Dipartimento di Matematica e Informatica Dottorato di Ricerca in Matematica e Informatica

Balancing and clustering of words: a combinatorial analysis of the Burrows \& Wheeler Transform

Giovanna Rosone
giovanna@math.unipa.it

Advisor:
Prof. Antonio Restivo

Coordinator:
Prof. Camillo Trapani

Burrows-Wheeler Transform (BWT)

- The BWT is a well known transformation introduced in [M. Burrows and D. Wheeler, A block sorting data compression algorithm, Technical report, DIGITAL System Research Center, 1994]
- The BWT is a reversible transformation that produces a permutation $b w t(v)$ of an input sequence v, defined over an ordered alphabet \mathcal{A}, so that occurrences of a given symbol tend to occur in clusters in the output sequence.
- Traditionally the major application of the Burrows-Wheeler Transform has been for Data Compression. The BWT represents for instance the heart of the BZIP2 algorithm.
- Today, there are reports of the application of the BWT in bio-informatics, full-text compressed indexes, prediction and entropy estimation, and shape analysis in computer vision, etc. Moreover there exist several variants and extensions of such a transform

Burrows-Wheeler Transform (BWT)

- The BWT is a well known transformation introduced in [M. Burrows and D. Wheeler, A block sorting data compression algorithm, Technical report, DIGITAL System Research Center, 1994]
- The BWT is a reversible transformation that produces a permutation $b w t(v)$ of an input sequence v, defined over an ordered alphabet \mathcal{A}, so that occurrences of a given symbol tend to occur in clusters in the output sequence.
- Traditionally the major application of the Burrows-Wheeler Transform has been for Data Compression. The BWT represents for instance the heart of the BZIP2 algorithm.
> - Today, there are reports of the application of the BWT in bio-informatics, full-text compressed indexes, prediction and entropy estimation and shane analysis in comnuter vision etc Moreover there exist several variants and extensions of such a transform

Burrows-Wheeler Transform (BWT)

- The BWT is a well known transformation introduced in [M. Burrows and D. Wheeler, A block sorting data compression algorithm, Technical report, DIGITAL System Research Center, 1994]
- The BWT is a reversible transformation that produces a permutation $b w t(v)$ of an input sequence v, defined over an ordered alphabet \mathcal{A}, so that occurrences of a given symbol tend to occur in clusters in the output sequence.
- Traditionally the major application of the Burrows-Wheeler Transform has been for Data Compression. The BWT represents for instance the heart of the BZIP2 algorithm.
- Today, there are reports of the application of the BWT in bio-informatics, full-text compressed indexes, prediction and entropy estimation, and shape analysis in computer vision, etc. Moreover, there exist several variants and extensions of such a transform.

Preliminaries

- Let \mathcal{A} denote a non-empty finite set of symbols. The elements of \mathcal{A} are called letters (symbols or characters) and the set \mathcal{A} is called an alphabet.
- A word over an alphabet \mathcal{A} is a finite sequence of letters from \mathcal{A}.
- The empty word ε is the empty sequence.
- Two words $u, v \in \mathcal{A}^{*}$ are conjugate, if $u=x y$ and $v=y x$ for some $x, y \in \mathcal{A}^{*}$. Thus conjugate words are just cyclic shifts of one another.
- Let $[v]$ denote the conjugacy classes of v.
- A conjugacy class can also be represented as a circular word. Hence in what follows we will use "circular word" and "conjugacy class" as synonym.

How does BWT work?

- BWT takes as input a text v and produces:
- a permutation $b w t(v)$ of the letters of v.
- the index I
- Example:

How does BWT work?

- BWT takes as input a text v and produces:
- a permutation $\operatorname{bwt}(v)$ of the letters of v.
- the index I
- Example: $v=$ international

How does BWT work?

- BWT takes as input a text v and produces:
- a permutation $\operatorname{bwt}(v)$ of the letters of v.
- the index I
- Example: $v=$ international

```
international
nt ernat i onal i
t ernational in
ernat i o nal in nt
rnationnal inte
nat i o nal in nter
ati onal intern
t i o nal in t erna
i onal internat
onal internati
nal internatio
al internationn
l internat i o na
```


How does BWT work?

- BWT takes as input a text v and produces:
- a permutation $b w t(v)$ of the letters of v.
- the index I
- Example: $v=$ international

```
international
nt ernat i onal i
t ernational in
ernat i o nal in n
rnational inte
nat i o nal in nter
at i onal in tern
t i o nal in t erna
i onal internat
onal internati
nal internatio
al internat i on
linternatioona
```


How does BWT work?

- BWT takes as input a text v and produces:
- a permutation $b w t(v)$ of the letters of v.
- the index I

M

- Example: $v=$ international

$$
\begin{array}{ccccccccccccc}
i & n & t & e & r & n & a & t & i & o & n & a & l \\
n & t & e & r & n & a & t & i & o & n & a & l & i \\
t & e & r & n & a & t & i & o & n & a & l & i & n \\
e & r & n & a & t & i & o & n & a & l & i & n & t \\
r & n & a & t & i & o & n & a & l & i & n & t & e \\
n & a & t & i & o & n & a & l & i & n & t & e & r \\
a & t & i & o & n & a & l & i & n & t & e & r & n \\
t & i & o & n & a & l & i & n & t & e & r & n & a \\
i & o & n & a & l & i & n & t & e & r & n & a & t \\
o & n & a & l & i & n & t & e & r & n & a & t & i \\
n & a & l & i & n & t & e & r & n & a & t & i & o \\
a & l & i & n & t & e & r & n & a & t & i & o & n \\
l & i & n & t & e & r & n & a & t & i & o & n & a
\end{array}
$$

| | F | | | | | | | | | | | L | | |
| ---: | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| | \downarrow | | | | | | | | | | | | | |
| 1 | a | l | i | n | t | e | r | n | a | t | i | o | n | |
| 2 | a | t | i | o | n | a | l | i | n | t | e | r | n | |
| 3 | | e | r | n | a | t | i | o | n | a | l | i | n | t |
| 4 | i | n | t | e | r | n | a | t | i | o | n | a | l | |
| 5 | i | o | n | a | l | i | n | t | e | r | n | a | t | |
| 6 | l | i | n | t | e | r | n | a | t | i | o | n | a | |
| 7 | n | a | l | i | n | t | e | r | n | a | t | i | o | |
| 8 | n | a | t | i | o | n | a | l | i | n | t | e | r | |
| 9 | n | t | e | r | n | a | t | i | o | n | a | l | i | |
| 10 | o | n | a | l | i | n | t | e | r | n | a | t | i | |
| 11 | r | n | a | t | i | o | n | a | l | i | n | t | e | |
| 12 | t | e | r | n | a | t | i | o | n | a | l | i | n | |
| 13 | t | i | o | n | a | l | i | n | t | e | r | n | a | |

Each row of M is a conjugate of v in lexicographic order.

How does BWT work?

- BWT takes as input a text v and produces:
- a permutation $b w t(v)$ of the letters of v.
- the index I, that denotes the position of the original word v after the
lexicographical sorting of its conjugates.

M

- Example: $v=$ international

$$
\begin{array}{ccccccccccccc}
i & n & t & e & r & n & a & t & i & o & n & a & l \\
n & t & e & r & n & a & t & i & o & n & a & l & i \\
t & e & r & n & a & t & i & o & n & a & l & i & n \\
e & r & n & a & t & i & o & n & a & l & i & n & t \\
r & n & a & t & i & o & n & a & l & i & n & t & e \\
n & a & t & i & o & n & a & l & i & n & t & e & r \\
a & t & i & o & n & a & l & i & n & t & e & r & n \\
t & i & o & n & a & l & i & n & t & e & r & n & a \\
i & o & n & a & l & i & n & t & e & r & n & a & t \\
o & n & a & l & i & n & t & e & r & n & a & t & i \\
n & a & l & i & n & t & e & r & n & a & t & i & o \\
a & l & i & n & t & e & r & n & a & t & i & o & n \\
l & i & n & t & e & r & n & a & t & i & o & n & a
\end{array}
$$

| | F | | | | | | | | | | | L | |
| ---: | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| | \downarrow | | | | | | | | | | | \downarrow | |
| 1 | a | l | i | n | t | e | r | n | a | t | i | o | n |
| 2 | a | t | i | o | n | a | l | i | n | t | e | r | n |
| 3 | e | r | n | a | t | i | o | n | a | l | i | n | t |
| $\rightarrow 4$ | i | n | t | e | r | n | a | t | i | o | n | a | l |
| 5 | i | o | n | a | l | i | n | t | e | r | n | a | t |
| 6 | l | i | n | t | e | r | n | a | t | i | o | n | a |
| 7 | n | a | l | i | n | t | e | r | n | a | t | i | o |
| 8 | n | a | t | i | o | n | a | l | i | n | t | e | r |
| 9 | n | t | e | r | n | a | t | i | o | n | a | l | i |
| 10 | o | n | a | l | i | n | t | e | r | n | a | t | i |
| 11 | r | n | a | t | i | o | n | a | l | i | n | t | e |
| 12 | t | e | r | n | a | t | i | o | n | a | l | i | n |
| 13 | t | i | o | n | a | l | i | n | t | e | r | n | a |

Each row of M is a conjugate of v in lexicographic order.

How does BWT work?

- BWT takes as input a text v and produces:
- a permutation $b w t(v)$ of the letters of v.
- the index I, that denotes the position of the original word v after the
lexicographical sorting of its conjugates.

M

- Example: $v=$ international

$$
\begin{array}{ccccccccccccc}
i & n & t & e & r & n & a & t & i & o & n & a & l \\
n & t & e & r & n & a & t & i & o & n & a & l & i \\
t & e & r & n & a & t & i & o & n & a & l & i & n \\
e & r & n & a & t & i & o & n & a & l & i & n & t \\
r & n & a & t & i & o & n & a & l & i & n & t & e \\
n & a & t & i & o & n & a & l & i & n & t & e & r \\
a & t & i & o & n & a & l & i & n & t & e & r & n \\
t & i & o & n & a & l & i & n & t & e & r & n & a \\
i & o & n & a & l & i & n & t & e & r & n & a & t \\
o & n & a & l & i & n & t & e & r & n & a & t & i \\
n & a & l & i & n & t & e & r & n & a & t & i & o \\
a & l & i & n & t & e & r & n & a & t & i & o & n \\
l & i & n & t & e & r & n & a & t & i & o & n & a
\end{array}
$$

| | F | | | | | | | | | | | L | |
| ---: | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| | \downarrow | | | | | | | | | | | \downarrow | |
| 1 | a | l | i | n | t | e | r | n | a | t | i | o | n |
| 2 | a | t | i | o | n | a | l | i | n | t | e | r | n |
| 3 | e | r | n | a | t | i | o | n | a | l | i | n | t |
| $\rightarrow 4$ | i | n | t | e | r | n | a | t | i | o | n | a | l |
| 5 | i | o | n | a | l | i | n | t | e | r | n | a | t |
| 6 | l | i | n | t | e | r | n | a | t | i | o | n | a |
| 7 | n | a | l | i | n | t | e | r | n | a | t | i | o |
| 8 | n | a | t | i | o | n | a | l | i | n | t | e | r |
| 9 | n | t | e | r | n | a | t | i | o | n | a | l | i |
| 10 | o | n | a | l | i | n | t | e | r | n | a | t | i |
| 11 | r | n | a | t | i | o | n | a | l | i | n | t | e |
| 12 | t | e | r | n | a | t | i | o | n | a | l | i | n |
| 13 | t | i | o | n | a | l | i | n | t | e | r | n | a |

Each row of M is a conjugate of v in lexicographic order.

How does BWT work?

- BWT takes as input a text v and produces:
- a permutation $b w t(v)$ of the letters of v.
- the index I, that denotes the position of the original word v after the
lexicographical sorting of its conjugates.

M

- Example: $v=$ international

$$
\begin{array}{ccccccccccccc}
i & n & t & e & r & n & a & t & i & o & n & a & l \\
n & t & e & r & n & a & t & i & o & n & a & l & i \\
t & e & r & n & a & t & i & o & n & a & l & i & n \\
e & r & n & a & t & i & o & n & a & l & i & n & t \\
r & n & a & t & i & o & n & a & l & i & n & t & e \\
n & a & t & i & o & n & a & l & i & n & t & e & r \\
a & t & i & o & n & a & l & i & n & t & e & r & n \\
t & i & o & n & a & l & i & n & t & e & r & n & a \\
i & o & n & a & l & i & n & t & e & r & n & a & t \\
o & n & a & l & i & n & t & e & r & n & a & t & i \\
n & a & l & i & n & t & e & r & n & a & t & i & o \\
a & l & i & n & t & e & r & n & a & t & i & o & n \\
l & i & n & t & e & r & n & a & t & i & o & n & a
\end{array}
$$

$\operatorname{bwt}(v)=L=n n t l t a o r i i e n a$ and $I=4$.

| | F | | | | | | | | | | | L | |
| ---: | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| | \downarrow | | | | | | | | | | | \downarrow | |
| 1 | a | l | i | n | t | e | r | n | a | t | i | o | n |
| 2 | a | t | i | o | n | a | l | i | n | t | e | r | n |
| 3 | e | r | n | a | t | i | o | n | a | l | i | n | t |
| $\rightarrow 4$ | i | n | t | e | r | n | a | t | i | o | n | a | l |
| 5 | i | o | n | a | l | i | n | t | e | r | n | a | t |
| 6 | l | i | n | t | e | r | n | a | t | i | o | n | a |
| 7 | n | a | l | i | n | t | e | r | n | a | t | i | o |
| 8 | n | a | t | i | o | n | a | l | i | n | t | e | r |
| 9 | n | t | e | r | n | a | t | i | o | n | a | l | i |
| 10 | o | n | a | l | i | n | t | e | r | n | a | t | i |
| 11 | r | n | a | t | i | o | n | a | l | i | n | t | e |
| 12 | t | e | r | n | a | t | i | o | n | a | l | i | n |
| 13 | t | i | o | n | a | l | i | n | t | e | r | n | a |

Each row of M is a conjugate of v in lexicographic order.

Properties

- BWT takes as input a text v and produces:
- a permutation $b w t(v)$ of the letters of v.
- the index I, that is useful in order to recover the original word v.
- Example: $v=$ international
bwt $(v)=L=$ nntltaoriiena and $I=4$

Properties

- BWT takes as input a text v and produces:
- a permutation $b w t(v)$ of the letters of v.
- the index I, that is useful in order to recover the original word v.
- Example: $v=$ international
$b w t(v)=L=n n t l t a o r i i e n a ~ a n d ~ I=4$
- The first character of v is $F[I]$.
- For any character α, the i th occurrence of α in F corresponds to the i th occurrence of α in L.

Properties

- BWT takes as input a text v and produces:
- a permutation $b w t(v)$ of the letters of v.
- the index I, that is useful in order to recover the original word v.
- Example: $v=$ international
$b w t(v)=L=n n t l t a o r i i e n a ~ a n d ~ I=4$
- The first character of v is $F[I]$.
- For any character α, the i th occurrence of α in F corresponds to the i th occurrence of α in L.
- For all $i \neq I$, the character $L[i]$

Reverse

$\operatorname{bwt}(v)=L=n n t l t a o r i i e n a$ and $I=4$.

- The first character of v is $F[I]$.
 occurrence of α in F corresponds to the i th occurrence of α in L.

$v=i$

Reverse

bwt $(v)=L=n n t l t a o r i i e n a$ and $I=4$.

- The first character of v is $F[I]$.
- For any character α, the i th occurrence of α in F corresponds to the i th occurrence of α in L.
$v=i$

Reverse

bwt $(v)=L=n n t l t a o r i i e n a$ and $I=4$.

- The first character of v is $F[I]$.
- For any character α, the i th occurrence of α in F corresponds to the i th occurrence of α in L.
- For all $i \neq I$, the character $L[i]$ is followed in v by $F[i]$;
$v=i n$

Reverse

$b w t(v)=L=n n t l t a o r i i e n a$ and $I=4$.

- The first character of v is $F[I]$.
- For any character α, the i th occurrence of α in F corresponds to the i th occurrence of α in L.
- For all $i \neq I$, the character $L[i]$ is followed in v by $F[i]$;
$v=i n$

Reverse

$\operatorname{bwt}(v)=L=n n t l t a o r i i e n a ~ a n d ~$ $I=4$.

- The first character of v is $F[I]$.
- For any character α, the i th occurrence of α in F corresponds to the i th occurrence of α in L.
- For all $i \neq I$, the character $L[i]$ is followed in v by $F[i]$;
$v=i n t$

Reverse

$\operatorname{bwt}(v)=L=n n t l t a o r i i e n a$ and $I=4$.

- The first character of v is $F[I]$.
- For any character α, the i th occurrence of α in F corresponds to the i th occurrence of α in L.
- For all $i \neq I$, the character $L[i]$ is followed in v by $F[i]$;
$v=i n t$

Reverse

$\operatorname{bwt}(v)=L=n n t l t a o r i i e n a ~ a n d ~$ $I=4$.

- The first character of v is $F[I]$.
- For any character α, the i th occurrence of α in F corresponds to the i th occurrence of α in L.
- For all $i \neq I$, the character $L[i]$ is followed in v by $F[i]$;
$v=$ inte

Reverse

bwt $(v)=L=n n t l t a o r i i e n a$ and $I=4$.

- The first character of v is $F[I]$.
- For any character α, the i th occurrence of α in F corresponds to the i th occurrence of α in L.
- For all $i \neq I$, the character $L[i]$ is followed in v by $F[i]$;
$v=i n t e$

Reverse

$\operatorname{bwt}(v)=L=n n t l t a o r i i e n a$ and $I=4$.

- The first character of v is $F[I]$.
- For any character α, the i th occurrence of α in F corresponds to the i th occurrence of α in L.
- For all $i \neq I$, the character $L[i]$ is followed in v by $F[i]$;
$v=i n t e r$

Reverse

$b w t(v)=L=n n t l t a o r i i e n a$ and $I=4$.

- The first character of v is $F[I]$.
- For any character α, the i th occurrence of α in F corresponds to the i th occurrence of α in L.
- For all $i \neq I$, the character $L[i]$ is followed in v by $F[i]$;
$v=i n t e r$

Reverse

bwt $(v)=L=n n t l t a o r i i e n a$ and $I=4$.

- The first character of v is $F[I]$.
- For any character α, the i th occurrence of α in F corresponds to the i th occurrence of α in L.
- For all $i \neq I$, the character $L[i]$ is followed in v by $F[i]$;
$v=$ intern

Reverse

bwt $(v)=L=n n t l t a o r i i e n a$ and $I=4$.

- The first character of v is $F[I]$.
- For any character α, the i th occurrence of α in F corresponds to the i th occurrence of α in L.
- For all $i \neq I$, the character $L[i]$ is followed in v by $F[i]$;
$v=$ intern

Reverse

$\operatorname{bwt}(v)=L=n n t l t a o r i i e n a$ and $I=4$.

- The first character of v is $F[I]$.
- For any character α, the i th occurrence of α in F corresponds to the i th occurrence of α in L.
- For all $i \neq I$, the character $L[i]$ is followed in v by $F[i]$;
$v=$ interna

Reverse

bwt $(v)=L=n n t l t a o r i i e n a$ and $I=4$.

- The first character of v is $F[I]$.
- For any character α, the i th occurrence of α in F corresponds to the i th occurrence of α in L.
- For all $i \neq I$, the character $L[i]$ is followed in v by $F[i]$;
$v=$ interna

Reverse

bwt $(v)=L=n n t l t a o r i i e n a$ and $I=4$.

- The first character of v is $F[I]$.
- For any character α, the i th occurrence of α in F corresponds to the i th occurrence of α in L.
- For all $i \neq I$, the character $L[i]$ is followed in v by $F[i]$;
$v=$ internat

- Notice that if we except the index, have the same Burrows-Wheeler Transform.

Reverse

bwt $(v)=L=n n t l t a o r i i e n a$ and $I=4$.

- The first character of v is $F[I]$.
- For any character α, the i th occurrence of α in F corresponds to the i th occurrence of α in L.
- For all $i \neq I$, the character $L[i]$ is followed in v by $F[i]$;
$v=$ internat

have the same Burrows-Wheeler Transform.

Reverse

bwt $(v)=L=n n t l t a o r i i e n a$ and $I=4$.

- The first character of v is $F[I]$.
- For any character α, the i th occurrence of α in F corresponds to the i th occurrence of α in L.
- For all $i \neq I$, the character $L[i]$ is followed in v by $F[i]$;
$v=$ internat i

have the same Burrows-Wheeler Transform.

Reverse

bwt $(v)=L=n n t l t a o r i i e n a$ and $I=4$.

- The first character of v is $F[I]$.
- For any character α, the i th occurrence of α in F corresponds to the i th occurrence of α in L.
- For all $i \neq I$, the character $L[i]$ is followed in v by $F[i]$;
$v=$ internat i

have the same Burrows-Wheeler Transform.

Reverse

bwt $(v)=L=n n t l t a o r i i e n a$ and $I=4$.

- The first character of v is $F[I]$.
- For any character α, the i th occurrence of α in F corresponds to the i th occurrence of α in L.
- For all $i \neq I$, the character $L[i]$ is followed in v by $F[i]$;
$v=$ internatio

have the same Burrows-Wheeler Transform.

Reverse

bwt $(v)=L=n n t l t a o r i i e n a$ and $I=4$.

- The first character of v is $F[I]$.
- For any character α, the i th occurrence of α in F corresponds to the i th occurrence of α in L.
- For all $i \neq I$, the character $L[i]$ is followed in v by $F[i]$;
$v=$ internatio

have the same Burrows-Wheeler Transform.

Reverse

bwt $(v)=L=n n t l t a o r i i e n a$ and $I=4$.

- The first character of v is $F[I]$.
- For any character α, the i th occurrence of α in F corresponds to the i th occurrence of α in L.
- For all $i \neq I$, the character $L[i]$ is followed in v by $F[i]$;
$v=$ internation

have the same Burrows-Wheeler Transform.

Reverse

$b w t(v)=L=n n t l t a o r i i e n a$ and $I=4$.

- The first character of v is $F[I]$.
- For any character α, the i th occurrence of α in F corresponds to the i th occurrence of α in L.
- For all $i \neq I$, the character $L[i]$ is followed in v by $F[i]$;
$v=$ internation
 have the same Burrows-Wheeler Transform.

Reverse

$b w t(v)=L=n n t l t a o r i i e n a$ and $I=4$.

- The first character of v is $F[I]$.
- For any character α, the i th occurrence of α in F corresponds to the i th occurrence of α in L.
- For all $i \neq I$, the character $L[i]$ is followed in v by $F[i]$;
$v=$ internationa
 have the same Burrows-Wheeler Transform.

Reverse

$b w t(v)=L=n n t l t a o r i i e n a$ and $I=4$.

- The first character of v is $F[I]$.
- For any character α, the i th occurrence of α in F corresponds to the i th occurrence of α in L.
- For all $i \neq I$, the character $L[i]$ is followed in v by $F[i]$;
$v=$ internationa
 have the same Burrows-Wheeler Transform.

Reverse

$b w t(v)=L=n n t l t a o r i i e n a$ and $I=4$.

- The first character of v is $F[I]$.
- For any character α, the i th occurrence of α in F corresponds to the i th occurrence of α in L.
- For all $i \neq I$, the character $L[i]$ is followed in v by $F[i]$;
$v=$ international
 have the same Burrows-Wheeler Transform.

Reverse

$b w t(v)=L=n n t l t a o r i i e n a$ and $I=4$.

- The first character of v is $F[I]$.
- For any character α, the i th occurrence of α in F corresponds to the i th occurrence of α in L.
- For all $i \neq I$, the character $L[i]$ is followed in v by $F[i]$;
$v=$ international
 have the same Burrows-Wheeler Transform.

Reverse

$b w t(v)=L=n n t l t a o r i i e n a$ and $I=4$.

- The first character of v is $F[I]$.
- For any character α, the i th occurrence of α in F corresponds to the i th occurrence of α in L.
- For all $i \neq I$, the character $L[i]$ is followed in v by $F[i]$;
$v=$ international
 have the same Burrows-Wheeler Transform.

Reverse

$\operatorname{bwt}(v)=L=n n t l t a o r i i e n a$ and $I=4$.

- The first character of v is $F[I]$.
- For any character α, the i th occurrence of α in F corresponds to the i th occurrence of α in L.
- For all $i \neq I$, the character $L[i]$ is followed in v by $F[i]$;
$v=$ international

- Notice that if we except the index, all the mutual conjugate words have the same Burrows-Wheeler Transform.
- Hence, the BWT can be thought as a transformation acting on circular words.

Why Useful?

INTUITION

Let us consider the effect of BWT on a segment of a BWT-sorted file for Shakespeares Hamlet.

F
ot look upon his like again.

Extensive experimental work confirms this "clustering effect" (M. Burrows and D. Wheeler,1994, P. Fenwick, 1996).

BWT-based compression - Intuition

- Traditionally, compression ratio of BWT-based compression algorithms are usually measured by using $H_{k}(v)$.
- G. Manzini, 2001,
- F. Ferragina, R. Giancarlo, G. Manzini, M. Sciortino, 2005
- $H_{0}(v)$: Maximum compression we can get without context information where a fixed codeword is assigned to each alphabet character (e.g.: Huffman code).
\bullet
$H_{k}(v):$ Lower bound for compression with order-k contexts: the codeword representing each symbol depends on the k symbols preceding it.

BWT-based compression - Intuition

- Traditionally, compression ratio of BWT-based compression algorithms are usually measured by using $H_{k}(v)$.
- G. Manzini, 2001,
- F. Ferragina, R. Giancarlo, G. Manzini, M. Sciortino, 2005
- $H_{0}(v)$: Maximum compression we can get without context information where a fixed codeword is assigned to each alphabet character (e.g.: Huffman code).
- $H_{k}(v)$: Lower bound for compression with order- k contexts: the codeword representing each symbol depends on the k symbols preceding it.

Questions

- H. Kaplan, S. Landau and E. Verbin, 2007, report in their paper some empirical results which seem to indicate that achieving good bounds with respect to H_{k} does not necessarily guarantee good compression results in practice. So they ask the question:
whether there is another statistic (more appropriate than H_{k}) that actually capture the compressibility of the input text.
- H. Kaplan and E. Verbin, 2007 observe that such compressors work well in practice (in particular on English text). They ask the following question:
what kind of regularity is there in English text that compressors exploit?

Answers

What kind of regularity is there?
The solution:
Balance of the input text.
Our idea is that one obtains a more compressible string as output of BWT if its input is very close to be balanced.

Is there a more appropriate statistic?
The solution:
Local Entropy of the input text. We introduce the notion of local entropy as a measure of the degree of balance of a text.

Our intuition
The more ' 'a'anced the input word is, the more local similarity one has after BWT, and the better the compression is.

Answers

What kind of regularity is there?
The solution:
Balance of the input text.
Our idea is that one obtains a more compressible string as output of BWT if its input is very close to be balanced.

The solution:
Local Entropy of the input text We introduce the notion of local entropy as a measure of the degree of balance of a text.

Answers

What kind of regularity is there?
The solution:
Balance of the input text.
Our idea is that one obtains a more compressible string as output of BWT if its input is very close to be balanced.

Is there a more appropriate statistic?
The solution:
Local Entropy of the input text. We introduce the notion of local entropy as a measure of the degree of balance of a text

Answers

What kind of regularity is there?
The solution:
Balance of the input text.
Our idea is that one obtains a more compressible string as output of BWT if its input is very close to be balanced.

Is there a more appropriate statistic?
The solution:
Local Entropy of the input text. We introduce the notion of local entropy as a measure of the degree of balance of a text.

Answers

What kind of regularity is there?
The solution:
Balance of the input text.
Our idea is that one obtains a more compressible string as output of BWT if its input is very close to be balanced.

Is there a more appropriate statistic?
The solution:
Local Entropy of the input text. We introduce the notion of local entropy as a measure of the degree of balance of a text.

Our intuition

The more balanced the input word is, the more local similarity one has after BWT, and the better the compression is.

Balanced words: definition

- A (finite or infinite) word v is balanced if for each letter a of the alphabet \mathcal{A} and for all factors u and u^{\prime} of v s.t. $|u|=\left|u^{\prime}\right|$ we have that

$$
\left||u|_{a}-\left|u^{\prime}\right|_{a}\right| \leq 1
$$

- A finite word v is circularly balanced if all its conjugates are balanced.

- $w=c a c b c a c$ is a circularly balanced word.
- $v=a c a c b b c$ is an unbalanced word.
- $u=\underline{b a b a a b a a b}$ is a balanced but not circularly balanced word.

Denote by \mathcal{B} the set of circularly balanced words.
Laurent Vuillon. Balanced words. Bull. Belg. Math.Soc., 10(5):787-805, 2003.

Balanced words: definition

- A (finite or infinite) word v is balanced if for each letter a of the alphabet \mathcal{A} and for all factors u and u^{\prime} of v s.t. $|u|=\left|u^{\prime}\right|$ we have that

$$
\left||u|_{a}-\left|u^{\prime}\right|_{a}\right| \leq 1
$$

- A finite word v is circularly balanced if all its conjugates are balanced.

Example

- $w=c$ cocac is a circularly balanced word.
- $v=a c a c b b c$ is an unbalanced word.
- $u=\underline{b} a b a a b a a \underline{b}$ is a balanced but not circularly balanced word

Denote by \mathcal{B} the set of circularly balanced words.
Laurent Vuillon. Balanced words. Bull. Belg. Math.Soc., 10(5):787-805, 2003.

Balanced words: definition

- A (finite or infinite) word v is balanced if for each letter a of the alphabet \mathcal{A} and for all factors u and u^{\prime} of v s.t. $|u|=\left|u^{\prime}\right|$ we have that

$$
\left||u|_{a}-\left|u^{\prime}\right|_{a}\right| \leq 1
$$

- A finite word v is circularly balanced if all its conjugates are balanced.

Example

- $w=$ cacbcac is a circularly balanced word.
- $v=\underline{a c a c b b c}$ is an unbalanced word.
- $u=\underline{b} a b \underline{a} a b a a \underline{b}$ is a balanced but not circularly balanced word.

Denote by \mathcal{B} the set of circularly balanced words.
Laurent Vuillon. Balanced words. Bull. Belg. Math.Soc., 10(5):787-805, 2003.

Extremal cases: Constant gap words and Clustered words

- A finite word v is constant gap if, for each letter a, the distance (the number of letters) between two consecutive occurrences of a is constant (in circular way).

Example

The word $v=a b c a b d a b c a b e$ is a constant gap word.

- Constant gap words are a special case of circularly balanced words.

Extremal cases: Constant gap words and Clustered words

- A finite word v is constant gap if, for each letter a, the distance (the number of letters) between two consecutive occurrences of a is constant (in circular way).

Example

The word $v=a b c a b d a b c a b e$ is a constant gap word.

- Constant gap words are a special case of circularly balanced words.
- The word v is a clustered word if the number of runs is equal to the size of alphabet.

Example

The word $w=d d d d d d c c c c a a a a a b b b$ is a clustered word.

Statistic: Local Entropy based on Distance Coding

Distance coding: for each symbol of the input word, the DC algorithm outputs the distance to the previous occurrence of the same symbol (in circular way).

$$
\begin{aligned}
& \text { Example } \\
& \qquad \begin{array}{c}
v= \\
d c(v)=
\end{array} \begin{array}{lllllll}
a & c & b & c & a & a & b
\end{array}
\end{aligned}
$$

Local entropy (LE) was considered by

- J. L. Bentley, D. D. Sleator, R. E. Tarjan, and V. K. Wei, 1986
- G. Manzini, 2001
- H. Kaplan, S. Landau and E. Verbin, 2007

Statistic: Local Entropy based on Distance Coding

Distance coding: for each symbol of the input word, the DC algorithm outputs the distance to the previous occurrence of the same symbol (in circular way).

$$
\begin{aligned}
& \text { Example } \\
& v=\begin{array}{lllllll}
a & c & b & c & a & a & b
\end{array} \\
& d c(v)=1
\end{aligned}
$$

Local entropy (LE) was considered by

- J. L. Bentley, D. D. Sleator, R. E. Tarjan, and V. K. Wei, 1986
- G. Manzini, 2001
- H. Kaplan, S. Landau and E. Verbin, 2007

Statistic: Local Entropy based on Distance Coding

Distance coding: for each symbol of the input word, the DC algorithm outputs the distance to the previous occurrence of the same symbol (in circular way).

$$
\begin{aligned}
& \text { Example } \\
& v=\begin{array}{lllllll}
a & c & b & c & a & a & b
\end{array} \\
& d c(v)=14
\end{aligned}
$$

Local entropy (LE) was considered by

- J. L. Bentley, D. D. Sleator, R. E. Tarjan, and V. K. Wei, 1986
- G. Manzini, 2001
- H. Kaplan, S. Landau and E. Verbin, 2007

Statistic: Local Entropy based on Distance Coding

Distance coding: for each symbol of the input word, the DC algorithm outputs the distance to the previous occurrence of the same symbol (in circular way).

$$
\begin{aligned}
& \text { Example } \\
& \qquad \begin{array}{c}
v= \\
d c(v)= \\
a
\end{array} c c c c c c \\
& 1
\end{aligned} 4
$$

Local entropy (LE) was considered by

- J. L. Bentley, D. D. Sleator, R. E. Tarjan, and V. K. Wei, 1986
- G. Manzini, 2001
- H. Kaplan, S. Landau and E. Verbin, 2007

Statistic: Local Entropy based on Distance Coding

Distance coding: for each symbol of the input word, the DC algorithm outputs the distance to the previous occurrence of the same symbol (in circular way).

$$
\begin{aligned}
& \text { Example } \\
& \qquad \begin{array}{c}
v= \\
d c(v)= \\
a
\end{array} c c c c c c c \\
& 1
\end{aligned} 4
$$

Local entropy (LE) was considered by

- J. L. Bentley, D. D. Sleator, R. E. Tarjan, and V. K. Wei, 1986
- G. Manzini, 2001
- H. Kaplan, S. Landau and E. Verbin, 2007

Statistic: Local Entropy based on Distance Coding

Distance coding: for each symbol of the input word, the DC algorithm outputs the distance to the previous occurrence of the same symbol (in circular way).

Example

$$
\begin{array}{cccccccc}
v= & a & c & b & c & a & a & b \\
d c(v)= & 1 & 4 & 2 & 1 & 3 & &
\end{array}
$$

Local entropy (LE) was considered by

- J. L. Bentley, D. D. Sleator, R. E. Tarjan, and V. K. Wei, 1986
- G. Manzini, 2001
- H. Kaplan, S. Landau and E. Verbin, 2007

Statistic: Local Entropy based on Distance Coding

Distance coding: for each symbol of the input word, the DC algorithm outputs the distance to the previous occurrence of the same symbol (in circular way).

Example

$$
\begin{array}{cccccccc}
v= & a & c & b & c & a & a & b \\
d c(v) & = & 4 & 2 & 1 & 3 & 0 &
\end{array}
$$

Local entropy (LE) was considered by

- J. L. Bentley, D. D. Sleator, R. E. Tarjan, and V. K. Wei, 1986
- G. Manzini, 2001
- H. Kaplan, S. Landau and E. Verbin, 2007

Statistic: Local Entropy based on Distance Coding

Distance coding: for each symbol of the input word, the DC algorithm outputs the distance to the previous occurrence of the same symbol (in circular way).

Example

$$
\begin{array}{cccccccc}
v= & a & c & b & c & a & a & b \\
d c(v) & =1 & 4 & 2 & 1 & 3 & 0 & 3
\end{array}
$$

Define the Local Entropy of v

Local entropy (LE) was considered by

- J. L. Bentley, D. D. Sleator, R. E. Tarjan, and V. K. Wei, 1986
- G. Manzini, 2001
- H. Kaplan, S. Landau and E. Verbin, 2007

Statistic: Local Entropy based on Distance Coding

Distance coding: for each symbol of the input word, the DC algorithm outputs the distance to the previous occurrence of the same symbol (in circular way).

Example

$$
\begin{array}{cccccccc}
v= & a & c & b & c & a & a & b \\
d c(v) & 1 & 4 & 2 & 1 & 3 & 0 & 3
\end{array}
$$

Let $v=b_{1} b_{2} \cdots b_{n}, b_{i} \in \mathcal{A}$ and $d c(v)=d_{1} d_{2} \cdots d_{n}$, where $0 \leq d_{i}<n$. Define the Local Entropy of v :

$$
L E(v)=\frac{1}{n} \sum_{i=1}^{n} \log \left(d_{i}+1\right)
$$

Local entropy (LE) was considered by

- J. L. Bentley, D. D. Sleator, R. E. Tarjan, and V. K. Wei, 1986
- G. Manzini, 2001
- H. Kaplan, S. Landau and E. Verbin, 2007

Bounds

Theorem

For any word v one has:

- $G(v) \leq L E(v) \leq H_{0}(v)$
- $L E(v)=H_{0}(v)$ if and only if v is a constant gap word.
- $L E(v)=G(v)$ if and only if v is a clustered word.
where

$$
\begin{gathered}
H_{0}(v)=\sum_{a \in \mathcal{A}} \frac{|v|_{a}}{|v|} \log \frac{|v|}{|v|_{a}}, \\
G(v)=\sum_{a \in \mathcal{A}} \frac{1}{|v|}\left[\log \left(|v|-|v|_{a}+1\right)\right]
\end{gathered}
$$

The notion of local entropy is a measure of the degree of balance of a text.
$|v|_{a}$ denotes the number of occurrences of the letter a in the word v.

Measure

- For any word v :

$$
\delta(v)=\frac{H_{0}(v)-L E(v)}{H_{0}(v)-G(v)}, \quad \tau(v)=\frac{L E(v)-G(v)}{H_{0}(v)-G(v)}
$$

- Now, by using δ and τ, we can test, in a quantitative way, our intuition, i.e. the more balanced the input word is, the more local similarity is found in the BWT of the string, the better the compression is.
- The experiments reported in the next slide confirm our intuition: actually they show that when $\delta(v)$ is less than 0.23 , then $\tau(b w t(v))$ is less than 0.3 and the BWT-based compressor has good performances.

Experiments

File name	Size	H_{0}	Bst	Gzip	Diff \%	$\delta(v)$	$\tau(b w t(v))$
bible	$4,047,392$	4.343	796,231	$1,191,071$	9.755	0.117	0.233
english	$52,428,800$	4.529	$11,533,171$	$19,672,355$	15.524	0.136	0.238
etext99	$105,277,340$	4.596	$24,949,871$	$39,493,346$	13.814	0.141	0.264
english	$104,857,600$	4.556	$23,993,810$	$39,437,704$	14.728	0.143	0.250
dblp.xml	$52,428,800$	5.230	$4,871,450$	$9,034,902$	7.941	0.152	0.093
dblp.xml	$104,857,600$	5.228	$9,427,936$	$17,765,502$	7.951	0.153	0.090
dblp.xml	$209,715,200$	5.257	$18,522,167$	$35,897,168$	8.285	0.162	0.088
dblp.xml	$296,135,874$	5.262	$25,597,003$	$50,481,103$	8.403	0.164	0.086
world192	$2,473,400$	4.998	430,225	724,606	11.902	0.174	0.183
rctail96	$114,711,151$	5.154	$11,429,406$	$24,007,508$	10.965	0.178	0.097
sprot34.dat	$109,617,186$	4.762	$18,850,472$	$26,712,981$	7.173	0.215	0.206
jdk13c	$69,728,899$	5.531	$3,187,900$	$7,525,172$	6.220	0.224	0.041
howto	$39,886,973$	4.857	$8,713,851$	$12,638,334$	9.839	0.231	0.229
rfc	$116,421,901$	4.623	$17,565,908$	$26,712,981$	7.857	0.239	0.163
w3c2	$104,201,579$	5.954	$7,021,478$	$15,159,804$	7.810	0.246	0.058
chr22.dna	$34,553,758$	2.137	$8,015,707$	$8,870,068$	2.473	0.341	0.575
pitches	$52,428,800$	5.633	$18,651,999$	$16,884,651$	-3.371	0.530	0.344
pitches	$55,832,855$	5.628	$19,475,065$	$16,040,370$	-6.152	0.533	0.337

Practical application: the computation of $\delta(v)$ is a fast test for the choice

Experiments

File name	Size	H_{0}	Bst	Gzip	Diff \%	$\delta(v)$	$\tau(b w t(v))$
bible	$4,047,392$	4.343	796,231	$1,191,071$	9.755	0.117	0.233
english	$52,428,800$	4.529	$11,533,171$	$19,672,355$	15.524	0.136	0.238
etext99	$105,277,340$	4.596	$24,949,871$	$39,493,346$	13.814	0.141	0.264
english	$104,857,600$	4.556	$23,993,810$	$39,437,704$	14.728	0.143	0.250
dblp.xml	$52,428,800$	5.230	$4,871,450$	$9,034,902$	7.941	0.152	0.093
dblp.xml	$104,857,600$	5.228	$9,427,936$	$17,765,502$	7.951	0.153	0.090
dblp.xml	$209,715,200$	5.257	$18,522,167$	$35,897,168$	8.285	0.162	0.088
dblp.xml	$296,135,874$	5.262	$25,597,003$	$50,481,103$	8.403	0.164	0.086
world192	$2,473,400$	4.998	430,225	724,606	11.902	0.174	0.183
rctail96	$114,711,151$	5.154	$11,429,406$	$24,007,508$	10.965	0.178	0.097
sprot34.dat	$109,617,186$	4.762	$18,850,472$	$26,712,981$	7.173	0.215	0.206
jdk13c	$69,728,899$	5.531	$3,187,900$	$7,525,172$	6.220	0.224	0.041
howto	$39,886,973$	4.857	$8,713,851$	$12,638,334$	9.839	0.231	0.229
rfc	$116,421,901$	4.623	$17,565,908$	$26,712,981$	7.857	0.239	0.163
w3c2	$104,201,579$	5.954	$7,021,478$	$15,159,804$	7.810	0.246	0.058
chr22.dna	$34,553,758$	2.137	$8,015,707$	$8,870,068$	2.473	0.341	0.575
pitches	$52,428,800$	5.633	$18,651,999$	$16,884,651$	-3.371	0.530	0.344
pitches	$55,832,855$	5.628	$19,475,065$	$16,040,370$	-6.152	0.533	0.337

Practical application: the computation of $\delta(v)$ is a fast test for the choice between bst and gzip.

First conclusions

Our intuition

The more balanced the input word is, the more local similarity one has after BWT, and the better the compression is.

The notion of local entropy is a measure of the degree of balance of a text.

Extremal case: Balanced words - Binary alphabet

- An infinite aperiodic sequence v is balanced if and only if v is a sturmian sequence.
- An infinite periodic sequence v^{ω} is balanced if and only if v is a conjugate of a standard word.

Fibonacci words

Standard words
Directive sequence $d_{1}, d_{2}, \ldots, d_{n}, \ldots$, with $d_{1} \geq 0$ and $d_{i}>0$ for
\qquad

Extremal case: Balanced words - Binary alphabet

- An infinite aperiodic sequence v is balanced if and only if v is a sturmian sequence.
- An infinite periodic sequence v^{ω} is balanced if and only if v is a conjugate of a standard word.

Fibonacci words
$f_{0}=b$
$f_{1}=a$

$$
\begin{aligned}
& f_{0}=b \quad f_{1}=a \\
& f_{n+1}=f_{n} f_{n-1}(n \geq 1)
\end{aligned}
$$

Standard words
Directive sequence $d_{1}, d_{2}, \ldots, d_{n}, \ldots$, with $d_{1} \geq 0$ and $d_{i}>0$ for

Standard words are special prefixes of Sturmian sequences.

Extremal case: Balanced words - Binary alphabet

- An infinite aperiodic sequence v is balanced if and only if v is a sturmian sequence.
- An infinite periodic sequence v^{ω} is balanced if and only if v is a conjugate of a standard word.

Fibonacci words
$f_{0}=b$
$f_{1}=a$

$$
f_{0}=b \quad f_{1}=a
$$

$f_{2}=a b$

$$
f_{n+1}=f_{n} f_{n-1}(n \geq 1)
$$

Standard words
Directive sequence $d_{1}, d_{2}, \ldots, d_{n}, \ldots$ with $d_{1} \geq 0$ and $d_{i}>0$ for

Standard words are special prefixes of Sturmian sequences.

Extremal case: Balanced words - Binary alphabet

- An infinite aperiodic sequence v is balanced if and only if v is a sturmian sequence.
- An infinite periodic sequence v^{ω} is balanced if and only if v is a conjugate of a standard word.

Fibonacci words
$f_{0}=b$
$f_{1}=a$

$$
f_{0}=b \quad f_{1}=a
$$

$f_{2}=a b$
$f_{n+1}=f_{n} f_{n-1}(n \geq 1)$
$f_{3}=a b a$
$=a b a a b a b a a b a a b$

Standard words
Directive sequence $d_{1}, d_{2}, \ldots, d_{n}, \ldots$, with $d_{1} \geq 0$ and $d_{i}>0$ for

Standard words are special prefixes of Sturmian sequences.

Extremal case: Balanced words - Binary alphabet

- An infinite aperiodic sequence v is balanced if and only if v is a sturmian sequence.
- An infinite periodic sequence v^{ω} is balanced if and only if v is a conjugate of a standard word.

Fibonacci words
$f_{0}=b \quad f_{4}=a b a a b$
$f_{1}=a$

$$
f_{0}=b \quad f_{1}=a
$$

$f_{2}=a b$

$$
f_{n+1}=f_{n} f_{n-1}(n \geq 1)
$$

$f_{3}=a b a$

$$
f_{7}=a b a a b a b a a b a a b a b a a b a b a
$$

Standard words
Directive sequence $d_{1}, d_{2}, \ldots, d_{n}, \ldots$, with $d_{1} \geq 0$ and $d_{i}>0$ for

Standard words are special prefixes of Sturmian sequences.

Extremal case: Balanced words - Binary alphabet

- An infinite aperiodic sequence v is balanced if and only if v is a sturmian sequence.
- An infinite periodic sequence v^{ω} is balanced if and only if v is a conjugate of a standard word.

Fibonacci words
$f_{0}=b$ $f_{4}=a b a a b$
$f_{1}=a \quad f_{5}=a b a a b a b a$

$$
f_{0}=b \quad f_{1}=a
$$

$f_{2}=a b$

$$
f_{n+1}=f_{n} f_{n-1}(n \geq 1)
$$

$f_{3}=a b a$
$f_{7}=a b a a b a b a a b a a b a b a a b a b a$

Standard words
Directive sequence $d_{1}, d_{2}, \ldots, d_{n}, \ldots$, with $d_{1} \geq 0$ and $d_{i}>0$ for

Standard words are special prefixes of Sturmian sequences.

Extremal case: Balanced words - Binary alphabet

- An infinite aperiodic sequence v is balanced if and only if v is a sturmian sequence.
- An infinite periodic sequence v^{ω} is balanced if and only if v is a conjugate of a standard word.

Fibonacci words

$$
\begin{array}{lll}
f_{0}=b & f_{4}=a b a a b & \\
f_{1}=a & f_{5}=a b a a b a b a & f_{0}=b \\
f_{2}=a b & f_{6}=a b a a b a b a a b a a b & f_{n+1}=f_{n} f_{n-1}(n \geq 1) \\
f_{3}=a b a & f_{7}=a b a a b a b a a b a a b a b a a b a b a &
\end{array}
$$

Standard words
Directive sequence $d_{1}, d_{2}, \ldots, d_{n}, \ldots$, with $d_{1} \geq 0$ and $d_{i}>0$ for

Extremal case: Balanced words - Binary alphabet

- An infinite aperiodic sequence v is balanced if and only if v is a sturmian sequence.
- An infinite periodic sequence v^{ω} is balanced if and only if v is a conjugate of a standard word.

Fibonacci words

```
\(f_{0}=b \quad f_{4}=a b a a b\)
\(f_{1}=a \quad f_{5}=a b a a b a b a\)
\(f_{0}=b \quad f_{1}=a\)
\(f_{2}=a b \quad f_{6}=a b a a b a b a a b a a b \quad f_{n+1}=f_{n} f_{n-1}(n \geq 1)\)
\(f_{3}=a b a \quad f_{7}=a b a a b a b a a b a a b a b a a b a b a\)
```

Standard words
Directive sequence $d_{1}, d_{2}, \ldots, d_{n}, \ldots$, with $d_{1} \geq 0$ and $d_{i}>0$ for

Extremal case: Balanced words - Binary alphabet

- An infinite aperiodic sequence v is balanced if and only if v is a sturmian sequence.
- An infinite periodic sequence v^{ω} is balanced if and only if v is a conjugate of a standard word.

Fibonacci words

$$
\begin{array}{lll}
f_{0}=b & f_{4}=a b a a b & \\
f_{1}=a & f_{5}=a b a a b a b a & f_{0}=b \quad f_{1}=a \\
f_{2}=a b & f_{6}=a b a a b a b a a b a a b & f_{n+1}=f_{n} f_{n-1}(n \geq 1) \\
f_{3}=a b a & f_{7}=a b a a b a b a a b a a b a b a a b a b a &
\end{array}
$$

Standard words
Directive sequence $d_{1}, d_{2}, \ldots, d_{n}, \ldots$, with $d_{1} \geq 0$ and $d_{i}>0$ for $i=2, \ldots, n, \ldots$

$$
s_{0}=b \quad s_{1}=a \quad s_{n+1}=s_{n}^{d_{n}} s_{n-1} \text { for } n \geq 1
$$

Standard words are special prefixes of Sturmian sequences.

Binary alphabets

Theorem (S. Mantaci, A. Restivo and M. Sciortino, 2003)
Given a word $v \in\{a, b\}$, the following conditions are equivalent:
(1) $b w t(v)=b^{p} a^{q}$, with $p, q \geq 1$;
(2) v is a circularly balanced word;
(3) v is a conjugate of a power of a Standard words.

Example

$v=a b a a b a b a$ is a standard word and $b w t(v)=b^{3} a^{5}$.

Circularly Balanced words on larger alphabets

- If $|\mathcal{A}|>2$, the general structure of circularly balanced words is not known.
E. Altman, B. Gaujal, and A. Hordijk, 2000
R. Mantaci, S. Mantaci, and A. Restivo, 2008
- We note that the notion of circularly balanced words over an alphabet of size larger than two also appears in the statement of the Fraenkel's conjecture.
- As a direct consequence of a result of Graham, one has that balanced sequences on a set of letters having different frequencies must be periodic, i.e. of the form v^{ω}, where v is a circularly balanced word.

Fraenkel's conjecture
Let $\mathcal{A}_{k}=\left\{a_{1}, a_{2}, \ldots, a_{k}\right\}$. For each $k>2$, there is only one circularly balanced word $F_{k} \in \mathcal{A}_{k}^{*}$, having different frequencies. It is defined recursively as follow $F_{1}=a_{1}$ and $F_{k}=F_{k-1} a_{k} F_{k-1}$ for all $k \geq 2$.

Generalization to alphabets with more than two letters

Theorem (S. Mantaci, A. Restivo and M. Sciortino, 2003)
Given a word $v \in\{a, b\}$, the following conditions are equivalent:
(1) v is a Simple BWT word;
(2) v is a circularly balanced word;
(3) v is a conjugate of a power of a Standard words.

In alphabets with more than two letters, the following sets do not coincide:
(1) simple BWT words;
(2) circularly balanced words;
(3) finite epistandard words (a generalization of the Standard words).

Simple BWT words

In 2008, Simpson and Puglisi introduced the notion of Simple BWT words.

Let v be a word over a finite ordered alphabet $\mathcal{A}=\left\{a_{1}, a_{2}, \ldots, a_{k}\right\}$, with $a_{1}<a_{2}<\ldots<a_{k}$. The word v is a simple BWT word if
for some non-negative integers $n_{1}, n_{2}, \ldots, n_{k}$

We denote by \mathcal{S} the set of the simple BWT words.
Example

Simpson and Puglisi get a constructive characterization of the set \mathcal{S} in the case of three letters alphabet.

Simple BWT words

In 2008, Simpson and Puglisi introduced the notion of Simple BWT words.

Let v be a word over a finite ordered alphabet $\mathcal{A}=\left\{a_{1}, a_{2}, \ldots, a_{k}\right\}$, with $a_{1}<a_{2}<\ldots<a_{k}$. The word v is a simple BWT word if

$$
b w t(v)=a_{k}^{n_{k}} a_{k-1}^{n_{k-1}} \cdots a_{2}^{n_{2}} a_{1}^{n_{1}}
$$

for some non-negative integers $n_{1}, n_{2}, \ldots, n_{k}$.

We denote by \mathcal{S} the set of the simple BWT words.
Example
$\in \mathcal{S}$, in fact $b w t(v)=d d c c c b b a a a$.
Simpson and Puglisi get a constructive characterization of the set \mathcal{S} in the case of three letters alphabet.

Simple BWT words

In 2008, Simpson and Puglisi introduced the notion of Simple BWT words.

Let v be a word over a finite ordered alphabet $\mathcal{A}=\left\{a_{1}, a_{2}, \ldots, a_{k}\right\}$, with $a_{1}<a_{2}<\ldots<a_{k}$. The word v is a simple BWT word if

$$
\operatorname{bwt}(v)=a_{k}^{n_{k}} a_{k-1}^{n_{k-1}} \cdots a_{2}^{n_{2}} a_{1}^{n_{1}}
$$

for some non-negative integers $n_{1}, n_{2}, \ldots, n_{k}$.

We denote by \mathcal{S} the set of the simple BWT words.
\square

Simple BWT words

In 2008, Simpson and Puglisi introduced the notion of Simple BWT words.

Let v be a word over a finite ordered alphabet $\mathcal{A}=\left\{a_{1}, a_{2}, \ldots, a_{k}\right\}$, with $a_{1}<a_{2}<\ldots<a_{k}$. The word v is a simple BWT word if

$$
\operatorname{bwt}(v)=a_{k}^{n_{k}} a_{k-1}^{n_{k-1}} \cdots a_{2}^{n_{2}} a_{1}^{n_{1}}
$$

for some non-negative integers $n_{1}, n_{2}, \ldots, n_{k}$.

We denote by \mathcal{S} the set of the simple BWT words.

Example

$v=a c b c b c a d a d \in \mathcal{S}$, in fact $b w t(v)=d d c c c b b a a a$.
Simpson and Puglisi get a constructive characterization of the set \mathcal{S} in the case of three letters alphabet.

Matrix M and R

The matrix R is obtained from M by a rotation of 180° : it follows that the i th conjugate of M is the reverse of the $(n-i+1)$ th conjugate of R.

A word $v \in \mathcal{S}$ if and only if $M=R$.

Matrix M and R

The matrix R is obtained from M by a rotation of 180° : it follows that the i th conjugate of M is the reverse of the $(n-i+1)$ th conjugate of R.

Theorem

A word $v \in \mathcal{S}$ if and only if $M=R$.

Matrix M and R

A word $v \in \mathcal{S}$ iff
$M=R$
$a c a d a c b b c a d$ $a c b b c a d a c a d$ $a d a c a d a c b b c$ $a d a c b b c a d a c$ $b b c a d a c a d a c$ $b c a d a c a d a c b$ cadacadacbb
$c a d a c b b c a d a$
$c b b c a d a c a d a$
$d a c a d a c b b c a$
$d a c b b c a d a c a$

Matrix M and R

A word $v \in \mathcal{S}$ iff

$$
M=R
$$

$$
\begin{aligned}
& a c a d a c b b c a d \\
& v_{i} \rightarrow a c b b c a d a c a d \\
& a d a c a d a c b b c \\
& a d a c b b c a d a c \\
& b b c a d a c a d a c \\
& b c a d a c a d a c b \\
& c a d a c a d a c b b \\
& c a d a c b b c a d a \\
& c b b c a d a c a d a \\
& v_{n-i+1} \rightarrow d a c a d a c b b c a \\
& d a c b b c a d a c a \\
& v_{i}=\widehat{v_{n-i+1}}
\end{aligned}
$$

So $[v]$ and its factors are closed under reverse. Under these conditions each coniugate of v has the two nalindrome nronerty (cf. Simpson and Puglisi, 2008).
A word v has the two palindrome property if v is product of two palindromes, i.e. it can be written as $x y$ where x and y are palindromes or empty.

Matrix M and R

A word $v \in \mathcal{S}$ iff

$$
M=R
$$

$$
\begin{aligned}
& a c a d a c b b c a d \\
& v_{i} \rightarrow a c b b c a d a c a d \\
& a d a c a d a c b b c \\
& a d a c b b c a d a c \\
& b b c a d a c a d a c \\
& b c a d a c a d a c b \\
& \text { cadacadacbb } \\
& \text { cadacbbcada } \\
& c b b c a d a c a d a \\
& v_{n-i+1} \rightarrow d a c a d a c b b c a \\
& d a c b b c a d a c a \\
& v_{i}=\widetilde{v_{n-i+1}}
\end{aligned}
$$

So $[v]$ and its factors are closed under reverse. Under these conditions each conjugate of v has the two palindrome property (cf. Simpson and Puglisi, 2008).
A word v has the two palindrome property if v is product of two palindromes, i.e. it can be written as $x y$ where x and y are palindromes or empty.

Balanced and Simple BWT words

$$
\mathcal{B} \neq \mathcal{S}
$$

The set of circularly balanced words over more than two letters alphabets does not coincide with the set of Simple BWT words.

Example

- $v=c a c b c a c$ is circularly balanced and $b w t(v)=c c c c b a a$
- $w=a b a b c$ is circularly balanced and $b w t(w)=c b a a b$
- $u=\underline{a c a c b b c}$ is not balanced and $b w t(u)=c c c b b a a$

A generalization of Sturmian: Episturmian

- An infinite word t on \mathcal{A} is episturmian (Droubay, J. Justin, G. Pirillo, 2001) if:
- $F(t)$ (its set of factors) is closed under reversal;
- t has at most one left special factor (or equivalently, right special factor) of each length.
- An infinite word on the finite alphabet \mathcal{A} is standard episturmian if and only if it can be obtained by the Rauzy rules for \mathcal{A}

Let s be an infinite word, then a factor u of s is right (resp. left) special if there exist $x, y \in \mathcal{A}, x \neq y$, such that $u x, u y \in F(s)$ (resp. $x u, y u \in F(s)$).
X. Droubay, J. Justin, G. Pirillo, Episturmian words and some constructions of de Luca and. Rauzy, Theoret. Comput. Sci. 255, 2001. A. Glen and J. Justin. Episturmian words: a survey. RAIRO Theoretical Informatics and Applications, 2009.

A generalization of Sturmian: Episturmian

- An infinite word t on \mathcal{A} is episturmian (Droubay, J. Justin, G. Pirillo, 2001) if:
- $F(t)$ (its set of factors) is closed under reversal;
- t has at most one left special factor (or equivalently, right special factor) of each length.
- t is standard episturmian if all of its left special factors are prefixes of it.

An infinite word on the finite alphabet \mathcal{A} is standard ep
and only if it can be obtained by the Rauzy rules for \mathcal{A}
Let s be an infinite word, then a factor u of s is right (resp. left) special if there exist $x, y \in \mathcal{A}, x \neq y$, such that $u x, u y \in F(s)$
(resp. $x u, y u \in F(s)$).
X. Droubay, J. Justin, G. Pirillo, Episturmian words and some constructions of de Luca and. Rauzy, Theoret. Comput. Sci. 255, 2001. A. Glen and J. Justin. Episturmian words: a survey. RAIRO Theoretical Informatics and Applications, 2009.

A generalization of Sturmian: Episturmian

- An infinite word t on \mathcal{A} is episturmian (Droubay, J. Justin, G. Pirillo, 2001) if:
- $F(t)$ (its set of factors) is closed under reversal;
- t has at most one left special factor (or equivalently, right special factor) of each length.
- t is standard episturmian if all of its left special factors are prefixes of it.
- An infinite word on the finite alphabet \mathcal{A} is standard episturmian if and only if it can be obtained by the Rauzy rules for \mathcal{A}.

Let s be an infinite word, then a factor u of s is right (resp. left) special if there exist $x, y \in \mathcal{A}, x \neq y$, such that $u x, u y \in F(s)$
(resp. $x u, y u \in F(s)$).
X. Droubay, J. Justin, G. Pirillo, Episturmian words and some constructions of de Luca and. Rauzy, Theoret. Comput. Sci. 255, 2001. A. Glen and J. Justin. Episturmian words: a survey. RAIRO Theoretical Informatics and Applications, 2009.

A generalization of Standard: Finite epistandard

Rauzy rules.

	Rules	1	2	3	4
R_{0}		a	b	c	d
R_{1}	1	a	$a b$	$a c$	ad
R_{2}	1	a	$a a b$	$a a c$	aad
R_{3}	4	aada	aadaab	aadaac	aad
R_{4}	3	aadaacaada	aadaacaadaab	aadac	aadaacaad

A generalization of Standard: Finite epistandard

Rauzy rules.

	Rules	1	2	3	4
R_{0}		a	b	c	d
R_{1}	1	a	$a b$	$a c$	$a d$
R_{2}	1	a	$a a b$	$a a c$	$a a d$
R_{3}	4	aada	aadaab	$a a d a a c$	$a a d$
R_{4}	3	aadaacaada	aadaacaadaab	aadaac	aadaacaad

A generalization of Standard: Finite epistandard

Rauzy rules.

	Rules	1	2	3	4
R_{0}		a	b	c	d
R_{1}	1	a	$a b$	$a c$	$a d$
R_{2}	1	a	$a a b$	$a a c$	$a a d$
R_{3}	4	aada	aadaab	aadaac	aad
R_{4}	3	aadaacaada	aadaacaadaab	aadace	aadaacaad

A generalization of Standard: Finite epistandard

Rauzy rules.

	Rules	1	2	3	4
R_{0}		a	b	c	d
R_{1}	1	a	$a b$	$a c$	$a d$
R_{2}	1	a	$a a b$	$a a c$	$a a d$
R_{3}	4	$a a d a$	$a a d a a b$	$a a d a a c$	$a a d$
R_{4}	3	aadaacaada	aadaacaadaab	aadaac	aadaacaad

A generalization of Standard: Finite epistandard

Rauzy rules.

	Rules	1	2	3	4
R_{0}		a	b	c	d
R_{1}	1	a	$a b$	$a c$	$a d$
R_{2}	1	a	$a a b$	$a a c$	$a a d$
R_{3}	4	$a a d a$	aadaab	aadaac	$a a d$
R_{4}	3	aadaacaada	aadaacaadaab	aadaac	aadaacaad

element of a k-tuples R_{n}, for some $n=1$.

A generalization of Standard: Finite epistandard

Rauzy rules.

	Rules	1	2	3	4
R_{0}		a	b	c	d
R_{1}	1	a	$a b$	$a c$	$a d$
R_{2}	1	a	$a a b$	$a a c$	$a a d$
R_{3}	4	aada	aadaab	aadaac	$a a d$
R_{4}	3	aadaacaada	aadaacaadaab	aadaac	aadaacaad

- Let $|\mathcal{A}|=k$. A word $v \in \mathcal{A}^{*}$ is called finite epistandard if v is an element of a k-tuples R_{n}, for some $n=1$.
a finite epistandard word

A generalization of Standard: Finite epistandard

Rauzy rules.

	Rules	1	2	3	4
R_{0}		a	b	c	d
R_{1}	1	a	$a b$	$a c$	$a d$
R_{2}	1	a	$a a b$	$a a c$	$a a d$
R_{3}	4	$a a d a$	$a a d a a b$	$a a d a a c$	$a a d$
R_{4}	3	aadaacaada	aadaacaadaab	aadaac	aadaacaad

- Let $|\mathcal{A}|=k$. A word $v \in \mathcal{A}^{*}$ is called finite epistandard if v is an element of a k-tuples R_{n}, for some $n=1$.
- We denote by $\mathcal{E P}$ the set of words that are powers of a conjugate of a finite epistandard word.

Balancing and Epistandard

$$
\mathcal{B} \neq \mathcal{E P}
$$

The set of circularly balanced words over more than two letters alphabets does not coincide with the set of conjugate of powers of epistandard words.

Example

- $v=$ aadaacaad is epistandard, but it is not circularly balanced.
- $u=a b c a b d a b c a b e$ is circularly balanced, but it is not epistandard.

Palindromic Richness

- The number of distinct palindromic factors (including ε) of a word v is at most $|v|+1$.
- A finite word v is (palindromic) rich if it has exactly $|v|+1$ distinct palindromic factors, including the empty word ε.
- A factor of finite rich word is rich.
X. Droubay, J. Justin, G. Pirillo, Episturmian words and some constructions of de Luca and. Rauzy, Theoret. Comput. Sci. 255, 2001. A. Glen, J. Justin, S. Widmer, and L. Q. Zamboni. Palindromic richness. European Journal of Combinatorics, 30(2):510-531, 2009.

Palindromic Richness

- The number of distinct palindromic factors (including ε) of a word v is at most $|v|+1$.
- A finite word v is (palindromic) rich if it has exactly $|v|+1$ distinct palindromic factors, including the empty word ε.
- A factor of finite rich word is rich.

Example

$v=c c a a c b$ is rich, $|v|=6$, in fact: $P(v)=\{\varepsilon, c, c c, c a a c, a, a a, b\}$, $|P(v)|=7$.
X. Droubay, J. Justin, G. Pirillo, Episturmian words and some constructions of de Luca and. Rauzy, Theoret. Comput. Sci. 255, 2001. A. Glen, J. Justin, S. Widmer, and L. Q. Zamboni. Palindromic richness. European Journal of Combinatorics, 30(2):510-531, 2009.

Circularly rich words

Lemma (Glen, Justin, Widmer and Zamboni, 2009)

For a finite word v, the following properties are equivalent:
(1) v^{ω} is rich;
(2) v^{2} is rich;
(3) v is a product of two palindromes and all of the conjugates of v (including itself) are rich.

- We denote by \mathcal{R} the set of the circularly rich words.

Circularly rich words

Lemma (Glen, Justin, Widmer and Zamboni, 2009)

For a finite word v, the following properties are equivalent:
(1) v^{ω} is rich;
(2) v^{2} is rich;
(3) v is a product of two palindromes and all of the conjugates of v (including itself) are rich.

- We say that a finite word v is circularly rich if the infinite word v^{ω} is rich.

Circularly rich words

Lemma (Glen, Justin, Widmer and Zamboni, 2009)

For a finite word v, the following properties are equivalent:
(1) v^{ω} is rich;
(2) v^{2} is rich;
(3) v is a product of two palindromes and all of the conjugates of v (including itself) are rich.

- We say that a finite word v is circularly rich if the infinite word v^{ω} is rich.
- We denote by \mathcal{R} the set of the circularly rich words.
\square

Circularly rich words

Lemma (Glen, Justin, Widmer and Zamboni, 2009)
For a finite word v, the following properties are equivalent:
(1) v^{ω} is rich;
(2) v^{2} is rich;
(3) v is a product of two palindromes and all of the conjugates of v (including itself) are rich.

- We say that a finite word v is circularly rich if the infinite word v^{ω} is rich.
- We denote by \mathcal{R} the set of the circularly rich words.

$$
\begin{aligned}
& \text { Example } \\
& v=b b a c a,|v|=5 \text { is circularly rich, in fact: } \\
& P\left(v^{2}\right)=\{\varepsilon, a, b, c, b b, a c a, b a c a b, b b a c a b b, a c a b b a c a, c a b b a c, a b b a\}, \\
& \left|P\left(v^{2}\right)\right|=11
\end{aligned}
$$

Balancing and Richness

$$
\mathcal{R} \neq \mathcal{B}
$$

The set of circularly balanced words over more than two letters alphabets does not coincide with the set of circularly rich words.

Example

- The word $w=$ bbbbbacaca is circularly rich, but it is not circularly balanced.
- The word $u=a b c a b d a b c a b e$ is circularly balanced, but it is not circularly rich.

$\mathcal{S} \cap \mathcal{B}=\mathcal{R} \cap \mathcal{B}=\mathcal{E} \mathcal{P} \cap \mathcal{B}$

Theorem
Let $w \in \mathcal{A}^{*}$ be a circularly balanced word over \mathcal{A}. The following statements are equivalent:
(1) w is a simple BWT word;
(2) w is a circularly rich word;
(3) w is a conjugate of a power of a finite epistandard word.

Proof: $3 \rightarrow 1$: The finite balanced epistandard words belong to \mathcal{S}.

From a result of Paquin and Vuillon (2006), one can prove that each finite balanced epistandard word t is of the form:
(1) $t=p a_{2}$, with $p=\operatorname{Pal}\left(a_{1}^{m} a_{k} a_{k-1} \cdots a_{3}\right)$, where $k \geq 3$ and $m \geq 1$;
(2) $t=p a_{2}$, with $p=\operatorname{Pal}\left(a_{1} a_{k} a_{k-1} \cdots a_{k-\ell} a_{1} a_{k-\ell-1} a_{k-\ell-2} \cdots a_{3}\right)$, where $0 \leq \ell \leq k-4$ and $k \geq 4$;

- $t=\operatorname{Pal}\left(a_{1} a_{k} a_{k-1} \cdots a_{2}\right.$), where $k \geq 3$ (Fraenkel's words).
where the operator Pal is the iterated palindromic closure function.
The palindromic right-closure $v^{(+)}$of a finite word v is the (unique) shortest palindrome having v as a prefix (A. de Luca, 1997).
The iterated palindromic closure function (J. Justin, 2005), denoted by Pal, is recursively defined as follows. Set $\operatorname{Pal}(\varepsilon)=\varepsilon$ and, for any word v and letter x, define $\operatorname{Pal}(v x)=(\operatorname{Pal}(v) x)^{(+)}$.

Proof: $3 \rightarrow 1$: The finite balanced epistandard words belong to \mathcal{S}.

From a result of Paquin and Vuillon (2006), one can prove that each finite balanced epistandard word t is of the form:
(1) $t=p a_{2}$, with $p=\operatorname{Pal}\left(a_{1}^{m} a_{k} a_{k-1} \cdots a_{3}\right)$, where $k \geq 3$ and $m \geq 1$;
(2) $t=p a_{2}$, with $p=\operatorname{Pal}\left(a_{1} a_{k} a_{k-1} \cdots a_{k-\ell} a_{1} a_{k-\ell-1} a_{k-\ell-2} \cdots a_{3}\right)$, where $0 \leq \ell \leq k-4$ and $k \geq 4$;
(3) $t=\operatorname{Pal}\left(a_{1} a_{k} a_{k-1} \cdots a_{2}\right)$, where $k \geq 3$ (Fraenkel's words).
where the operator Pal is the iterated palindromic closure function.
The palindromic right-closure $v^{(+)}$of a finite word v is the (unique) shortest palindrome having v as a prefix (A. de Luca, 1997).
The iterated palindromic closure function (J. Justin, 2005), denoted by Pal, is recursively defined as follows. Set $\operatorname{Pal}(\varepsilon)=\varepsilon$ and, for any word v and letter x, define $\operatorname{Pal}(v x)=(\operatorname{Pal}(v) x)^{(+)}$.

In order to prove that t belongs to \mathcal{S} it suffices to show that words of the form (1), (2) and (3) have simple BWT.

Proof: $2 \leftrightarrow 3: w$ is circularly rich if and only if w is a conjugate of a power of a finite epistandard.

The proof is a consequence of the following results:
\square

- The set of the episturmian sequences is a subset of the set of the rich words (Glen, Justin, Widmer and Zamboni, 2009)
- Recurrent balanced rich infinite words are precisely the balanced episturmian words (Glen, Justin, Widmer and Zamboni, 2009). Hence a balanced circularly rich word coincides with a conjugate of a power of a balanced epistandard word.

Proof: $2 \leftrightarrow 3: w$ is circularly rich if and only if w is a conjugate of a power of a finite epistandard.

The proof is a consequence of the following results:

- The set of the episturmian sequences is a subset of the set of the rich words (Glen, Justin, Widmer and Zamboni, 2009).
- Recurrent balanced rich infinite words are precisely the balanced
episturmian words (Glen, Justin, Widmer and Zamboni, 2009). Hence
a balanced circularly rich word coincides with a conjugate of a power
of a balanced epistandard word.

Proof: $2 \leftrightarrow 3: w$ is circularly rich if and only if w is a conjugate of a power of a finite epistandard.

The proof is a consequence of the following results:

- The set of the episturmian sequences is a subset of the set of the rich words (Glen, Justin, Widmer and Zamboni, 2009).
- Recurrent balanced rich infinite words are precisely the balanced episturmian words (Glen, Justin, Widmer and Zamboni, 2009). Hence a balanced circularly rich word coincides with a conjugate of a power of a balanced epistandard word.

Proof: $1 \rightarrow 2$: If the word w belongs to \mathcal{S} then w is circularly rich.

```
Theorem
If the word \(w\) belongs to \(\mathcal{S}\) then \(w\) is circularly rich.
```


We know that

We prove that

Proof: $1 \rightarrow 2$: If the word w belongs to \mathcal{S} then w is circularly rich.

```
Theorem
If the word \(w\) belongs to \(\mathcal{S}\) then \(w\) is circularly rich.
```

We know that

- w is circularly rich if and only if w is a product of two palindromes and all the conjugates of w (including itself) are rich.
- each word $w \in \mathcal{S}$ has the two palindrome property.

We prove that

Example

Proof: $1 \rightarrow 2$: If the word w belongs to \mathcal{S} then w is circularly rich.

```
Theorem
If the word w belongs to S then w is circularly rich.
```

We know that

- w is circularly rich if and only if w is a product of two palindromes and all the conjugates of w (including itself) are rich.

Proof: $1 \rightarrow 2$: If the word w belongs to \mathcal{S} then w is circularly rich.

```
Theorem
If the word w belongs to S then w is circularly rich.
```

We know that

- w is circularly rich if and only if w is a product of two palindromes and all the conjugates of w (including itself) are rich.
- each word $w \in \mathcal{S}$ has the two palindrome property.

We prove that

Proof: $1 \rightarrow 2$: If the word w belongs to \mathcal{S} then w is circularly rich.

Theorem
 If the word w belongs to \mathcal{S} then w is circularly rich.

We know that

- w is circularly rich if and only if w is a product of two palindromes and all the conjugates of w (including itself) are rich.
- each word $w \in \mathcal{S}$ has the two palindrome property.

We prove that
If $w \in \mathcal{S}$ then all the conjugates of w (including itself) are rich.

Proof: $1 \rightarrow 2$: If the word w belongs to \mathcal{S} then w is circularly rich.

```
Theorem
If the word w belongs to S then w is circularly rich.
```

We know that

- w is circularly rich if and only if w is a product of two palindromes and all the conjugates of w (including itself) are rich.
- each word $w \in \mathcal{S}$ has the two palindrome property.

We prove that If $w \in \mathcal{S}$ then all the conjugates of w (including itself) are rich.

Example

The word $w=a c b c b c a d a d \in \mathcal{S}$, in fact $b w t(a c b c b c a d a d)=d d c c c b b a a a$, and $|w|^{2}=20,\left|P\left(w^{2}\right)\right|=21$, so w is circularly rich.

Proof: $1 \rightarrow 2$: If the word w belongs to \mathcal{S} then w is circularly rich.

```
Theorem
If the word w belongs to S then w is circularly rich.
```

We know that

- w is circularly rich if and only if w is a product of two palindromes and all the conjugates of w (including itself) are rich.
- each word $w \in \mathcal{S}$ has the two palindrome property.

We prove that If $w \in \mathcal{S}$ then all the conjugates of w (including itself) are rich.

Example

The word $w=a c b c b c a d a d \in \mathcal{S}$, in fact $b w t(a c b c b c a d a d)=d d c c c b b a a a$, and $|w|^{2}=20,\left|P\left(w^{2}\right)\right|=21$, so w is circularly rich.

Synthesis

Under the condition of circularly balanced, the following statements are equivalent:

- $w \in \mathcal{S}$ (simple BWT word);
- w is circularly rich,
- w is a conjugate of a power of a finite epistandard.

The following example shows that there exist words unbalanced which belong to $\mathcal{E P} \cap \mathcal{S}: w=\underline{\text { aadaacaad }} \underline{\text { is not a circularly balanced word, }}$ $w \in \mathcal{E P}$ and $w \in \mathcal{S}$.

Conclusions

- "The regularity of the English text that BWT-based compressors exploit" is related to the balancing properties of the text itself.
- Empirical observations and theoretical results support the hypothesis: the more balanced the input word is, the more local similarity one has after BWT, and, as a consequence, the better the compression is.
- Apart from their interest for the study of the clustering effect of BWT (and of optimal performances of BWT-based compressors), our results can be considered as a contribution to combinatorics of episturmian sequences, and could provide new insight on Fraenkel's conjecture.
- The main purpose of this investigation is to state a link between methods from Combinatorics on Words and techniques from Data Compression, in order to obtain a deeper comprehension of both research field.

Conclusions

- "The regularity of the English text that BWT-based compressors exploit" is related to the balancing properties of the text itself.
- Empirical observations and theoretical results support the hypothesis: the more balanced the input word is, the more local similarity one has after BWT, and, as a consequence, the better the compression is.

Conclusions

- "The regularity of the English text that BWT-based compressors exploit" is related to the balancing properties of the text itself.
- Empirical observations and theoretical results support the hypothesis: the more balanced the input word is, the more local similarity one has after BWT, and, as a consequence, the better the compression is.
- Apart from their interest for the study of the clustering effect of BWT (and of optimal performances of BWT-based compressors), our results can be considered as a contribution to combinatorics of episturmian sequences, and could provide new insight on Fraenkel's conjecture.
- The main purpose of this investigation is to state a link between methods from Combinatorics on Words and techniques from Data Compression in order to obtain a deener comprehension of both research field

Conclusions

- "The regularity of the English text that BWT-based compressors exploit" is related to the balancing properties of the text itself.
- Empirical observations and theoretical results support the hypothesis: the more balanced the input word is, the more local similarity one has after BWT, and, as a consequence, the better the compression is.
- Apart from their interest for the study of the clustering effect of BWT (and of optimal performances of BWT-based compressors), our results can be considered as a contribution to combinatorics of episturmian sequences, and could provide new insight on Fraenkel's conjecture.
- The main purpose of this investigation is to state a link between methods from Combinatorics on Words and techniques from Data Compression, in order to obtain a deeper comprehension of both research field.

Further works

- To study, in a quantitative way, the compression ratio of BWT-based compressors in terms of the Local Entropy.
- To characterize the words in \mathcal{S} (we have characterized the balanced words in \mathcal{S}).
- To characterize all words having a clusterized BWT transform (the set \mathcal{S} is a proper subclass of words having a clusterized BWT transform): the order of letters in the output of BWT is very important. For instance, the BWT of the word $w=a b a c a d$ is a clustered word, indeed we have that $b w t(w)=d b c a^{3}$, but although w is a circularly balanced word, it is not a circularly rich word

Further works

- To study, in a quantitative way, the compression ratio of BWT-based compressors in terms of the Local Entropy.
- To characterize the words in \mathcal{S} (we have characterized the balanced words in \mathcal{S}).
- To characterize all words having a clusterized BWT transform (the set \mathcal{S} is a proper subclass of words having a clusterized BWT transform) the order of letters in the output of BWT is very important. For instance, the BWT of the word $w=a b a c a d$ is a clustered word, indeed we have that $b w t(w)=d b c a^{3}$, but although w is a circularly balanced word, it is not a circularly rich word

Further works

- To study, in a quantitative way, the compression ratio of BWT-based compressors in terms of the Local Entropy.
- To characterize the words in \mathcal{S} (we have characterized the balanced words in \mathcal{S}).
- To characterize all words having a clusterized BWT transform (the set \mathcal{S} is a proper subclass of words having a clusterized BWT transform): the order of letters in the output of BWT is very important. For instance, the BWT of the word $w=a b a c a d$ is a clustered word, indeed we have that $b w t(w)=d b c a^{3}$, but although w is a circularly balanced word, it is not a circularly rich word.

Thank you for your attention!

