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The Burrows-Wheeler Transform Introduction

Burrows-Wheeler Transform (BWT)

The BWT is a well known transformation introduced in [M. Burrows
and D. Wheeler, A block sorting data compression algorithm,
Technical report, DIGITAL System Research Center, 1994]

The BWT is a reversible transformation that produces a permutation
bwt(v) of an input sequence v, defined over an ordered alphabet A,
so that occurrences of a given symbol tend to occur in clusters in the
output sequence.

Traditionally the major application of the Burrows-Wheeler Transform
has been for Data Compression. The BWT represents for instance the
heart of the BZIP2 algorithm.

Today, there are reports of the application of the BWT in
bio-informatics, full-text compressed indexes, prediction and entropy
estimation, and shape analysis in computer vision, etc. Moreover,
there exist several variants and extensions of such a transform.
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The Burrows-Wheeler Transform Introduction

Preliminaries

Let A denote a non-empty finite set of symbols. The elements of A
are called letters (symbols or characters) and the set A is called an
alphabet.

A word over an alphabet A is a finite sequence of letters from A.

The empty word ε is the empty sequence.

Two words u, v ∈ A∗ are conjugate, if u = xy and v = yx for some
x, y ∈ A∗. Thus conjugate words are just cyclic shifts of one another.

Let [v] denote the conjugacy classes of v.

A conjugacy class can also be represented as a circular word. Hence
in what follows we will use “circular word” and “conjugacy class” as
synonym.
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The Burrows-Wheeler Transform How does BWT work?

How does BWT work?

BWT takes as input a text v and produces:
a permutation bwt(v) of the letters of v.
the index I

, that denotes the position of the original word v after the
lexicographical sorting of its conjugates.

Example: v = international

i n t e r n a t i o n a l
n t e r n a t i o n a l i
t e r n a t i o n a l i n
e r n a t i o n a l i n t
r n a t i o n a l i n t e
n a t i o n a l i n t e r
a t i o n a l i n t e r n
t i o n a l i n t e r n a
i o n a l i n t e r n a t
o n a l i n t e r n a t i
n a l i n t e r n a t i o
a l i n t e r n a t i o n
l i n t e r n a t i o n a

M
F L
↓ ↓

1 a l i n t e r n a t i o n
2 a t i o n a l i n t e r n
3 e r n a t i o n a l i n t

I →

4 i n t e r n a t i o n a l
5 i o n a l i n t e r n a t
6 l i n t e r n a t i o n a
7 n a l i n t e r n a t i o
8 n a t i o n a l i n t e r
9 n t e r n a t i o n a l i

10 o n a l i n t e r n a t i
11 r n a t i o n a l i n t e
12 t e r n a t i o n a l i n
13 t i o n a l i n t e r n a

bwt(v) = L = nntltaoriiena and I = 4.
Each row of M is a conjugate of v in

lexicographic order.
G. Rosone Palermo, 17 Marzo 2010 4 / 1
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The Burrows-Wheeler Transform How does BWT work?

Properties

BWT takes as input a text v and produces:

a permutation bwt(v) of the letters of v.
the index I, that is useful in order to recover the original word v.

Example: v = international
bwt(v) = L = nntltaoriiena and I = 4

I The first character of v is F [I].

I For any character α, the ith
occurrence of α in F
corresponds to the ith
occurrence of α in L.

I For all i 6= I, the character L[i]
is followed in v by F [i];

F M L
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The Burrows-Wheeler Transform How does BWT work?

Reverse

bwt(v) = L = nntltaoriiena and
I = 4.

I The first character of v is F [I].

I For any character α, the ith
occurrence of α in F
corresponds to the ith
occurrence of α in L.

I For all i 6= I, the character L[i]
is followed in v by F [i];

v = i

nternational

1
2
3
4
5
6
7
8
9
10
11
12
13

F

a
a
e
i
i
l
n
n
n
o
r
t
t

L

n
n
t
l
t
a
o
r
i
i
e
n
a

1
2
3
4
5
6
7
8
9
10
11
12
13

Notice that if we except the index, all the mutual conjugate words
have the same Burrows-Wheeler Transform.
Hence, the BWT can be thought as a transformation acting on
circular words.
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occurrence of α in L.

I For all i 6= I, the character L[i]
is followed in v by F [i];

v = int
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Notice that if we except the index, all the mutual conjugate words
have the same Burrows-Wheeler Transform.
Hence, the BWT can be thought as a transformation acting on
circular words.
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The Burrows-Wheeler Transform BWT-based compression

Why Useful?

INTUITION
Let us consider the effect of BWT on a segment of a BWT-sorted file for
Shakespeares Hamlet.

The factor ot is normally preceded by
n, but occasionally by h, g or j.

The characters preceding ot are
grouped together.

Extensive experimental work confirms this “clustering effect”
(M. Burrows and D. Wheeler,1994, P. Fenwick, 1996).
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The Burrows-Wheeler Transform BWT-based compression

BWT-based compression - Intuition

v BWT bwt(v) Compressor Output

Traditionally, compression ratio of BWT-based compression
algorithms are usually measured by using Hk(v).

G. Manzini, 2001,
F. Ferragina, R. Giancarlo, G. Manzini, M. Sciortino, 2005

H0(v): Maximum compression we can get without context
information where a fixed codeword is assigned to each alphabet
character (e.g.: Huffman code).

Hk(v): Lower bound for compression with order-k contexts: the
codeword representing each symbol depends on the k symbols
preceding it.

G. Rosone Palermo, 17 Marzo 2010 8 / 1



The Burrows-Wheeler Transform BWT-based compression

BWT-based compression - Intuition

v BWT bwt(v) Compressor Output

Traditionally, compression ratio of BWT-based compression
algorithms are usually measured by using Hk(v).

G. Manzini, 2001,
F. Ferragina, R. Giancarlo, G. Manzini, M. Sciortino, 2005

H0(v): Maximum compression we can get without context
information where a fixed codeword is assigned to each alphabet
character (e.g.: Huffman code).

Hk(v): Lower bound for compression with order-k contexts: the
codeword representing each symbol depends on the k symbols
preceding it.

G. Rosone Palermo, 17 Marzo 2010 8 / 1



The Burrows-Wheeler Transform BWT-based compression

Questions

H. Kaplan, S. Landau and E. Verbin, 2007, report in their paper some
empirical results which seem to indicate that achieving good bounds
with respect to Hk does not necessarily guarantee good compression
results in practice. So they ask the question:

whether there is another statistic (more appropriate than Hk) that
actually capture the compressibility of the input text.

H. Kaplan and E. Verbin, 2007 observe that such compressors work
well in practice (in particular on English text). They ask the following
question:

what kind of regularity is there in English text that compressors
exploit?
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The Burrows-Wheeler Transform BWT-based compression

Answers

What kind of regularity is there?

The solution:
Balance of the input text.
Our idea is that one obtains a more
compressible string as output of
BWT if its input is very close to be
balanced.

Is there a more appropriate statistic?

The solution:
Local Entropy of the input text.
We introduce the notion of local
entropy as a measure of the degree
of balance of a text.

Our intuition

The more balanced the input word is, the more local similarity one has
after BWT, and the better the compression is.
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Balanced words Definition

Balanced words: definition

A (finite or infinite) word v is balanced if for each letter a of the
alphabet A and for all factors u and u′ of v s.t. |u| = |u′| we have
that

||u|a − |u′|a| ≤ 1

A finite word v is circularly balanced if all its conjugates are balanced.

Example

w = cacbcac is a circularly balanced word.

v = acacbbc is an unbalanced word.

u = babaabaab is a balanced but not circularly balanced word.

Denote by B the set of circularly balanced words.

Laurent Vuillon. Balanced words. Bull. Belg. Math.Soc., 10(5):787–805,
2003.
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Balanced words Definition

Extremal cases: Constant gap words and Clustered words

A finite word v is constant gap if, for each letter a, the distance (the
number of letters) between two consecutive occurrences of a is
constant (in circular way).

Example

The word v = abcabdabcabe is a constant gap word.

Constant gap words are a special case of circularly balanced words.

The word v is a clustered word if the number of runs is equal to the
size of alphabet.

Example

The word w = ddddddccccaaaaabbb is a clustered word.
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Analysis Measure of the degree of balance

Statistic: Local Entropy based on Distance Coding

Distance coding: for each symbol of the input word, the DC algorithm
outputs the distance to the previous occurrence of the same symbol (in
circular way).

Example
v = a c b c a a b

dc(v) =

1 4 2 1 3 0 3

Let v = b1b2 · · · bn, bi ∈ A and dc(v) = d1d2 · · · dn, where 0 ≤ di < n.
Define the Local Entropy of v:

LE(v) =
1

n

n∑
i=1

log(di + 1)

Local entropy (LE) was considered by
J. L. Bentley, D. D. Sleator, R. E. Tarjan, and V. K. Wei, 1986

G. Manzini, 2001

H. Kaplan, S. Landau and E. Verbin, 2007
G. Rosone Palermo, 17 Marzo 2010 13 / 1
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Analysis Measure of the degree of balance

Bounds

Theorem

For any word v one has:

G(v) ≤ LE(v) ≤ H0(v)

LE(v) = H0(v) if and only if v is a constant gap word.

LE(v) = G(v) if and only if v is a clustered word.

where

H0(v) =
∑
a∈A

|v|a
|v|

log
|v|
|v|a

,

G(v) =
∑
a∈A

1

|v|
[log(|v| − |v|a + 1)]

The notion of local entropy is a measure of the degree of balance of a text.

|v|a denotes the number of occurrences of the letter a in the word v.
G. Rosone Palermo, 17 Marzo 2010 14 / 1



Analysis Measure of the degree of balance

Measure

For any word v:

δ(v) = H0(v)−LE(v)
H0(v)−G(v) , τ(v) = LE(v)−G(v)

H0(v)−G(v)

Now, by using δ and τ , we can test, in a quantitative way, our
intuition, i.e. the more balanced the input word is, the more local
similarity is found in the BWT of the string, the better the
compression is.

The experiments reported in the next slide confirm our intuition:
actually they show that when δ(v) is less than 0.23, then τ(bwt(v)) is
less than 0.3 and the BWT-based compressor has good performances.
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Analysis Measure of the degree of balance

Experiments

File name Size H0 Bst Gzip Diff % δ(v) τ(bwt(v))
bible 4,047,392 4.343 796,231 1,191,071 9.755 0.117 0.233

english 52,428,800 4.529 11,533,171 19,672,355 15.524 0.136 0.238
etext99 105,277,340 4.596 24,949,871 39,493,346 13.814 0.141 0.264
english 104,857,600 4.556 23,993,810 39,437,704 14.728 0.143 0.250

dblp.xml 52,428,800 5.230 4,871,450 9,034,902 7.941 0.152 0.093
dblp.xml 104,857,600 5.228 9,427,936 17,765,502 7.951 0.153 0.090
dblp.xml 209,715,200 5.257 18,522,167 35,897,168 8.285 0.162 0.088
dblp.xml 296,135,874 5.262 25,597,003 50,481,103 8.403 0.164 0.086
world192 2,473,400 4.998 430,225 724,606 11.902 0.174 0.183
rctail96 114,711,151 5.154 11,429,406 24,007,508 10.965 0.178 0.097

sprot34.dat 109,617,186 4.762 18,850,472 26,712,981 7.173 0.215 0.206
jdk13c 69,728,899 5.531 3,187,900 7,525,172 6.220 0.224 0.041
howto 39,886,973 4.857 8,713,851 12,638,334 9.839 0.231 0.229

rfc 116,421,901 4.623 17,565,908 26,712,981 7.857 0.239 0.163
w3c2 104,201,579 5.954 7,021,478 15,159,804 7.810 0.246 0.058

chr22.dna 34,553,758 2.137 8,015,707 8,870,068 2.473 0.341 0.575
pitches 52,428,800 5.633 18,651,999 16,884,651 -3.371 0.530 0.344
pitches 55,832,855 5.628 19,475,065 16,040,370 -6.152 0.533 0.337

Practical application: the computation of δ(v) is a fast test for the choice
between bst and gzip.
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Analysis Measure of the degree of balance

First conclusions

Our intuition

The more balanced the input word is, the more local similarity one has
after BWT, and the better the compression is.

The notion of local entropy is a measure of the degree of balance of a text.
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Perfect clustering: Simple BWT words Binary alphabets: Standard words

Extremal case: Balanced words - Binary alphabet

An infinite aperiodic sequence v is balanced if and only if v is a
sturmian sequence.

An infinite periodic sequence vω is balanced if and only if v is a
conjugate of a standard word.

Fibonacci words

f0 = b
f1 = a
f2 = ab
f3 = aba

f4 = abaab
f5 = abaababa
f6 = abaababaabaab
f7 = abaababaabaababaababa

f0 = b f1 = a
fn+1 = fnfn−1 (n ≥ 1)

Standard words
Directive sequence d1, d2, . . . , dn, . . ., with d1 ≥ 0 and di > 0 for
i = 2, . . . , n, . . ..

s0 = b s1 = a sn+1 = sdnn sn−1 for n ≥ 1

Standard words are special prefixes of Sturmian sequences.
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Perfect clustering: Simple BWT words Binary alphabets

Binary alphabets

Theorem (S. Mantaci, A. Restivo and M. Sciortino, 2003)

Given a word v ∈ {a, b}, the following conditions are equivalent:

1 bwt(v) = bpaq, with p, q ≥ 1;

2 v is a circularly balanced word;

3 v is a conjugate of a power of a Standard words.

Example

v = abaababa is a standard word and bwt(v) = b3a5.
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Perfect clustering: Simple BWT words Binary alphabets

Circularly Balanced words on larger alphabets

If |A| > 2, the general structure of circularly balanced words is not
known.
E. Altman, B. Gaujal, and A. Hordijk, 2000
R. Mantaci, S. Mantaci, and A. Restivo, 2008

We note that the notion of circularly balanced words over an alphabet
of size larger than two also appears in the statement of the Fraenkel’s
conjecture.

As a direct consequence of a result of Graham, one has that balanced
sequences on a set of letters having different frequencies must be
periodic, i.e. of the form vω, where v is a circularly balanced word.

Fraenkel’s conjecture
Let Ak = {a1, a2, . . . , ak}. For each k > 2, there is only one circularly
balanced word Fk ∈ A∗k, having different frequencies. It is defined
recursively as follow F1 = a1 and Fk = Fk−1akFk−1 for all k ≥ 2.
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Perfect clustering: Simple BWT words Generalization to alphabets with more than two letters

Generalization to alphabets with more than two letters

Theorem (S. Mantaci, A. Restivo and M. Sciortino, 2003)

Given a word v ∈ {a, b}, the following conditions are equivalent:

1 v is a Simple BWT word;

2 v is a circularly balanced word;

3 v is a conjugate of a power of a Standard words.

In alphabets with more than two letters, the following sets do not coincide:

1 simple BWT words;

2 circularly balanced words;

3 finite epistandard words (a generalization of the Standard words).
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Perfect clustering: Simple BWT words Large alphabets

Simple BWT words

In 2008, Simpson and Puglisi introduced the notion of Simple BWT words.

Let v be a word over a finite ordered alphabet A = {a1, a2, . . . , ak}, with
a1 < a2 < . . . < ak. The word v is a simple BWT word if

bwt(v) = ank
k a

nk−1

k−1 · · · a
n2
2 a

n1
1

for some non-negative integers n1, n2, . . . , nk.

We denote by S the set of the simple BWT words.

Example

v = acbcbcadad ∈ S, in fact bwt(v) = ddcccbbaaa.

Simpson and Puglisi get a constructive characterization of the set S in the
case of three letters alphabet.
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Perfect clustering: Simple BWT words Matrix M and R

Matrix M and R

F M L
↓ ↓

1 a l i n t e r n a t i o n
2 a t i o n a l i n t e r n
3 e r n a t i o n a l i n t
4 i n t e r n a t i o n a l
5 i o n a l i n t e r n a t
6 l i n t e r n a t i o n a
7 n a l i n t e r n a t i o
8 n a t i o n a l i n t e r
9 n t e r n a t i o n a l i

10 o n a l i n t e r n a t i
11 r n a t i o n a l i n t e
12 t e r n a t i o n a l i n
13 t i o n a l i n t e r n a

180◦

y

FR R LR

↓ ↓
a n r e t n i l a n o i t
n i l a n o i t a n r e t
e t n i l a n o i t a n r
i t a n r e t n i l a n o
i l a n o i t a n r e t n
r e t n i l a n o i t a n
o i t a n r e t n i l a n
a n o i t a n r e t n i l
t a n r e t n i l a n o i
l a n o i t a n r e t n i
t n i l a n o i t a n r e
n r e t n i l a n o i t a
n o i t a n r e t n i l a

The matrix R is obtained from M by a rotation of 180◦: it follows that
the ith conjugate of M is the reverse of the (n− i+ 1)th conjugate of R.

Theorem

A word v ∈ S if and only if M = R.
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Perfect clustering: Simple BWT words Matrix M and R

Matrix M and R

A word v ∈ S iff
M = R

a c a d a c b b c a d

vi →

a c b b c a d a c a d
a d a c a d a c b b c
a d a c b b c a d a c
b b c a d a c a d a c
b c a d a c a d a c b
c a d a c a d a c b b
c a d a c b b c a d a
c b b c a d a c a d a

vn−i+1 →

d a c a d a c b b c a
d a c b b c a d a c a

vi = ṽn−i+1

So [v] and its factors are closed under reverse. Under these conditions
each conjugate of v has the two palindrome property (cf. Simpson and
Puglisi, 2008).
A word v has the two palindrome property if v is product of two
palindromes, i.e. it can be written as xy where x and y are palindromes or
empty.
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Perfect clustering: Simple BWT words Balanced and Simple BWT words

Balanced and Simple BWT words

B 6= S

The set of circularly balanced words over more than two letters alphabets
does not coincide with the set of Simple BWT words.

Example

v = cacbcac is circularly balanced and bwt(v) = ccccbaa

w = ababc is circularly balanced and bwt(w) = cbaab

u = acacbbc is not balanced and bwt(u) = cccbbaa
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A generalization of Sturmian A generalization of Sturmian: Episturmian

A generalization of Sturmian: Episturmian

An infinite word t on A is episturmian (Droubay, J. Justin, G. Pirillo,
2001) if:

F (t) (its set of factors) is closed under reversal;
t has at most one left special factor (or equivalently, right special
factor) of each length.

t is standard episturmian if all of its left special factors are prefixes of
it.
An infinite word on the finite alphabet A is standard episturmian if
and only if it can be obtained by the Rauzy rules for A.

Let s be an infinite word, then a factor u of s is right (resp. left) special
if there exist x, y ∈ A, x 6= y, such that ux, uy ∈ F (s)
(resp. xu, yu ∈ F (s)).

X. Droubay, J. Justin, G. Pirillo, Episturmian words and some
constructions of de Luca and. Rauzy, Theoret. Comput. Sci. 255, 2001.
A. Glen and J. Justin. Episturmian words: a survey. RAIRO Theoretical
Informatics and Applications, 2009.
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A generalization of Sturmian A generalization of Standard: Finite epistandard

A generalization of Standard: Finite epistandard

Rauzy rules.

Rules 1 2 3 4

R0 a b c d

R1 1 a ab ac ad

R2 1 a aab aac aad

R3 4 aada aadaab aadaac aad

R4 3 aadaacaada aadaacaadaab aadaac aadaacaad

Let |A| = k. A word v ∈ A∗ is called finite epistandard if v is an
element of a k-tuples Rn, for some n = 1.

We denote by EP the set of words that are powers of a conjugate of
a finite epistandard word.

G. Rosone Palermo, 17 Marzo 2010 27 / 1
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A generalization of Sturmian Balancing and Episturmian

Balancing and Epistandard

B 6= EP

The set of circularly balanced words over more than two letters alphabets
does not coincide with the set of conjugate of powers of epistandard
words.

Example

v = aadaacaad is epistandard, but it is not circularly balanced.

u = abcabdabcabe is circularly balanced, but it is not epistandard.
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Rich words Rich words

Palindromic Richness

The number of distinct palindromic factors (including ε) of a word v
is at most |v|+ 1.

A finite word v is (palindromic) rich if it has exactly |v|+ 1 distinct
palindromic factors, including the empty word ε.

A factor of finite rich word is rich.

Example

v = ccaacb is rich, |v| = 6, in fact: P (v) = {ε, c, cc, caac, a, aa, b},
|P (v)| = 7.

X. Droubay, J. Justin, G. Pirillo, Episturmian words and some
constructions of de Luca and. Rauzy, Theoret. Comput. Sci. 255, 2001.
A. Glen, J. Justin, S. Widmer, and L. Q. Zamboni. Palindromic richness.
European Journal of Combinatorics, 30(2):510–531, 2009.
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Rich words Circularly rich words

Circularly rich words

Lemma (Glen, Justin, Widmer and Zamboni, 2009)

For a finite word v, the following properties are equivalent:

1 vω is rich;

2 v2 is rich;

3 v is a product of two palindromes and all of the conjugates of v
(including itself) are rich.

We say that a finite word v is circularly rich if the infinite word vω is
rich.
We denote by R the set of the circularly rich words.

Example

v = bbaca, |v| = 5 is circularly rich, in fact:
P (v2) = {ε, a, b, c, bb, aca, bacab, bbacabb, acabbaca, cabbac, abba},
|P (v2)| = 11.
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Rich words Circularly rich words

Balancing and Richness

R 6= B

The set of circularly balanced words over more than two letters alphabets
does not coincide with the set of circularly rich words.

Example

The word w = bbbbbacaca is circularly rich, but it is not circularly
balanced.

The word u = abcabdabcabe is circularly balanced, but it is not
circularly rich.
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Results Theorem

S ∩ B = R∩ B = EP ∩ B

Theorem

Let w ∈ A∗ be a circularly balanced word over A. The following
statements are equivalent:

1 w is a simple BWT word;

2 w is a circularly rich word;

3 w is a conjugate of a power of a finite epistandard word.
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Results Proof

Proof: 3→ 1: The finite balanced epistandard words
belong to S.

From a result of Paquin and Vuillon (2006), one can prove that each finite
balanced epistandard word t is of the form:

1 t = pa2, with p = Pal(am1 akak−1 · · · a3), where k ≥ 3 and m ≥ 1;

2 t = pa2, with p = Pal(a1akak−1 · · · ak−`a1ak−`−1ak−`−2 · · · a3),
where 0 ≤ ` ≤ k − 4 and k ≥ 4;

3 t = Pal(a1akak−1 · · · a2), where k ≥ 3 (Fraenkel’s words).

where the operator Pal is the iterated palindromic closure function.

The palindromic right-closure v(+) of a finite word v is the (unique) shortest palindrome having
v as a prefix (A. de Luca, 1997).

The iterated palindromic closure function (J. Justin, 2005), denoted by Pal, is recursively
defined as follows. Set Pal(ε) = ε and, for any word v and letter x, define
Pal(vx) = (Pal(v)x)(+).

In order to prove that t belongs to S it suffices to show that words of the
form (1), (2) and (3) have simple BWT.
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3 t = Pal(a1akak−1 · · · a2), where k ≥ 3 (Fraenkel’s words).

where the operator Pal is the iterated palindromic closure function.

The palindromic right-closure v(+) of a finite word v is the (unique) shortest palindrome having
v as a prefix (A. de Luca, 1997).

The iterated palindromic closure function (J. Justin, 2005), denoted by Pal, is recursively
defined as follows. Set Pal(ε) = ε and, for any word v and letter x, define
Pal(vx) = (Pal(v)x)(+).

In order to prove that t belongs to S it suffices to show that words of the
form (1), (2) and (3) have simple BWT.
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Results Proof

Proof: 2↔ 3: w is circularly rich if and only if w is a
conjugate of a power of a finite epistandard.

The proof is a consequence of the following results:

The set of the episturmian sequences is a subset of the set of the rich
words (Glen, Justin, Widmer and Zamboni, 2009).

Recurrent balanced rich infinite words are precisely the balanced
episturmian words (Glen, Justin, Widmer and Zamboni, 2009). Hence
a balanced circularly rich word coincides with a conjugate of a power
of a balanced epistandard word.
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Results Proof

Proof: 1→ 2: If the word w belongs to S then w is
circularly rich.

Theorem

If the word w belongs to S then w is circularly rich.

We know that

w is circularly rich if and only if w is a product of two palindromes
and all the conjugates of w (including itself) are rich.
each word w ∈ S has the two palindrome property.

We prove that

If w ∈ S then all the conjugates of w (including itself) are rich.

Example

The word w = acbcbcadad ∈ S, in fact bwt(acbcbcadad) = ddcccbbaaa,
and |w|2 = 20, |P (w2)| = 21, so w is circularly rich.

We note that the converse of this result is false.
The word u = ccaaccb is circularly rich, but bwt(ccaaccb) = cacccba
(u /∈ S).
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Results Proof

Synthesis

Under the condition of circularly balanced, the following statements are
equivalent:

w ∈ S (simple BWT word);

w is circularly rich,

w is a conjugate of a power of a finite epistandard.

REP

S

B

The following example shows that there exist words unbalanced which
belong to EP ∩ S: w = aadaacaad is not a circularly balanced word,
w ∈ EP and w ∈ S.
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Conclusions Conclusions and further works

Conclusions

“The regularity of the English text that BWT-based compressors
exploit” is related to the balancing properties of the text itself.

Empirical observations and theoretical results support the hypothesis:
the more balanced the input word is, the more local similarity one has
after BWT, and, as a consequence, the better the compression is.

Apart from their interest for the study of the clustering effect of BWT
(and of optimal performances of BWT-based compressors), our results
can be considered as a contribution to combinatorics of episturmian
sequences, and could provide new insight on Fraenkel’s conjecture.

The main purpose of this investigation is to state a link between
methods from Combinatorics on Words and techniques from Data
Compression, in order to obtain a deeper comprehension of both
research field.
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Conclusions Conclusions and further works

Further works

To study, in a quantitative way, the compression ratio of BWT-based
compressors in terms of the Local Entropy.

To characterize the words in S (we have characterized the balanced
words in S).

To characterize all words having a clusterized BWT transform (the set
S is a proper subclass of words having a clusterized BWT transform):
the order of letters in the output of BWT is very important.
For instance, the BWT of the word w = abacad is a clustered word,
indeed we have that bwt(w) = dbca3, but although w is a circularly
balanced word, it is not a circularly rich word.
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Conclusions Thanks

Thank you for your attention!
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