UNIVERSITA DI PIsA

Compression based on Multi-string BWT

Giovanna Rosone

University of Pisa, Italy

17th Workshop on Compression, Text, and Algorithms
Concepcién-Chile, November 11th, 2022

Introduction

Common thread

Next-generation DNA sequencing

The advent of “next-generation” DNA sequencing (NGS) technologies has meant that very
large collections of DNA sequences are commonplace and their compression is always more
important.

LARGE DNA MOLECULE

\ ~ M - - Compression |
~

Fragmentation

Compression based on Multi-string BWT November 11th, 2022 2/33

Introduction

NGS compression - FASTA and FastQ formats

headers

@HWI-ST928:79:COGNWACXX:6:1101:1278:2193
GCACATGTGTGTTGTTTCAAACGGCAATTTTGGCCAAAATACGGTGTTTTCCGAACAC

bases<+—— N
SNC_060943.1-123414700 2@@DDDD=C , A+<EF ; CDHHEFGCGFFFIIEFFBEBBCCFBBFFBFFIII>@F>DFFF
GAGAAAACATACAAGTATATCTTCATGGCCTTAGATTTGGAAGGTGTTTC qua | ity

scores

Quality score is an

Compression integer (character in
ASCII) that expresses
bability on the
Lossl L error pro y
P TSS ess d clissyr) Phred scale
odes _not ose any. ata permaner.1tfy e |n;!nates Qph'red — 71010g10p
uring compression some information where p is the error
* * * probability.
Headers Bases Quality score
@ By exploiting structure o Reference-based e Read-based
o Reference-free e not using biological information

and high redundancy

November 11th, 2022 3/33

This talk

Describe strategies for the compression of sequences (FASTA or FASTQ files) of very large
collections that exploit the properties of the Burrows-Wheeler Transform:
Bases: reference-free (not relying on external information):
@ lossless in terms of bases;
@ lossy in terms of input order of the strings in the collection.
Quality scores: (lossy) smooth of quality scores (read-based, i.e. using biological information)
Bases and quality scores: modifying both components, bases and quality scores, at the same
time (reference-free and read-based):

@ lossy in terms of bases;
@ lossy in terms of quality scores.

Compression based on Multi-string BWT November 11th, 2022 4/33

The Extended Burrows Wheler Transform
The Burrows-Wheeler Transform (BWT)

The Burrows-Wheeler Transform is a reversible transformation that takes as input a string v
and produces:
@ a permutation bwt(v) of the symbols of v, obtained as concatenation of the last symbols
of the lexicographically sorted list of its cyclic rotations.
@ the index [is the position in the sorted list containing the original string.
Example: v = mathematics.

Compression based on Multi-string BWT November 11th, 2022 5/33

The Extended Burrows Wheler Transform
The Burrows-Wheeler Transform (BWT)

The Burrows-Wheeler Transform is a reversible transformation that takes as input a string v
and produces:
@ a permutation bwt(v) of the symbols of v, obtained as concatenation of the last symbols
of the lexicographically sorted list of its cyclic rotations.
@ the index [is the position in the sorted list containing the original string.
Example: v = mathematics.

ma t h ema t i ¢ s

Compression based on Multi-string BWT November 11th, 2022 5/33

The Extended Burrows Wheler Transform
The Burrows-Wheeler Transform (BWT)

The Burrows-Wheeler Transform is a reversible transformation that takes as input a string v
and produces:
@ a permutation bwt(v) of the symbols of v, obtained as concatenation of the last symbols
of the lexicographically sorted list of its cyclic rotations.
@ the index [is the position in the sorted list containing the original string.
Example: v = mathematics.

ma t h ema t i ¢ s
at hemat icsm
t hemat icsma
hemat i csma't
emat i ¢c sma t h
ma t i ¢c sma t h e
at i csmathem
t i csmathema
i ¢csmathemat
c smat hemat i
smat hemat i c

Compression based on Multi-string BWT November 11th, 2022 5/33

The Extended Burrows Wheler Transform
The Burrows-Wheeler Transform (BWT)

The Burrows-Wheeler Transform is a reversible transformation that takes as input a string v
and produces:
@ a permutation bwt(v) of the symbols of v, obtained as concatenation of the last symbols
of the lexicographically sorted list of its cyclic rotations.
@ the index [is the position in the sorted list containing the original string.
Example: v = mathematics.

ma t h ema t i ¢ s 1 athemat icsm
at hemat icsm 2 at i csmathem
t hemat icsma 3 ¢csmat hemat 1
hemat i csma't 4 emat i ¢c smat h
emat i ¢c sma t h 5 hematicsmat
ma t i ¢c sma t h e 6 i c smathemat
at i csmathem 7 mat hemat i c s
t i csmathema 8 mat i c smat h e
i ¢csmathemat 9 smat hemat i c
c smat hemat i 100 t hemat i ¢ sma
smat hemat i c 11 ¢t 4 ¢ sma t h ema

Compression based on Multi-string BWT November 11th, 2022 5/33

The Extended Burrows Wheler Transform
The Burrows-Wheeler Transform (BWT)

The Burrows-Wheeler Transform is a reversible transformation that takes as input a string v
and produces:
@ a permutation bwt(v) of the symbols of v, obtained as concatenation of the last symbols
of the lexicographically sorted list of its cyclic rotations.
@ the index [is the position in the sorted list containing the original string.
Example: v = mathematics.

ma t h ema t i ¢ s 1 athemat icsm
at hemat icsm 2 at i csmathem
t hemat icsma 3 ¢csmat hemat 1
hemat i csma't 4 emat i ¢c smat h
emat i ¢c sma t h 5 hematicsmat
ma t i ¢c sma t h e 6 i c smathemat
at i csmathem I—-7 mat h emat i c s
t i csmathema 8 mat i c smat h e
i ¢csmathemat 9 smat hemat i c
c smat hemat i 100 t hemat i ¢ sma
smat hemat i c 11 ¢t 4 ¢ sma t h ema

Compression based on Multi-string BWT November 11th, 2022 5/33

The Extended Burrows Wheler Transform
The Burrows-Wheeler Transform (BWT)

The Burrows-Wheeler Transform is a reversible transformation that takes as input a string v
and produces:
@ a permutation bwt(v) of the symbols of v, obtained as concatenation of the last symbols
of the lexicographically sorted list of its cyclic rotations.

@ the index [is the position in the sorted list containing the original string.
Example: v = mathematics. ﬁ
ma t h ema t i ¢ s 1 athemat icsm
at hemat icsm 2 at i csmathem
t hemat icsma 3 ¢csmat hemat 1
hemat i csma't 4 emat i ¢c smat h
emat i ¢c sma t h 5 hematicsmat
ma t i ¢c sma t h e 6 i csmathemat
at i csmathem I—-7 mat hemat i c s
t i csmathema 8 mat i c smat h e
i ¢csmathemat 9 smat hemat i c
c smat hemat i 10 t hemat i ¢ sma
smat hemat i c 11 ¢t 4 ¢ sma t h ema

Compression based on Multi-string BWT November 11th, 2022 5/33

The Extended Burrows Wheler Transform
The Burrows-Wheeler Transform (BWT)

The Burrows-Wheeler Transform is a reversible transformation that takes as input a string v
and produces:
@ a permutation bwt(v) of the symbols of v, obtained as concatenation of the last symbols
of the lexicographically sorted list of its cyclic rotations.

@ the index [is the position in the sorted list containing the original string.
Example: v = mathematics. ﬁ
ma t h ema t i ¢ s 1 athemat icsm
at hemat icsm 2 at i csmathem
t hemat icsma 3 ¢csmat hemat 1
hemat i csma't 4 emat i ¢c smat h
emat i ¢c sma t h 5 hematicsmat
ma t i ¢c sma t h e 6 i csmathemat
at i csmathem I—=7 mat hemat i c s
t i csmathema 8 mat i c smat h e
i ¢csmathemat 9 smat hemat i c
c smat hemat i 10 t hemat i ¢ sma
smat hemat i c 11 ¢t 4 ¢ sma t h ema

Output: bwt(v) = L = mmihttsecaa and I = 7.

Compression based on Multi-string BWT November 11th, 2022 5/33

Introduction

The (extended) Burrows-Wheeler Transform

i
il
3

November 11th, 2022

Compression based on Multi-string BWT

The (extended) Burrows-Wheeler Transform
The Extended Burrows-Wheeler Transform (eBWT)

Q define a new order relation (called w-order) on the cyclic rotations [Mantaci, Restivo, R.
and Sciortino, 2007];

- - - = = =

Compression based on Multi-string BWT November 11th, 2022 6 /33

The (extended) Burrows-Wheeler Transform
The Extended Burrows-Wheeler Transform (eBWT)

Q define a new order relation (called w-order) on the cyclic rotations [Mantaci, Restivo, R.
and Sciortino, 2007];

@ append end-markers to each string and use the lexicographic order on the suffixes (called
multi-string BWT or eBWT).

- - - = = —

Compression based on Multi-string BWT November 11th, 2022 6 /33

The (extended) Burrows-Wheeler Transform
The Extended Burrows-Wheeler Transform (eBWT)

Q define a new order relation (called w-order) on the cyclic rotations [Mantaci, Restivo, R.
and Sciortino, 2007];

@ append end-markers to each string and use the lexicographic order on the suffixes (called
multi-string BWT or eBWT).

eBWT properties
@ the strings belonging to S are not concatenated;

Compression based on Multi-string BWT November 11th, 2022 6 /33

The (extended) Burrows-Wheeler Transform
The Extended Burrows-Wheeler Transform (eBWT)

Q define a new order relation (called w-order) on the cyclic rotations [Mantaci, Restivo, R.
and Sciortino, 2007];

@ append end-markers to each string and use the lexicographic order on the suffixes (called
multi-string BWT or eBWT).

eBWT properties
@ the strings belonging to S are not concatenated;

@ reversible transformation (that produces a permutation of the symbols of the input string
collection)

Compression based on Multi-string BWT November 11th, 2022 6 /33

The (extended) Burrows-Wheeler Transform
The Extended Burrows-Wheeler Transform (eBWT)

Q define a new order relation (called w-order) on the cyclic rotations [Mantaci, Restivo, R.
and Sciortino, 2007];

@ append end-markers to each string and use the lexicographic order on the suffixes (called
multi-string BWT or eBWT).

eBWT properties
@ the strings belonging to S are not concatenated;

@ reversible transformation (that produces a permutation of the symbols of the input string
collection)

@ produces a clustering effect (reduces the number of runs);

Compression based on Multi-string BWT November 11th, 2022 6 /33

The (extended) Burrows-Wheeler Transform
The Extended Burrows-Wheeler Transform (eBWT)

Q define a new order relation (called w-order) on the cyclic rotations [Mantaci, Restivo, R.
and Sciortino, 2007];

@ append end-markers to each string and use the lexicographic order on the suffixes (called
multi-string BWT or eBWT).

eBWT properties
@ the strings belonging to S are not concatenated;

@ reversible transformation (that produces a permutation of the symbols of the input string
collection)

@ produces a clustering effect (reduces the number of runs);
@ strings can be added/removed (dynamic BWT);

Compression based on Multi-string BWT November 11th, 2022 6 /33

The (extended) Burrows-Wheeler Transform
The Extended Burrows-Wheeler Transform (eBWT)

Q define a new order relation (called w-order) on the cyclic rotations [Mantaci, Restivo, R.
and Sciortino, 2007];

@ append end-markers to each string and use the lexicographic order on the suffixes (called
multi-string BWT or eBWT).

eBWT properties
@ the strings belonging to S are not concatenated;

@ reversible transformation (that produces a permutation of the symbols of the input string
collection)

@ produces a clustering effect (reduces the number of runs);
@ strings can be added/removed (dynamic BWT);

@ reconstruction of the entire collection or an its subset.

Compression based on Multi-string BWT November 11th, 2022 6 /33

DI L D T
Multi-string BWT

We build the multi-string BWT:

@ appending a distinct end-marker to each string of the collection S;
@ without concatenating the strings in S;
@ using the lexicographic order of the suffixes of the strings in the collection.
o Given strings collection S = {51, S2,..., S} on an alphabet ¥, one obtains the ordered

collection:

S = {51$1, Sg$2, - ,Sm$m}
where
$1<$2<-- <8, <a, foreachaec X and $; ¢ X foreach j=1...m.
Remark

One can also obtain the BWT of a string collection in other ways “almost” equivalents.
Indeed, one could concatenate the input strings separating them with different end-markers and apply the
single-string BWT.

s

How computing the EBWT?
How does multi-string BWT [Bauer et. al, CPM 2011, TCS 2013] work?

Given S = {GGAA, TCCT,GCCT, TTCT):

Remark: Colors and Suffixes for clarity only.

Compression based on Multi-string BWT November 11th, 2022 8 /33

How computing the EBWT?
How does multi-string BWT [Bauer et. al, CPM 2011, TCS 2013] work?

Multi-string BWT

Sorted Suffixes

Sorted Cyclic Rotations

Given S = {GGAA, TCCT,GCCT, TTCT}:
@ Sort all the suffixes (resp. cyclic rotations)? of
the strings in S’ = {5,;8$;S; € S} (in our case:
S =
{GGAAS$,,TCCTS$y, GCCTS3, TTCT$4}

Remark: Colors and Suffixes for clarity only.

“when appending a different dollar to the strings in
S, the w-order coincides with the lexicographical order.

Compression based on Multi-string BWT November 11th, 2022

TCCTSs
TCTS$4
TTCTS,

$1GGAA
$.TCCT
$3GCCT
$4TTCT
A$1GGA
AA$1GG
CCTS$;T
CCTS$3G
CT$:TC
CT$3GC
CT$4TT
GAA$. G
GCCT$3
GGAAS,
T$TCC
T$3GCC
T$,TTC
TCCTS$2
TCT$4T
TTCTS$,

8 /33

How computing the EBWT?
How does multi-string BWT [Bauer et. al, CPM 2011, TCS 2013] work?

Given S = {GGAA, TCCT,GCCT, TTCT):

@ Sort all the suffixes (resp. cyclic rotations)? of
the strings in S’ = {5,;8$;S; € S} (in our case:
S =
{GGAAS$,,TCCTS$y, GCCTS3, TTCT$4}

@ Output the string obtained by concatenating
the symbols that (circularly) precede each first

symbol of the suffixes (resp. last symbol of
the rotations) in the sorted list.

Remark: Colors and Suffixes for clarity only.

“when appending a different dollar to the strings in
S, the w-order coincides with the lexicographical order.

Compression based on Multi-string BWT November 11th, 2022

Multi-string BWT

Sorted Suffixes

Sorted Cyclic Rotations

RPN QANQARNNNE

TCCTS2
TCTS$4
TTCTS,

$1GGAA
$.TCCT
$sGCCT
$4TTCT
A$1GGA
AA$ GG
CCTS$;T
CCTS$3G
CT$:TC
CT$3GC
CT$4TT
GAAS$:G
GCCT$3
GGAAS,
T$TCC
T$3GCC
T$,TTC
TCCTS$2
TCT$4T
TTCTS$,

8/33

How computing the EBWT?
How does multi-string BWT [Bauer et. al, CPM 2011, TCS 2013] work?

Given S = {GGAA, TCCT,GCCT, TTCT):

@ Sort all the suffixes (resp. cyclic rotations)? of
the strings in S’ = {5,;8$;S; € S} (in our case:
S =
{GGAAS$,,TCCTS$y, GCCTS3, TTCT$4}

@ Output the string obtained by concatenating
the symbols that (circularly) precede each first

symbol of the suffixes (resp. last symbol of
the rotations) in the sorted list.

Output:
ebwt(S'") = ATTTAGTGCCTG3,CCC$:TS,.

Remark: Colors and Suffixes for clarity only.

“when appending a different dollar to the strings in
S, the w-order coincides with the lexicographical order.

Compression based on Multi-string BWT November 11th, 2022

Multi-string BWT

Sorted Suffixes

Sorted Cyclic Rotations

FRZQQQAFFONOAQANQARNNNE

TCCTS2
TCTS$4
TTCTS,4

$1GGAA
$.TCCT
$sGCCT
$4TTCT
A$1GGA
AA$ GG
CCTS$T
CCTS$3G
CT$:TC
CT$3GC
CT$4TT
GAAS$:G
GCCT$3
GGAAS,
T$TCC
T$3GCC
T$,TTC
TCCTS$o
TCT$4T
TTCTS$,

8/33

DI L D T
Properties and Reversibility - LF mapping

. . . . GGAAS$,, TCCTS$,,GCCTS3, TTCTS
o F is the concatenation of the first symbols of each suffix ! 2 : &

in the sorted list.

@ The last symbol of S; (just before the §$;), for each
S;eS(j=1,...,m), is L[j].

L = ATTTAGTGCCTG3.CCC$2T$y

F
$1
82
$3
$4

© 00Uk W~

©
HHHSHHAQAAQAQQQAR R

S383 = T 16
Cycle decomposition of 77 p: 18
TLF = (3) 20
9/33

LRFQQAQLFANQAQAQANQARNNNEN

QOO0 Uk WN =

DI L D T
Properties and Reversibility - LF mapping

. . . . GGAAS$,, TCCTS$,, GCCTS$3, TTCTS
o F is the concatenation of the first symbols of each suffix ! ? ’ o

. . L =ATTTAGTGCCTGS3:CCC$2T$
in the sorted list. 381 2T$4

F L
@ The last symbol of S; (just before the §$;), for each ! gl 4
. . . 2
S;eS(j=1,...,m),is L[j]. 3 23 T
)) 4 T
o LF Mapping: For each symbol ¢, the i-th occurrence of t 5 j A
in L corresponds to the i-th occurrence of ¢ in F; ? é g
8 C / G
/123456 7 891011121314151617181920) 9 C S c
TLE =\ 515161761218137 8 1914 3 1 9 1011 2 20 4) 10 C / C
11 ¢ / T
12 G V G
13 G 83
14 G/ $1
15 T c
Ss8s = T 1T o
Cycle decomposition of 77 p: 18 T $2
_ 19 T T
TLF = (316) 20 T $4

Compression based on Multi-string BWT November 11th, 2022 9/33

QOO0 Uk WN -

DI L D T
Properties and Reversibility - LF mapping

. . . . GGAAS$,, TCCTS$,,GCCTS3, TTCTS
o F is the concatenation of the first symbols of each suffix ! 2 ’ &

. . L =ATTTAGTGCCTGS3:CCC$2T$
in the sorted list. 381 2T$4

F L
@ The last symbol of S; (just before the §;), for each ! gl ?

. - . 2
S;eS(j=1,...,m),is L[j]. 3 23 T
: . 4 T
e LF Mapping: For each symbol ¢, the i-th occurrence of t 5 4 A
in L corresponds to the i-th occurrence of ¢ in F; ? é g
8 C / G
(123456 7 891011121314151617181920) 9 C ! c
TLE =\ 515161761218137 8 1914 3 1 9 1011 220 4) 10 C / c
e Foralli= 1,.. L m the symboI'F[z’] (c.ircularly) follows }; g // g
L[i] in the original (corresponding) string. %i g §3
1
15 T/ c
_ 16 T c
S383 = CT N 17 T c
Cycle decomposition of 77 p: 18 T $o
19 T T
TLF = (316) 20 T $4

Compression based on Multi-string BWT November 11th, 2022 9/33

QOO0 Uk WN =

DI L D T
Properties and Reversibility - LF mapping

. . . . GGAAS$,, TCCTS$,,GCCTS3, TTCTS
o F is the concatenation of the first symbols of each suffix ! 2 ’ &

. . L =ATTTAGTGCCTGS3:CCC$2T$
in the sorted list. 381 2T$4

F L
@ The last symbol of S; (just before the §;), for each ! gl ?

. . . 2
S;eS(j=1,...,m),is L[j]. 3 23 T
)) 4 T
o LF Mapping: For each symbol ¢, the i-th occurrence of t 5 j A
in L corresponds to the i-th occurrence of ¢ in F; ? é g
8 C / G
/123456 7 891011121314151617181920) 9 C ! c
TLE =\ 515161761218137 8 1914 3 1 9 1011 2 20 4) 10 C / c
e Foralli=1,...,n the symbol F[i] (circularly) follows }; gv\}x g
L[i] in the original (corresponding) string. %i g §3
1
15 T / \ c
_ 16 T C
S383 = cr N T o
Cycle decomposition of 77 p: 18 T $o
T
TLE = (31610) 50 5

Compression based on Multi-string BWT November 11th, 2022 9/33

QOO0 Uk WN =

DI L D T
Properties and Reversibility - LF mapping

. . . . GGAAS$,, TCCTS$,,GCCTS3, TTCTS
o F is the concatenation of the first symbols of each suffix ! 2 ’ &

. . L =ATTTAGTGCCTGS3:CCC$2T$
in the sorted list. 381 2T$4

F L
@ The last symbol of S; (just before the §;), for each ! gl ?

. - . 2
S;eS(j=1,...,m),is L[j]. 3 23 T
: . 4 T
e LF Mapping: For each symbol ¢, the i-th occurrence of t 5 4 A
in L corresponds to the i-th occurrence of ¢ in F; ? é g
8 C / G
(123456 7 891011121314151617181920) 9 C / c
TLE =\ 515161761218137 8 1914 3 1 9 1011 220 4) 10 C c
e Foralli=1,...,n the symbol F[i] (circularly) follows }; gv\}x g
L[i] in the original (corresponding) string. %i g §3
1
15 T / \ c
_ 16 T c
S3%3 = CCT. . o r G
Cycle decomposition of 77 p: 18 T $o
T
TLF = (31610) 2 T $4

Compression based on Multi-string BWT November 11th, 2022 9/33

QOO0 Uk WN =

DI L D T
Properties and Reversibility - LF mapping

. . . . GGAAS$,, TCCTS$,,GCCTS3, TTCTS
o F is the concatenation of the first symbols of each suffix ! 2 ’ &

. . L =ATTTAGTGCCTGS3:CCC$2T$
in the sorted list. 381 2T$4

F L
@ The last symbol of S; (just before the §;), for each ! gl ?

. - . 2
S;eS(j=1,...,m),is L[j]. 3 23 T
: . 4 T
e LF Mapping: For each symbol ¢, the i-th occurrence of t 5 4 A
in L corresponds to the i-th occurrence of ¢ in F; ? é g
8 C / G
(123456 7 891011121314151617181920 9 C\\ c
TLE =\ 515161761218137 8 1914 3 1 9 1011 220 4) 10 C c
e Foralli=1,...,n the symbol F[i] (circularly) follows }; gv\}x g
L[i] in the original (corresponding) string. %i g §3
1
15 T/ c
_ 16 T c
S3%3 = CCT. . o r G
Cycle decomposition of 77 p: 18 T $o
T
TLE = (316108) 50 5

Compression based on Multi-string BWT November 11th, 2022 9/33

QOO0 Uk WN =

DI L D T
Properties and Reversibility - LF mapping

. . . . GGAAS$,, TCCTS$,,GCCTS3, TTCTS
o F is the concatenation of the first symbols of each suffix ! 2 ’ &

. . L =ATTTAGTGCCTGS3:CCC$2T$
in the sorted list. 381 2T$4

F L
@ The last symbol of S; (just before the §;), for each ! gl ?
S;€S(j=1,...,m), is L[jl. 3 % T

o LF Mapping: For each symbol ¢, the i-th occurrence of ¢ fé % Z
in L corresponds to the i-th occurrence of ¢ in F; ? é g

8 C G

(123456 7 891011121314151617181920) 9 C\\ c
”LF_(5151617612181378191431910112204)100 c

e Foralli=1,...,n the symbol F[i] (circularly) follows }; g\A g
L[i] in the original (corresponding) string. %i g §3

15 T / \ c

S3$3 = GCCT }? ; g
Cycle decomposition of 77 p: 18 T $o
TLE = (316108) 50 o

Compression based on Multi-string BWT November 11th, 2022 9/33

QOO0 Uk WN =

DI L D T
Properties and Reversibility - LF mapping

. . . . GGAAS$,, TCCTS$,,GCCTS3, TTCTS
o F is the concatenation of the first symbols of each suffix ! 2 ’ &

. . L =ATTTAGTGCCTGS3:CCC$2T$
in the sorted list. 381 2T$4

F L
@ The last symbol of S; (just before the §;), for each ! gl ?

. - . 2
S;eS(j=1,...,m),is L[j]. 3 23 T
: . 4 T
e LF Mapping: For each symbol ¢, the i-th occurrence of t 5 4 A
in L corresponds to the i-th occurrence of ¢ in F; ? é g
8 C G
(123456 7 891011121314151617181920 9 C\><C
TLE =\ 515161761218137 8 1914 3 1 9 1011 220 4) 10 C c
e Foralli=1,...,n the symbol F[i] (circularly) follows g g% g
L[i] in the original (corresponding) string. %i g §3
15 T / \ c
S3$3 = GCCT }? ; g
Cycle decomposition of 77 p: 18 T $o
TLE = (316108 13) o o

Compression based on Multi-string BWT November 11th, 2022 9/33

QOO0 Uk WN =

DI L D T
Properties and Reversibility - LF mapping

. . . . GGAAS$,, TCCTS$,,GCCTS3, TTCTS
o F is the concatenation of the first symbols of each suffix ! 2 ’ &

. . L =ATTTAGTGCCTGS3:CCC$2T$
in the sorted list. 381 2T$4

F L
@ The last symbol of S; (just before the §;), for each ! gl ?

. - . 2
S;eS(j=1,...,m),is L[j]. 3 23 T
: . 4 T
e LF Mapping: For each symbol ¢, the i-th occurrence of t 5 4 A
in L corresponds to the i-th occurrence of ¢ in F; ? é g
8 C G
(123456 7 891011121314151617181920 9 C\><C
TLE =\ 515161761218137 8 1914 3 1 9 1011 220 4) 10 C c
e Foralli=1,...,n the symbol F[i] (circularly) follows }; g g
L[i] in the original (corresponding) string. %i g §3
1
15 T/ c
S383 = GCCT'$3 }? ; g
Cycle decomposition of 77 p: 18 T $o
TLE = (316108 13) o o

Compression based on Multi-string BWT November 11th, 2022 9/33

QOO0 Uk WN =

DI L D T
Properties and Reversibility - LF mapping

. . . . GGAAS$,, TCCTS$,,GCCTS3, TTCTS
o F is the concatenation of the first symbols of each suffix ! 2 ’ &

. . L =ATTTAGTGCCTGS3:CCC$2T$
in the sorted list. 381 2T$4

F

L
@ The last symbol of S; (just before the §;), for each ! gl ?

. - . 2
S;eS(j=1,...,m),is L[j]. 3 23 T
: . 4 T
e LF Mapping: For each symbol ¢, the i-th occurrence of t 5 4 A
in L corresponds to the i-th occurrence of ¢ in F; ? é g
8 C G
(1234567 891011121314151617181920 9 CWO‘
TLE =\ 515161761218137 8 1914 3 1 9 1011 220 4) 10 C c
e Foralli=1,...,n the symbol F[i] (circularly) follows g g% g
L[i] in the original (corresponding) string. %i g §3
15 T/ 5
S383 = GCCT'$3 }? ; g
Cycle decomposition of 77 p: 18 T $o
TLE = (316108 13) o o

Compression based on Multi-string BWT November 11th, 2022 9/33

QOO0 Uk WN =

DI L D T
Properties and Reversibility - LF mapping

. . . . GGAAS$,, TCCTS$,, GCCTS$3, TTCTS
o F is the concatenation of the first symbols of each suffix ! 2 ’ o

. . L =ATTTAGTGCCTG3:CCC$2T$
in the sorted list. 381 2T$4

F

L
@ The last symbol of S; (just before the §;), for each ! gl ?

. - . 2
S;eS(j=1,...,m),is L[j]. 3 $3 T
o LF Mapping: For each symbol ¢, the i-th occurrence of ¢ fé % Z
in L corresponds to the i-th occurrence of ¢ in F; ? é g
8 C G
(123456 7 891011121314151617181920 9 CWO‘
TLE =\ 515161761218137 8 1914 3 1 9 1011 220 4) 10 C o
e Foralli=1,...,n the symbol F[i] (circularly) follows g g% g
L[i] in the original (corresponding) string. 13 G $3
14 G/ 81
15 T c
S3%3 = GCCT$33 }g ; g
Cycle decomposition of 77 p: 18 T $o
mop = (1561214)(2159718)(316 108 13)(417111920) 32 T o

Compression based on Multi-string BWT November 11th, 2022 9/33

QOO0 Uk W =

Compression of DNA string

First Goal
Compression of DNA bases by using multi-string BWT.]

Compression based on Multi-string BWT November 11th, 2022

Why BWT and multi-string BWT?

Why?

Compression based on Multi-string BWT November 11th, 2022

ol oA
Why BWT and multi-string BWT?

Why?

@ The motivation is the clustering effect that the BWT /eBWT produces, i.e. the
BWT /eBWT reduces the number of the runs of the same symbol.

@ The BWT/eBWT groups symbols with a similar context close together.

Compression based on Multi-string BWT November 11th, 2022 11 /33

ol oA
Why BWT and multi-string BWT?

Why?

@ The motivation is the clustering effect that the BWT /eBWT produces, i.e. the
BWT /eBWT reduces the number of the runs of the same symbol.

@ The BWT/eBWT groups symbols with a similar context close together.

Example of clustering effect
When v = mathematics (11 runs), we have:

bwt(v) = mmihttsecaa

Compression based on Multi-string BWT November 11th, 2022 11 /33

ol oA
Why BWT and multi-string BWT?

Why?

@ The motivation is the clustering effect that the BWT /eBWT produces, i.e. the
BWT /eBWT reduces the number of the runs of the same symbol.

@ The BWT/eBWT groups symbols with a similar context close together.

Example of clustering effect
When v = mathematics (11 runs), we have:

bwt(v) = mmihttsecaa

Compression based on Multi-string BWT November 11th, 2022 11 /33

ol oA
Why BWT and multi-string BWT?

Why?

@ The motivation is the clustering effect that the BWT /eBWT produces, i.e. the
BWT /eBWT reduces the number of the runs of the same symbol.

@ The BWT/eBWT groups symbols with a similar context close together.

Example of clustering effect
When v = mathematics (11 runs), we have:

bwt(v) = mmihttsecaa

Compression based on Multi-string BWT November 11th, 2022 11 /33

ol oA
Why BWT and multi-string BWT?

Why?

@ The motivation is the clustering effect that the BWT /eBWT produces, i.e. the
BWT /eBWT reduces the number of the runs of the same symbol.

@ The BWT/eBWT groups symbols with a similar context close together.

Example of clustering effect
When v = mathematics (11 runs), we have:

bwt(v) = mmihttsecaa

Compression based on Multi-string BWT November 11th, 2022 11 /33

ol oA
Why BWT and multi-string BWT?

Why?

@ The motivation is the clustering effect that the BWT /eBWT produces, i.e. the
BWT /eBWT reduces the number of the runs of the same symbol.

@ The BWT/eBWT groups symbols with a similar context close together.

Example of clustering effect
When v = mathematics (11 runs), we have:

bwt(v) = mmihttsecaa (8 runs)

Compression based on Multi-string BWT November 11th, 2022 11 /33

ol oA
Why BWT and multi-string BWT?

Why?

@ The motivation is the clustering effect that the BWT /eBWT produces, i.e. the
BWT /eBWT reduces the number of the runs of the same symbol.

@ The BWT/eBWT groups symbols with a similar context close together.

Example of clustering effect
When v = mathematics (11 runs), we have:

bwt(v) = mmihttsecaa (8 runs)

Multi-string BWT
@ we use m distinct end-markers for a collection of m strings;
@ the collection is ordered.

Is it a problem in terms of the number of runs?

Compression based on Multi-string BWT November 11th, 2022 11 /33

ol oA
Distinct end-markers in multi-string BWT

First problem

The use of distinct end-marker symbols increases the size of the alphabet and makes
compression more difficult.

Compression based on Multi-string BWT November 11th, 2022

12/33

ol oA
Distinct end-markers in multi-string BWT

First problem

The use of distinct end-marker symbols increases the size of the alphabet and makes
compression more difficult.

Solution

We use implicit distinct end-markers, i.e. $; = $ for each i: we use the position of the strings
in the collection in order to establish the order relation between two identical suffixes:

$; < $; when i < j.

Compression based on Multi-string BWT November 11th, 2022 12 /33

Ordered collection

Second problem

The use of ordered and (implicit or explicit) distinct end-marker symbols
makes the multiset an ordered collection (the identical or similar sequences
could be distant in the collection, by increasing the number of runs).

This can make the difference in the clustering effect
(in terms of number of runs)!!!

eBWT Sorted suffix

v

Compression based on Multi-string BWT November 11th, 2022

GACA..
GACG..
GATAGS,
GATAGS,
GATAGS,
GATAG S,
GATAG $;
GATTTC..
GATTTGAT..

4 —H40>>0>>-

wherep < g <r<s<t

13 /33

Ordered collection

Second problem

The use of ordered and (implicit or explicit) distinct end-marker symbols
makes the multiset an ordered collection (the identical or similar sequences
could be distant in the collection, by increasing the number of runs).

This can make the difference in the clustering effect
(in terms of number of runs)!!!

Idea
We can reorder the strings reducing the number of runs!

eBWT Sorted suffix

v

Compression based on Multi-string BWT November 11th, 2022

GACA..
GACG..
GATAGS,
GATAGS$,
GATAGS,
GATAG $,
GATAG $;
GATTTC..
GATTTGAT..

4 —H40>>0>>-

wherep < g <r<s<t

13 /33

Example: Two different reordering of the input strings

S={TAGACCT, TACCACT,GAGACCT}

EBWT | Sorted Suffixes
$

3

$

ACCACTS
ACCTS
ACCTS
ACTS
AGACCTS
AGACCTS
CACTS
CCACTS
CCT$
CCT$

CT$

CT$

CT$
GACCTS
GACCTS
GAGACCTS
T$

T$

T$
TACCACTS
TAGACCTS

P»eQQQexrQEQEEErQQRNQAQQNSSS

Compression based on Multi-string BWT November 11th, 2022

Example: Two different reordering of the input strings

[
S = {TAGACCT, TACCACT, GAGACCT} §' = {TACCACT, TAGACCT, GAGACCT}

EBWT | Sorted Suffixes
$

3

$

ACCACTS
ACCTS
ACCTS
ACTS
AGACCTS
AGACCTS
CACTS
CCACTS
CCT$
CCT$

CT$

CT$

CT$
GACCTS
GACCTS
GAGACCTS
T$

T$

T$
TACCACTS
TAGACCTS

e QQQer2 Q2> QAQNQAQAQANNSN

Compression based on Multi-string BWT November 11th, 2022

Example: Two different reordering of the input strings

S={TAGACCT, TACCACT,GAGACCT}
EBWT | Sorted Suffixes

$

3

3

ACCACTS
ACCTS
ACCTS
ACTS
AGACCTS
AGACCTS
CACTS
CCACTS
CCT$
CCT$

CT$

CTS$

CTS$
GACCTS
GACCTS
GAGACCTS
T$

TS

T$
TACCACTS$
TAGACCTS$

e QQQer2 QN2> QQNQAQQANNSN

S’ = {TACCACT, TAGACCT,GAGACCT}

EBWT

Sorted Suffixes

e QQQer>QQkr2rQQNQAQQNNNN

$

$

$
ACCACTS
ACCTS
ACCTS
ACTS
AGACCTS
AGACCTS
CACTS
CCACTS
CcCT$
CcCT$

CT$

CT$

CT$
GACCTS
GACCTS
GAGACCTS$
T$

T$

T$
TACCACTS
TAGACCTS

Compression based on Multi-string BWT November 11th, 2022

14 / 33

SAP-interval and SAP array [Cox, Bauer, Jakobi and R., 2012]

Ordered collection: S = {TAGACCT, TACCACT,GAGACCT}

Suf fizes
$

3
3
ACCACTS
ACCTS
ACCTS
ACTS$
AGACCTS
AGACCTS
CACTS$
CCACTS
CcCTS

CcCTS

cT$

cT$

cT$
GACCTS
GACCTS
GAGACCT
T$

T$

T$
TACCACT:
TAGACCTS

&
%%OQQ%>>Q>Q>>>QQHQQQHﬂﬂﬂg
N

Compression based on Multi-string BWT November 11th, 2022

Compression of DNA bases
SAP-interval and SAP array [Cox, Bauer, Jakobi and R., 2012]

Ordered collection: S = {TAGACCT, TACCACT,GAGACCT}

EBWT

Suffizes
$

$
$
ACCACTS
ACCTS$
ACCTS
ACTS
AGACCTS
AGACCTS
CACTS
CCACTS
ceTs
ccTs
cT$

cT$

CTS$

G/
G/
GAGA
T$

T$

T$
TACCACT
TAGACCTS

®eQQQeer:QrQX>>QQANQAQQANSS

Compression based on Multi-string BWT November 11th, 2022

Property

In regions of the eBWT, named SAP-interval (Same-As-Previous)?
where the associated suffixes are the same, the ordering of the symbols
in eBWT depends on the ordering of the strings in the collection.

“Related to SAP-intervals: the tuples described in [Bentley et al., ESA 2020] and the interesting intervals defined
in [Cenzato and Liptak, CPM 2022].

15/ 33

Compression of DNA bases
SAP-interval and SAP array [Cox, Bauer, Jakobi and R., 2012]

Ordered collection: S = {TAGACCT, TACCACT,GAGACCT}

SAP-array

Suffizes
3

3

3
ACCACTS
ACCTS
ACCTS
ACTS
AGACCTS
AGACCTS
CACTS
CCACTS
CCT$
CCTS$

cT$

cT$

CcT$
GACCTS
GACCTS
GAGACCT
T$

T$

T$
TACCACT:
TAGACCTS

FRFOOHOHHOHRHOOOHOOROOR=O

o
%%OQQ%>>Q>Q>>>QQHOQQHHHH%
}q

Jun

Property

In regions of the eBWT, named SAP-interval (Same-As-Previous)?
where the associated suffixes are the same, the ordering of the symbols
in eBWT depends on the ordering of the strings in the collection.

“Related to SAP-intervals: the tuples described in [Bentley et al., ESA 2020] and the interesting intervals defined
in [Cenzato and Liptak, CPM 2022].

The SAP-intervals can be represented as a binary array, called
SAP-array: SAP[i] = 1 if BWTYi] is associated with the suffix at
position ¢ (in the list of sorted suffixes) which is same as its previous
suffix (at position ¢ — 1) up to the end-markers; and SAP[i] = 0
otherwise.

Compression based on Multi-string BWT November 11th, 2022 15 / 33

Compression of DNA bases
SAP-interval and SAP array [Cox, Bauer, Jakobi and R., 2012]

Ordered collection: S ={TACCACT,TAGACCT,GAGACCT}

SAP-array

Suffizes
3

3

3
ACCACTS
ACCTS
ACCTS
ACTS
AGACCTS
AGACCTS
CACTS
CCACTS
CCT$
CCTS$

cT$

cT$

CcT$
GACCTS
GACCTS
GAGACCT
T$

T$

T$
TACCACT:
TAGACCTS

FRFOOHOHHOHRHOOOHOOROOR=O

o
mmooow>>amm>>>amﬂoooﬂﬂﬂﬂ%
}q

Jun

Property

In regions of the eBWT, named SAP-interval (Same-As-Previous)?
where the associated suffixes are the same, the ordering of the symbols
in eBWT depends on the ordering of the strings in the collection.

“Related to SAP-intervals: the tuples described in [Bentley et al., ESA 2020] and the interesting intervals defined
in [Cenzato and Liptak, CPM 2022].

The SAP-intervals can be represented as a binary array, called
SAP-array: SAP[i] = 1 if BWTYi] is associated with the suffix at
position ¢ (in the list of sorted suffixes) which is same as its previous
suffix (at position ¢ — 1) up to the end-markers; and SAP[i] = 0
otherwise.

Compression based on Multi-string BWT November 11th, 2022 15 / 33

Compression of DNA bases
How to reorder strings [Cox, Bauer, Jakobi and R., 2012]

{TAGACCT, TACCACT, GAGACCT}

TACCACT, TAGACCT,GAGACCT}

eBWT

SAP-array

How can we reorder the strings reducing the number of runs?

Sorted Suffixes

FOFRFROOHOHHOHOOOHROOR OO~

Compression based on Multi-string BWT November 11th, 2022

[=1Q

T

2epaQQHQAQQNSS

weQQQ®EEQ

Q-

D

ACCACTS
ACCTS
ACCTS$
ACTS
AGACCTS
AGACCTS

CACTS$
CCACTS
CcCT$
CcCT$
cT$

cT$

cT$
GACCTS

GACCTS$
GAGACCTS
T$

T$

T$
TACCACTS
TAGACCTS

16 / 33

Compression of DNA bases
How to reorder strings [Cox, Bauer, Jakobi and R., 2012]

{TAGACCT, TACCACT, GAGACCT}

TACCACT, TAGACCT,GAGACCT}

eBWT

SAP-array

How can we reorder the strings reducing the number of runs?

Sorted Suffixes @ Pre-processing?

FOFRFROOHOHHOHOOOHROOR OO~

[=1Q

T

2epaQQHQAQQNSS

weQQQ®EEQ

Q-

D

ACCACTS
ACCTS
ACCTS$
ACTS
AGACCTS
AGACCTS

CACTS$
CCACTS
CcCT$
CcCT$
cT$

cT$

cT$
GACCTS

GACCTS$
GAGACCTS
T$

T$

T$
TACCACTS
TAGACCTS

Compression based on Multi-string BWT November 11th, 2022 16 / 33

Compression of DNA bases
How to reorder strings [Cox, Bauer, Jakobi and R., 2012]

{TAGACCT, TACCACT, GAGACCT}

. . B
TACCACT, TAGACCT, GAGACCT) How can we reorder the strings reducing the number of runs?

SAP-array eB’WT §orted Suffixes *] Pre—processing?

- . @ No, reading both the BWT and its SAP-array, one can sort
$ the symbols within the SAP interval and output a modified
ACCACTS

ACCTS BWT.

ACCTS

ACTS

AGACCTS
AGACCTS

CACTS$
CCACTS
CCT$
CCT$
cT$

cT$

cT$
GACCTS

2eexQQNQQQNSS

[=1Q
Q>

GACCTS
GAGACCTS
T$

T$

T$
TACCACTS
TAGACCTS

FOFRFRPOOHOHHKHOHOOOHROOROOR~O

weQQQ®EEQ

Compression based on Multi-string BWT November 11th, 2022 16 / 33

Compression of DNA bases
How to reorder strings [Cox, Bauer, Jakobi and R., 2012]

{TAGACCT, TACCACT, GAGACCT}

TACCACT, TAGACCT,GAGACCT}

T

Sorted Suffixes

SAP-array | eBW

0 T
1 T
1 T
0 T
0 G
1 G
0 C
0 T
1 G
0 C
0 A
0 A
1 A
0 c

1 A

1 C
0 A
1 A
0 3$
0 C
1 C
1 C
0 $
1 $

Q-

$
ACCACTS
ACCTS
ACCTS$
ACTS
AGACCTS
AGACCTS
CACTS$
CCACTS
CCT$
CCT$

cT$

cT$

cT$
GACCTS
GACCTS
GAGACCTS
T$

T$

T$
TACCACTS
TAGACCTS

How can we reorder the strings reducing the number of runs?

@ Pre-processing?

@ No, reading both the BWT and its SAP-array, one can sort
the symbols within the SAP interval and output a modified
BWT.

@ In alternative, one can reorder on-the-fly during the building
of the eBWT. How?

Compression based on Multi-string BWT November 11th, 2022 16 / 33

Compression of DNA bases
How to reorder strings [Cox, Bauer, Jakobi and R., 2012]

{TAGACCT, TACCACT, GAGACCT}

TACCACT, TAGACCT,GAGACCT}

SAP-array | eBW Sorted Suffixes
T $
ACCACTS
ACCTS$
ACCTS$
ACTS
AGACCTS
AGACCTS
CACTS$
CCACTS
CCT$
CCT$

cT$

CcT$

CcT$
GACCTS
GACCTS
GAGACCTS
T$

T$

T$
TACCACTS
TAGACCTS$

2epaQQHQAQQNSS

[=1Q
Q>

FOFRFROOHOHHOHOOOFROOROOR~~O

HperQQQer -0

Compression based on Multi-string BWT November 11th, 2022

How can we reorder the strings reducing the number of runs?

@ Pre-processing?

@ No, reading both the BWT and its SAP-array, one can sort
the symbols within the SAP interval and output a modified
BWT.

@ In alternative, one can reorder on-the-fly during the building
of the eBWT. How?

By using BEETL-BCRext [Bauer, Cox and R., CPM 2011], we can
swap the sequences TAGACCT and TACCACT in the ordered
collection

16 / 33

Compression of DNA bases
How to reorder strings [Cox, Bauer, Jakobi and R., 2012]

{TAGACCT, TACCACT, GAGACCT}
N
{TACCACT, TAGACCT, GAGACCT}

SAP-array | eBW Sorted Suffixes
0 T $
g
ACCACTS
ACCTS$
ACCTS$
ACTS
AGACCTS
AGACCTS
CACTS$
CCACTS
CCT$
CCT$
cT$
CcT$
CcT$
GACCTS
GACCTS
GAGACCTS
T$
T$
T$
TACCACTS
TAGACCTS$

O~ OO

10
2rQ0Qer2Q\W/ 2ErQQNQOQA0NRSS

Q-

FOFRROORORHOROOO=

Compression based on Multi-string BWT November 11th, 2022

How can we reorder the strings reducing the number of runs?

@ Pre-processing?

@ No, reading both the BWT and its SAP-array, one can sort
the symbols within the SAP interval and output a modified
BWT.

@ In alternative, one can reorder on-the-fly during the building
of the eBWT. How?

By using BEETL-BCRext [Bauer, Cox and R., CPM 2011], we can
swap the sequences TAGACCT and TACCACT in the ordered
collection by swapping the symbols C and A directly in the eBWT
during its construction [Cox, Bauer, Jakobi and R, 2012].

16 / 33

Compression of DNA bases
How to reorder strings [Cox, Bauer, Jakobi and R., 2012]

{TAGACCT, TACCACT, GAGACCT}

¢ . .
(TACGACT, TAGACCT, GAGACCT) How can we reorder the strings reducing the number of runs?
SAP-array | eBWT | Sorted Suffixes *] Pre—processing?
| ool @ No, reading both the BWT and its SAP-array, one can sort
. | Scoacts the symbols within the SAP interval and output a modified
0 ¢ | accrs BWT.
. t gé;gﬂ’ @ In alternative, one can reorder on-the-fly during the building
0 T | AGACCTS of the eBWT. How?
1 G AGACCTS
0 ¢ | cacrs
0 4 gg%cm By using BEETL-BCRext [Bauer, Cox and R., CPM 2011], we can
1 A | cors swap the sequences TAGACCT and TACCACT in the ordered
0 S e o collection by swapping the symbols C and A directly in the eBWT
! co|ors during its construction [Cox, Bauer, Jakobi and R, 2012].
1 A GACCTS
0 2 ?§GACCT$ @ The rest of eBWT is unaffected by this change in ordering
. < ?2 @ lossless: the strings are not modified, we can only lose the
0 $ | TaccacTs original position of the strings in the collection.
1 $ TAGACCTS

Compression based on Multi-string BWT November 11th, 2022 16 / 33

Compression of DNA bases
Experiments [Cox, Bauer, Jakobi and R., 2012]

60X coverage of error-free from the E.coli genome?.

]
o

e 4 x X x X X x
N
* Gzip
o + Bzip2
g < x PPMd (default)
s & BWT
5 o PPMd (large)
o v BWT-SAP
3 oy © BWT-RLO
o\
\v\
© §———o—)
S—
=gy
o
s
T T T T T T
10 20 30 40 50 60
coverage

Gzip, Bzip2, PPMd (default) and PPMd (large) show compression achieved on
the raw sequence data. BWT, BWT-SAP and BWT-RLO give compression
results on the BWT using PPMd (default) as second-stage compressor.

a .
subsampled this into datasets as small as 10X

PPMd - 45 x human dataset?
Input size BWT BWT-RLO BWT-SAP

untrimmed 135.3Gb 0.746 0.528 0.484
trimmed 133.6Gb 0.721 0.504 0.462

Two heuristics that do not need to explicitly compute the
SAP array, but modify EBWT construction algorithm by
using an extra bit that tracks whether each suffix is “Same
As Previous”):

Strategy RLO: (reverse lexicographic order, colex-order):
This ensures EBWT symbols associated
with such suffixes are grouped together
(see [Heng Li, 2014] for an efficient
implementation in internal memory, also for
long reads).

?Reads trimmed by following the strategy described for bwa which removed
1.3% of the bases.

Compression based on Multi-string BWT November 11th, 2022 17 / 33

Compression of DNA bases
Experiments [Cox, Bauer, Jakobi and R., 2012]

PPMd - 45 x human dataset?

60X coverage of error-free from the E.coli genome?. Tnputsize BWT BWI-RLO BWT-SAP
2 B * * * * * * untrimmed 135.3Gb 0.746 0.528 0.484
trimmed 133.6Gb 0.721 0.504 0.462
. Two heuristics that do not need to explicitly compute the
1 x x x x x x . . .
o SAP array, but modify EBWT construction algorithm by
¥ Gz using an extra bit that tracks whether each suffix is “Same
+ Bzip2 : "y,
g © X PPING (default As Previous"):
s A BWT . .
s o PPMd (large) Strategy RLO: (reverse lexicographic order, colex-order):
% v BWT-SAP . .
2 o], © BWT-RLO This ensures EBWT symbols associated
o\ with such suffixes are grouped together
) —— '(see [Heng L.|, 2(.)11.1] for an efficient
3 \v\\\v\\;’ implementation in internal memory, also for
long reads).
= Strategy SAP: Approximation of the RLO: the symbols
T T T T T T .
© 2 0 w© 0 6 are not always permuted according to
colex-order.
coverage

Gzip, Bzip2, PPMd (default) and PPMd (large) show compression achieved on
the raw sequence data. BWT, BWT-SAP and BWT-RLO give compression
results on the BWT using PPMd (default) as second-stage compressor.

?Reads trimmed by following the strategy described for bwa which removed
1.3% of the bases.

Compression based on Multi-string BWT November 11th, 2022 17 / 33

a .
subsampled this into datasets as small as 10X

Compression of DNA bases
Experiments [Cox, Bauer, Jakobi and R., 2012]

bits per base

Gzip, Bzip2, PPMd (default) and PPMd (large) show compression achieved on
the raw sequence data. BWT, BWT-SAP and BWT-RLO give compression
results on the BWT using PPMd (default) as second-stage compressor.

60X coverage of error-free from the E.coli genome?.

]
o

o | x x x X x x
&
* Gzip
© + Bzip2
< x PPMd (default)
& BWT
© PPMd (large)
v BWT-SAP
° © BWT-RLO
edw
0\
\v\
0 §=———o0— 4
S —_— .
°
g 4
T T T T
10 20 30 40 50 60
coverage

a .
subsampled this into datasets as small as 10X

Compression based on Multi-string BWT November 11th, 2022

PPMd - 45 x human dataset?

Input size BWT BWT-RLO BWT-SAP

untrimmed 135.3Gb 0.746 0.528 0.484
trimmed 133.6Gb 0.721 0.504 0.462

Two heuristics that do not need to explicitly compute the
SAP array, but modify EBWT construction algorithm by
using an extra bit that tracks whether each suffix is “Same

As Previous”):
Strategy RLO:

Strategy SAP:

(reverse lexicographic order, colex-order):
This ensures EBWT symbols associated
with such suffixes are grouped together
(see [Heng Li, 2014] for an efficient
implementation in internal memory, also for
long reads).

Approximation of the RLO: the symbols
are not always permuted according to
colex-order.

Outcome is EBWT of a permuted read collection.
Can verify by inverting the EBWT.

?Reads trimmed by following the strategy described for bwa which removed

1.3% of the bases.

17/ 33

ol oA
Optimal BWT in terms of input order permutation

Can we swap the strings obtaining the minimum number of runs?

[Bentley, Gibney, and Thankachan, ESA 2020] show as compute the permutation of the input
collection which yields the minimum number of runs of the resulting BWT.

One can compute the optimal BWT using the BWT and the SAP-array
(preliminary results in [Cenzato and Liptak, WCTA 2022])
Extended work: [Cenzato, Guerrini, Liptdk and R., submitted].

Compression based on Multi-string BWT November 11th, 2022 18 / 33

LYITETTGEM Compression of quality scores

Adaptive (lossy) compression of quality scores in BEETL
[Janin, R. and Cox, 2014]

Second Goal

An adaptive and reference-free approach to lossy quality-score compression.

Insight

Discard the quality scores that are associated with bases that are “not interesting”.

Compression based on Multi-string BWT November 11th, 2022

19/ 33

Applications Compression of quality scores

Adaptive (lossy) compression of quality scores in BEETL
[Janin, R. and Cox, 2014]

Second Goal

An adaptive and reference-free approach to lossy quality-score compression.

Insight

Discard the quality scores that are associated with bases that are “not interesting”.

Insight

If a base in a read can, with high probability, be predicted by the context of bases that are
next to it,

Compression based on Multi-string BWT November 11th, 2022

19/ 33

Applications Compression of quality scores

Adaptive (lossy) compression of quality scores in BEETL
[Janin, R. and Cox, 2014]

Second Goal

An adaptive and reference-free approach to lossy quality-score compression.

Insight

Discard the quality scores that are associated with bases that are “not interesting”.

Insight

If a base in a read can, with high probability, be predicted by the context of bases that are
next to it, then the base itself is imparting little additional information and its quality score
can be discarded or aggressively compressed at little detriment to downstream analysis.

Compression based on Multi-string BWT November 11th, 2022 19 /33

Applications Compression of quality scores

Adaptive (lossy) compression of quality scores in BEETL
[Janin, R. and Cox, 2014]

Second Goal

An adaptive and reference-free approach to lossy quality-score compression.

Insight

Discard the quality scores that are associated with bases that are “not interesting”.

Insight

If a base in a read can, with high probability, be predicted by the context of bases that are
next to it, then the base itself is imparting little additional information and its quality score
can be discarded or aggressively compressed at little detriment to downstream analysis.

@ Q: What do we mean by “not interesting”?
@ A: How about “not likely to be important for downstream variant calling” .

Compression based on Multi-string BWT November 11th, 2022 19 /33

Compression of quaity scores
Which scores to keep? [Janin, R. and Cox, 2014]

Genoma
PEACHxBANANAzAPPLExPEARzTANGERINExORANGExPEACHxBANANAxzPEAR

Reads collection

HxBANAN Ax PLExPEARx INExORANG BANANAzPE
PEACHxBAN PPLExPEAR GERINExzOR HxBANAN Ax
BANANAxzAP PEARxTANG RINExORAN cPEACHxzBA
EACHxBANA LExPEARxT ERINExzORA PEACHxBAN
vV
V.
\m) = = e

Compression based on Multi-string BWT November 11th, 2022 20/ 33

Compression of quaity scores
Which scores to keep? [Janin, R. and Cox, 2014]

Genoma
PEACHxBANANAzAPPLExPEARzTANGERINExORANGExPEACHxBANANAxzPEAR

Reads collection

HxBANAN Ax PLExPEARx INExORANG BANANAzPE
PEACHxBAN PPLExPEAR GERINExzOR HxBANAN Ax
BANANAxzAP PEARxTANG RINExORAN cPEACHxzBA
EACHxBANA LExPEARxT ERINExzORA PEACHxBAN
vV
V.
\m) = = e

Compression based on Multi-string BWT November 11th, 2022 20/ 33

Compression of quaity scores
Which scores to keep? [Janin, R. and Cox, 2014]

Genoma
PEACHxBANANAzAPPLExPEARzTANGERINExORANGExPEACHxBANANAxzPEAR

Reads collection

HxBANAN Ax PLExPEARx INExORANG BANANAzPE
PEACHxBAN PPLExPEAR GERINExzOR HxBANAN Ax
BANANAxzAP PEARxTANG RINExORAN cPEACHxzBA
EACHxBANA LExPEARxT ERINExzORA PEACHxBAN

o BANAN is always followed by A to make BANANA.

™ = = — Ty

Compression based on Multi-string BWT November 11th, 2022 20 /33

Compression of quaity scores
Which scores to keep? [Janin, R. and Cox, 2014]

Genoma
PEACHxBANANAzAPPLExPEARzTANGERINExzORANGExPEACHxBANANAxzPEAR

Reads collection

HxBANAN Ax PLExPEARx INExORANG BANANAzPE
PEACHxBAN PPLExPEAR GERINExzOR HxBANAN Ax
BANANAxzAP PEARxTANG RINExORAN cPEACHxzBA
EACHxBANA LExPEARxT ERINExzORA PEACHxBAN

o BANAN is always followed by A to make BANANA.
@ Symbols that follow BAN AN are “not interesting”.

™ =

Compression based on Multi-string BWT November 11th, 2022 20 /33

— Ty

Compression of quaity scores
Which scores to keep? [Janin, R. and Cox, 2014]

Genoma
PEACHxBANANAzAPPLExPEARxTANGERINExORANGExPEACHxBANANAxzPEAR

Reads collection

HxBANAN Ax PLExPEARx INExORANG BANANAzPE
PEACHxBAN PPLExPEAR GERINExzOR HxBANAN Ax
BANANAxzAP PEARxTANG RINExORAN cPEACHxzBA
EACHxBANA LExPEARxT ERINExzORA PEACHxBAN

o BANAN is always followed by A to make BANANA.
@ Symbols that follow BAN AN are “not interesting’”.
@ See BANAN in a read — discard or smooth the quality score of next base.

™ =

Compression based on Multi-string BWT November 11th, 2022 20 /33

— Ty

Compression of quaity scores
Which scores to keep? [Janin, R. and Cox, 2014]

Genoma
PEACHxBANANAzAPPLExPEARzTANGERINExORANGExPEACHxBANANAxzPEAR

Reads collection

HxBANAN Ax PLExPEARx INExORANG BANANAzPE
PEACHxBAN PPLExPEAR GERINExzOR HxBANAN Ax
BANANAxzAP PEARxTANG RINExORAN ctPEACHxBA
FEACHxBANA LExPFEARxT ERINExORA PEACHxBAN

BANAN is always followed by A to make BANAN A.
Symbols that follow BAN AN are “not interesting” .
See BANAN in a read — discard or smooth the quality score of next base.

@ PFEA could be the start of either PEACH or PEAR.

™ =

Compression based on Multi-string BWT November 11th, 2022 20 /33

— Ty

Compression of quaity scores
Which scores to keep? [Janin, R. and Cox, 2014]

Genoma

PEACHxBANANAzAPPLExPEARxTANGERINExORANGExzPEACHxBANANAxzPEAR

Reads collection

HxBANAN Ax PLExPEARx INExORANG BANANAzPE
PEACHxBAN PPLExPEAR GERINExzOR HxBANAN Ax
BANANAxzAP PEARxTANG RINExORAN ctPEACHxBA
FEACHxBANA LExPFEARxT ERINExORA PEACHxBAN

BANAN is always followed by A to make BANAN A.
Symbols that follow BAN AN are “not interesting” .

See BANAN in a read — discard or smooth the quality score of next base.

PFEA could be the start of either PEACH or PEAR.
Symbols that follow PE A are “interesting”.

™ =

Compression based on Multi-string BWT November 11th, 2022

Compression of quaity scores
Which scores to keep? [Janin, R. and Cox, 2014]

Genoma
PEACHxBANANAzAPPLExPEARzTANGERINExORANGExPEACHxBANANAxzPEAR

Reads collection

HxBANAN Ax PLExPEARx INExORANG BANANAzPE
PEACHxBAN PPLExPEAR GERINExzOR HxBANAN Ax
BANANAxzAP PEARxTANG RINExORAN ctPEACHxBA
FEACHxBANA LExPFEARxT ERINExORA PEACHxBAN

BANAN is always followed by A to make BANAN A.
Symbols that follow BAN AN are “not interesting” .
See BANAN in a read — discard or smooth the quality score of next base.

PFEA could be the start of either PEACH or PEAR.
Symbols that follow PE A are “interesting”.

See PEA in a read — keep quality score of next base.

i) =r

Compression based on Multi-string BWT November 11th, 2022

Compression of quaity scores
Which scores to keep? [Janin, R. and Cox, 2014]

Genoma
PEACHxBANANAzAPPLExPEARzTANGERINExORANGExPEACHxBANANAxzPEAR

Reads collection

HxBANAN Ax PLExPEARx INExORANG BANANAzPE
PEACHxBAN PPLExPEAR GERINExzOR HxBANAN Ax
BANANAxzAP PEARxTANG RINExORAN ctPEACHxBA
FEACHxBANA LExPEARxT ERINExORA PEACHxBAN

BANAN is always followed by A to make BANAN A.
Symbols that follow BAN AN are “not interesting” .
See BANAN in a read — discard or smooth the quality score of next base.

PFEA could be the start of either PEACH or PEAR.
Symbols that follow PE A are “interesting”.

See PEA in a read — keep quality score of next base.

These patterns can be inferred from the reads, don’t need to know genome.

i) =r

Compression based on Multi-string BWT November 11th, 2022

el e e
QS string and LCP array

QS(S’) LCP(S’) eBWT(S’) Sorted suffixes

Let S = {51,5,...,5m} ACATAGS;

ACATGS3
AG$,
ATACATAGS$,
ATAGS$,
ATGS$o
ATG$3
CATAGS$,
CATGS$:
CATGS$3

G$1

G$2

G$3
TACATAGS$,
TACATGS$3
TAGS$,
TGS$o

TG$3

Compression based on Multi-string BWT November 11th, 2022 21 /33

® — N — -

Let {S?,S4,..., Sk} be the ordered multi-set of
associated quality scores.

N 4T

W @
HHEHNUOORHROWWOWNWRHRNMOOOO

>>>Fr>Hd44d>>FP 000444000

LYITETTGEM Compression of quality scores

QS string and LCP array

Let S = {S1,S5,...,Sm}.

Let {S?,S4,..., Sk} be the ordered multi-set of
associated quality scores.

LCP[i]: length of Longest Common Prefix
between the i-th and the (i — 1)-th
suffix;

Qs(S")

LCP(S)

eBWT(S)

Sorted suffixes

® — ~N— -

N 4T

® e

D
[
&

HFHREFNOOORRFRPROWWOWNWKENROOOO

>>>Fr>Hd44d>>FP 000444000

Compression based on Multi-string BWT November 11th, 2022

ACATAGS,
ACATGS3
AG$,
ATACATAGS$,
ATAGS$,
ATGS$o
ATG$3
CATAGS$,
CATGS$:
CATGS$3

G$1

G$2

G$3
TACATAGS$,
TACATGS$3
TAGS$,
TGS

TG$3

21/33

LYITETTGEM Compression of quality scores

QS string and LCP array

Let S = {S1,S5,...,Sm}.

Let {S?,S4,..., Sk} be the ordered multi-set of
associated quality scores.

LCPJi]: length of Longest Common Prefix
between the i-th and the (i — 1)-th
suffix;

LCP-interval[ij]: if LCP[i] < ¢, LCP[h] > ¢ for
h=i+1,...,5, LCP[j+1] <ec.

Qs(S")

LCP(S")

eBWT(S)

Sorted suffixes

® — ~N— -

N 4T

- WO

D
!

&

HFHREFNOOORRFRPROWWOWNWKENPROOOO

>>>P>Hd44d>>FP 000444000

Compression based on Multi-string BWT November 11th, 2022

ACATAGS,
ACATGS3
AG$,
ATACATAGS$,
ATAGS,
ATG$o
ATGS$3
CATAGS$,
CATGS$:
CATGS$3

G$1

G$2

G$3
TACATAGS$,
TACATGS$3
TAGS$,
TGS

TG$3

21/33

LYITETTGEM Compression of quality scores

QS string and LCP array

Let S = {S1,S5,...,Sm}.

Let {S?,S4,..., Sk} be the ordered multi-set of
associated quality scores.

LCPJi]: length of Longest Common Prefix
between the i-th and the (i — 1)-th
suffix;

LCP-interval[ij]: if LCP[i] < ¢, LCP[h] > ¢ for
h=i+1,...,5, LCP[j+1] <ec.

QS[i]: quality score associated with eBWT]i;

Qs(S")

LCP(S)

eBWT(S)

Sorted suffixes

® — ~N— -

N 4T

- WO

!
&

HFHREFNOOORRFRPROWWOWNWKENPROOOO

>>>Fr>Hd44d>>FP 000444000

Compression based on Multi-string BWT November 11th, 2022

ACATAGS,
ACATGS3
AG$,
ATACATAGS$,
ATAGS$,
ATGS$o
ATG$3
CATAGS$,
CATGS$:
CATGS$3

G$1

G$2

G$3
TACATAGS$,
TACATGS$3
TAGS$,
TGS

TG$3

21/33

e e
Smoothing quality scores in BEETL [Janin, R. and Cox, 2014]

Sketch

Smoothing criteria based on parameters ¢, s:

IF LCP-value of LCP-interval > ¢

AND length of LCP-interval > s

AND all characters in LCP-interval are the same
THEN smooth

QS

eBWT

LCP

Sorted suffixes

Phrased in terms of the reads:

ORI Vo — -

bl aNANANANANANL |

= Ol Ww oo~ BN

GAC..
GATACAT..
GATAGATA..

GATAGATTA..
GATAGATTT..

GATTACAT..

GATTAGATA..
GCTTAGATA..

In this
example
c=3
s=4

If any pattern of length ¢ occurs at least s times and is always preceded by the same symbol,
then smooth the quality scores of those occurrences of that symbol.

How to smooth?

We first compute the mean estimate error rate by converting each quality score to an error
probability, taking the mean of these values and then converting back to Phred score (which
we note is not the same as taking the mean of the quality scores).

Compression based on Multi-string BWT November 11th, 2022

22 /33

e e
Smoothing quality scores in BEETL [Janin, R. and Cox, 2014]

Sketch

Smoothing criteria based on parameters ¢, s:

IF LCP-value of LCP-interval > ¢

AND length of LCP-interval > s

AND all characters in LCP-interval are the same
THEN smooth

Phrased in terms of the reads:

QS eBWT LCP Sorted suffixes
; T GAC..
Q G 2 GATACAT.. In this
Q G 4 GATAGATA..
Q G 7 GATAGATTA, ©x@mple
Q G 8 GATAGATTT.. ¢c=3
Q G 3 GATTACAT. o _ 4
Q G 5 GATTAGATA..
@ A 1 GCTTAGATA..

If any pattern of length ¢ occurs at least s times and is always preceded by the same symbol,
then smooth the quality scores of those occurrences of that symbol.

How to smooth?

We first compute the mean estimate error rate by converting each quality score to an error
probability, taking the mean of these values and then converting back to Phred score (which
we note is not the same as taking the mean of the quality scores).

Compression based on Multi-string BWT November 11th, 2022

22 /33

Compression of gs with noise reduction of the bases
Smoothing QS with bases noise reduction [Guerrini, Louza and R., 2022]

Next goal
Compress a FASTQ file by
@ smoothing the quality scores
@ applying a noise reduction on corresponding bases,

while keeping variant calling performance comparable to original data.

FASTQ BFQzip

l Positional Smoothing FASTQ
Cluster m» | and Noise |mm» | Rewriting |
Detecting Reduction (LF-mapping) 1

Output

Compression based on Multi-string BWT November 11th, 2022 23 /33

Compression of gs with noise reduction of the bases
Smoothing QS with bases noise reduction [Guerrini, Louza and R., 2022]

Next goal
Compress a FASTQ file by
@ smoothing the quality scores
@ applying a noise reduction on corresponding bases,

while keeping variant calling performance comparable to original data.

FASTQ BFQzip

l Positional Smoothing FASTQ
Cluster m» | and Noise |mm | Rewriting |
Detecting Reduction (LF-mapping) 1

Output

Compression based on Multi-string BWT November 11th, 2022 23 /33

Applications Compression of gs with noise reduction of the bases

Positional Clustering framework [Prezza, Pisanti, R. and Sciortino, 2019]
eBWT LCP Sorted suffixes

Designed to overcome the limitation of fixing a-priori the context

length (for instance in the approaches based on LCP-interval).
ACATAGS$;

ACATGS3

AGS$,

AGACATAGS$;

ATAGS;

ATGS$2

ATGS$3

CATAG$;

CATGS$o

CATGS$3

G$,

G$2

G$3

GACATAGS:

TACATGS$3

TAGS$,

TGS,

TGS3

Compression based on Multi-string BWT November 11th, 2022 24 /33

A eBWT positional cluster eBWT]i, j] is a maximal substring s.t
for all i < r < j, LCPJ[r] is not a local minimum. J

@ Automatically detects, in a data-driven way, the length k of the
common context that differs cluster by cluster.

@ Short random contexts can be excluded by setting a minimum
value k,,.

Note. The value k,, and the shared context length k are likely to differ
in most clusters. J

S>> >A44>>FP>000f 404000
NHEFNOFFFRFRFROPWOWNHNHEMNOOOO

Applications Compression of gs with noise reduction of the bases

Positional Clustering framework [Prezza, Pisanti, R. and Sciortino, 2019]
eBWT LCP Sorted suffixes

Designed to overcome the limitation of fixing a-priori the context

length (for instance in the approaches based on LCP-interval).
ACATAGS$;

ACATGS3

AGS$,

AGACATAGS$;

ATAGS$;

ATGS$

ATGS$3

CATAG$;

CATGS$o

CATGS$3

G$,

G$2

G83

GACATAGS:

TACATGS$3

TAGS$,

TGS,

TGS3

Compression based on Multi-string BWT November 11th, 2022 24 /33

A eBWT positional cluster eBWT]i, j] is a maximal substring s.t
for all i < r < j, LCPJ[r] is not a local minimum. J

@ Automatically detects, in a data-driven way, the length k of the
common context that differs cluster by cluster.

@ Short random contexts can be excluded by setting a minimum
value k,,.

Note. The value k,, and the shared context length k are likely to differ
in most clusters. J

S>>P>HA4A>>P>0n0nfH40 4000
NFEFNOFRFRFRFRFROPWOWNHNHEMNOOOO

Applications Compression of gs with noise reduction of the bases

Positional Clustering framework [Prezza, Pisanti, R. and Sciortino, 2019]
eBWT LCP Sorted suffixes

Designed to overcome the limitation of fixing a-priori the context

length (for instance in the approaches based on LCP-interval).
ACATAGS$;

ACATGS3

AGS$,

AGACATAGS$;

ATAGS;

ATGS$2

ATGS$3

CATAG$;

CATGS$o

CATGS$3

G$,

G$2

G$3

GACATAGS:

TACATGS$3

TAGS$,

TGS,

TGS3

Compression based on Multi-string BWT November 11th, 2022 24 /33

A eBWT positional cluster eBWT]i, j] is a maximal substring s.t
for all i < r < j, LCPJ[r] is not a local minimum. J

@ Automatically detects, in a data-driven way, the length k of the
common context that differs cluster by cluster.

@ Short random contexts can be excluded by setting a minimum
value k,,.

Note. The value k,, and the shared context length k are likely to differ
in most clusters. J

S>> >A44>>FP>000f 404000
NHEFNOFFFRFRFROPWOWNHNHEMNOOOO

LYIETTEE Compression of gs with noise reduction of the bases

Noise reduction

@ We expect equal symbols inside positional clusters:

@ A frequent symbol is a symbol occurring in the cluster over some threshold.

QS eBWT LCP Sorted suffix

GACA
3 GACG
2 GATA
4 GATA
7 GATA
7
5
3
5

—_— M= M-

GATA
LGATA

44000 nnx»-H

@& |

CAA..
GATA..
GATCA..
GATTA..
GG..

GATTACAT..
GATTAGATA..

Compression based on Multi-string BWT November 11th, 2022

25/33

Compression of qs with noise reduction of the bases
Noise reduction

@ We expect equal symbols inside positional clusters:
@ A frequent symbol is a symbol occurring in the cluster over some threshold.

@ A noisy base in a cluster C' is a non-frequent symbol whose all occurrences in C' have no
high quality scores.

QS eBWT LCP Sorted suffix

GACA..
GACG..
GATACAA..
GATAGATA..
GATAGATCA..
GATAGATTA..
GATAGG..
GATTACAT..

5 GATTAGATA..

Idea. Noisy bases are more likely noise intreduced during sequencing.
= In any cluster, replace noisy bases with a predicted base.

Do not account for clusters with more than two frei uent simbols.
Compression based on Multi-string BWT November 11th, 2022 25 /33

WO NN PO W

k\m .

4400000 >»-H

Low quality score

&
Q

Noise reduction: two cases

1. Unique frequent symbol = replace noisy bases with it.

QS eBWT LCP Sorted suffix

GACA..
GACG..
GATACAA..
GATAGATA..
GATAGATCA..
GATAGATTA..
GATAGG..
GATTACAT..
GATTAGATA..

—_ M- T--
4400000 >»4H
GwWa~N~N»LOW

@R |l

Compression based on Multi-string BWT November 11th, 2022 26 / 33

Noise reduction: two cases

1. Unique frequent symbol = replace noisy bases with it.

QS eBWT LCP Sorted suffix

GACA..
GACG..
GATACAA..
GATAGATA..
GATAGATCA..
GATAGATTA..
GATAGG..
GATTACAT..
GATTAGATA..

—_ M- T--
4400000 >»4H
GwWaN~NP»OW

@R |l

Compression based on Multi-string BWT November 11th, 2022 26 / 33

LYIETTEE Compression of gs with noise reduction of the bases

Noise reduction: two cases

1. Unique frequent symbol =- replace noisy bases with it.

2. Two different frequent symbols
QS eBWT LCP

Sorted suffixes

@RI O-~vemO—~ T
4400000 >>>> -
WOl N~N®ON~NDNDW

@ Compute left contexts of considered bases (by LF-mapping).

GACA..
GACG..
GATAC..
GATAG..
GATAGAC..
GATAGAGAA..
GATAGAGAT..
GATAGAGC..
GATAGAGTTA..
GATAGATTA
GATAGG..
GATTACAT..
GATTAG..

@ Replace any noisy base, if its left context coincides with all the left contexts of only one frequent symbol.

Compression based on Multi-string BWT November 11th, 2022

27 /33

LYIETTEE Compression of gs with noise reduction of the bases

Noise reduction: two cases

1. Unique frequent symbol =- replace noisy bases with it.

2. Two different frequent symbols

Left context QS eBWT LCP Sorted suffixes
; T GACA..
F A 3 GACG..
CAT i A 2 GATAC..
CAT i A 4 GATAG..
CAT G A 7 GATAGAC..
ATA E C 7 GATAGAGAA..
ATA @ C 8 GATAGAGAT..
ATA ? C 7 GATAGAGC..
CAT ! G 7 GATAGAGTTA..
CAT D A 6 GATAGATTA..
ATA = C 5 GATAGG..
& T 3 GATTACAT..
@© T 5 GATTAG..

@ Compute left contexts of considered bases (by LF-mapping).

@ Replace any noisy base, if its left context coincides with all the left contexts of only one frequent symbol.

Compression based on Multi-string BWT November 11th, 2022

27 /33

LYIETTEE Compression of gs with noise reduction of the bases

Noise reduction: two cases

1. Unique frequent symbol =- replace noisy bases with it.

2. Two different frequent symbols

Left context QS eBWT LCP Sorted suffixes
; T GACA..
F A 3 GACG..
CAT i A 2 GATAC..
CAT i A 4 GATAG..
CAT G A 7 GATAGAC..
ATA E C 7 GATAGAGAA..
ATA @ C 8 GATAGAGAT..
ATA ? C 7 GATAGAGC..
CAT ! G 7 GATAGAGTTA..
CAT D A 6 GATAGATTA..
ATA = C 5 GATAGG..
& T 3 GATTACAT..
@© T 5 GATTAG..

@ Compute left contexts of considered bases (by LF-mapping).

@ Replace any noisy base, if its left context coincides with all the left contexts of only one frequent symbol.

Compression based on Multi-string BWT November 11th, 2022

27 /33

LYIETTEE Compression of gs with noise reduction of the bases

Noise reduction: two cases

1. Unique frequent symbol =- replace noisy bases with it.

2. Two different frequent symbols

Left context QS eBWT LCP Sorted suffixes
; T GACA..
F A 3 GACG..
CAT i A 2 GATAC..
CAT i A 4 GATAG..
CAT G A 7 GATAGAC..
ATA E C 7 GATAGAGAA..
ATA @ C 8 GATAGAGAT..
ATA ? C 7 GATAGAGC..
CAT ! A 7 GATAGAGTTA..
CAT D A 6 GATAGATTA..
ATA = C 5 GATAGG..
& T 3 GATTACAT..
@© T 5 GATTAG..

@ Compute left contexts of considered bases (by LF-mapping).

@ Replace any noisy base, if its left context coincides with all the left contexts of only one frequent symbol.

Compression based on Multi-string BWT November 11th, 2022

27 /33

LYIETTEE Compression of gs with noise reduction of the bases

Smoothing quality score

@ We expect quality scores inside positional clusters add little information

= smoothed over using a single value Q.
QS eBWT LCP Sorted suffixes

; T CAT..

i G 0 GATACAT..

5 G 4 GATAGATA..

? G 7 GATAGATTA..
= G 8 GATAGATTT..
& T 3 GATTACAT..
¢ A 5 GATTAGATA..

@ The value @@ can be computed according to four different strategies:
o default value,
e mean probability error,
e maximum quality score,
e average quality score.

@ To reduce the number of the alphabet symbols, standard techniques (like Illumina 8-level

November 11th, 2022 28 /33

LYIETTEE Compression of gs with noise reduction of the bases

Smoothing quality score

@ We expect quality scores inside positional clusters add little information

= smoothed over using a single value Q.
QS eBWT LCP Sorted suffixes

; T CAT..

Q G 0 GATACAT..

Q G 4 GATAGATA..
G 7 GATAGATTA..

Q G 8 GATAGATTT..

& T 3 GATTACAT..

¢ A 5 GATTAGATA..

@ The value @@ can be computed according to four different strategies:
o default value,
e mean probability error,
e maximum quality score,
e average quality score.

@ To reduce the number of the alphabet symbols, standard techniques (like Illumina 8-level

November 11th, 2022 28 /33

Compression of gs with noise reduction of the bases
Compression experiments - BFQzip tool [Guerrini, Louza and R., 2022]

@ For comparison, two well-known compressors were used: PPMd and BSC.

@ Paired-end datasets were compressed separately.

compressed size

Compression ratio: bt .
original size

Chrl4 ERR262997_1 ERR262997_2

(18M reads, 101 length) FASTQ QS DNA FASTQ QS DNA
Original 0.2482 0.2956 0.2544 0.3076

PPMd LEON 0.1175 0.0301 0.2100 0.1249 0.0444 0.2106
BEETL 0.1916 0.1805 0.2010 0.1989
BFQzip 0.1957 0.1889 0.2098 0.2050 0.2074 0.2103
Original 0.1992 0.2862 0.2071 0.2972

BSC LEON 0.0674 0.0226 0.1174 0.0770 0.0367 0.1224
BEETL 0.1406 0.1698 0.1518 0.1874
BFQzrp 0.1445 0.1786 0.1164 0.1555 0.1962 0.1210

BEETL [Janin, R. and Cox, 2014] (based on eBWT, Reference-free and read-based),

LEON [Benoit et. al, 2015] (assembly-based).

All tested tools improved the compression of the original data.

BFQzip and BEETL behaved similarly in all cases.

LEON achieved a greater ability to smooth the quality scores, as it truncates all scores above a given threshold.

Compression based on Multi-string BWT November 11th, 2022 29 /33

Compression of gs with noise reduction of the bases
Validation - BFQzip tool [Guerrini, Louza and R., 2022]

@ Test the impact of modified data on single nucleotide polymorphisms (SNPs) discovery
(BWA-MEM + HaplotypeCaller).

Compression based on Multi-string BWT November 11th, 2022 30 /33

Applications Compression of gs with noise reduction of the bases

Validation - BFQz1P tool [Guerrini, Louza and R., 2022]

@ Test the impact of modified data on single nucleotide polymorphisms (SNPs) discovery

(BWA-MEM + HaplotypeCaller).
@ Compare the set of called variants from each modified FASTQ with a baseline set:

@ of variants obtained from the original FASTQ file;

PREC (average %) | SEN (average %) | F (average %)
BEETL 96.020 95.360 95.690
LEON 96.027 93.617 94.802
BFQuzip 96.303 95.373 95.837
PREC — L SEN = L F— 2. SEN - PREC
TP+FP TP+FN SEN + PREC

TP =variants matching in both baseline and called variants;
FP = variants in the called variants set but not in the baseline;
FN = variants missing in the called variants set but in the baseline.

BFQzip reported a higher number of TP and the lowest number of FP.

Compression based on Multi-string BWT November 11th, 2022 30 /33

Compression of gs with noise reduction of the bases
Validation - BFQzip tool [Guerrini, Louza and R., 2022]

@ Test the impact of modified data on single nucleotide polymorphisms (SNPs) discovery
(BWA-MEM + HaplotypeCaller).

@ Compare the set of called variants from each modified FASTQ with a baseline set:
@ of variants obtained from the original FASTQ file;
@ "“Ground Truth” for NA12878.

Ex. Chrl4

&

BFQzip preserved variants that are both in the original data and in the Ground Truth.

= = =

Compression based on Multi-string BWT November 11th, 2022 31/33

Further works

To introduce new eBWT-based compressors:
o Efficient Construction

@ Indexing for other and newer comparison Sequences

compari-

and analysis of sequences Sy

SNP and

Work in progress InDe

Reordering reads. Combine the last approaches
on FASTQ files with a reordering-based orolam
strategy, in a manner that “similar” reads are
placed close together and can be encoded more
efficiently.

Compression
and indexing

Compression based on Multi-string BWT November 11th, 2022 32 /33

For further reading |

[@ Mohamed Ibrahim Abouelhoda, Stefan Kurtz, Enno Ohlebusch (2004).
Replacing suffix trees with enhanced suffix arrays.
Journal of Discrete Algorithms, 2(1):53-86.

ﬁ Sabrina Mantaci, Antonio Restivo, G.R., and Marinella Sciortino (2007).
An extension of the Burrows-Wheeler Transform.
Theoret. Comput. Sci., 387(3):298-312.

3 Anthony J. Cox, Markus Bauer, and G.R. (2011).
Lightweight BWT construction for very large string collections.
In CPM, volume 6661 of LNCS, pages 219-231. Springer.

Compression based on Multi-string BWT November 11th, 2022 32 /33

For further reading Il

[§ Anthony J. Cox, Markus Bauer, Tobias Jakobi, and G.R. (2012).

Large-scale compression of genomic sequence databases with the Burrows-Wheeler
transform.

Bioinformatics, 28(11):1415-1419.

[§ Markus Bauer, Anthony J. Cox, and G.R. (2013).
Lightweight algorithms for constructing and inverting the BWT of string collections.
Theoretical Computer Science, 483(0):134-148.

[{ Lilian Janin, G.R., and Anthony J. Cox. (2014).
Adaptive reference-free compression of sequence quality scores.
Bioinformatics 30(1): 24-30,

Compression based on Multi-string BWT November 11th, 2022 32 /33

For further reading Il

[§ Heng Li (2014).
Fast construction of FM-index for long sequence reads
Bioinformatics, 30(22):3274-3275.

[@ G. Benoit, C. Lemaitre, D. Lavenier, E. Drezen, T. Dayris, R. Uricaru, G. Rizk. (2015).
Reference-free compression of high throughput sequencing data with a probabilistic de
Bruijn graph.

BMC Bioinformatics, 2015, 16:288.

[§ Anthony J. Cox, Fabio Garofalo, G.R., Marinella Sciortino, (2016).
Lightweight LCP construction for very large collections of strings.
In Journal of Discrete Algorithms, volume 37, pages 326—337. Springer.

Compression based on Multi-string BWT November 11th, 2022 32 /33

For further reading IV

[§ Nicola Prezza, Naida Pisanti, Marinella Sciortino, G.R. (2019)
SNPs detection by eBWT positional clustering.
Algorithms Mol Biol 14, 3.

[@ Jason W. Bentley, Daniel Gibney, Sharma V. Thankachan (2020)
On the Complexity of BWT-Runs Minimization via Alphabet Reordering.
ESA, pages 15:1-15:13.

[§ Davide Cenzato and Zsuzsanna Liptak (2022).
A Theoretical and Experimental Analysis of BWT Variants for String Collections
CPM, 25:1-25:18.

[Veronica Guerrini, Felipe Louza and G.R. (2022).
Lossy Compressor Preserving Variant Calling through Extended BWT
BIOSTEC/BIOINFORMATICS, pages 38-48.

Compression based on Multi-string BWT November 11th, 2022 32 /33

Conclusions

Most described algorithms are implemented in the Burrows-Wheeler Extended Tool Library
(BEETL) library:

github.com:BEETL/BEETL.git

BFQzip:

github.com:veronicaguerrini/BFQzip.git

Thank you!

Compression based on Multi-string BWT November 11th, 2022 33 /33

	Introduction
	The Extended Burrows-Wheeler Transform
	How computing the EBWT?

	Applications
	Compression of DNA bases
	Compression of quality scores
	Compression of qs with noise reduction of the bases

	Conclusions

