
Extended Burrows-Wheeler Transform and
analysis of biological sequences

Giovanna Rosone

Dipartimento di Matematica e Informatica
Università degli Studi di Palermo

Palermo, ITALY

Workshop on
“Combinatorial structures for sequence analysis in bionformatics”

Milano, 27th November 2013

Introduction

Whole human genome sequencing

Modern DNA sequencing machines produce a lot of data! e.g.
Illumina HiSeq 2000: > 40Gbases of sequence per day (paired
100-mers).

Datasets of 100 Gbases or more are common.

Extended Burrows-Wheeler Transform and analysis of biological sequences 27th November 2013 2 / 41

Burrows-Wheeler Transform

The Burrows-Wheeler Transform (BWT)

Many algorithms and data structures for compression and analysis of a
sequence have the BWT at their heart.

Traditionally the major application of the BWT has been for Data
Compression.

Today, there are reports of the application of the BWT in
Bioinformatics, full-text compressed indexes, prediction and entropy
estimation, and shape analysis in computer vision, etc.

Many bioinformatics applications, e.g. the rapid search for maximal
exact matches, shortest unique substrings and shortest absent words,
use the Suffix Array (SA) and/or Burrows-Wheeler Transform (BWT)
together with an additional table: the Longest Common Prefix (LCP)
array.

Together, SA/BWT and LCP can replace the larger suffix tree.

Extended Burrows-Wheeler Transform and analysis of biological sequences 27th November 2013 3 / 41

Burrows-Wheeler Transform

The Burrows-Wheeler Transform (BWT)

Example

The BWT represents for instance the heart of the BZIP2 algorithm.

BWT-based text indexes are the core of popular mapping programs
1 Bowtie (Langmead et al.,Genome Biology 2009)
2 BWA (Li and Durbin, Bioinformatics 2009, 2010)
3 SOAP2 (Li et al., Bioinformatics 2009)

Simpson and Durbin, Bioinformatics 2010: FM-index of a set of DNA
sequences for overlap detection stage of de novo assembly;

Välimäki, Ladra and Mäkinen, CPM 2010: Approximate All-Pairs
Suffix/Prefix Overlaps.

Extended Burrows-Wheeler Transform and analysis of biological sequences 27th November 2013 4 / 41

Burrows-Wheeler Transform

The Burrows-Wheeler Transform (BWT)

Example

The BWT represents for instance the heart of the BZIP2 algorithm.

BWT-based text indexes are the core of popular mapping programs
1 Bowtie (Langmead et al.,Genome Biology 2009)
2 BWA (Li and Durbin, Bioinformatics 2009, 2010)
3 SOAP2 (Li et al., Bioinformatics 2009)

Simpson and Durbin, Bioinformatics 2010: FM-index of a set of DNA
sequences for overlap detection stage of de novo assembly;

Välimäki, Ladra and Mäkinen, CPM 2010: Approximate All-Pairs
Suffix/Prefix Overlaps.

Extended Burrows-Wheeler Transform and analysis of biological sequences 27th November 2013 4 / 41

Burrows-Wheeler Transform

The Burrows-Wheeler Transform (BWT)

Example

The BWT represents for instance the heart of the BZIP2 algorithm.

BWT-based text indexes are the core of popular mapping programs
1 Bowtie (Langmead et al.,Genome Biology 2009)
2 BWA (Li and Durbin, Bioinformatics 2009, 2010)
3 SOAP2 (Li et al., Bioinformatics 2009)

Simpson and Durbin, Bioinformatics 2010: FM-index of a set of DNA
sequences for overlap detection stage of de novo assembly;

Välimäki, Ladra and Mäkinen, CPM 2010: Approximate All-Pairs
Suffix/Prefix Overlaps.

Extended Burrows-Wheeler Transform and analysis of biological sequences 27th November 2013 4 / 41

Burrows-Wheeler Transform What is BWT?

The BWT

The BWT is a reversible transformation that produces a permutation of
the letters in the input v (defined over an ordered alphabet Σ) so that
occurrences of similar symbols tend to occur in clusters in the output
sequence.

Extended Burrows-Wheeler Transform and analysis of biological sequences 27th November 2013 5 / 41

Burrows-Wheeler Transform How computing the BWT?

How does BWT work?
BWT takes as input a text v, and produces:

a permutation bwt(v) of the letters of v.
the index I, that is useful in order to recover the original word v.

Example: v = mathematics

Each row of the BW-matrix M
is a conjugate of v in
lexicographic order.

bwt(v) coincides with the last
column L of M .

The index I is the row of M
containing the original sequence.

Output:
bwt(v) = L = mmihttsecaa
and I = 7.

M

L
↓

1 a t h e m a t i c s m
2 a t i c s m a t h e m
3 c s m a t h e m a t i
4 e m a t i c s m a t h
5 h e m a t i c s m a t
6 i c s m a t h e m a t

I →

7 m a t h e m a t i c s
8 m a t i c s m a t h e
9 s m a t h e m a t i c

10 t h e m a t i c s m a
11 t i c s m a t h e m a

Recall that two words u, v ∈ Σ∗ are conjugate, if u = xy and v = yx for some x, y ∈ Σ∗.

Extended Burrows-Wheeler Transform and analysis of biological sequences 27th November 2013 6 / 41

Burrows-Wheeler Transform How computing the BWT?

How does BWT work?
BWT takes as input a text v, and produces:

a permutation bwt(v) of the letters of v.
the index I, that is useful in order to recover the original word v.

Example: v = mathematics

Each row of the BW-matrix M
is a conjugate of v in
lexicographic order.

bwt(v) coincides with the last
column L of M .

The index I is the row of M
containing the original sequence.

Output:
bwt(v) = L = mmihttsecaa
and I = 7.

M

L
↓

1 a t h e m a t i c s m
2 a t i c s m a t h e m
3 c s m a t h e m a t i
4 e m a t i c s m a t h
5 h e m a t i c s m a t
6 i c s m a t h e m a t

I →

7 m a t h e m a t i c s
8 m a t i c s m a t h e
9 s m a t h e m a t i c

10 t h e m a t i c s m a
11 t i c s m a t h e m a

Recall that two words u, v ∈ Σ∗ are conjugate, if u = xy and v = yx for some x, y ∈ Σ∗.

Extended Burrows-Wheeler Transform and analysis of biological sequences 27th November 2013 6 / 41

Burrows-Wheeler Transform How computing the BWT?

How does BWT work?
BWT takes as input a text v, and produces:

a permutation bwt(v) of the letters of v.
the index I, that is useful in order to recover the original word v.

Example: v = mathematics

Each row of the BW-matrix M
is a conjugate of v in
lexicographic order.

bwt(v) coincides with the last
column L of M .

The index I is the row of M
containing the original sequence.

Output:
bwt(v) = L = mmihttsecaa
and I = 7.

M

L
↓

1 a t h e m a t i c s m
2 a t i c s m a t h e m
3 c s m a t h e m a t i
4 e m a t i c s m a t h
5 h e m a t i c s m a t
6 i c s m a t h e m a t

I →

7 m a t h e m a t i c s
8 m a t i c s m a t h e
9 s m a t h e m a t i c

10 t h e m a t i c s m a
11 t i c s m a t h e m a

Recall that two words u, v ∈ Σ∗ are conjugate, if u = xy and v = yx for some x, y ∈ Σ∗.

Extended Burrows-Wheeler Transform and analysis of biological sequences 27th November 2013 6 / 41

Burrows-Wheeler Transform How computing the BWT?

How does BWT work?
BWT takes as input a text v, and produces:

a permutation bwt(v) of the letters of v.
the index I, that is useful in order to recover the original word v.

Example: v = mathematics

Each row of the BW-matrix M
is a conjugate of v in
lexicographic order.

bwt(v) coincides with the last
column L of M .

The index I is the row of M
containing the original sequence.

Output:
bwt(v) = L = mmihttsecaa
and I = 7.

M L
↓

1 a t h e m a t i c s m
2 a t i c s m a t h e m
3 c s m a t h e m a t i
4 e m a t i c s m a t h
5 h e m a t i c s m a t
6 i c s m a t h e m a t

I →

7 m a t h e m a t i c s
8 m a t i c s m a t h e
9 s m a t h e m a t i c

10 t h e m a t i c s m a
11 t i c s m a t h e m a

Recall that two words u, v ∈ Σ∗ are conjugate, if u = xy and v = yx for some x, y ∈ Σ∗.

Extended Burrows-Wheeler Transform and analysis of biological sequences 27th November 2013 6 / 41

Burrows-Wheeler Transform How computing the BWT?

How does BWT work?
BWT takes as input a text v, and produces:

a permutation bwt(v) of the letters of v.
the index I, that is useful in order to recover the original word v.

Example: v = mathematics

Each row of the BW-matrix M
is a conjugate of v in
lexicographic order.

bwt(v) coincides with the last
column L of M .

The index I is the row of M
containing the original sequence.

Output:
bwt(v) = L = mmihttsecaa
and I = 7.

M L
↓

1 a t h e m a t i c s m
2 a t i c s m a t h e m
3 c s m a t h e m a t i
4 e m a t i c s m a t h
5 h e m a t i c s m a t
6 i c s m a t h e m a t

I →7 m a t h e m a t i c s
8 m a t i c s m a t h e
9 s m a t h e m a t i c

10 t h e m a t i c s m a
11 t i c s m a t h e m a

Recall that two words u, v ∈ Σ∗ are conjugate, if u = xy and v = yx for some x, y ∈ Σ∗.

Extended Burrows-Wheeler Transform and analysis of biological sequences 27th November 2013 6 / 41

Burrows-Wheeler Transform How computing the BWT?

How does BWT work?
BWT takes as input a text v, and produces:

a permutation bwt(v) of the letters of v.
the index I, that is useful in order to recover the original word v.

Example: v = mathematics

Each row of the BW-matrix M
is a conjugate of v in
lexicographic order.

bwt(v) coincides with the last
column L of M .

The index I is the row of M
containing the original sequence.

Output:
bwt(v) = L = mmihttsecaa
and I = 7.

M L
↓

1 a t h e m a t i c s m
2 a t i c s m a t h e m
3 c s m a t h e m a t i
4 e m a t i c s m a t h
5 h e m a t i c s m a t
6 i c s m a t h e m a t

I →7 m a t h e m a t i c s
8 m a t i c s m a t h e
9 s m a t h e m a t i c

10 t h e m a t i c s m a
11 t i c s m a t h e m a

Recall that two words u, v ∈ Σ∗ are conjugate, if u = xy and v = yx for some x, y ∈ Σ∗.

Extended Burrows-Wheeler Transform and analysis of biological sequences 27th November 2013 6 / 41

Burrows-Wheeler Transform How computing the BWT?

BWT and SA

When the symbol $ is appended at the end of input string v (where $ is unique and smaller than
any other character), then one can sort the suffixes of v$ rather than the conjugates of v$.

SA[i]: The starting position of the ith smallest suffix of v$.
BWT [i]: The symbol that (circularly) precedes the first symbol of the ith smallest suffix.

1 2 3 4 5 6 7 8 9 10 11 12
v = m a t h e m a t i c s $

M L
↓

$ m a t h e m a t i c s
a t h e m a t i c s $ m
a t i c s $ m a t h e m
c s $ m a t h e m a t i
e m a t i c s $ m a t h
h e m a t i c s $ m a t
i c s $ m a t h e m a t
m a t h e m a t i c s $
m a t i c s $ m a t h e
s $ m a t h e m a t i c
t h e m a t i c s $ m a
t i c s $ m a t h e m a

SA

BWT Sorted Suffixes

12

s $

2

m a t h e m a t i c s $

7

m a t i c s $

10

i c s $

5

h e m a t i c s $

4

t h e m a t i c s $

9

t i c s $

1

$ m a t h e m a t i c s $

6

e m a t i c s $

11

c s $

3

a t h e m a t i c s $

8

a t i c s $

Note that one can build the BWT of a string from its suffix array and viceversa.
Extended Burrows-Wheeler Transform and analysis of biological sequences 27th November 2013 7 / 41

Burrows-Wheeler Transform How computing the BWT?

BWT and SA

When the symbol $ is appended at the end of input string v (where $ is unique and smaller than
any other character), then one can sort the suffixes of v$ rather than the conjugates of v$.

SA[i]: The starting position of the ith smallest suffix of v$.
BWT [i]: The symbol that (circularly) precedes the first symbol of the ith smallest suffix.

1 2 3 4 5 6 7 8 9 10 11 12
v = m a t h e m a t i c s $

M L
↓

$ m a t h e m a t i c s
a t h e m a t i c s $ m
a t i c s $ m a t h e m
c s $ m a t h e m a t i
e m a t i c s $ m a t h
h e m a t i c s $ m a t
i c s $ m a t h e m a t
m a t h e m a t i c s $
m a t i c s $ m a t h e
s $ m a t h e m a t i c
t h e m a t i c s $ m a
t i c s $ m a t h e m a

SA BWT Sorted Suffixes

12 s $
2 m a t h e m a t i c s $
7 m a t i c s $
10 i c s $
5 h e m a t i c s $
4 t h e m a t i c s $
9 t i c s $
1 $ m a t h e m a t i c s $
6 e m a t i c s $
11 c s $
3 a t h e m a t i c s $
8 a t i c s $

Note that one can build the BWT of a string from its suffix array and viceversa.
Extended Burrows-Wheeler Transform and analysis of biological sequences 27th November 2013 7 / 41

Extended Burrows Wheeler Transform

Multiset of words

Next-generation DNA sequencing

The advent of “next-generation” DNA sequencing (NGS) technologies has
meant that very large collections of DNA sequences are now commonplace
in bioinformatics.

So, one could want to apply the algorithms based on the Burrows-Wheeler
Transform to collections of sequences.

A classical method consists in:

concatenating all strings of the collection separating each string with
a distinct end-marker;

computing the BWT of the string so obtained.

Extended Burrows-Wheeler Transform and analysis of biological sequences 27th November 2013 8 / 41

Extended Burrows Wheeler Transform

Multiset of words

Next-generation DNA sequencing

The advent of “next-generation” DNA sequencing (NGS) technologies has
meant that very large collections of DNA sequences are now commonplace
in bioinformatics.

So, one could want to apply the algorithms based on the Burrows-Wheeler
Transform to collections of sequences.

A classical method consists in:

concatenating all strings of the collection separating each string with
a distinct end-marker;

computing the BWT of the string so obtained.

Extended Burrows-Wheeler Transform and analysis of biological sequences 27th November 2013 8 / 41

Extended Burrows Wheeler Transform

Multiset of words

Next-generation DNA sequencing

The advent of “next-generation” DNA sequencing (NGS) technologies has
meant that very large collections of DNA sequences are now commonplace
in bioinformatics.

So, one could want to apply the algorithms based on the Burrows-Wheeler
Transform to collections of sequences.

A classical method consists in:

concatenating all strings of the collection separating each string with
a distinct end-marker;

computing the BWT of the string so obtained.

Extended Burrows-Wheeler Transform and analysis of biological sequences 27th November 2013 8 / 41

Extended Burrows Wheeler Transform

BWT of a collection of strings

One can ask whether it is possible to extend the notion of BWT to a
multiset of words S:

without concatenating the strings belonging to S,

keeping the reversibility and the cluster effect,

allowing sets of strings to be added/removed from collection,

allowing the reconstruction of one or all sequences.

The answer is “yes”. This problem has been faced in
[Mantaci, Restivo, R. and Sciortino, 2005].
This transformation has been called “Extended Burrows-Wheeler
Transform” (EBWT).

Extended Burrows-Wheeler Transform and analysis of biological sequences 27th November 2013 9 / 41

Extended Burrows Wheeler Transform

BWT of a collection of strings

One can ask whether it is possible to extend the notion of BWT to a
multiset of words S:

without concatenating the strings belonging to S,

keeping the reversibility and the cluster effect,

allowing sets of strings to be added/removed from collection,

allowing the reconstruction of one or all sequences.

The answer is “yes”. This problem has been faced in
[Mantaci, Restivo, R. and Sciortino, 2005].
This transformation has been called “Extended Burrows-Wheeler
Transform” (EBWT).

Extended Burrows-Wheeler Transform and analysis of biological sequences 27th November 2013 9 / 41

Extended Burrows Wheeler Transform

BWT of a collection of strings

One can ask whether it is possible to extend the notion of BWT to a
multiset of words S:

without concatenating the strings belonging to S,

keeping the reversibility and the cluster effect,

allowing sets of strings to be added/removed from collection,

allowing the reconstruction of one or all sequences.

The answer is “yes”. This problem has been faced in
[Mantaci, Restivo, R. and Sciortino, 2005].
This transformation has been called “Extended Burrows-Wheeler
Transform” (EBWT).

Extended Burrows-Wheeler Transform and analysis of biological sequences 27th November 2013 9 / 41

Extended Burrows Wheeler Transform

BWT of a collection of strings

One can ask whether it is possible to extend the notion of BWT to a
multiset of words S:

without concatenating the strings belonging to S,

keeping the reversibility and the cluster effect,

allowing sets of strings to be added/removed from collection,

allowing the reconstruction of one or all sequences.

The answer is “yes”. This problem has been faced in
[Mantaci, Restivo, R. and Sciortino, 2005].
This transformation has been called “Extended Burrows-Wheeler
Transform” (EBWT).

Extended Burrows-Wheeler Transform and analysis of biological sequences 27th November 2013 9 / 41

Extended Burrows Wheeler Transform

BWT of a collection of strings

One can ask whether it is possible to extend the notion of BWT to a
multiset of words S:

without concatenating the strings belonging to S,

keeping the reversibility and the cluster effect,

allowing sets of strings to be added/removed from collection,

allowing the reconstruction of one or all sequences.

The answer is “yes”. This problem has been faced in
[Mantaci, Restivo, R. and Sciortino, 2005].
This transformation has been called “Extended Burrows-Wheeler
Transform” (EBWT).

Extended Burrows-Wheeler Transform and analysis of biological sequences 27th November 2013 9 / 41

Extended Burrows Wheeler Transform

BWT of a collection of strings

One can ask whether it is possible to extend the notion of BWT to a
multiset of words S:

without concatenating the strings belonging to S,

keeping the reversibility and the cluster effect,

allowing sets of strings to be added/removed from collection,

allowing the reconstruction of one or all sequences.

The answer is “yes”. This problem has been faced in
[Mantaci, Restivo, R. and Sciortino, 2005].
This transformation has been called “Extended Burrows-Wheeler
Transform” (EBWT).

Extended Burrows-Wheeler Transform and analysis of biological sequences 27th November 2013 9 / 41

Extended Burrows Wheeler Transform How does EBWT work?

The Extended Burrows-Wheeler Transform
[Mantaci, Restivo, R. and Sciortino, 2005]

Sort all the conjugates of the
words in S by the �ω order
relation:

u �ω v ⇐⇒ uω <lex v
ω

where uω = uuuuu · · · and
vω = vvvvv · · · ;
Consider the list of the sorted
conjugates and take the word L
obtained by concatenating the
last letter of each word;

Take the set I containing the
positions of the words
corresponding to the ones in S.

S = {abac, bca, cbab, cba}.
a b a c a b · · ·
a b c a b c · · ·
a b c b a b · · ·
a c a b a c · · ·
a c b a c b · · ·
b a b c b a · · ·
b a c a b a · · ·
b a c b a c · · ·
b c a b c a · · ·
b c b a b c · · ·
c a b a c a · · ·
c a b c a b · · ·
c b a b c b · · ·
c b a c b a · · ·

=⇒

→

1 a b a c
2 a b c
3 a b c b
4 a c a b
5 a c b
6 b a b c
7 b a c a
8 b a c

→

9 b c a
10 b c b a
11 c a b a
12 c a b

→

13 c b a b

→

14 c b a

Output:
ebwt(S) = L = ccbbbcacaaabba and
I = {1, 9, 13, 14}.

Extended Burrows-Wheeler Transform and analysis of biological sequences 27th November 2013 10 / 41

Extended Burrows Wheeler Transform How does EBWT work?

The Extended Burrows-Wheeler Transform
[Mantaci, Restivo, R. and Sciortino, 2005]

Sort all the conjugates of the
words in S by the �ω order
relation:

u �ω v ⇐⇒ uω <lex v
ω

where uω = uuuuu · · · and
vω = vvvvv · · · ;
Consider the list of the sorted
conjugates and take the word L
obtained by concatenating the
last letter of each word;

Take the set I containing the
positions of the words
corresponding to the ones in S.

S = {abac, bca, cbab, cba}.
a b a c a b · · ·
a b c a b c · · ·
a b c b a b · · ·
a c a b a c · · ·
a c b a c b · · ·
b a b c b a · · ·
b a c a b a · · ·
b a c b a c · · ·
b c a b c a · · ·
b c b a b c · · ·
c a b a c a · · ·
c a b c a b · · ·
c b a b c b · · ·
c b a c b a · · ·

=⇒

→

1 a b a c
2 a b c
3 a b c b
4 a c a b
5 a c b
6 b a b c
7 b a c a
8 b a c

→

9 b c a
10 b c b a
11 c a b a
12 c a b

→

13 c b a b

→

14 c b a

Output:
ebwt(S) = L = ccbbbcacaaabba and
I = {1, 9, 13, 14}.

Extended Burrows-Wheeler Transform and analysis of biological sequences 27th November 2013 10 / 41

Extended Burrows Wheeler Transform How does EBWT work?

The Extended Burrows-Wheeler Transform
[Mantaci, Restivo, R. and Sciortino, 2005]

Sort all the conjugates of the
words in S by the �ω order
relation:

u �ω v ⇐⇒ uω <lex v
ω

where uω = uuuuu · · · and
vω = vvvvv · · · ;
Consider the list of the sorted
conjugates and take the word L
obtained by concatenating the
last letter of each word;

Take the set I containing the
positions of the words
corresponding to the ones in S.

S = {abac, bca, cbab, cba}.
a b a c a b · · ·
a b c a b c · · ·
a b c b a b · · ·
a c a b a c · · ·
a c b a c b · · ·
b a b c b a · · ·
b a c a b a · · ·
b a c b a c · · ·
b c a b c a · · ·
b c b a b c · · ·
c a b a c a · · ·
c a b c a b · · ·
c b a b c b · · ·
c b a c b a · · ·

=⇒

→

1 a b a c
2 a b c
3 a b c b
4 a c a b
5 a c b
6 b a b c
7 b a c a
8 b a c

→

9 b c a
10 b c b a
11 c a b a
12 c a b

→

13 c b a b

→

14 c b a

Output:
ebwt(S) = L = ccbbbcacaaabba and
I = {1, 9, 13, 14}.

Extended Burrows-Wheeler Transform and analysis of biological sequences 27th November 2013 10 / 41

Extended Burrows Wheeler Transform How does EBWT work?

The Extended Burrows-Wheeler Transform
[Mantaci, Restivo, R. and Sciortino, 2005]

Sort all the conjugates of the
words in S by the �ω order
relation:

u �ω v ⇐⇒ uω <lex v
ω

where uω = uuuuu · · · and
vω = vvvvv · · · ;
Consider the list of the sorted
conjugates and take the word L
obtained by concatenating the
last letter of each word;

Take the set I containing the
positions of the words
corresponding to the ones in S.

S = {abac, bca, cbab, cba}.
a b a c a b · · ·
a b c a b c · · ·
a b c b a b · · ·
a c a b a c · · ·
a c b a c b · · ·
b a b c b a · · ·
b a c a b a · · ·
b a c b a c · · ·
b c a b c a · · ·
b c b a b c · · ·
c a b a c a · · ·
c a b c a b · · ·
c b a b c b · · ·
c b a c b a · · ·

=⇒

→ 1 a b a c
2 a b c
3 a b c b
4 a c a b
5 a c b
6 b a b c
7 b a c a
8 b a c

→ 9 b c a
10 b c b a
11 c a b a
12 c a b

→ 13 c b a b
→ 14 c b a

Output:
ebwt(S) = L = ccbbbcacaaabba and
I = {1, 9, 13, 14}.

Extended Burrows-Wheeler Transform and analysis of biological sequences 27th November 2013 10 / 41

Extended Burrows Wheeler Transform How does EBWT work?

The Extended Burrows-Wheeler Transform
[Mantaci, Restivo, R. and Sciortino, 2005]

Sort all the conjugates of the
words in S by the �ω order
relation:

u �ω v ⇐⇒ uω <lex v
ω

where uω = uuuuu · · · and
vω = vvvvv · · · ;
Consider the list of the sorted
conjugates and take the word L
obtained by concatenating the
last letter of each word;

Take the set I containing the
positions of the words
corresponding to the ones in S.

S = {abac, bca, cbab, cba}.
a b a c a b · · ·
a b c a b c · · ·
a b c b a b · · ·
a c a b a c · · ·
a c b a c b · · ·
b a b c b a · · ·
b a c a b a · · ·
b a c b a c · · ·
b c a b c a · · ·
b c b a b c · · ·
c a b a c a · · ·
c a b c a b · · ·
c b a b c b · · ·
c b a c b a · · ·

=⇒

→ 1 a b a c
2 a b c
3 a b c b
4 a c a b
5 a c b
6 b a b c
7 b a c a
8 b a c

→ 9 b c a
10 b c b a
11 c a b a
12 c a b

→ 13 c b a b
→ 14 c b a

Output:
ebwt(S) = L = ccbbbcacaaabba and
I = {1, 9, 13, 14}.

Extended Burrows-Wheeler Transform and analysis of biological sequences 27th November 2013 10 / 41

Extended Burrows Wheeler Transform How computing the EBWT?

Sorting of the conjugates

1 a b a c
2 a b c
3 a b c b
4 a c a b
5 a c b
6 b a b c
7 b a c a
8 b a c
9 b c a
10 b c b a
11 c a b a
12 c a b
13 c b a b
14 c b a

Sorting the conjugates of each word of the multiset
in according to �ω order is the bottleneck of the
algorithm.

[Mantaci, Restivo, R. and Sciortino, 2005],
[Mantaci, Restivo, R. and Sciortino, 2007]: use
a periodicity theorem to reduce the number of
comparisons.

[Hon, Ku, Lu, Shah and Thankachan, 2012]: a
O(n log n) algorithm is provided, where n
denotes the total length of the words in S.

Extended Burrows-Wheeler Transform and analysis of biological sequences 27th November 2013 11 / 41

Extended Burrows Wheeler Transform How computing the EBWT?

EBWT for very large collection [Bauer, Cox and R., 2013]

Goal

Compute the EBWT of a collection of 1.000 millions of reads of length
100.

Solution

An efficient strategy (for computing the EBWT) by sorting the suffixes of
all strings of the collection, by using the usual lexicographic order, has
been given in [Bauer, Cox and R., 2011, Bauer, Cox and R., 2013], where:

the input collection and the output are in external memory!

To ensure the reversibility of the transform, one needs to append a
different end-marker at the end of each input string of the multiset.
Given strings collection S = {S1, S2, . . . , Sm} on an alphabet Σ. We
use (implicit distinct) end markers and suppose that

$1 < $2 < · · · < $m < a, for each a ∈ Σ.

Extended Burrows-Wheeler Transform and analysis of biological sequences 27th November 2013 12 / 41

Extended Burrows Wheeler Transform How computing the EBWT?

EBWT for very large collection [Bauer, Cox and R., 2013]

Goal

Compute the EBWT of a collection of 1.000 millions of reads of length
100.

Solution

An efficient strategy (for computing the EBWT) by sorting the suffixes of
all strings of the collection, by using the usual lexicographic order, has
been given in [Bauer, Cox and R., 2011, Bauer, Cox and R., 2013], where:

the input collection and the output are in external memory!

To ensure the reversibility of the transform, one needs to append a
different end-marker at the end of each input string of the multiset.
Given strings collection S = {S1, S2, . . . , Sm} on an alphabet Σ. We
use (implicit distinct) end markers and suppose that

$1 < $2 < · · · < $m < a, for each a ∈ Σ.

Extended Burrows-Wheeler Transform and analysis of biological sequences 27th November 2013 12 / 41

Extended Burrows Wheeler Transform How computing the EBWT?

EBWT for very large collection [Bauer, Cox and R., 2013]

Goal

Compute the EBWT of a collection of 1.000 millions of reads of length
100.

Solution

An efficient strategy (for computing the EBWT) by sorting the suffixes of
all strings of the collection, by using the usual lexicographic order, has
been given in [Bauer, Cox and R., 2011, Bauer, Cox and R., 2013], where:

the input collection and the output are in external memory!

To ensure the reversibility of the transform, one needs to append a
different end-marker at the end of each input string of the multiset.
Given strings collection S = {S1, S2, . . . , Sm} on an alphabet Σ. We
use (implicit distinct) end markers and suppose that

$1 < $2 < · · · < $m < a, for each a ∈ Σ.

Extended Burrows-Wheeler Transform and analysis of biological sequences 27th November 2013 12 / 41

Extended Burrows Wheeler Transform How computing the EBWT?

Idea of the strategy by an example

Let S = {S1, S2, S3} = {TGCCAAC,AGAGCTC,GTCGCTT} be a
collection of m = 3 strings of length k = 7 on an alphabet of σ = 4
letters.

0 1 2 3 4 5 6 7
S1

T G C C A A C

$1
S2

A G A G C T C

$2
S3

G T C G C T T

$3

We can obtain the EBWT of S by the following iterations:

Iteration 0
EBWT Suffixes

C $1
C $2
T $3

Iteration 1
EBWT Suffixes

C $1
C $2
T $3
A C$1
T C$2
T T$3

Iteration 2
EBWT Suffixes

C $1
C $2
T $3
A AC$1
A C$1
T C$2
T T$3
C TC$2
C TT$3

and so on

Extended Burrows-Wheeler Transform and analysis of biological sequences 27th November 2013 13 / 41

Extended Burrows Wheeler Transform How computing the EBWT?

Idea of the strategy by an example

Let S = {S1, S2, S3} = {TGCCAAC,AGAGCTC,GTCGCTT} be a
collection of m = 3 strings of length k = 7 on an alphabet of σ = 4
letters.

0 1 2 3 4 5 6 7
S1

T G C C A A

C $1
S2

A G A G C T

C $2
S3

G T C G C T

T $3

We can obtain the EBWT of S by the following iterations:

Iteration 0
EBWT Suffixes

C $1
C $2
T $3

Iteration 1
EBWT Suffixes

C $1
C $2
T $3
A C$1
T C$2
T T$3

Iteration 2
EBWT Suffixes

C $1
C $2
T $3
A AC$1
A C$1
T C$2
T T$3
C TC$2
C TT$3

and so on

Extended Burrows-Wheeler Transform and analysis of biological sequences 27th November 2013 13 / 41

Extended Burrows Wheeler Transform How computing the EBWT?

Idea of the strategy by an example

Let S = {S1, S2, S3} = {TGCCAAC,AGAGCTC,GTCGCTT} be a
collection of m = 3 strings of length k = 7 on an alphabet of σ = 4
letters.

0 1 2 3 4 5 6 7
S1

T G C C A

A C $1
S2

A G A G C

T C $2
S3

G T C G C

T T $3

We can obtain the EBWT of S by the following iterations:

Iteration 0
EBWT Suffixes

C $1
C $2
T $3

Iteration 1
EBWT Suffixes

C $1
C $2
T $3
A C$1
T C$2
T T$3

Iteration 2
EBWT Suffixes

C $1
C $2
T $3
A AC$1
A C$1
T C$2
T T$3
C TC$2
C TT$3

and so on

Extended Burrows-Wheeler Transform and analysis of biological sequences 27th November 2013 13 / 41

Extended Burrows Wheeler Transform How computing the EBWT?

Idea of the strategy by an example

Let S = {S1, S2, S3} = {TGCCAAC,AGAGCTC,GTCGCTT} be a
collection of m = 3 strings of length k = 7 on an alphabet of σ = 4
letters.

0 1 2 3 4 5 6 7
S1

T G C C

A A C $1
S2

A G A G

C T C $2
S3

G T C G

C T T $3

We can obtain the EBWT of S by the following iterations:

Iteration 0
EBWT Suffixes

C $1
C $2
T $3

Iteration 1
EBWT Suffixes

C $1
C $2
T $3
A C$1
T C$2
T T$3

Iteration 2
EBWT Suffixes

C $1
C $2
T $3
A AC$1
A C$1
T C$2
T T$3
C TC$2
C TT$3

and so on

Extended Burrows-Wheeler Transform and analysis of biological sequences 27th November 2013 13 / 41

Extended Burrows Wheeler Transform How computing the EBWT?

Idea of the strategy by an example

Let S = {S1, S2, S3} = {TGCCAAC,AGAGCTC,GTCGCTT} be a
collection of m = 3 strings of length k = 7 on an alphabet of σ = 4
letters.

0 1 2 3 4 5 6 7
S1

T G C

C A A C $1
S2

A G A

G C T C $2
S3

G T C

G C T T $3

We can obtain the EBWT of S by the following iterations:

Iteration 0
EBWT Suffixes

C $1
C $2
T $3

Iteration 1
EBWT Suffixes

C $1
C $2
T $3
A C$1
T C$2
T T$3

Iteration 2
EBWT Suffixes

C $1
C $2
T $3
A AC$1
A C$1
T C$2
T T$3
C TC$2
C TT$3

and so on

Extended Burrows-Wheeler Transform and analysis of biological sequences 27th November 2013 13 / 41

Extended Burrows Wheeler Transform How computing the EBWT?

Idea of the strategy by an example

Let S = {S1, S2, S3} = {TGCCAAC,AGAGCTC,GTCGCTT} be a
collection of m = 3 strings of length k = 7 on an alphabet of σ = 4
letters.

0 1 2 3 4 5 6 7
S1

T G

C C A A C $1
S2

A G

A G C T C $2
S3

G T

C G C T T $3

We can obtain the EBWT of S by the following iterations:

Iteration 0
EBWT Suffixes

C $1
C $2
T $3

Iteration 1
EBWT Suffixes

C $1
C $2
T $3
A C$1
T C$2
T T$3

Iteration 2
EBWT Suffixes

C $1
C $2
T $3
A AC$1
A C$1
T C$2
T T$3
C TC$2
C TT$3

and so on

Extended Burrows-Wheeler Transform and analysis of biological sequences 27th November 2013 13 / 41

Extended Burrows Wheeler Transform How computing the EBWT?

Idea of the strategy by an example

Let S = {S1, S2, S3} = {TGCCAAC,AGAGCTC,GTCGCTT} be a
collection of m = 3 strings of length k = 7 on an alphabet of σ = 4
letters.

0 1 2 3 4 5 6 7
S1

T

G C C A A C $1
S2

A

G A G C T C $2
S3

G

T C G C T T $3

We can obtain the EBWT of S by the following iterations:

Iteration 0
EBWT Suffixes

C $1
C $2
T $3

Iteration 1
EBWT Suffixes

C $1
C $2
T $3
A C$1
T C$2
T T$3

Iteration 2
EBWT Suffixes

C $1
C $2
T $3
A AC$1
A C$1
T C$2
T T$3
C TC$2
C TT$3

and so on

Extended Burrows-Wheeler Transform and analysis of biological sequences 27th November 2013 13 / 41

Extended Burrows Wheeler Transform How computing the EBWT?

Idea of the strategy by an example

Let S = {S1, S2, S3} = {TGCCAAC,AGAGCTC,GTCGCTT} be a
collection of m = 3 strings of length k = 7 on an alphabet of σ = 4
letters.

0 1 2 3 4 5 6 7
S1 T G C C A A C $1
S2 A G A G C T C $2
S3 G T C G C T T $3

We can obtain the EBWT of S by the following iterations:

Iteration 0
EBWT Suffixes

C $1
C $2
T $3

Iteration 1
EBWT Suffixes

C $1
C $2
T $3
A C$1
T C$2
T T$3

Iteration 2
EBWT Suffixes

C $1
C $2
T $3
A AC$1
A C$1
T C$2
T T$3
C TC$2
C TT$3

and so on

Extended Burrows-Wheeler Transform and analysis of biological sequences 27th November 2013 13 / 41

Extended Burrows Wheeler Transform How computing the EBWT?

Idea of the strategy by an example

Let S = {S1, S2, S3} = {TGCCAAC,AGAGCTC,GTCGCTT} be a
collection of m = 3 strings of length k = 7 on an alphabet of σ = 4
letters.

0 1 2 3 4 5 6 7
S1 T G C C A A C $1
S2 A G A G C T C $2
S3 G T C G C T T $3

We can obtain the EBWT of S by the following iterations:

Iteration 0
EBWT Suffixes

C $1
C $2
T $3

Iteration 1
EBWT Suffixes

C $1
C $2
T $3
A C$1
T C$2
T T$3

Iteration 2
EBWT Suffixes

C $1
C $2
T $3
A AC$1
A C$1
T C$2
T T$3
C TC$2
C TT$3

and so on

Extended Burrows-Wheeler Transform and analysis of biological sequences 27th November 2013 13 / 41

Extended Burrows Wheeler Transform How computing the EBWT?

Two versions of our algorithm: BCR vs. BCRext

Let S = {S1, S2, . . . , Sm} be a collection of strings of length k on an
alphabet of σ letters.

BCR BCRext

CPU time O(ksort(m)) O(km)

RAM usage(bits) O((m+ σ2) log(mk)) O(σ2 log(mk))

I/O (bits) O(mk2 log(s)) O(mk2 log(σ))

Performance on human DNA sequence data.

Dataset size Program Wallclock time CPU Max RAM
(millions of 100-mers) Program (s per input base) efficiency (%) (Gbyte)

85 bwte 7.99 99 4.00
rlcsa 2.44 99 13.40
BCR 1.01 83 1.10

BCRext 4.75 27 negligible
1000 BCR 5.74 19 13.00

BCRext 5.89 21 negligible

bwte: [Ferragina, Gagie and Manzini]’s algoritm ([Ferragina, Gagie and Manzini, 2012]).
rlcsa: [Sirén]’s algorithm ([Sirén, 2009]).

They does not support very large input collections.

Extended Burrows-Wheeler Transform and analysis of biological sequences 27th November 2013 14 / 41

Extended Burrows Wheeler Transform How computing the EBWT?

Two versions of our algorithm: BCR vs. BCRext

Let S = {S1, S2, . . . , Sm} be a collection of strings of length k on an
alphabet of σ letters.

BCR BCRext

CPU time O(ksort(m)) O(km)

RAM usage(bits) O((m+ σ2) log(mk)) O(σ2 log(mk))

I/O (bits) O(mk2 log(s)) O(mk2 log(σ))

Performance on human DNA sequence data.

Dataset size Program Wallclock time CPU Max RAM
(millions of 100-mers) Program (s per input base) efficiency (%) (Gbyte)

85 bwte 7.99 99 4.00
rlcsa 2.44 99 13.40
BCR 1.01 83 1.10

BCRext 4.75 27 negligible
1000 BCR 5.74 19 13.00

BCRext 5.89 21 negligible

bwte: [Ferragina, Gagie and Manzini]’s algoritm ([Ferragina, Gagie and Manzini, 2012]).
rlcsa: [Sirén]’s algorithm ([Sirén, 2009]).

They does not support very large input collections.

Extended Burrows-Wheeler Transform and analysis of biological sequences 27th November 2013 14 / 41

Extended Burrows Wheeler Transform LCP and GSA

EBWT, LCP and GSA for sequences collections
[Bauer, Cox, R. and Sciortino, 2012]

Building upon the method (called BCR) of EBWT computation (in
external memory) introduced in [Bauer, Cox and R., 2013], the algorithm
in [Bauer, Cox, R. and Sciortino, 2012] adds some lightweight data
structures and allows the LCP and EBWT of a collection of strings to be
computed simultaneously.
Moreover, one can also compute the generalized suffix array at the same
time.

Extended Burrows-Wheeler Transform and analysis of biological sequences 27th November 2013 15 / 41

Extended Burrows Wheeler Transform LCP and GSA

Let S = {S1, S2, . . . , Sm} be a collection of strings on an alphabet of σ
letters. The sum of lengths of Si is N .

GSA[i]: The i-th smallest suffix of the strings in S. If GSA[i] = (t, h), then it
corresponds to the suffix starting at the position t of the string Sh.
EBWT [i]: The symbol that (circularly) precedes the first symbol of the suffix of Sh.
LCP [i]: The length of longest common prefix with preceding suffix in the sorted list of
the suffixes of S.

Example

Multiset S
0 1 2 3 4 5 6

S1 G C C A A C $1
S2 G A G C T C $2
S3 T C G C T T $3

GSA LCP EBWT Sorted Suffixes of S
0 (6, 1) 0 C $1
1 (6, 2) 0 C $2
2 (6, 3) 0 T $3
3 (3, 1) 0 C AAC$1
4 (4, 1) 1 A AC$1
5 (1, 2) 1 G AGCTC$2
6 (5, 1) 0 A C$1
7 (5, 2) 1 T C$2
8 (2, 1) 1 C CAAC$1
9 (1, 1) 1 G CCAAC$1
10 (1, 3) 1 T CGCTT$3
11 (3, 2) 1 G CTC$2
12 (3, 3) 2 G CTT$3
13 (0, 2) 0 $2 GAGCTC$2
14 (0, 1) 1 $1 GCCAAC$1
15 (2, 2) 2 A GCTC$2
16 (2, 3) 3 C GCTT$3
17 (5, 3) 0 T T$3
18 (4, 2) 1 C TC$2
19 (0, 3) 2 $3 TCGCTT$3
20 (4, 3) 1 C TT$3

Extended Burrows-Wheeler Transform and analysis of biological sequences 27th November 2013 16 / 41

Extended Burrows Wheeler Transform LCP and GSA

Let S = {S1, S2, . . . , Sm} be a collection of strings on an alphabet of σ
letters. The sum of lengths of Si is N .

GSA[i]: The i-th smallest suffix of the strings in S. If GSA[i] = (t, h), then it
corresponds to the suffix starting at the position t of the string Sh.
EBWT [i]: The symbol that (circularly) precedes the first symbol of the suffix of Sh.
LCP [i]: The length of longest common prefix with preceding suffix in the sorted list of
the suffixes of S.

Example

Multiset S
0 1 2 3 4 5 6

S1 G C C A A C $1
S2 G A G C T C $2
S3 T C G C T T $3

GSA LCP EBWT Sorted Suffixes of S
0 (6, 1) 0 C $1
1 (6, 2) 0 C $2
2 (6, 3) 0 T $3
3 (3, 1) 0 C AAC$1
4 (4, 1) 1 A AC$1
5 (1, 2) 1 G AGCTC$2
6 (5, 1) 0 A C$1
7 (5, 2) 1 T C$2
8 (2, 1) 1 C CAAC$1
9 (1, 1) 1 G CCAAC$1
10 (1, 3) 1 T CGCTT$3
11 (3, 2) 1 G CTC$2
12 (3, 3) 2 G CTT$3
13 (0, 2) 0 $2 GAGCTC$2
14 (0, 1) 1 $1 GCCAAC$1
15 (2, 2) 2 A GCTC$2
16 (2, 3) 3 C GCTT$3
17 (5, 3) 0 T T$3
18 (4, 2) 1 C TC$2
19 (0, 3) 2 $3 TCGCTT$3
20 (4, 3) 1 C TT$3

Extended Burrows-Wheeler Transform and analysis of biological sequences 27th November 2013 16 / 41

Extended Burrows Wheeler Transform LCP and GSA

Let S = {S1, S2, . . . , Sm} be a collection of strings on an alphabet of σ
letters. The sum of lengths of Si is N .

GSA[i]: The i-th smallest suffix of the strings in S. If GSA[i] = (t, h), then it
corresponds to the suffix starting at the position t of the string Sh.
EBWT [i]: The symbol that (circularly) precedes the first symbol of the suffix of Sh.
LCP [i]: The length of longest common prefix with preceding suffix in the sorted list of
the suffixes of S.

Example

Multiset S
0 1 2 3 4 5 6

S1 G C C A A C $1
S2 G A G C T C $2
S3 T C G C T T $3

GSA LCP EBWT Sorted Suffixes of S
0 (6, 1) 0 C $1
1 (6, 2) 0 C $2
2 (6, 3) 0 T $3
3 (3, 1) 0 C AAC$1
4 (4, 1) 1 A AC$1
5 (1, 2) 1 G AGCTC$2
6 (5, 1) 0 A C$1
7 (5, 2) 1 T C$2
8 (2, 1) 1 C CAAC$1
9 (1, 1) 1 G CCAAC$1
10 (1, 3) 1 T CGCTT$3
11 (3, 2) 1 G CTC$2
12 (3, 3) 2 G CTT$3
13 (0, 2) 0 $2 GAGCTC$2
14 (0, 1) 1 $1 GCCAAC$1
15 (2, 2) 2 A GCTC$2
16 (2, 3) 3 C GCTT$3
17 (5, 3) 0 T T$3
18 (4, 2) 1 C TC$2
19 (0, 3) 2 $3 TCGCTT$3
20 (4, 3) 1 C TT$3

Extended Burrows-Wheeler Transform and analysis of biological sequences 27th November 2013 16 / 41

Extended Burrows Wheeler Transform LCP and GSA

Let S = {S1, S2, . . . , Sm} be a collection of strings on an alphabet of σ
letters. The sum of lengths of Si is N .

GSA[i]: The i-th smallest suffix of the strings in S. If GSA[i] = (t, h), then it
corresponds to the suffix starting at the position t of the string Sh.
EBWT [i]: The symbol that (circularly) precedes the first symbol of the suffix of Sh.
LCP [i]: The length of longest common prefix with preceding suffix in the sorted list of
the suffixes of S.

Example

Multiset S
0 1 2 3 4 5 6

S1 G C C A A C $1
S2 G A G C T C $2
S3 T C G C T T $3

GSA LCP EBWT Sorted Suffixes of S
0 (6, 1) 0 C $1
1 (6, 2) 0 C $2
2 (6, 3) 0 T $3
3 (3, 1) 0 C AAC$1
4 (4, 1) 1 A AC$1
5 (1, 2) 1 G AGCTC$2
6 (5, 1) 0 A C$1
7 (5, 2) 1 T C$2
8 (2, 1) 1 C CAAC$1
9 (1, 1) 1 G CCAAC$1
10 (1, 3) 1 T CGCTT$3
11 (3, 2) 1 G CTC$2
12 (3, 3) 2 G CTT$3
13 (0, 2) 0 $2 GAGCTC$2
14 (0, 1) 1 $1 GCCAAC$1
15 (2, 2) 2 A GCTC$2
16 (2, 3) 3 C GCTT$3
17 (5, 3) 0 T T$3
18 (4, 2) 1 C TC$2
19 (0, 3) 2 $3 TCGCTT$3
20 (4, 3) 1 C TT$3

Extended Burrows-Wheeler Transform and analysis of biological sequences 27th November 2013 16 / 41

Extended Burrows Wheeler Transform LCP and GSA

Let S = {S1, S2, . . . , Sm} be a collection of strings on an alphabet of σ
letters. The sum of lengths of Si is N .

GSA[i]: The i-th smallest suffix of the strings in S. If GSA[i] = (t, h), then it
corresponds to the suffix starting at the position t of the string Sh.
EBWT [i]: The symbol that (circularly) precedes the first symbol of the suffix of Sh.
LCP [i]: The length of longest common prefix with preceding suffix in the sorted list of
the suffixes of S.

Example

Multiset S
0 1 2 3 4 5 6

S1 G C C A A C $1
S2 G A G C T C $2
S3 T C G C T T $3

GSA LCP EBWT Sorted Suffixes of S
0 (6, 1) 0 C $1
1 (6, 2) 0 C $2
2 (6, 3) 0 T $3
3 (3, 1) 0 C AAC$1
4 (4, 1) 1 A AC$1
5 (1, 2) 1 G AGCTC$2
6 (5, 1) 0 A C$1
7 (5, 2) 1 T C$2
8 (2, 1) 1 C CAAC$1
9 (1, 1) 1 G CCAAC$1
10 (1, 3) 1 T CGCTT$3
11 (3, 2) 1 G CTC$2
12 (3, 3) 2 G CTT$3
13 (0, 2) 0 $2 GAGCTC$2
14 (0, 1) 1 $1 GCCAAC$1
15 (2, 2) 2 A GCTC$2
16 (2, 3) 3 C GCTT$3
17 (5, 3) 0 T T$3
18 (4, 2) 1 C TC$2
19 (0, 3) 2 $3 TCGCTT$3
20 (4, 3) 1 C TT$3

Extended Burrows-Wheeler Transform and analysis of biological sequences 27th November 2013 16 / 41

Extended Burrows Wheeler Transform LCP and GSA

Experiments

instance size in Gb program wall clock efficiency memory

0043M 4.00 BCR 0.99 0.84 0.57
4.00 extLCP 3.29 0.98 1.00

0085M 8.00 BCR 1.01 0.83 1.10
8.00 extLCP 3.81 0.87 2.00

0100M 9.31 BCR 1.05 0.81 1.35
9.31 extLCP 4.03 0.83 2.30

0200M 18.62 BCR 1.63 0.58 4.00
18.62 extLCP 4.28 0.79 4.70

0800M 74.51 BCR 3.23 0.43 10.40
74.51 extLCP 6.68 0.67 18.00

All reads are 100 bases long.
wall clock time (the amount of time that elapsed from the start to the completion of the instance) is given as
microseconds per input base.
memory denotes the maximal amount of memory (in gigabytes) used during execution.
The efficiency column states the CPU efficiency values, i.e. the proportion of time for which the CPU was occupied and
not waiting for I/O operations to finish, as taken from the output of the /usr/bin/time command.

The extLCP algorithm:

uses O(mk2 log σ) disk I/O and O((m+σ2) log(mk)) bits of memory.
takes O(k(m+ sort(m))) CPU time, where sort(m) is the time taken
to sort m integers.

Extended Burrows-Wheeler Transform and analysis of biological sequences 27th November 2013 17 / 41

Extended Burrows Wheeler Transform Applications

BWT-based Compressors of a text

BWT is a compression booster: BW-transformed text is compressed
by chaining standard compression techniques.

Once generated, the BWT is compressed by standard techniques: a
typical scheme would follow an initial move-to-front encoding with
run length encoding and then Huffman encoding.

v BWT bwt(v) Compressor Output

For instance bzip2 (http://www.bzip.org, Julian Seward)

divides a text into blocks of (at most, and by default) 900 kB,
compresses each separately,
hence is only able to take advantage of local similarities in the data.

Extended Burrows-Wheeler Transform and analysis of biological sequences 27th November 2013 18 / 41

Extended Burrows Wheeler Transform Applications

Why Useful?

INTUITION
Let us consider the effect of BWT on a segment of a BWT-sorted file for
Shakespeare’s Hamlet.

The factor ot is normally preceded by
n, but occasionally by h, g or j.

The characters preceding ot are
grouped together.

The “clustering effect” is also kept when the Extended Burrows-Wheeler
transform is used.

Extended Burrows-Wheeler Transform and analysis of biological sequences 27th November 2013 19 / 41

Extended Burrows Wheeler Transform Applications

Why Useful?

INTUITION
Let us consider the effect of BWT on a segment of a BWT-sorted file for
Shakespeare’s Hamlet.

The factor ot is normally preceded by
n, but occasionally by h, g or j.

The characters preceding ot are
grouped together.

The “clustering effect” is also kept when the Extended Burrows-Wheeler
transform is used.

Extended Burrows-Wheeler Transform and analysis of biological sequences 27th November 2013 19 / 41

Extended Burrows Wheeler Transform Applications

BWT-based Compressors of a collection

Extended Goal

The EBWT-based Compressors of very large collections.

Let S = {S1, S2, . . . , Sm} be a collection of m strings.

We use EBWT [Bauer, Cox and R., 2013] that works in external
memory and compute the EBWT by sorting the suffixes of very large
collections.

Recall that EBWT requires ordered and distinct “end-marker”
characters to be appended to the sequences.

So, we assume that we use implicit distinct end markers, i.e. we
suppose that

$1 = $2 = . . . = $m = $.

In the sense that we use the positions of the sequences in the multiset
in order to establish the order relation between two identical suffixes.

Extended Burrows-Wheeler Transform and analysis of biological sequences 27th November 2013 20 / 41

Extended Burrows Wheeler Transform Applications

BWT-based Compressors of a collection

Extended Goal

The EBWT-based Compressors of very large collections.

Let S = {S1, S2, . . . , Sm} be a collection of m strings.

We use EBWT [Bauer, Cox and R., 2013] that works in external
memory and compute the EBWT by sorting the suffixes of very large
collections.

Recall that EBWT requires ordered and distinct “end-marker”
characters to be appended to the sequences.

So, we assume that we use implicit distinct end markers, i.e. we
suppose that

$1 = $2 = . . . = $m = $.

In the sense that we use the positions of the sequences in the multiset
in order to establish the order relation between two identical suffixes.

Extended Burrows-Wheeler Transform and analysis of biological sequences 27th November 2013 20 / 41

Extended Burrows Wheeler Transform Applications

BWT-based Compressors of a collection

Extended Goal

The EBWT-based Compressors of very large collections.

Let S = {S1, S2, . . . , Sm} be a collection of m strings.

We use EBWT [Bauer, Cox and R., 2013] that works in external
memory and compute the EBWT by sorting the suffixes of very large
collections.

Recall that EBWT requires ordered and distinct “end-marker”
characters to be appended to the sequences.

So, we assume that we use implicit distinct end markers, i.e. we
suppose that

$1 = $2 = . . . = $m = $.

In the sense that we use the positions of the sequences in the multiset
in order to establish the order relation between two identical suffixes.

Extended Burrows-Wheeler Transform and analysis of biological sequences 27th November 2013 20 / 41

Extended Burrows Wheeler Transform Applications

BWT-based Compressors of a collection

Extended Goal

The EBWT-based Compressors of very large collections.

Let S = {S1, S2, . . . , Sm} be a collection of m strings.

We use EBWT [Bauer, Cox and R., 2013] that works in external
memory and compute the EBWT by sorting the suffixes of very large
collections.

Recall that EBWT requires ordered and distinct “end-marker”
characters to be appended to the sequences.

So, we assume that we use implicit distinct end markers, i.e. we
suppose that

$1 = $2 = . . . = $m = $.

In the sense that we use the positions of the sequences in the multiset
in order to establish the order relation between two identical suffixes.

Extended Burrows-Wheeler Transform and analysis of biological sequences 27th November 2013 20 / 41

Extended Burrows Wheeler Transform Applications

BWT-based Compressors of a collection

Extended Goal

The EBWT-based Compressors of very large collections.

Let S = {S1, S2, . . . , Sm} be a collection of m strings.

We use EBWT [Bauer, Cox and R., 2013] that works in external
memory and compute the EBWT by sorting the suffixes of very large
collections.

Recall that EBWT requires ordered and distinct “end-marker”
characters to be appended to the sequences.

So, we assume that we use implicit distinct end markers, i.e. we
suppose that

$1 = $2 = . . . = $m = $.

In the sense that we use the positions of the sequences in the multiset
in order to establish the order relation between two identical suffixes.

Extended Burrows-Wheeler Transform and analysis of biological sequences 27th November 2013 20 / 41

Extended Burrows Wheeler Transform Applications

The use of end-markers

The use of ordered and (implicit or explicit) distinct “end-marker” symbols
makes the multiset of sequences an ordered collection.

Problem

The use of the (implicit or explicit) distinct end-markers can affect the
compression, since the same or similar sequences might be distant in the
collection.

This can make the difference in the clustering effect!!!

Recall that the EBWT, defined in
[Mantaci, Restivo, R. and Sciortino, 2005] does not require any
end-marker.
A study of the combinatorial aspects that connect the �ω-order among
conjugates and the lexicographic order among suffixes of a multiset of
words can be found in
[Bonomo, Mantaci, Restivo, R. and Sciortino, 2013]. An important role is
played by the notion of Lyndon word.

Extended Burrows-Wheeler Transform and analysis of biological sequences 27th November 2013 21 / 41

Extended Burrows Wheeler Transform Applications

The use of end-markers

The use of ordered and (implicit or explicit) distinct “end-marker” symbols
makes the multiset of sequences an ordered collection.

Problem

The use of the (implicit or explicit) distinct end-markers can affect the
compression, since the same or similar sequences might be distant in the
collection.

This can make the difference in the clustering effect!!!

Recall that the EBWT, defined in
[Mantaci, Restivo, R. and Sciortino, 2005] does not require any
end-marker.
A study of the combinatorial aspects that connect the �ω-order among
conjugates and the lexicographic order among suffixes of a multiset of
words can be found in
[Bonomo, Mantaci, Restivo, R. and Sciortino, 2013]. An important role is
played by the notion of Lyndon word.

Extended Burrows-Wheeler Transform and analysis of biological sequences 27th November 2013 21 / 41

Extended Burrows Wheeler Transform Applications

The use of end-markers

The use of ordered and (implicit or explicit) distinct “end-marker” symbols
makes the multiset of sequences an ordered collection.

Problem

The use of the (implicit or explicit) distinct end-markers can affect the
compression, since the same or similar sequences might be distant in the
collection.

This can make the difference in the clustering effect!!!

Recall that the EBWT, defined in
[Mantaci, Restivo, R. and Sciortino, 2005] does not require any
end-marker.
A study of the combinatorial aspects that connect the �ω-order among
conjugates and the lexicographic order among suffixes of a multiset of
words can be found in
[Bonomo, Mantaci, Restivo, R. and Sciortino, 2013]. An important role is
played by the notion of Lyndon word.

Extended Burrows-Wheeler Transform and analysis of biological sequences 27th November 2013 21 / 41

Extended Burrows Wheeler Transform Applications

The use of end-markers

The use of ordered and (implicit or explicit) distinct “end-marker” symbols
makes the multiset of sequences an ordered collection.

Problem

The use of the (implicit or explicit) distinct end-markers can affect the
compression, since the same or similar sequences might be distant in the
collection.

This can make the difference in the clustering effect!!!

Recall that the EBWT, defined in
[Mantaci, Restivo, R. and Sciortino, 2005] does not require any
end-marker.
A study of the combinatorial aspects that connect the �ω-order among
conjugates and the lexicographic order among suffixes of a multiset of
words can be found in
[Bonomo, Mantaci, Restivo, R. and Sciortino, 2013]. An important role is
played by the notion of Lyndon word.

Extended Burrows-Wheeler Transform and analysis of biological sequences 27th November 2013 21 / 41

Extended Burrows Wheeler Transform Applications

Example

Ordered collection: S = {TAGACCT, TACCACT,GAGACCT}

EBWT Sorted Suffixes
T $
T $
T $
T ACCACT$
G ACCT$
G ACCT$
C ACT$
T AGACCT$
G AGACCT$
C CACT$
A CCACT$
A CCT$
A CCT$
C CT$
A CT$
C CT$
A GACCT$
A GACCT$
$ GAGACCT$
C T$
C T$
C T$
$ TACCACT$
$ TAGACCT$

We use implicit distinct end markers, i.e.
$1 = $2 = $3 = $.
In particular, if the strings have the length k, we
have Si[k] = Sj [k] = $, and we define
Si[k] < Sj [k], if i < j.

Note that, we have a 1− 1 correspondence between
symbols in EBWT and sorted list of all suffixes in
the collection.

ebwt(S) = TTTTGGCTGCAAACACAA$CCC$$

Extended Burrows-Wheeler Transform and analysis of biological sequences 27th November 2013 22 / 41

Extended Burrows Wheeler Transform Applications

Example

Ordered collection: S = {TAGACCT, TACCACT,GAGACCT}

EBWT Sorted Suffixes
T $
T $
T $
T ACCACT$
G ACCT$
G ACCT$
C ACT$
T AGACCT$
G AGACCT$
C CACT$
A CCACT$
A CCT$
A CCT$
C CT$
A CT$
C CT$
A GACCT$
A GACCT$
$ GAGACCT$
C T$
C T$
C T$
$ TACCACT$
$ TAGACCT$

We use implicit distinct end markers, i.e.
$1 = $2 = $3 = $.
In particular, if the strings have the length k, we
have Si[k] = Sj [k] = $, and we define
Si[k] < Sj [k], if i < j.

Note that, we have a 1− 1 correspondence between
symbols in EBWT and sorted list of all suffixes in
the collection.

ebwt(S) = TTTTGGCTGCAAACACAA$CCC$$

Extended Burrows-Wheeler Transform and analysis of biological sequences 27th November 2013 22 / 41

Extended Burrows Wheeler Transform Applications

Example

Ordered collection: S = {TAGACCT, TACCACT,GAGACCT}

EBWT Sorted Suffixes
T $
T $
T $
T ACCACT$
G ACCT$
G ACCT$
C ACT$
T AGACCT$
G AGACCT$
C CACT$
A CCACT$
A CCT$
A CCT$
C CT$
A CT$
C CT$
A GACCT$
A GACCT$
$ GAGACCT$
C T$
C T$
C T$
$ TACCACT$
$ TAGACCT$

We use implicit distinct end markers, i.e.
$1 = $2 = $3 = $.
In particular, if the strings have the length k, we
have Si[k] = Sj [k] = $, and we define
Si[k] < Sj [k], if i < j.

Note that, we have a 1− 1 correspondence between
symbols in EBWT and sorted list of all suffixes in
the collection.

ebwt(S) = TTTTGGCTGCAAACACAA$CCC$$

Extended Burrows-Wheeler Transform and analysis of biological sequences 27th November 2013 22 / 41

Extended Burrows Wheeler Transform Applications

Example

Ordered collection: S = {TAGACCT, TACCACT,GAGACCT}

EBWT Sorted Suffixes
T $
T $
T $
T ACCACT$
G ACCT$
G ACCT$
C ACT$
T AGACCT$
G AGACCT$
C CACT$
A CCACT$
A CCT$
A CCT$
C CT$
A CT$
C CT$
A GACCT$
A GACCT$
$ GAGACCT$
C T$
C T$
C T$
$ TACCACT$
$ TAGACCT$

We use implicit distinct end markers, i.e.
$1 = $2 = $3 = $.
In particular, if the strings have the length k, we
have Si[k] = Sj [k] = $, and we define
Si[k] < Sj [k], if i < j.

Note that, we have a 1− 1 correspondence between
symbols in EBWT and sorted list of all suffixes in
the collection.

ebwt(S) = TTTTGGCTGCAAACACAA$CCC$$

Extended Burrows-Wheeler Transform and analysis of biological sequences 27th November 2013 22 / 41

Extended Burrows Wheeler Transform Applications

Example: swapping sequences

S = {TAGACCT, TACCACT,GAGACCT}

EBWT Sorted Suffixes
T $
T $
T $
T ACCACT$
G ACCT$
G ACCT$
C ACT$
T AGACCT$
G AGACCT$
C CACT$
A CCACT$
A CCT$
A CCT$
C CT$
A CT$
C CT$
A GACCT$
A GACCT$
$ GAGACCT$
C T$
C T$
C T$
$ TACCACT$
$ TAGACCT$

S′ = {TACCACT, TAGACCT,GAGACCT}

EBWT Sorted Suffixes
T $
T $
T $
T ACCACT$
G ACCT$
G ACCT$
C ACT$
T AGACCT$
G AGACCT$
C CACT$
A CCACT$
A CCT$
A CCT$
A CT$
C CT$
C CT$
A GACCT$
A GACCT$
$ GAGACCT$
C T$
C T$
C T$
$ TACCACT$
$ TAGACCT$

Extended Burrows-Wheeler Transform and analysis of biological sequences 27th November 2013 23 / 41

Extended Burrows Wheeler Transform Applications

Example: swapping sequences

S = {TAGACCT, TACCACT,GAGACCT}

EBWT Sorted Suffixes
T $
T $
T $
T ACCACT$
G ACCT$
G ACCT$
C ACT$
T AGACCT$
G AGACCT$
C CACT$
A CCACT$
A CCT$
A CCT$
C CT$
A CT$
C CT$
A GACCT$
A GACCT$
$ GAGACCT$
C T$
C T$
C T$
$ TACCACT$
$ TAGACCT$

S′ = {TACCACT, TAGACCT,GAGACCT}

EBWT Sorted Suffixes
T $
T $
T $
T ACCACT$
G ACCT$
G ACCT$
C ACT$
T AGACCT$
G AGACCT$
C CACT$
A CCACT$
A CCT$
A CCT$
A CT$
C CT$
C CT$
A GACCT$
A GACCT$
$ GAGACCT$
C T$
C T$
C T$
$ TACCACT$
$ TAGACCT$

Extended Burrows-Wheeler Transform and analysis of biological sequences 27th November 2013 23 / 41

Extended Burrows Wheeler Transform Applications

Example: swapping sequences

S = {TAGACCT, TACCACT,GAGACCT}

EBWT Sorted Suffixes
T $
T $
T $
T ACCACT$
G ACCT$
G ACCT$
C ACT$
T AGACCT$
G AGACCT$
C CACT$
A CCACT$
A CCT$
A CCT$
C CT$
A CT$
C CT$
A GACCT$
A GACCT$
$ GAGACCT$
C T$
C T$
C T$
$ TACCACT$
$ TAGACCT$

S′ = {TACCACT, TAGACCT,GAGACCT}

EBWT Sorted Suffixes
T $
T $
T $
T ACCACT$
G ACCT$
G ACCT$
C ACT$
T AGACCT$
G AGACCT$
C CACT$
A CCACT$
A CCT$
A CCT$
A CT$
C CT$
C CT$
A GACCT$
A GACCT$
$ GAGACCT$
C T$
C T$
C T$
$ TACCACT$
$ TAGACCT$

Extended Burrows-Wheeler Transform and analysis of biological sequences 27th November 2013 23 / 41

Extended Burrows Wheeler Transform Applications

Example: swapping sequences

S = {TAGACCT, TACCACT,GAGACCT}

EBWT Sorted Suffixes
T $
T $
T $
T ACCACT$
G ACCT$
G ACCT$
C ACT$
T AGACCT$
G AGACCT$
C CACT$
A CCACT$
A CCT$
A CCT$
C CT$
A CT$
C CT$
A GACCT$
A GACCT$
$ GAGACCT$
C T$
C T$
C T$
$ TACCACT$
$ TAGACCT$

S′ = {TACCACT, TAGACCT,GAGACCT}

EBWT Sorted Suffixes
T $
T $
T $
T ACCACT$
G ACCT$
G ACCT$
C ACT$
T AGACCT$
G AGACCT$
C CACT$
A CCACT$
A CCT$
A CCT$
A CT$
C CT$
C CT$
A GACCT$
A GACCT$
$ GAGACCT$
C T$
C T$
C T$
$ TACCACT$
$ TAGACCT$

Extended Burrows-Wheeler Transform and analysis of biological sequences 27th November 2013 23 / 41

Extended Burrows Wheeler Transform Applications

Reordering of the sequences
[Cox, Bauer, Jakobi and R., 2012]

Ordered collection: S = {TAGACCT, TACCACT,GAGACCT}

EBWT Suffixes
T $
T $
T $
T ACCACT$
G ACCT$
G ACCT$
C ACT$
T AGACCT$
G AGACCT$
C CACT$
A CCACT$
A CCT$
A CCT$
C CT$
A CT$
C CT$
A GACCT$
A GACCT$
$ GAGACCT$
C T$
C T$
C T$
$ TACCACT$
$ TAGACCT$

Key insight

In these regions, when the non-$ suffixes are the same,
the ordering is determined by the ordering of the reads
in the collection.

Idea

Change the ordering of the reads to get a better
compression in these regions.

If we swap TAGACCT and TACCACT in the
ordered multiset,

we should swap the symbols C and A in the EBWT,

then we could obtain a better compression.
Extended Burrows-Wheeler Transform and analysis of biological sequences 27th November 2013 24 / 41

Extended Burrows Wheeler Transform Applications

Reordering of the sequences
[Cox, Bauer, Jakobi and R., 2012]

Ordered collection: S = {TAGACCT, TACCACT,GAGACCT}

EBWT Suffixes
T $
T $
T $
T ACCACT$
G ACCT$
G ACCT$
C ACT$
T AGACCT$
G AGACCT$
C CACT$
A CCACT$
A CCT$
A CCT$
C CT$
A CT$
C CT$
A GACCT$
A GACCT$
$ GAGACCT$
C T$
C T$
C T$
$ TACCACT$
$ TAGACCT$

Key insight

In these regions, when the non-$ suffixes are the same,
the ordering is determined by the ordering of the reads
in the collection.

Idea

Change the ordering of the reads to get a better
compression in these regions.

If we swap TAGACCT and TACCACT in the
ordered multiset,

we should swap the symbols C and A in the EBWT,

then we could obtain a better compression.
Extended Burrows-Wheeler Transform and analysis of biological sequences 27th November 2013 24 / 41

Extended Burrows Wheeler Transform Applications

Reordering of the sequences
[Cox, Bauer, Jakobi and R., 2012]

Ordered collection: S = {TAGACCT, TACCACT,GAGACCT}

EBWT Suffixes
T $
T $
T $
T ACCACT$
G ACCT$
G ACCT$
C ACT$
T AGACCT$
G AGACCT$
C CACT$
A CCACT$
A CCT$
A CCT$
C CT$
A CT$
C CT$
A GACCT$
A GACCT$
$ GAGACCT$
C T$
C T$
C T$
$ TACCACT$
$ TAGACCT$

Key insight

In these regions, when the non-$ suffixes are the same,
the ordering is determined by the ordering of the reads
in the collection.

Idea

Change the ordering of the reads to get a better
compression in these regions.

If we swap TAGACCT and TACCACT in the
ordered multiset,

we should swap the symbols C and A in the EBWT,

then we could obtain a better compression.
Extended Burrows-Wheeler Transform and analysis of biological sequences 27th November 2013 24 / 41

Extended Burrows Wheeler Transform Applications

Reordering of the sequences
[Cox, Bauer, Jakobi and R., 2012]

Ordered collection: S = {TAGACCT, TACCACT,GAGACCT}

EBWT Suffixes
T $
T $
T $
T ACCACT$
G ACCT$
G ACCT$
C ACT$
T AGACCT$
G AGACCT$
C CACT$
A CCACT$
A CCT$
A CCT$
C CT$
A CT$
C CT$
A GACCT$
A GACCT$
$ GAGACCT$
C T$
C T$
C T$
$ TACCACT$
$ TAGACCT$

Key insight

In these regions, when the non-$ suffixes are the same,
the ordering is determined by the ordering of the reads
in the collection.

Idea

Change the ordering of the reads to get a better
compression in these regions.

If we swap TAGACCT and TACCACT in the
ordered multiset,

we should swap the symbols C and A in the EBWT,

then we could obtain a better compression.
Extended Burrows-Wheeler Transform and analysis of biological sequences 27th November 2013 24 / 41

Extended Burrows Wheeler Transform Applications

Reordering of the sequences
[Cox, Bauer, Jakobi and R., 2012]

Ordered collection: S = {TACCACT, TAGACCT,GAGACCT}

EBWT Suffixes
T $
T $
T $
T ACCACT$
G ACCT$
G ACCT$
C ACT$
T AGACCT$
G AGACCT$
C CACT$
A CCACT$
A CCT$
A CCT$
A CT$
C CT$
C CT$
A GACCT$
A GACCT$
$ GAGACCT$
C T$
C T$
C T$
$ TACCACT$
$ TAGACCT$

Key insight

In these regions, when the non-$ suffixes are the same,
the ordering is determined by the ordering of the reads
in the collection.

Idea

Change the ordering of the reads to get a better
compression in these regions.

If we swap TAGACCT and TACCACT in the
ordered multiset,

we should swap the symbols C and A in the EBWT,

then we could obtain a better compression.
Extended Burrows-Wheeler Transform and analysis of biological sequences 27th November 2013 24 / 41

Extended Burrows Wheeler Transform Applications

Reordering of the sequences
[Cox, Bauer, Jakobi and R., 2012]

Ordered collection: S = {TACCACT, TAGACCT,GAGACCT}

EBWT Suffixes
T $
T $
T $
T ACCACT$
G ACCT$
G ACCT$
C ACT$
T AGACCT$
G AGACCT$
C CACT$
A CCACT$
A CCT$
A CCT$
A CT$
C CT$
C CT$
A GACCT$
A GACCT$
$ GAGACCT$
C T$
C T$
C T$
$ TACCACT$
$ TAGACCT$

Key insight

In these regions, when the non-$ suffixes are the same,
the ordering is determined by the ordering of the reads
in the collection.

Idea

Change the ordering of the reads to get a better
compression in these regions.

If we swap TAGACCT and TACCACT in the
ordered multiset,

we should swap the symbols C and A in the EBWT,

then we could obtain a better compression.
Extended Burrows-Wheeler Transform and analysis of biological sequences 27th November 2013 24 / 41

Extended Burrows Wheeler Transform Applications

Reordering of the sequences
[Cox, Bauer, Jakobi and R., 2012].

EBWT Suffixes
T $
T $
T $
T ACCACT$
G ACCT$
G ACCT$
C ACT$
T AGACCT$
G AGACCT$
C CACT$
A CCACT$
A CCT$
A CCT$

C → A CT$
A→ C CT$

C CT$
A GACCT$
A GACCT$
$ GAGACCT$
C T$
C T$
C T$
$ TACCACT$
$ TAGACCT$

So, by swapping TAGACCT with TACCACT ,
the initial ordered collection:

S = {TAGACCT, TACCACT,GAGACCT}

becomes:

S = {TACCACT, TAGACCT,GAGACCT}

Now the Cs associated with the suffixes CT$ are
adjacent.

Rest of EBWT is unaffected by this change in
ordering.

Extended Burrows-Wheeler Transform and analysis of biological sequences 27th November 2013 25 / 41

Extended Burrows Wheeler Transform Applications

Reordering of the sequences
[Cox, Bauer, Jakobi and R., 2012].

EBWT Suffixes
T $
T $
T $
T ACCACT$
G ACCT$
G ACCT$
C ACT$
T AGACCT$
G AGACCT$
C CACT$
A CCACT$
A CCT$
A CCT$

C → A CT$
A→ C CT$

C CT$
A GACCT$
A GACCT$
$ GAGACCT$
C T$
C T$
C T$
$ TACCACT$
$ TAGACCT$

So, by swapping TAGACCT with TACCACT ,
the initial ordered collection:

S = {TAGACCT, TACCACT,GAGACCT}

becomes:

S = {TACCACT, TAGACCT,GAGACCT}

Now the Cs associated with the suffixes CT$ are
adjacent.

Rest of EBWT is unaffected by this change in
ordering.

Extended Burrows-Wheeler Transform and analysis of biological sequences 27th November 2013 25 / 41

Extended Burrows Wheeler Transform Applications

Reordering of the sequences
[Cox, Bauer, Jakobi and R., 2012].

EBWT Suffixes
T $
T $
T $
T ACCACT$
G ACCT$
G ACCT$
C ACT$
T AGACCT$
G AGACCT$
C CACT$
A CCACT$
A CCT$
A CCT$

C → A CT$
A→ C CT$

C CT$
A GACCT$
A GACCT$
$ GAGACCT$
C T$
C T$
C T$
$ TACCACT$
$ TAGACCT$

So, by swapping TAGACCT with TACCACT ,
the initial ordered collection:

S = {TAGACCT, TACCACT,GAGACCT}

becomes:

S = {TACCACT, TAGACCT,GAGACCT}

Now the Cs associated with the suffixes CT$ are
adjacent.

Rest of EBWT is unaffected by this change in
ordering.

Extended Burrows-Wheeler Transform and analysis of biological sequences 27th November 2013 25 / 41

Extended Burrows Wheeler Transform Applications

How to do this reordering?
[Cox, Bauer, Jakobi and R., 2012].

The initial ordered collection: S = {TAGACCT, TACCACT,GAGACCT}
becomes: S = {TACCACT, TAGACCT,GAGACCT}
EBWT Suffixes

T $
T $
T $
T ACCACT$
G ACCT$
G ACCT$
C ACT$
T AGACCT$
G AGACCT$
C CACT$
A CCACT$
A CCT$
A CCT$
C CT$
A CT$
C CT$
A GACCT$
A GACCT$
$ GAGACCT$
C T$
C T$
C T$
$ TACCACT$
$ TAGACCT$

Strategy RLO pre-sort reads into reverse lexicographic
order. This ensures EBWT symbols
associated with such suffixes are grouped
together.

Strategy SAP modify EBWT construction algorithm to
add extra bit that tracks whether each
suffix is “Same As Previous”. Minimal
additional overhead. Then make a single
pass through the EBWT to do the
grouping.
Outcome is EBWT of a permuted read
collection. Can verify by inverting the
EBWT.

Extended Burrows-Wheeler Transform and analysis of biological sequences 27th November 2013 26 / 41

Extended Burrows Wheeler Transform Applications

How to do this reordering?
[Cox, Bauer, Jakobi and R., 2012].

The initial ordered collection: S = {TAGACCT, TACCACT,GAGACCT}
becomes: S = {TACCACT, TAGACCT,GAGACCT}
EBWT Suffixes

T $
T $
T $
T ACCACT$
G ACCT$
G ACCT$
C ACT$
T AGACCT$
G AGACCT$
C CACT$
A CCACT$
A CCT$
A CCT$
C CT$
A CT$
C CT$
A GACCT$
A GACCT$
$ GAGACCT$
C T$
C T$
C T$
$ TACCACT$
$ TAGACCT$

Strategy RLO pre-sort reads into reverse lexicographic
order. This ensures EBWT symbols
associated with such suffixes are grouped
together.

Strategy SAP modify EBWT construction algorithm to
add extra bit that tracks whether each
suffix is “Same As Previous”. Minimal
additional overhead. Then make a single
pass through the EBWT to do the
grouping.
Outcome is EBWT of a permuted read
collection. Can verify by inverting the
EBWT.

Extended Burrows-Wheeler Transform and analysis of biological sequences 27th November 2013 26 / 41

Extended Burrows Wheeler Transform Applications

How to do this reordering?
[Cox, Bauer, Jakobi and R., 2012].

The initial ordered collection: S = {TAGACCT, TACCACT,GAGACCT}
becomes: S = {TACCACT, TAGACCT,GAGACCT}
EBWT Suffixes

T $
T $
T $
T ACCACT$
G ACCT$
G ACCT$
C ACT$
T AGACCT$
G AGACCT$
C CACT$
A CCACT$
A CCT$
A CCT$
C CT$
A CT$
C CT$
A GACCT$
A GACCT$
$ GAGACCT$
C T$
C T$
C T$
$ TACCACT$
$ TAGACCT$

Strategy RLO pre-sort reads into reverse lexicographic
order. This ensures EBWT symbols
associated with such suffixes are grouped
together.

Strategy SAP modify EBWT construction algorithm to
add extra bit that tracks whether each
suffix is “Same As Previous”. Minimal
additional overhead. Then make a single
pass through the EBWT to do the
grouping.
Outcome is EBWT of a permuted read
collection. Can verify by inverting the
EBWT.

Extended Burrows-Wheeler Transform and analysis of biological sequences 27th November 2013 26 / 41

Extended Burrows Wheeler Transform Applications

Experiments

Method Time Compression
Stage 1 Stage 2 Stage 1 Stage 2 bits per base

Reads

Bzip2

-

905 2.25
PPMd (default) 324 2.04
PPMd (large) 5155 2.00
-mx9 17974 1.98

EBWT

Bzip2

3520

818 2.09
PPMd (default) 353 1.93
PPMd (large) 4953 2.05
-mx9 16709 2.09

EBWT-SAP

Bzip2

3520

601 1.40
PPMd (default) 347 1.21
PPMd (large) 3116 1.28
-mx9 11204 1.34

Different combinations of first-stage (EBWT, SAP-permuted EBWT) and second-stage (bzip2

with default parameters, PPMd mode of 7-Zip with default parameters, PPMd mode of 7-Zip

with -mo=16 -mmem=2048m, deflate mode of 7-Zip with -mx9) compression compared on 192

million human reads previous analyzed by[Yanovsky, 2011]. Time is in CPU seconds, as

measured on a single core of an Intel Xeon X5450 (Quad-core) 3GHz processor.

Extended Burrows-Wheeler Transform and analysis of biological sequences 27th November 2013 27 / 41

Extended Burrows Wheeler Transform Applications

Compression of quality scores

Goal

An adaptive and reference-free approach to lossy quality-score
compression.

Recall that

Quality scores are assigned to each nucleotide base call in sequencer.

Typically quality score is an integer that expresses error probability on
the Phred scale

Qphred = −10log10p

where p is the error probability.

Phred quality scores have become widely accepted to characterize the
quality of DNA sequences, and can be used to compare the efficacy of
different sequencing methods.

the quality scores could require more space than the sequences
themselves.

Extended Burrows-Wheeler Transform and analysis of biological sequences 27th November 2013 28 / 41

Extended Burrows Wheeler Transform Applications

Compression of quality scores

Goal

An adaptive and reference-free approach to lossy quality-score
compression.

Recall that

Quality scores are assigned to each nucleotide base call in sequencer.

Typically quality score is an integer that expresses error probability on
the Phred scale

Qphred = −10log10p

where p is the error probability.

Phred quality scores have become widely accepted to characterize the
quality of DNA sequences, and can be used to compare the efficacy of
different sequencing methods.

the quality scores could require more space than the sequences
themselves.

Extended Burrows-Wheeler Transform and analysis of biological sequences 27th November 2013 28 / 41

Extended Burrows Wheeler Transform Applications

Compression of quality scores

Goal

An adaptive and reference-free approach to lossy quality-score
compression.

Recall that

Quality scores are assigned to each nucleotide base call in sequencer.

Typically quality score is an integer that expresses error probability on
the Phred scale

Qphred = −10log10p

where p is the error probability.

Phred quality scores have become widely accepted to characterize the
quality of DNA sequences, and can be used to compare the efficacy of
different sequencing methods.

the quality scores could require more space than the sequences
themselves.

Extended Burrows-Wheeler Transform and analysis of biological sequences 27th November 2013 28 / 41

Extended Burrows Wheeler Transform Applications

Compression of quality scores

Goal

An adaptive and reference-free approach to lossy quality-score
compression.

Recall that

Quality scores are assigned to each nucleotide base call in sequencer.

Typically quality score is an integer that expresses error probability on
the Phred scale

Qphred = −10log10p

where p is the error probability.

Phred quality scores have become widely accepted to characterize the
quality of DNA sequences, and can be used to compare the efficacy of
different sequencing methods.

the quality scores could require more space than the sequences
themselves.

Extended Burrows-Wheeler Transform and analysis of biological sequences 27th November 2013 28 / 41

Extended Burrows Wheeler Transform Applications

Compression of quality scores

Goal

An adaptive and reference-free approach to lossy quality-score
compression.

Recall that

Quality scores are assigned to each nucleotide base call in sequencer.

Typically quality score is an integer that expresses error probability on
the Phred scale

Qphred = −10log10p

where p is the error probability.

Phred quality scores have become widely accepted to characterize the
quality of DNA sequences, and can be used to compare the efficacy of
different sequencing methods.

the quality scores could require more space than the sequences
themselves.

Extended Burrows-Wheeler Transform and analysis of biological sequences 27th November 2013 28 / 41

Extended Burrows Wheeler Transform Applications

Compression of quality scores

Goal

An adaptive and reference-free approach to lossy quality-score
compression.

Recall that

Quality scores are assigned to each nucleotide base call in sequencer.

Typically quality score is an integer that expresses error probability on
the Phred scale

Qphred = −10log10p

where p is the error probability.

Phred quality scores have become widely accepted to characterize the
quality of DNA sequences, and can be used to compare the efficacy of
different sequencing methods.

the quality scores could require more space than the sequences
themselves.

Extended Burrows-Wheeler Transform and analysis of biological sequences 27th November 2013 28 / 41

Extended Burrows Wheeler Transform Applications

Adaptive compression of quality scores

Insight

Discard the quality scores that are associated with bases that are “not
interesting”.

Insight

If a base in a read can, with high probability, be predicted by the context
of bases that are next to it, then the base itself is imparting little
additional information and its quality score can be discarded or
aggressively compressed at little detriment to downstream analysis.

Q: What do we mean by “not interesting”?

A: How about “not likely to be important for downstream variant
calling”.

Extended Burrows-Wheeler Transform and analysis of biological sequences 27th November 2013 29 / 41

Extended Burrows Wheeler Transform Applications

Adaptive compression of quality scores

Insight

Discard the quality scores that are associated with bases that are “not
interesting”.

Insight

If a base in a read can, with high probability, be predicted by the context
of bases that are next to it, then the base itself is imparting little
additional information and its quality score can be discarded or
aggressively compressed at little detriment to downstream analysis.

Q: What do we mean by “not interesting”?

A: How about “not likely to be important for downstream variant
calling”.

Extended Burrows-Wheeler Transform and analysis of biological sequences 27th November 2013 29 / 41

Extended Burrows Wheeler Transform Applications

Adaptive compression of quality scores

Insight

Discard the quality scores that are associated with bases that are “not
interesting”.

Insight

If a base in a read can, with high probability, be predicted by the context
of bases that are next to it, then the base itself is imparting little
additional information and its quality score can be discarded or
aggressively compressed at little detriment to downstream analysis.

Q: What do we mean by “not interesting”?

A: How about “not likely to be important for downstream variant
calling”.

Extended Burrows-Wheeler Transform and analysis of biological sequences 27th November 2013 29 / 41

Extended Burrows Wheeler Transform Applications

Adaptive compression of quality scores

Insight

Discard the quality scores that are associated with bases that are “not
interesting”.

Insight

If a base in a read can, with high probability, be predicted by the context
of bases that are next to it, then the base itself is imparting little
additional information and its quality score can be discarded or
aggressively compressed at little detriment to downstream analysis.

Q: What do we mean by “not interesting”?

A: How about “not likely to be important for downstream variant
calling”.

Extended Burrows-Wheeler Transform and analysis of biological sequences 27th November 2013 29 / 41

Extended Burrows Wheeler Transform Applications

Which scores to keep? [Janin, R. and Cox, 2013]
Genoma

PEACHxBANANAxAPPLExPEARxTANGERINExORANGExPEACHxBANANAxPEAR

Reads collection
HxBANANAx PLExPEARx INExORANG BANANAxPE

PEACHxBAN PPLExPEAR GERINExOR HxBANANAx
BANANAxAP PEARxTANG RINExORAN xPEACHxBA

EACHxBANA LExPEARxT ERINExORA PEACHxBAN

BANAN is always followed by A to make BANANA.

Letters that follow BANAN are “not interesting”.

See BANAN in a read → discard or smooth the quality score of next
base.

PEA could be the start of either PEACH or PEAR.

Letters that follow PEA are “interesting”.

See PEA in a read → keep quality score of next base.

These patterns can be inferred from the reads, don’t need to know
genome.

Extended Burrows-Wheeler Transform and analysis of biological sequences 27th November 2013 30 / 41

Extended Burrows Wheeler Transform Applications

Which scores to keep? [Janin, R. and Cox, 2013]
Genoma

PEACHxBANANAxAPPLExPEARxTANGERINExORANGExPEACHxBANANAxPEAR

Reads collection
HxBANANAx PLExPEARx INExORANG BANANAxPE

PEACHxBAN PPLExPEAR GERINExOR HxBANANAx
BANANAxAP PEARxTANG RINExORAN xPEACHxBA

EACHxBANA LExPEARxT ERINExORA PEACHxBAN

BANAN is always followed by A to make BANANA.

Letters that follow BANAN are “not interesting”.

See BANAN in a read → discard or smooth the quality score of next
base.

PEA could be the start of either PEACH or PEAR.

Letters that follow PEA are “interesting”.

See PEA in a read → keep quality score of next base.

These patterns can be inferred from the reads, don’t need to know
genome.

Extended Burrows-Wheeler Transform and analysis of biological sequences 27th November 2013 30 / 41

Extended Burrows Wheeler Transform Applications

Which scores to keep? [Janin, R. and Cox, 2013]
Genoma

PEACHxBANANAxAPPLExPEARxTANGERINExORANGExPEACHxBANANAxPEAR

Reads collection
HxBANANAx PLExPEARx INExORANG BANANAxPE

PEACHxBAN PPLExPEAR GERINExOR HxBANANAx
BANANAxAP PEARxTANG RINExORAN xPEACHxBA

EACHxBANA LExPEARxT ERINExORA PEACHxBAN

BANAN is always followed by A to make BANANA.

Letters that follow BANAN are “not interesting”.

See BANAN in a read → discard or smooth the quality score of next
base.

PEA could be the start of either PEACH or PEAR.

Letters that follow PEA are “interesting”.

See PEA in a read → keep quality score of next base.

These patterns can be inferred from the reads, don’t need to know
genome.

Extended Burrows-Wheeler Transform and analysis of biological sequences 27th November 2013 30 / 41

Extended Burrows Wheeler Transform Applications

Which scores to keep? [Janin, R. and Cox, 2013]
Genoma

PEACHxBANANAxAPPLExPEARxTANGERINExORANGExPEACHxBANANAxPEAR

Reads collection
HxBANANAx PLExPEARx INExORANG BANANAxPE

PEACHxBAN PPLExPEAR GERINExOR HxBANANAx
BANANAxAP PEARxTANG RINExORAN xPEACHxBA

EACHxBANA LExPEARxT ERINExORA PEACHxBAN

BANAN is always followed by A to make BANANA.

Letters that follow BANAN are “not interesting”.

See BANAN in a read → discard or smooth the quality score of next
base.

PEA could be the start of either PEACH or PEAR.

Letters that follow PEA are “interesting”.

See PEA in a read → keep quality score of next base.

These patterns can be inferred from the reads, don’t need to know
genome.

Extended Burrows-Wheeler Transform and analysis of biological sequences 27th November 2013 30 / 41

Extended Burrows Wheeler Transform Applications

Which scores to keep? [Janin, R. and Cox, 2013]
Genoma

PEACHxBANANAxAPPLExPEARxTANGERINExORANGExPEACHxBANANAxPEAR

Reads collection
HxBANANAx PLExPEARx INExORANG BANANAxPE

PEACHxBAN PPLExPEAR GERINExOR HxBANANAx
BANANAxAP PEARxTANG RINExORAN xPEACHxBA

EACHxBANA LExPEARxT ERINExORA PEACHxBAN

BANAN is always followed by A to make BANANA.

Letters that follow BANAN are “not interesting”.

See BANAN in a read → discard or smooth the quality score of next
base.

PEA could be the start of either PEACH or PEAR.

Letters that follow PEA are “interesting”.

See PEA in a read → keep quality score of next base.

These patterns can be inferred from the reads, don’t need to know
genome.

Extended Burrows-Wheeler Transform and analysis of biological sequences 27th November 2013 30 / 41

Extended Burrows Wheeler Transform Applications

Which scores to keep? [Janin, R. and Cox, 2013]
Genoma

PEACHxBANANAxAPPLExPEARxTANGERINExORANGExPEACHxBANANAxPEAR

Reads collection
HxBANANAx PLExPEARx INExORANG BANANAxPE

PEACHxBAN PPLExPEAR GERINExOR HxBANANAx
BANANAxAP PEARxTANG RINExORAN xPEACHxBA

EACHxBANA LExPEARxT ERINExORA PEACHxBAN

BANAN is always followed by A to make BANANA.

Letters that follow BANAN are “not interesting”.

See BANAN in a read → discard or smooth the quality score of next
base.

PEA could be the start of either PEACH or PEAR.

Letters that follow PEA are “interesting”.

See PEA in a read → keep quality score of next base.

These patterns can be inferred from the reads, don’t need to know
genome.

Extended Burrows-Wheeler Transform and analysis of biological sequences 27th November 2013 30 / 41

Extended Burrows Wheeler Transform Applications

Which scores to keep? [Janin, R. and Cox, 2013]
Genoma

PEACHxBANANAxAPPLExPEARxTANGERINExORANGExPEACHxBANANAxPEAR

Reads collection
HxBANANAx PLExPEARx INExORANG BANANAxPE

PEACHxBAN PPLExPEAR GERINExOR HxBANANAx
BANANAxAP PEARxTANG RINExORAN xPEACHxBA

EACHxBANA LExPEARxT ERINExORA PEACHxBAN

BANAN is always followed by A to make BANANA.

Letters that follow BANAN are “not interesting”.

See BANAN in a read → discard or smooth the quality score of next
base.

PEA could be the start of either PEACH or PEAR.

Letters that follow PEA are “interesting”.

See PEA in a read → keep quality score of next base.

These patterns can be inferred from the reads, don’t need to know
genome.

Extended Burrows-Wheeler Transform and analysis of biological sequences 27th November 2013 30 / 41

Extended Burrows Wheeler Transform Applications

Which scores to keep? [Janin, R. and Cox, 2013]
Genoma

PEACHxBANANAxAPPLExPEARxTANGERINExORANGExPEACHxBANANAxPEAR

Reads collection
HxBANANAx PLExPEARx INExORANG BANANAxPE

PEACHxBAN PPLExPEAR GERINExOR HxBANANAx
BANANAxAP PEARxTANG RINExORAN xPEACHxBA

EACHxBANA LExPEARxT ERINExORA PEACHxBAN

BANAN is always followed by A to make BANANA.

Letters that follow BANAN are “not interesting”.

See BANAN in a read → discard or smooth the quality score of next
base.

PEA could be the start of either PEACH or PEAR.

Letters that follow PEA are “interesting”.

See PEA in a read → keep quality score of next base.

These patterns can be inferred from the reads, don’t need to know
genome.

Extended Burrows-Wheeler Transform and analysis of biological sequences 27th November 2013 30 / 41

Extended Burrows Wheeler Transform Applications

Which scores to keep? [Janin, R. and Cox, 2013]
Genoma

PEACHxBANANAxAPPLExPEARxTANGERINExORANGExPEACHxBANANAxPEAR

Reads collection
HxBANANAx PLExPEARx INExORANG BANANAxPE

PEACHxBAN PPLExPEAR GERINExOR HxBANANAx
BANANAxAP PEARxTANG RINExORAN xPEACHxBA

EACHxBANA LExPEARxT ERINExORA PEACHxBAN

BANAN is always followed by A to make BANANA.

Letters that follow BANAN are “not interesting”.

See BANAN in a read → discard or smooth the quality score of next
base.

PEA could be the start of either PEACH or PEAR.

Letters that follow PEA are “interesting”.

See PEA in a read → keep quality score of next base.

These patterns can be inferred from the reads, don’t need to know
genome.

Extended Burrows-Wheeler Transform and analysis of biological sequences 27th November 2013 30 / 41

Extended Burrows Wheeler Transform Applications

Smoothing quality scores

We use The EBWT and the LCP (“longest-common-prefix”) array of the
reads [Bauer, Cox, R. and Sciortino, 2012];
And we use LCP-array to define “LCP-intervals” (see
[Abouelhoda Kurtz and Ohlebusch, 2004]).

Sketch

Smoothing criteria based on parameters c, s:
IF LCP-value of LCP-interval ≥ c
AND length of LCP-interval ≥ s
AND all characters in LCP-interval are the same
THEN smooth

Phrased in terms of the reads:

If any pattern of length c occurs at least s times and is always preceded by
the same symbol, then smooth the quality scores of those occurrences of
that symbol.

Extended Burrows-Wheeler Transform and analysis of biological sequences 27th November 2013 31 / 41

Extended Burrows Wheeler Transform Applications

Smoothing quality scores

We use The EBWT and the LCP (“longest-common-prefix”) array of the
reads [Bauer, Cox, R. and Sciortino, 2012];
And we use LCP-array to define “LCP-intervals” (see
[Abouelhoda Kurtz and Ohlebusch, 2004]).

Sketch

Smoothing criteria based on parameters c, s:
IF LCP-value of LCP-interval ≥ c
AND length of LCP-interval ≥ s
AND all characters in LCP-interval are the same
THEN smooth

Phrased in terms of the reads:

If any pattern of length c occurs at least s times and is always preceded by
the same symbol, then smooth the quality scores of those occurrences of
that symbol.

Extended Burrows-Wheeler Transform and analysis of biological sequences 27th November 2013 31 / 41

Extended Burrows Wheeler Transform Applications

How to smooth?

If any pattern of length c occurs at least s times and is always preceded by the same character,
then smooth the quality scores of those occurrences of that character.

How to smooth?

We first compute the mean estimate error rate by converting each quality
score to an error probability, taking the mean of these values and then
converting back to Phred score (which we note is not the same as taking
the mean of the quality scores).

Experiments

Data: 33-fold coverage of C.elegans, 100-mer single reads:
33.808.546 reads of length 100.

Set c = 5, s = 10: 76.8% of scores are smoothed

Scores compressed using PPMd mode of 7-zip

Original scores: 2.51 bits/score in EBWT space FASTQ);
Smoothed scores: 1.28 bits/score in EBWT space FASTQ).

Extended Burrows-Wheeler Transform and analysis of biological sequences 27th November 2013 32 / 41

Extended Burrows Wheeler Transform Applications

How to smooth?

If any pattern of length c occurs at least s times and is always preceded by the same character,
then smooth the quality scores of those occurrences of that character.

How to smooth?

We first compute the mean estimate error rate by converting each quality
score to an error probability, taking the mean of these values and then
converting back to Phred score (which we note is not the same as taking
the mean of the quality scores).

Experiments

Data: 33-fold coverage of C.elegans, 100-mer single reads:
33.808.546 reads of length 100.

Set c = 5, s = 10: 76.8% of scores are smoothed

Scores compressed using PPMd mode of 7-zip

Original scores: 2.51 bits/score in EBWT space FASTQ);
Smoothed scores: 1.28 bits/score in EBWT space FASTQ).

Extended Burrows-Wheeler Transform and analysis of biological sequences 27th November 2013 32 / 41

Extended Burrows Wheeler Transform Applications

How to smooth?

If any pattern of length c occurs at least s times and is always preceded by the same character,
then smooth the quality scores of those occurrences of that character.

How to smooth?

We first compute the mean estimate error rate by converting each quality
score to an error probability, taking the mean of these values and then
converting back to Phred score (which we note is not the same as taking
the mean of the quality scores).

Experiments

Data: 33-fold coverage of C.elegans, 100-mer single reads:
33.808.546 reads of length 100.

Set c = 5, s = 10: 76.8% of scores are smoothed

Scores compressed using PPMd mode of 7-zip

Original scores: 2.51 bits/score in EBWT space FASTQ);
Smoothed scores: 1.28 bits/score in EBWT space FASTQ).

Extended Burrows-Wheeler Transform and analysis of biological sequences 27th November 2013 32 / 41

Extended Burrows Wheeler Transform Applications

How to smooth?

If any pattern of length c occurs at least s times and is always preceded by the same character,
then smooth the quality scores of those occurrences of that character.

How to smooth?

We first compute the mean estimate error rate by converting each quality
score to an error probability, taking the mean of these values and then
converting back to Phred score (which we note is not the same as taking
the mean of the quality scores).

Experiments

Data: 33-fold coverage of C.elegans, 100-mer single reads:
33.808.546 reads of length 100.

Set c = 5, s = 10: 76.8% of scores are smoothed

Scores compressed using PPMd mode of 7-zip

Original scores: 2.51 bits/score in EBWT space FASTQ);
Smoothed scores: 1.28 bits/score in EBWT space FASTQ).

Extended Burrows-Wheeler Transform and analysis of biological sequences 27th November 2013 32 / 41

Extended Burrows Wheeler Transform Applications

How to smooth?

If any pattern of length c occurs at least s times and is always preceded by the same character,
then smooth the quality scores of those occurrences of that character.

How to smooth?

We first compute the mean estimate error rate by converting each quality
score to an error probability, taking the mean of these values and then
converting back to Phred score (which we note is not the same as taking
the mean of the quality scores).

Experiments

Data: 33-fold coverage of C.elegans, 100-mer single reads:
33.808.546 reads of length 100.

Set c = 5, s = 10: 76.8% of scores are smoothed

Scores compressed using PPMd mode of 7-zip

Original scores: 2.51 bits/score in EBWT space FASTQ);
Smoothed scores: 1.28 bits/score in EBWT space FASTQ).

Extended Burrows-Wheeler Transform and analysis of biological sequences 27th November 2013 32 / 41

Extended Burrows Wheeler Transform Applications

Adaptive reference-free compression

Have given a reference-free and “intelligently lossy” approach to
quality score smoothing.

Only keep scores for bases that are likely to be important downstream.

Our smoothing strategy is simplest possible (symbols preceding a
context must agree unanimously)

but this work provides framework for analysing more sophisticated
approaches.

Extended Burrows-Wheeler Transform and analysis of biological sequences 27th November 2013 33 / 41

Extended Burrows Wheeler Transform Applications

Comparing DNA Sequence Collections
[Cox, Jakobi and R., 2012]

Task

Given EBWTs of two sets of reads R and G, find all k-mers that are

Present in R only;

Present in G only;

Present in both R and G.

We do this by making k sequential passes through EBWT of G and
EBWT of R.

We can do this by using sequential access (can read files from disk,
no RAM needed).

Key idea

All-against-all backward search in external memory

Applications: Finding splice junctions without a reference.
Extended Burrows-Wheeler Transform and analysis of biological sequences 27th November 2013 34 / 41

Extended Burrows Wheeler Transform Applications

Comparing DNA Sequence Collections
[Cox, Jakobi and R., 2012]

Task

Given EBWTs of two sets of reads R and G, find all k-mers that are

Present in R only;

Present in G only;

Present in both R and G.

We do this by making k sequential passes through EBWT of G and
EBWT of R.

We can do this by using sequential access (can read files from disk,
no RAM needed).

Key idea

All-against-all backward search in external memory

Applications: Finding splice junctions without a reference.
Extended Burrows-Wheeler Transform and analysis of biological sequences 27th November 2013 34 / 41

Conclusions

Conclusions: EBWT as tool

EBWT
Data

Compression

genomic
sequence
databases

sequence
quality
scores

Sequences
comparison

Extended Burrows-Wheeler Transform and analysis of biological sequences 27th November 2013 35 / 41

Conclusions

References I

Abouelhoda, M. I., Kurtz, S., and Ohlebusch, E. (2004).
Replacing suffix trees with enhanced suffix arrays.
Journal of Discrete Algorithms, 2(1):53 – 86.

Bauer, M. J., Cox, A. J., and Rosone, G. (2011).
Lightweight BWT construction for very large string collections.
In CPM, volume 6661 of LNCS, pages 219–231. Springer.

Bauer, M. J., Cox, A. J., and Rosone, G. (2013).
Lightweight algorithms for constructing and inverting the BWT of
string collections.
Theoretical Computer Science, 483(0):134 – 148.

Extended Burrows-Wheeler Transform and analysis of biological sequences 27th November 2013 36 / 41

Conclusions

References II

Bauer, M. J., Cox, A. J., Rosone, G., and Sciortino, M. (2012).
Lightweight LCP construction for next-generation sequencing datasets.

In WABI, volume 7534 LNBI of LNCS, pages 326–337. Springer.

Bonomo, S., Mantaci, S., Restivo, A., Rosone, G., and Sciortino, M.
(2013).
Suffixes, Conjugates and Lyndon words.
In DLT, volume 7907 of LNCS, pages 131–142. Springer.

Cox, A. J., Bauer, M. J., Jakobi, T., and Rosone, G. (2012a).
Large-scale compression of genomic sequence databases with the
Burrows-Wheeler transform.
Bioinformatics, 28(11):1415–1419.

Extended Burrows-Wheeler Transform and analysis of biological sequences 27th November 2013 37 / 41

Conclusions

References III

Cox, A. J., Jakobi, T., Rosone, G., and Schulz-Trieglaff, O. B.
(2012b).
Comparing DNA sequence collections by direct comparison of
compressed text indexes.
In WABI, volume 7534 LNBI of LNCS, pages 214–224. Springer.

Ferragina, P., Gagie, T., and Manzini, G. (2012).
Lightweight Data Indexing and Compression in External Memory.
Algorithmica, 63(3):707–730.

Hon, W.-K., Ku, T.-H., Lu, C.-H., Shah, R., and Thankachan, S. V.
(2012).
Efficient Algorithm for Circular Burrows-Wheeler Transform.
In CPM, volume 7354 of LNCS, pages 257–268. Springer.

Extended Burrows-Wheeler Transform and analysis of biological sequences 27th November 2013 38 / 41

Conclusions

References IV

Janin, L., Rosone, G., and Cox, A. J. (First published online May 9,
2013).
Adaptive reference-free compression of sequence quality scores.
Bioinformatics.

Mantaci, S., Restivo, A., Rosone, G., and Sciortino, M. (2005).
An Extension of the Burrows Wheeler Transform and Applications to
Sequence Comparison and Data Compression.
In CPM, volume 3537 of LNCS, pages 178–189. Springer.

Mantaci, S., Restivo, A., Rosone, G., and Sciortino, M. (2007).
An extension of the Burrows-Wheeler Transform.
Theoret. Comput. Sci., 387(3):298–312.

Extended Burrows-Wheeler Transform and analysis of biological sequences 27th November 2013 39 / 41

Conclusions

References V

Sirén, J. (2009).
Compressed suffix arrays for massive data.
In SPIRE, volume 5721 of LNCS, pages 63–74. Springer.

Yanovsky, V. (2011).
ReCoil - an algorithm for compression of extremely large datasets of
DNA data.
Algorithms for Molecular Biology, 6(1):23.

Extended Burrows-Wheeler Transform and analysis of biological sequences 27th November 2013 40 / 41

Conclusions

The described algorithms are contained in the Burrows-Wheeler Extended
Tool Library (BEETL) library:

github.com:BEETL/BEETL.git

Thank you for your attention!

Extended Burrows-Wheeler Transform and analysis of biological sequences 27th November 2013 41 / 41

	Introduction
	Burrows-Wheeler Transform
	What is BWT?
	How computing the BWT?

	Extended Burrows Wheeler Transform
	How does EBWT work?
	How computing the EBWT?
	LCP and GSA
	Applications

	Conclusions

