it.

QS eBWT LCP Sorted suffix
. . .

; T GACA..
F A 3 GACG..
¡ C 2 GATACAA..
E C 4 GATAGATA..
? C 7 GATAGATCA..
! G 7 GATAGATTA..
= C 5 GATAGG..
& T 3 GATTACAT..
@ T 5 GATTAGATA..

. . .

Compression based on Multi-string BWT November 11th, 2022 26 / 33

Applications Compression of qs with noise reduction of the bases

Noise reduction: two cases

1. Unique frequent symbol ⇒ replace noisy bases with it.

QS eBWT LCP Sorted suffix
. . .

; T GACA..
F A 3 GACG..
¡ C 2 GATACAA..
E C 4 GATAGATA..
? C 7 GATAGATCA..
! C 7 GATAGATTA..
= C 5 GATAGG..
& T 3 GATTACAT..
@ T 5 GATTAGATA..

. . .

Compression based on Multi-string BWT November 11th, 2022 26 / 33

Applications Compression of qs with noise reduction of the bases

Noise reduction: two cases

1. Unique frequent symbol ⇒ replace noisy bases with it.

2. Two different frequent symbols
QS eBWT LCP Sorted suffixes

. . .
; T GACA..
F A 3 GACG..
¿ A 2 GATAC..
¡ A 4 GATAG..
G A 7 GATAGAC..
E C 7 GATAGAGAA..
@ C 8 GATAGAGAT..
? C 7 GATAGAGC..
! G 7 GATAGAGTTA..
D A 6 GATAGATTA
= C 5 GATAGG..
& T 3 GATTACAT..
@ T 5 GATTAG..

. . .

Compute left contexts of considered bases (by LF-mapping).

Replace any noisy base, if its left context coincides with all the left contexts of only one frequent symbol.

Compression based on Multi-string BWT November 11th, 2022 27 / 33

Applications Compression of qs with noise reduction of the bases

Noise reduction: two cases

1. Unique frequent symbol ⇒ replace noisy bases with it.

2. Two different frequent symbols
Left context QS eBWT LCP Sorted suffixes

. . .
; T GACA..
F A 3 GACG..

CAT ¿ A 2 GATAC..
CAT ¡ A 4 GATAG..
CAT G A 7 GATAGAC..
ATA E C 7 GATAGAGAA..
ATA @ C 8 GATAGAGAT..
ATA ? C 7 GATAGAGC..
CAT ! G 7 GATAGAGTTA..
CAT D A 6 GATAGATTA..
ATA = C 5 GATAGG..

& T 3 GATTACAT..
@ T 5 GATTAG..

. . .

Compute left contexts of considered bases (by LF-mapping).

Replace any noisy base, if its left context coincides with all the left contexts of only one frequent symbol.

Compression based on Multi-string BWT November 11th, 2022 27 / 33

Applications Compression of qs with noise reduction of the bases

Noise reduction: two cases

1. Unique frequent symbol ⇒ replace noisy bases with it.

2. Two different frequent symbols
Left context QS eBWT LCP Sorted suffixes

. . .
; T GACA..
F A 3 GACG..

CAT ¿ A 2 GATAC..
CAT ¡ A 4 GATAG..
CAT G A 7 GATAGAC..
ATA E C 7 GATAGAGAA..
ATA @ C 8 GATAGAGAT..
ATA ? C 7 GATAGAGC..
CAT ! G 7 GATAGAGTTA..
CAT D A 6 GATAGATTA..
ATA = C 5 GATAGG..

& T 3 GATTACAT..
@ T 5 GATTAG..

. . .

Compute left contexts of considered bases (by LF-mapping).

Replace any noisy base, if its left context coincides with all the left contexts of only one frequent symbol.

Compression based on Multi-string BWT November 11th, 2022 27 / 33

Applications Compression of qs with noise reduction of the bases

Noise reduction: two cases

1. Unique frequent symbol ⇒ replace noisy bases with it.

2. Two different frequent symbols
Left context QS eBWT LCP Sorted suffixes

. . .
; T GACA..
F A 3 GACG..

CAT ¿ A 2 GATAC..
CAT ¡ A 4 GATAG..
CAT G A 7 GATAGAC..
ATA E C 7 GATAGAGAA..
ATA @ C 8 GATAGAGAT..
ATA ? C 7 GATAGAGC..
CAT ! A 7 GATAGAGTTA..
CAT D A 6 GATAGATTA..
ATA = C 5 GATAGG..

& T 3 GATTACAT..
@ T 5 GATTAG..

. . .

Compute left contexts of considered bases (by LF-mapping).

Replace any noisy base, if its left context coincides with all the left contexts of only one frequent symbol.

Compression based on Multi-string BWT November 11th, 2022 27 / 33

Applications Compression of qs with noise reduction of the bases

Smoothing quality score

We expect quality scores inside positional clusters add little information
⇒ smoothed over using a single value Q.

QS eBWT LCP Sorted suffixes
. . .

; T CAT..
¡ G 0 GATACAT..
5 G 4 GATAGATA..
? G 7 GATAGATTA..
= G 8 GATAGATTT..
& T 3 GATTACAT..
@ A 5 GATTAGATA..

. . .

The value Q can be computed according to four different strategies:
default value,
mean probability error,
maximum quality score,
average quality score.

To reduce the number of the alphabet symbols, standard techniques (like Illumina 8-level
binning) can be applied in addition to any above strategy.

Compression based on Multi-string BWT November 11th, 2022 28 / 33

Applications Compression of qs with noise reduction of the bases

Smoothing quality score

We expect quality scores inside positional clusters add little information
⇒ smoothed over using a single value Q.

QS eBWT LCP Sorted suffixes
. . .

; T CAT..
Q G 0 GATACAT..
Q G 4 GATAGATA..
Q G 7 GATAGATTA..
Q G 8 GATAGATTT..
& T 3 GATTACAT..
@ A 5 GATTAGATA..

. . .

The value Q can be computed according to four different strategies:
default value,
mean probability error,
maximum quality score,
average quality score.

To reduce the number of the alphabet symbols, standard techniques (like Illumina 8-level
binning) can be applied in addition to any above strategy.

Compression based on Multi-string BWT November 11th, 2022 28 / 33

Applications Compression of qs with noise reduction of the bases

Compression experiments - BFQzip tool [Guerrini, Louza and R., 2022]

For comparison, two well-known compressors were used: PPMd and BSC.

Paired-end datasets were compressed separately.
Compression ratio: compressed size

original size

Chr14 ERR262997 1 ERR262997 2
(18M reads, 101 length) FASTQ QS DNA FASTQ QS DNA

PPMd

Original 0.2482 0.2956
0.2100

0.2544 0.3076
0.2106LEON 0.1175 0.0301 0.1249 0.0444

BEETL 0.1916 0.1805 0.2010 0.1989
BFQzip 0.1957 0.1889 0.2098 0.2050 0.2074 0.2103

BSC

Original 0.1992 0.2862
0.1174

0.2071 0.2972
0.1224LEON 0.0674 0.0226 0.0770 0.0367

BEETL 0.1406 0.1698 0.1518 0.1874
BFQzip 0.1445 0.1786 0.1164 0.1555 0.1962 0.1210

BEETL [Janin, R. and Cox, 2014] (based on eBWT, Reference-free and read-based),

LEON [Benoit et. al, 2015] (assembly-based).

All tested tools improved the compression of the original data.

BFQzip and BEETL behaved similarly in all cases.

LEON achieved a greater ability to smooth the quality scores, as it truncates all scores above a given threshold.

Compression based on Multi-string BWT November 11th, 2022 29 / 33

Applications Compression of qs with noise reduction of the bases

Validation - BFQzip tool [Guerrini, Louza and R., 2022]

Test the impact of modified data on single nucleotide polymorphisms (SNPs) discovery
(BWA-MEM + HaplotypeCaller).

Compare the set of called variants from each modified FASTQ with a baseline set:

1 of variants obtained from the original FASTQ file;

PREC (average %) SEN (average %) F (average %)
BEETL 96.020 95.360 95.690
LEON 96.027 93.617 94.802
BFQzip 96.303 95.373 95.837

PREC =
TP

SEN =
TP

F =
2 · SEN · PREC

TP+FP TP+FN SEN + PREC

TP=variants matching in both baseline and called variants;
FP=variants in the called variants set but not in the baseline;
FN=variants missing in the called variants set but in the baseline.

BFQzip reported a higher number of TP and the lowest number of FP.

Compression based on Multi-string BWT November 11th, 2022 30 / 33

Applications Compression of qs with noise reduction of the bases

Validation - BFQzip tool [Guerrini, Louza and R., 2022]

Test the impact of modified data on single nucleotide polymorphisms (SNPs) discovery
(BWA-MEM + HaplotypeCaller).

Compare the set of called variants from each modified FASTQ with a baseline set:

1 of variants obtained from the original FASTQ file;

PREC (average %) SEN (average %) F (average %)
BEETL 96.020 95.360 95.690
LEON 96.027 93.617 94.802
BFQzip 96.303 95.373 95.837

PREC =
TP

SEN =
TP

F =
2 · SEN · PREC

TP+FP TP+FN SEN + PREC

TP=variants matching in both baseline and called variants;
FP=variants in the called variants set but not in the baseline;
FN=variants missing in the called variants set but in the baseline.

BFQzip reported a higher number of TP and the lowest number of FP.

Compression based on Multi-string BWT November 11th, 2022 30 / 33

Applications Compression of qs with noise reduction of the bases

Validation - BFQzip tool [Guerrini, Louza and R., 2022]

Test the impact of modified data on single nucleotide polymorphisms (SNPs) discovery
(BWA-MEM + HaplotypeCaller).

Compare the set of called variants from each modified FASTQ with a baseline set:

1 of variants obtained from the original FASTQ file;

2 “Ground Truth” for NA12878.

Ex. Chr14

cm

BFQzip preserved variants that are both in the original data and in the Ground Truth.

Compression based on Multi-string BWT November 11th, 2022 31 / 33

Conclusions

Further works

To introduce new eBWT-based compressors:

Efficient Construction

Indexing for other and newer comparison
and analysis of sequences

Work in progress

Reordering reads. Combine the last approaches
on FASTQ files with a reordering-based
strategy, in a manner that “similar” reads are
placed close together and can be encoded more
efficiently.

EBWT
Sequences
compari-

son/analysis

Metagenomics

SNP and
InDel

ACS
problem

Compression
and indexing

Compression based on Multi-string BWT November 11th, 2022 32 / 33

Conclusions

For further reading I

Mohamed Ibrahim Abouelhoda, Stefan Kurtz, Enno Ohlebusch (2004).
Replacing suffix trees with enhanced suffix arrays.
Journal of Discrete Algorithms, 2(1):53–86.

Sabrina Mantaci, Antonio Restivo, G.R., and Marinella Sciortino (2007).
An extension of the Burrows-Wheeler Transform.
Theoret. Comput. Sci., 387(3):298–312.

Anthony J. Cox, Markus Bauer, and G.R. (2011).
Lightweight BWT construction for very large string collections.
In CPM, volume 6661 of LNCS, pages 219–231. Springer.

Compression based on Multi-string BWT November 11th, 2022 32 / 33

Conclusions

For further reading II

Anthony J. Cox, Markus Bauer, Tobias Jakobi, and G.R. (2012).
Large-scale compression of genomic sequence databases with the Burrows-Wheeler
transform.
Bioinformatics, 28(11):1415–1419.

Markus Bauer, Anthony J. Cox, and G.R. (2013).
Lightweight algorithms for constructing and inverting the BWT of string collections.
Theoretical Computer Science, 483(0):134–148.

Lilian Janin, G.R., and Anthony J. Cox. (2014).
Adaptive reference-free compression of sequence quality scores.
Bioinformatics 30(1): 24–30,

Compression based on Multi-string BWT November 11th, 2022 32 / 33

Conclusions

For further reading III

Heng Li (2014).
Fast construction of FM-index for long sequence reads
Bioinformatics, 30(22):3274–3275.

G. Benoit, C. Lemaitre, D. Lavenier, E. Drezen, T. Dayris, R. Uricaru, G. Rizk. (2015).
Reference-free compression of high throughput sequencing data with a probabilistic de
Bruijn graph.
BMC Bioinformatics, 2015, 16:288.

Anthony J. Cox, Fabio Garofalo, G.R., Marinella Sciortino, (2016).
Lightweight LCP construction for very large collections of strings.
In Journal of Discrete Algorithms, volume 37, pages 326–337. Springer.

Compression based on Multi-string BWT November 11th, 2022 32 / 33

Conclusions

For further reading IV

Nicola Prezza, Naida Pisanti, Marinella Sciortino, G.R. (2019)
SNPs detection by eBWT positional clustering.
Algorithms Mol Biol 14, 3.

Jason W. Bentley, Daniel Gibney, Sharma V. Thankachan (2020)
On the Complexity of BWT-Runs Minimization via Alphabet Reordering.
ESA, pages 15:1–15:13.

Davide Cenzato and Zsuzsanna Lipták (2022).
A Theoretical and Experimental Analysis of BWT Variants for String Collections
CPM, 25:1-25:18.

Veronica Guerrini, Felipe Louza and G.R. (2022).
Lossy Compressor Preserving Variant Calling through Extended BWT
BIOSTEC/BIOINFORMATICS, pages 38–48.

Compression based on Multi-string BWT November 11th, 2022 32 / 33

Conclusions

Most described algorithms are implemented in the Burrows-Wheeler Extended Tool Library
(BEETL) library:

github.com:BEETL/BEETL.git

BFQzip:

github.com:veronicaguerrini/BFQzip.git

Thank you!

Compression based on Multi-string BWT November 11th, 2022 33 / 33

	Introduction
	The Extended Burrows-Wheeler Transform
	How computing the EBWT?

	Applications
	Compression of DNA bases
	Compression of quality scores
	Compression of qs with noise reduction of the bases

	Conclusions

