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The sorting of the suffixes

The goal is to introduce a new strategy for sorting the suffixes of a word w.
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The sorting of the suffixes

Our goal

The goal is to introduce a new strategy for sorting the suffixes of a word w.J

@ The process of sorting the suffixes of a word plays a fundamental role
in Text Algorithms with several applications in many areas of
Computer Science and Bioinformatics.

e For instance, it is a fundamental step, in implicit or explicit way, for
the construction of

o the Suffix Array (SA): the array containing the starting positions of
the suffixes of a word, sorted in lexicographic order;

o the Burrows-Wheeler Transform (BWT): the array containing a
permutation of the symbols of a word according to the sorting of its
suffixes.
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Sorting suffixes by Lyndon factorization

Our idea

Our strategy uses the Lyndon factorization and is based on a
combinatorial property that allows to sort the suffixes of w (“global
suffixes”) by using the sorting of the suffixes inside blocks of consecutive
Lyndon factors of the decomposition (“local suffixes").
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Lyndon Words

e Two words u,v € X* are conjugate, if u = zy and v = yx for some
x,y € X*. Thus conjugate words are just cyclic shifts of one another.
o Aword w € Xt is primitive if w = u” implies w = u and h = 1.

Definition

A Lyndon word is a (primitive) word that is smaller in lexicographic order
than all of its conjugates.
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Example
@ u = mathematics is not a Lyndon word;
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o Aword w € Xt is primitive if w = u” implies w = u and h = 1.

Definition
A Lyndon word is a (primitive) word that is smaller in lexicographic order

than all of its conjugates.

Example
@ u = mathematics is not a Lyndon word;

@ v = athematicsm is a Lyndon word.
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Lyndon Words

e Two words u,v € X* are conjugate, if u = zy and v = yx for some
x,y € X*. Thus conjugate words are just cyclic shifts of one another.

o Aword w € Xt is primitive if w = u” implies w = u and h = 1.

Definition

A Lyndon word is a (primitive) word that is smaller in lexicographic order

than all of its conjugates.

Example
@ u = mathematics is not a Lyndon word;

@ v = athematicsm is a Lyndon word.

There exist linear algorithms for the computation of the Lyndon word of a
given word [Duval, 1983].
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Sorting suffixes by Lyndon factorization

Lyndon Factorization

Theorem (Chen, Fox and Lyndon: 1958)

Every word w € X% has a unique factorization w = L1 - - - Ly, such that

o = oo =l

is a non-increasing sequence of Lyndon words.
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Lyndon Factorization

Theorem (Chen, Fox and Lyndon: 1958)

Every word w € X% has a unique factorization w = L1 - - - Ly, such that
Li>.-->Lyg

is a non-increasing sequence of Lyndon words.

Let w = abaaaabaaaaabaaaabaaaaaab. The Lyndon factorization of w is

ablaaaablaaaaabaaaablaaaaaab
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Lyndon Factorization

Theorem (Chen, Fox and Lyndon: 1958)

Every word w € X% has a unique factorization w = L1 - - - Ly, such that
Li>.-->Lyg

is a non-increasing sequence of Lyndon words.

Let w = abaaaabaaaaabaaaabaaaaaab. The Lyndon factorization of w is

ablaaaablaaaaabaaaablaaaaaab

v

Note that each L; is strictly less than any of its proper conjugates/suffixes.J
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Lyndon Factorization

Theorem (Chen, Fox and Lyndon: 1958)

Every word w € X% has a unique factorization w = L1 - - - Ly, such that
Li>.-->Lyg

is a non-increasing sequence of Lyndon words.

Let w = abaaaabaaaaabaaaabaaaaaab. The Lyndon factorization of w is

ablaaaablaaaaabaaaablaaaaaab

Note that each L; is strictly less than any of its proper conjugates/suffixes.J

The Lyndon factorization of a given word can be computed
@ in linear time [Duval, 1983];

@ in parallel way [Apostolico and Crochemore, 1989] and [Daykin, lliopoulos and Smyth,
1994];

@ in external memory [Roh, Crochemore, lliopoulos and Par, 2008].
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Local and Global suffixes

For each factor u of w, we denote by first(u) and last(u) the position of
the first and the last symbol, respectively, of the factor u in w.
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Sorting suffixes by Lyndon factorization

Local and Global suffixes

For each factor u of w, we denote by first(u) and last(u) the position of
the first and the last symbol, respectively, of the factor u in w.
We denote by

o sufy,(i) = wli,last(u)] and we call it local suffix at the position i
with respect to u.

w = %_ ,,,,,,,,,,,,,,,,,,, T ....................................... —%
1 first(u), last(u) n

Sorting suffixes of a text via its Lyndon Factorization Incontro di Combinatoria ¢ 6/29



Sorting suffixes by Lyndon factorization

Local and Global suffixes

For each factor u of w, we denote by first(u) and last(u) the position of
the first and the last symbol, respectively, of the factor u in w.
We denote by

o sufy,(i) = wli,last(u)] and we call it local suffix at the position i
with respect to u.

e suf(i) = wli,n] and we call it global suffix of w at the position .

1 first(u), last(u) n
—_——
su}r(z)
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Compatible sorting

Definition
Let w be a word and let u be a factor of w. We say that the sorting of the

local suffixes with respect to u is compatible with the sorting of the global
suffixes of w if for all 4, j with first(u) <i < j <last(u),

sufy(i) < sufu(j) <= suf(i) < suf(j).
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In general, taken an arbitrary factor of a word w, the sorting of its suffixes
is not compatible with the sorting of the suffixes of w, as the following
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local suffixes with respect to u is compatible with the sorting of the global
suffixes of w if for all 4, j with first(u) <i < j <last(u),

sufy(i) < sufu(j) <= suf(i) < suf(j).

In general, taken an arbitrary factor of a word w, the sorting of its suffixes
is not compatible with the sorting of the suffixes of w, as the following
example shows.

Example

Consider the word w = abababb and its factor u = ababa.
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Compatible sorting
Definition
Let w be a word and let u be a factor of w. We say that the sorting of the

local suffixes with respect to u is compatible with the sorting of the global
suffixes of w if for all 4, j with first(u) <i < j <last(u),

sufy(i) < sufu(j) <= suf(i) < suf(j).

In general, taken an arbitrary factor of a word w, the sorting of its suffixes
is not compatible with the sorting of the suffixes of w, as the following
example shows.

Example

Consider the word w = abababb and its factor u = ababa.
Then suf,(1) = ababa > a = sufy,(5)
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Compatible sorting
Definition
Let w be a word and let u be a factor of w. We say that the sorting of the

local suffixes with respect to u is compatible with the sorting of the global
suffixes of w if for all 4, j with first(u) <i < j <last(u),

sufy(i) < sufu(j) <= suf(i) < suf(j).

In general, taken an arbitrary factor of a word w, the sorting of its suffixes
is not compatible with the sorting of the suffixes of w, as the following
example shows.

Example

Consider the word w = abababb and its factor u = ababa.
Then suf,(1) = ababa > a = sufy,(5)

whereas suf(1) = abababb < abb = suf(5).
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Compatible sorting

Definition
Let w be a word and let u be a factor of w. We say that the sorting of the

local suffixes with respect to u is compatible with the sorting of the global
suffixes of w if for all 4, j with first(u) <i < j <last(u),

sufy(i) < sufu(j) <= suf(i) < suf(j).

In general, taken an arbitrary factor of a word w, the sorting of its suffixes
is not compatible with the sorting of the suffixes of w, as the following
example shows.

Example

Consider the word w = abababb and its factor v = ababa.
Then suf,(1) = ababa > a = sufy,(5)

whereas suf(1) = abababb < abb = suf(5).

Such sorting is not compatible.
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Sorting suffixes by Lyndon factorization

Our result

Theorem

Let w € ¥* and let w = LiLs--- Ly be its Lyndon factorization. For each
factor u = L. L, --- Lg, the sorting of the local suffixes with respect to u
is compatible with the sorting of the global suffixes of w.
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Sorting suffixes by Lyndon factorization

Our result

Theorem

Let w € ¥* and let w = LiLs--- Ly be its Lyndon factorization. For each
factor u = L. L, --- Lg, the sorting of the local suffixes with respect to u
is compatible with the sorting of the global suffixes of w.

u
W= bt 1 : ol oo —
L L. 1 1L, Ly
7 WA ,
sufu(g)
sufu (i)
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Sorting suffixes by Lyndon factorization

Our result

Theorem

Let w € ¥* and let w = LiLs--- Ly be its Lyndon factorization. For each
factor u = L. L, --- Lg, the sorting of the local suffixes with respect to u
is compatible with the sorting of the global suffixes of w.

suﬁz)
suf(j)
W= ff e 1 } bl T —
L, L. 1 1L, Li
7 J. ,
sufu(g)
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Sorting suffixes by Lyndon factorization
Easy case

The theorem is trivially true when the two suffixes start with two different
Lyndon factors.

L1 Ly Ls Ly
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Sorting suffixes by Lyndon factorization

Easy case

The theorem is trivially true when the two suffixes start with two different
Lyndon factors.

Suppose that

@ i is the position of the first symbol of L,
@ j is the position of the first symbol of Lg
@ w is the smallest factor containing both L, and Ls: LyLyy1---Ls
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Sorting suffixes by Lyndon factorization

Easy case

The theorem is trivially true when the two suffixes start with two different
Lyndon factors.

Suppose that
@ i is the position of the first symbol of L,
@ j is the position of the first symbol of Lg
@ wu is the smallest factor containing both L, and Ls: LyLyy1--- Ls.

Sincer<sand Ly >---> L, >--->Ls>---> L. Itis easy to verify that
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Sorting suffixes by Lyndon factorization

Easy case

The theorem is trivially true when the two suffixes start with two different
Lyndon factors.

Suppose that

@ i is the position of the first symbol of L,
@ j is the position of the first symbol of Lg
@ w is the smallest factor containing both L, and Ls: LyLyy1---Ls

sufu(d)

sufu (i)
Sincer<sand Ly >--->L,>--->Ls>-

-+ > L. It is easy to verify that
o L’V‘LT+1 <o Ls > L
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Sorting suffixes by Lyndon factorization

Easy case

The theorem is trivially true when the two suffixes start with two different
Lyndon factors.

Suppose that

@ i is the position of the first symbol of L,

@ j is the position of the first symbol of Lg

@ w is the smallest factor containing both L, and Ls: LyL,y1---Ls
u

suF (i)
suf(j)
W= } < ook oo —
Ly I Ly I Ls Ly,
N——
sufu(3)

su fu (1)
Sincer<sand Ly >--->L,>--->Ls>-
o LTLT+1"‘LS > L
o LTL»,»+1"'L]€ > L5L5+1 Lk

-+ > L. It is easy to verify that
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Sorting suffixes by Lyndon factorization

Easy case

The theorem is trivially true when the two suffixes start with two different
Lyndon factors.

Suppose that

@ i is the position of the first symbol of L,

@ j is the position of the first symbol of Lg

@ w is the smallest factor containing both L, and Ls: LyL,y1---Ls
u

suF (i)
suf(j)
W= } < ook oo —
Ly I L, I Ls Ly,
N——
sufu(3)

su fu (1)
Sincer<sand Ly >--->L,>--->Lg>--
o LTLT+1"‘LS > L
o LTL»,»+1"'L]€ > L5L5+1 Lk

- > Ly. It is easy to verify that

We don't need to compare any symbol.
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Sorting suffixes by Lyndon factorization

Other cases

The theorem is true when the two suffixes of w start inside the same
factor u of consecutive Lyndon words.

Suppose that
@ i is a position inside L,;
@ j is a position inside Lg;

@ w is the smallest factor containing both L, and Ls: LyLyy1---Ls
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Sorting suffixes by Lyndon factorization

Other cases

The theorem is true when the two suffixes of w start inside the same
factor u of consecutive Lyndon words.

Suppose that
@ i is a position inside L,;
@ j is a position inside Lg;

@ w is the smallest factor containing both L, and Ls: LyLyy1---Ls

SUf(Z) = Lr[i,last(Lr)] }Lr_i'_l{ | Ls b | Lk
sufu (i)
suf(j) = Ls[j,last(Ly)] | Ls—‘,—l} “““ } Ly }
sufu(g)

How many symbol comparisons we need to establish the order relation
between suf(i) and suf(j)?
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How many symbol comparisons?

Ly L, L1 Ly Ly,
—t | s (NIRRT —
1 T 1 1 n

i last(L,) J last(Ls)
last(u)
sufu(y)
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How many symbol comparisons?

Ly L, L1 Ly Ly,
—t} % e s . S PP —
1 T 1 T n
i last(L,) J last(Ls)
last(u)
——
wli,last(Ly)] sufu(j)=wljlast(Ls)]
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How many symbol comparisons?

sufy (Z)
Ly L, L1 Ly Ly,
[ | | e, —d
1 T 7 T T
i last(L,) J last(Ls)
last(u)
~——
wli,last(Ly)] sufu(j)=wlj,last(Ls)]

Possible cases:

@ There is a different symbol inside w|i, last(L, )] and wl[j, last(Ls)].
@ There is not a different symbol inside w|i, last(L, )| and
wlj, last(Ls)]:
e wli,last(L,)] = w[j,last(Ls)];
o wlj,last(Ly)] is a prefix of w(i, last(L,)];
o wli,last(L,)] is a prefix of w[j,last(Ls)].
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Sorting suffixes by Lyndon factorization
First case

- squu(z)

Ly L, . Lr+1 Ly ) Ly
—t * oo, —
1 7 T n

i last(Ly;) J last(Ls)
last(u)

——
wli,last(Ly)] sufu(j)=wljlast(Ls)]

@ There is a different symbol inside w|i, last(L,)] and w|j, last(Ls)|.
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Sorting suffixes by Lyndon factorization

First case
Ly L, L7'+1 Ly Lk
— J O HER PP —
1 T T n

i last(Ly;) J last(Ly)

last(u)
——
wli,last(Ly)] sufu(j)=wljlast(Ls)]

@ There is a different symbol inside w|i, last(L,)] and w|j, last(Ls)|.

@ It is easy to verify that the order relation between the local and the
global suffixes is the same!
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Sorting suffixes by Lyndon factorization

First case
sufu(?)

Ly L, Lyiq Ly Ly,
— J O HER PP —
1 7 T n

i last(Ly;) j last(Ls)

last(u)
——
wli,last(Ly)] sufu(j)=wlj,last(Ls)]

@ There is a different symbol inside w|i, last(L,)] and w|j, last(Ls)|.

@ It is easy to verify that the order relation between the local and the
global suffixes is the same!

o We need lep(i, j) + 1 < min(|wli, last(L,)]|, |w]j, last(Ls)]|) symbol
comparisons, where lcp(i, j) denotes the length of the longest
common prefix between the suffixes w(i, n] and w(j, n].
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Second case: w|i,last(L,)] = w[j, last(Ly)]

Asufu (%)

Ly L, L1 Ly Ly,
—tl | T T LTI —
1 7 1 T n

i last(Ly) J last(Ls)
last(u)

—_———

wli,last(Ly)] sufu(j)=wljlast(Ls)]
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Second case: w|i,last(L,)] = w[j, last(Ly)]

sufu (i)

Ly L, L1 Ly Ly,
— < | T —
1 1 1 ) n

i last(Ly,) J last(Ls)
last(u)

———

w(i,last(Ly)] sufu(j)=wj,last(Ls)]

@ Sincer<sand Ly >--->L,>--->Ls>---> L. ltis easy to
verify that the order relation between the local and the global suffixes
is the same! So we don't need to compare further symbols.
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Second case: w|i,last(L,)] = w[j, last(Ly)]

sufu (i)

Ly L, L1 Ly Ly,
— < | T —
1 1 1 ) n

i last(Ly,) J last(Ls)
last(u)

———

w(i,last(Ly)] sufu(j)=wj,last(Ls)]

1 |

@ Sincer<sand Ly >--->L,>--->Ls>---> L. ltis easy to
verify that the order relation between the local and the global suffixes
is the same! So we don't need to compare further symbols.
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Second case: w|i,last(L,)] = w[j, last(Ly)]

sufu (i)

Ly L, L1 Ly Ly,
— < | T —
1 1 1 ) n

i last(Ly,) J last(Ls)
last(u)

———

w(i,last(Ly)] sufu(j)=wj,last(Ls)]

|
1
I |
1

@ Sincer<sand Ly >--->L,>--->Ls>---> L. ltis easy to
verify that the order relation between the local and the global suffixes
is the same! So we don't need to compare further symbols.
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Second case: w|i,last(L,)] = w[j, last(Ly)]

sufu (i)

Ly L, L1 Ly Ly,
— < | T —
1 1 1 ) n

i last(Ly,) J last(Ls)
last(u)

———

w(i,last(Ly)] sufu(j)=wj,last(Ls)]

|
1
I |
1

@ Sincer<sand Ly >--->L,>--->Ls>---> L. ltis easy to
verify that the order relation between the local and the global suffixes
is the same! So we don't need to compare further symbols.

o We need I(j) = |wlj, last(Ls)|| = |wl[i,last(L,)]| symbol
comparisons.

Sorting suffixes of a text via its Lyndon Factorization Incontro di Combinatoria ¢ 13 /29



Second case: w7, last(L;)] is a prefix of w(i, last(L,)]

Ly L, L1 Ly Ly,
—t ol | e LTI —
1 7 7 T n
i last(L,) J last(Ly)
last(u)
—— ~——
wlilast(L)] sufu(j)=wljlast(Ls)]
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Second case: w7, last(L;)] is a prefix of w(i, last(L,)]

Ly L, L1 Ly Ly,
—t ol | e LTI —
1 T 7 T n
i last(L,) J last(Ly)
last(u)
—— ~——
wlilast(L)] sufu(j)=wljlast(Ls)]

@ Sincer<s, Ly >--->L.>--->Ls>---> Ly and L, is strictly
less than any of its proper suffixes,
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Second case: w7, last(L;)] is a prefix of w(i, last(L,)]

Ly L, L1 Ly Ly,
—t ol | e LTI —
1 T 7 T n
i last(L,) J last(Ly)
last(u)
—— ~——
wlilast(Ly)] sufu(j)=wljlast(Ls)]

@ Sincer<s, Ly >--->L.>--->Ls>---> Ly and L, is strictly
less than any of its proper suffixes,
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Second case: w7, last(L;)] is a prefix of w(i, last(L,)]

Ly L, L1 Ly Ly,
—t ol | e LTI —
1 T 7 T n
i last(L,) J last(Ly)
last(u)
—— ~——
wlilast(Ly)] sufu(j)=wljlast(Ls)]

@ Sincer<s, Ly >--->L.>--->Ls>---> Ly and L, is strictly
less than any of its proper suffixes,
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Second case: w7, last(L;)] is a prefix of w(i, last(L,)]

Ly L, L1 Ly Ly,
—t ol | e LTI —
1 T 7 T n
i last(L,) J last(Ly)
last(u)
—— ~——
wlilast(Ly)] sufu(j)=wljlast(Ls)]

I |
F 1

@ Sincer<s, Ly >--->L.>--->Ls>---> Ly and L, is strictly
less than any of its proper suffixes,
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Sorting suffixes by Lyndon factorization

Second case: w7, last(L;)] is a prefix of w(i, last(L,)]

Ly L, L1 Ly B Ly
—t : s LTI —
1 T 7 T n
i last(L,) J last(Ly)
last(u)
—— ~——
wlilast(Ly)] sufu(j)=wljlast(Ls)]

I |

F 1

I |
I 1

@ Sincer<s, Ly >--->L.>--->Ls>---> Ly and L, is strictly
less than any of its proper suffixes,
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Second case: w7, last(L;)] is a prefix of w(i, last(L,)]

sufu(t)
Ly L, L1 Ly B Ly
— < | T —
1 1 ) ) n
i last(L,) J last(Ls)
last(u)
——
wli,last(Ly)] sufu(j)=wlj,last(Ls)]

|
1
I |
1

@ Sincer<s, Ly >--->L.>--->Ls>---> Ly and L, is strictly
less than any of its proper suffixes, it is easy to verify that the order
relation between the local and the global suffixes is the same!

So we don't need to compare further symbols.
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Second case: w7, last(L;)] is a prefix of w(i, last(L,)]

sufu(t)
Ly L, L1 Ly Ly,
— < | T —
1 T 1 ) 1 n
i last(L,) J last(Ls)
last(u)
——
wli,last(Ly)] sufu(j)=wlj,last(Ls)]

|
1
I |
I 1

@ Sincer<s, Ly >--->L.>--->Ls>---> Ly and L, is strictly
less than any of its proper suffixes, it is easy to verify that the order
relation between the local and the global suffixes is the same!

So we don't need to compare further symbols.

o We need [(j) = |w|j,last(Ls)]| symbol comparisons.
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Second case: w/i,last(L,)] is a prefix of wj, last(Ly)]

Ly L, L'H—l Ly Lk
—f * 0 M N (OO —
1 T 1 T n

i last(L;) J last(Ls)
last(u)

~——
wli,last(Ly)] sufu(j)=wlj,last(Ls)]
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Second case: w/i,last(L,)] is a prefix of wj, last(Ly)]

sufu (i)
Ly L, Lr+1 Ly Lk
o J R o I —l
1 1 T n
i last(L,) J last(Ls)
last(u)
——
wlilast(Lr)] sufu(f)=wljlast(Ls)]

@ In order to get the mutual order between suf (i) and suf(j), we need
to compare at most [(j) = |suf,(j)| symbol comparisons.
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Second case: w/i,last(L,)] is a prefix of wj, last(Ly)]

u
sufu (i)

Ly L, Lr+1 Ly Lk
-} J o e A
| 7 T .

i last(L,) J last(Ls)
last(u)
~——
wli,last(Ly)] sufu(j)=wlj,last(Ls)]
P P
wli,i+1(5) — 1] wlj, j +1(5) — 1]

@ In order to get the mutual order between suf (i) and suf(j), we need

to compare at most [(j) = |suf,(j)| symbol comparisons.
o Consider wli,i + [(j) — 1] and w(j, j + 1(j) — 1] = suf,(j).
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Second case: w/i,last(L,)] is a prefix of wj, last(Ly)]

u
sufu (i)

Ly L, Lr+1 Ly Lk
—t ol J o e —
| 7 T .

i last(L,) J last(Ls)
last(u)
~——
wli,last(Ly)] sufu(j)=wlj,last(Ls)]
— —
wli,i+1(5) — 1] wlj, j +1(5) — 1]

@ In order to get the mutual order between suf (i) and suf(j), we need
to compare at most [(j) = |suf,(j)| symbol comparisons.
e Consider w(i,i+1(j) — 1] and w(j, j + () — 1] = sufu(j).
o There is a mismatch, then we need lcp(i, j) + 1 < I(j) symbol
comparisons.
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Second case: w/i,last(L,)] is a prefix of wj, last(Ly)]

u
sufu (i)

Ly L, Lr+1 Ly Lk
—t ol J o e —
| 7 T .

i last(L,) J last(Ls)
last(u)
~——
wli,last(Ly)] sufu(j)=wlj,last(Ls)]
— —
wli,i+1(5) — 1] wlj, j +1(5) — 1]

@ In order to get the mutual order between suf (i) and suf(j), we need
to compare at most [(j) = |suf,(j)| symbol comparisons.
e Consider w(i,i+1(j) — 1] and w(j, j + () — 1] = sufu(j).
o There is a mismatch, then we need lcp(i, j) + 1 < I(j) symbol
comparisons.
o There is not a mismatch,
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Second case: w/i,last(L,)] is a prefix of wj, last(Ly)]

u
sufu (i)

Ly L, Lr+1 Ly Lk
— J A ey —
| T T .

i last(L,) J last(Ls)
last(u)
~——
[i,last(Ly)] sufu(j)=wlj,last(Ls)]
Lay1-- Ly

@ In order to get the mutual order between suf (i) and suf(j), we need
to compare at most [(j) = |suf,(j)| symbol comparisons.
e Consider w(i,i+1(j) — 1] and w(j, j + () — 1] = sufu(j).
o There is a mismatch, then we need lcp(i, j) + 1 < I(j) symbol
comparisons.
@ There is not a mismatch, then we use the property of the Lyndon
factorization: Lgyq - -« Ly is smaller than any suffix of u and of w.
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Second case: w/i,last(L,)] is a prefix of wj, last(Ly)]

u
sufu (i)

Ly L, Lr+1 Ly Lk
- J 000 . AT RS S —
| T T )

i last(L,) J last(Ls)
last(u)
——
wli,last(Ly)] sufu(j)=wlj,last(Ls)]
Lag1---Lg

|
1
|
1

@ In order to get the mutual order between suf (i) and suf(j), we need
to compare at most [(j) = |suf,(j)| symbol comparisons.
e Consider w(i,i+1(j) — 1] and w(j, j + () — 1] = sufu(j).
o There is a mismatch, then we need lcp(i, j) + 1 < I(j) symbol
comparisons.
@ There is not a mismatch, then we use the property of the Lyndon
factorization: Lgyq - -« Ly is smaller than any suffix of u and of w.
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Second case: w/i,last(L,)] is a prefix of wj, last(Ly)]

sufu (i)
Ly L, Lr+1 Ly Lk
- | o —
1 1 T n
i last(L,) J last(Ls)
last(u)
——
wli,last(Ly)] sufu(j)=wlj,last(Ls)]
suf(j) =t : |
suf(i) =1 % i

@ In order to get the mutual order between suf (i) and suf(j), we need
to compare at most [(j) = |suf,(j)| symbol comparisons.
e Consider w(i,i+1(j) — 1] and w(j, j + () — 1] = sufu(j).
o There is a mismatch, then we need lcp(i, j) + 1 < I(j) symbol
comparisons.
@ There is not a mismatch, then we use the property of the Lyndon
factorization: Lgyq - -« Ly is smaller than any suffix of u and of w.
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How many symbol comparisons?

>
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How many symbol comparisons?

>
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How many symbol comparisons?

{@
{S
VA
pag
&

wli,i+l(§)—1] sufu(d)
1(5)
P

@ In order to get the mutual order between suf (i) and suf(j) it is
sufficient to execute at most [(j) = |suf,(j)| symbol comparisons.
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Sorting suffixes by Lyndon factorization

How many symbol comparisons?

sufuy (Z)

Ly L, L7'+1 Ly Lk
- f oo A
1 ! [

i l ast(u)
wli,i+1(5)—1] sufu ()
1)
A

@ In order to get the mutual order between suf (i) and suf(j) it is
sufficient to execute at most [(j) = |suf,(j)| symbol comparisons.

@ Note that I(j), as shown by the following example, can be smaller
than lep(i, 7) + 1.

16 / 29
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Sorting suffixes by Lyndon factorization
Example

Let w = abaaaabaaaaabaaaabaaaaaab. Its Lyndon factorization is
ablaaaablaaaaabaaaablaaaaaad. Let u = ablacaablaaaaabaaaab).

i=2 j=13

1 {

12 3456 7 8910111213 14 1516 17 18 19 20 21 22 23 24 25
w=ab | aaaab | aaa a a b a aaadb | aaaaa alkd]

Consider the following suffixes:

2

1
suf(2)= baaaab a aaaab a aaabaaaaaab
suf(l3) = b aaaa b a aaaaa b

D)

13

Incontro di Combinatoria ¢ 17 / 29
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Sorting suffixes by Lyndon factorization
Example

Let w = abaaaabaaaaabaaaabaaaaaab. Its Lyndon factorization is
ablaaaablaaaaabaaaablaaaaaad. Let u = ablacaablaaaaabaaaab).

i=2 j=13
4 {
12 3456 7 8910111213 14 1516 17 18 19 20 21 22 23 24 25
w=ab | aaaa b | aaa a ab aaaab | aaaaa aykbd|
D) T
24 1ep(2,13) — 1 13 +1ep(2,13) — 1

Consider the following suffixes:

2 24 1ep(2,13)

4 4
suf(2)= baaaab a aaaab a aaabaaaaaab
suf(l3) = b aaaa b a aaaa a b

D) T

13 13 4 lep(2, 13)

We have lep(2,13) = 11
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Sorting suffixes by Lyndon factorization
Example

Let w = abaaaabaaaaabaaaabaaaaaab. Its Lyndon factorization is
ablaaaablaaaaabaaaablaaaaaad. Let u = ablacaablaaaaabaaaab).

i1=2 j=13 last(u) =18
1 1 4
12 3456 7 8910111213 14 1516 17 18 19 20 21 22 23 24 25
w=ab | aaaa b | aaa a ab aaaab | aaaaa alkd)|
) T
241(13) — 1 13+1(13) — 1

Consider the following suffixes:

2 2+ 1(13) 2+ lep(2,13)

4 4 4
suf(2)= baaaab a aaaab a aaabaaaaaab
suf(l3) = b aaaa b a aaaaa b

D) ) T

13 13410(13) 13 4 lep(2,13)

We have lep(2,13) = 11 and [(13) = 6.
We need only 6 symbol comparisons,
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Sorting suffixes by Lyndon factorization
Example

Let w = abaaaabaaaaabaaaabaaaaaab. Its Lyndon factorization is
ablaaaablaaaaabaaaablaaaaaad. Let u = ablacaablaaaaabaaaab).

i1=2 j=13 last(u) =18
! ! !
12 3456 7 8910111213 14 1516 17 18 19 20 21 22 23 24 25
w=ab | aaaa b | aaa a ab aaaab | aaaaa alkd)|
T T
241(13) — 1 13+1(13) — 1

Consider the following suffixes:

2 2+1(13) 2+ lep(2,13)

4 4 4
suf(2)= baaaab a aaaab a aaabaaaaaab
suf(l3) = b aaaa b a aaaaa b

D) ) T

13 13410(13) 13 4 lep(2,13)

We have lep(2,13) = 11 and [(13) = 6.
We need only 6 symbol comparisons, indeed for Lyndon properties
w(8,25] > w[19,25] = suf(2) > suf(13).
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Our strategy for sorting all suffixes

Let w=LyLo---L;L;y1--- L. We propose an algorithm that is based on
the following

Proposition
Let sort(LyLo---L;) and sort(Lj;1Liy2--- Li) denote the sorted lists of
the suffixes of L1 Ly --- L; and the suffixes Lj L o - - Ly, respectively.

Then
SOTt(LlLQ to Lk) = merge(sort(Lng tee Ll), SOT‘t(Ll_HLH_Q cee Lk))

@ The sorted list of the global suffixes of w can be obtained by merging
the sorted lists of the local suffixes inside L1Ls---L; and
LiyiLiyo- - L.
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Our strategy for sorting all suffixes

Let w=LyLo---L;L;y1--- L. We propose an algorithm that is based on
the following

Proposition

Let sort(LyLo---L;) and sort(Lj;1Liy2--- Li) denote the sorted lists of
the suffixes of L1 Ly --- L; and the suffixes Lj L o - - Ly, respectively.
Then

SOTt(LlLQ to Lk) = merge(sort(Lng tee Ll), SOT‘t(Ll_HLH_Q cee Lk))

@ The sorted list of the global suffixes of w can be obtained by merging
the sorted lists of the local suffixes inside L1Ls---L; and
LiyiLiyo- - L.

@ Note that the mutual order of the local suffixes is preserved after the
merge operation.
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Our algorithm

This proposition suggests a possible strategy for sorting the list of the
suffixes of some word w:
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Sorting suffixes by Lyndon factorization
Our algorithm

This proposition suggests a possible strategy for sorting the list of the
suffixes of some word w:

@ find the Lyndon decomposition of w: LiLg - Ly;
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Our algorithm

This proposition suggests a possible strategy for sorting the list of the
suffixes of some word w:

@ find the Lyndon decomposition of w: LiLg - Ly;

@ find the sorted list of the suffixes of L1 and, separately, the sorted list
of the suffixes of Lo;
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Our algorithm

This proposition suggests a possible strategy for sorting the list of the
suffixes of some word w:

@ find the Lyndon decomposition of w: LiLg - Ly;

@ find the sorted list of the suffixes of L1 and, separately, the sorted list
of the suffixes of Lo;

@ merge the sorted lists in order to obtain the sorted list of the suffixes
of L1L2;
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Our algorithm

This proposition suggests a possible strategy for sorting the list of the
suffixes of some word w:

@ find the Lyndon decomposition of w: LiLg - Ly;

@ find the sorted list of the suffixes of L1 and, separately, the sorted list
of the suffixes of Lo;

@ merge the sorted lists in order to obtain the sorted list of the suffixes
of L1L2;

@ find the sorted list of the suffixes of Ls and merge it to the previous
sorted list;
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Our algorithm

This proposition suggests a possible strategy for sorting the list of the
suffixes of some word w:

@ find the Lyndon decomposition of w: LiLg - Ly;

@ find the sorted list of the suffixes of L1 and, separately, the sorted list
of the suffixes of Lo;

@ merge the sorted lists in order to obtain the sorted list of the suffixes
of L1L2;

@ find the sorted list of the suffixes of Ls and merge it to the previous
sorted list;

@ repeat until all the Lyndon factors are processed;
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Our algorithm

This proposition suggests a possible strategy for sorting the list of the
suffixes of some word w:

@ find the Lyndon decomposition of w: LiLg - Ly;

@ find the sorted list of the suffixes of L1 and, separately, the sorted list
of the suffixes of Lo;

@ merge the sorted lists in order to obtain the sorted list of the suffixes
of L1L2;

@ find the sorted list of the suffixes of L3 and merge it to the previous
sorted list;

@ repeat until all the Lyndon factors are processed;

One can use this strategy for computing the suffix array and for
constructing the Burrows-Wheeler Transform.
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Sorting suffixes by Lyndon factorization

The Burrows-Wheeler Transform

A possible definition of BWT consists in adding an end-marker symbol $ at the end of the word.
Start with word w € ¥*.
@ Append $ symbol, which is lexicographically before all other characters in the alphabet 3.
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Sorting suffixes by Lyndon factorization

The Burrows-Wheeler Transform

A possible definition of BWT consists in adding an end-marker symbol $ at the end of the word.
Start with word w € ¥*.
@ Append $ symbol, which is lexicographically before all other characters in the alphabet 3.

Example: w = mathematics

ma t hemat ics $
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Sorting suffixes by Lyndon factorization

The Burrows-Wheeler Transform

A possible definition of BWT consists in adding an end-marker symbol $ at the end of the word.
Start with word w € ¥*.
@ Append $ symbol, which is lexicographically before all other characters in the alphabet 3.
@ Generate all of the conjugates of w$

Example: w = mathematics

ma t hemat ics $
athematics $m
thematics $ma
hematics $mat
ema t i ¢c s $mat h
ma t ¢t ¢c s $mat h e
atics $mathem
t i ¢cs $mathema
i c s $mat hemat
c s $mat hemat i
s $mat hemat i c
$mat hemat i c s
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The Burrows-Wheeler Transform

A possible definition of BWT consists in adding an end-marker symbol $ at the end of the word.
Start with word w € ¥*.
@ Append $ symbol, which is lexicographically before all other characters in the alphabet 3.
@ Generate all of the conjugates of w$ and sort them lexicographically, forming a matrix M
with rows and columns equal to |w$| = |w| + 1.

Example: w = mathematics

M
ma t hemat ics $ 1 $mat hemat i c s
athematics $m 2 athematics$m
thematics $ma 3 atics$mathem
hematics $mat 4 ¢c s $mat hemat i
ema t i ¢c s $mat h 5 emat ics $math
ma t ¢t ¢c s $mat h e = 6 h emat ics $mat
atics $mathem 7 i cs $mat hemat
t i ¢cs $mathema 8 mat hematics $
i c s $mat hemat 9 matics $mathe
c s $mat hemat i 10 s $mat hemat i c
s $mat hemat i c 11 t hemat i ¢c s $ma
$mat hemat i c s 12 t i ¢c s $mat h ema
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Sorting suffixes by Lyndon factorization

The Burrows-Wheeler Transform

A possible definition of BWT consists in adding an end-marker symbol $ at the end of the word.
Start with word w € ¥*.
@ Append $ symbol, which is lexicographically before all other characters in the alphabet 3.
@ Generate all of the conjugates of w$ and sort them lexicographically, forming a matrix M
with rows and columns equal to |w$| = |w| + 1.
@ Construct L, the transformed text of w$, by taking the last column of M.
Example: w = mathematics

F M L

4 s
ma t hemat ics $ 1 $mat hemat i c s
athematics $m 2 athematics$m
thematics $ma 3 atics$mathem
hematics $mat 4 ¢c s $mat hemat
ema t i ¢c s $mat h 5 emat ics $math
ma t ¢t ¢c s $mat h e = 6 h emat ics $mat
atics$mathem 7 i cs $mat hemat
t i¢cs$mathema 8 mat hematics $
i c s $mat hemat 9 matics $mathe
c s $mat hemat i 10 s $mat hemat i c
s $mat hemat i c 11 t hemat i c s $ma
$mat hematics 12 t i ¢c s $ma t h ema
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Sorting suffixes by Lyndon factorization

The Burrows-Wheeler Transform

A possible definition of BWT consists in adding an end-marker symbol $ at the end of the word.
Start with word w € ¥*.
@ Append $ symbol, which is lexicographically before all other characters in the alphabet 3.
@ Generate all of the conjugates of w$ and sort them lexicographically, forming a matrix M
with rows and columns equal to |w$| = |w| + 1.
@ Construct L, the transformed text of w$, by taking the last column of M.
Example: w = mathematics

F M L

4 s
ma t hemat ics $ 1 $mat hemat i c s
athematics $m 2 athematics$m
thematics $ma 3 atics$mathem
hematics $mat 4 ¢c s $mat hemat
ema t i ¢c s $mat h 5 emat ics $math
ma t ¢t ¢c s $mat h e = 6 h emat ics $mat
atics$mathem 7 i ¢cs $mat hemat
t i¢cs$mathema -8 ma t hemat i c s $
i c s $mat hemat 9 matics $mathe
c s $mat hemat i 10 s $mat hemat i c
s $mat hemat i c 11 t hemat i c s $ma
$mat hematics 12 t i ¢c s $ma t h ema

Output: bwt(w$) = L = smmihtt$ecaa.
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Sorting suffixes by Lyndon factorization

The Burrows-Wheeler Transform

A possible definition of BWT consists in adding an end-marker symbol $ at the end of the word.
Start with word w € ¥*.
@ Append $ symbol, which is lexicographically before all other characters in the alphabet 3.
@ Generate all of the conjugates of w$ and sort them lexicographically, forming a matrix M
with rows and columns equal to |w$| = |w| + 1.
@ Construct L, the transformed text of w$, by taking the last column of M.
Example: w = mathematics

F M L

4 s
ma t hemat ics $ 1 $mat hemat i c s
athematics $m 2 athematics$m
thematics $ma 3 atics$mathem
hematics $mat 4 ¢c s $mat hemat
ema t i ¢c s $mat h 5 emat ics $math
ma t ¢t ¢c s $mat h e = 6 h emat ics $mat
atics$mathem 7 i cs $mat hemat
t i¢cs$mathema —8 ma t hemat 1 c s $
i c s $mat hemat 9 matics $mathe
c s $mat hemat i 10 s $mat hemat i c
s $mat hemat i c 11 t hemat i c s $ma
$mat hematics 12 t i ¢c s $ma t h ema

Output: bwit(w$) = L = smmihtt$ecaa.

To recover the original word, it is enough to know the position of the symbol-$ in L.

Sorting suffixes of a text via its Lyndon Factorization Incontro di Combinatoria ¢ 20 /29



BWT and SA

This is equivalent to sort the suffixes of wS$.

123456 789101112
w=mathematic s $

M L BWT Sorted Suffixes
1

$mat hematics s $
athematics $m m at hematics$
atics$mathem m at i c s $
cs$mat hemat i i c s $
emat ics $mat h h emat i cs$
hematics $mactt < t hematics$
i cs $Smathemat t i c s $
mat hemat ics $ $ ma t h ematics$
mat i cs $mathe e mat ics$
s $mat hemat ic c s $
thematics $ma a t hematics$
t ics$mathema a t ics $
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BWT and SA

This is equivalent to sort the suffixes of wS$.
In order to obtain it, one can compute the suffix array.
@ SA[i]: The starting position of the ith smallest suffix of w$.
@ BWTIi]: The symbol that (circularly) precedes the first symbol of the ith smallest suffix.

123456 789101112
w=mathematic s $

M L SA BWT Sorted Suffixes
1

$mat hematics 12 s $
athematics $m 2 m athematics$
atics$mathem 7 m atics$
c s $mat hemat i 9 i c s $
emat ics $mat h 5 h emat i cs$
hematics $mactt < 4 t hematics$
i cs $Smathemat 9 t i c s $
ma t hemat 1 c s $ 1 $ ma t h ematics$
mat i cs $mat he 6 e ma t i s $
s $mat hemat ic 1 ¢ s $
thematics $ma 3 a t hematdics$
t ics$mathema 8 a t ics $

Note that one can build the BWT of a string without needing to compute its suffix-array:
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Compute the BWT and the SA

@ the Suffix Array (SA): the array containing the starting positions of the suffixes of a
word, sorted in lexicographic order;

@ the Burrows-Wheeler Transform (BWT'): the array containing a permutation of the
symbols of a word according to the sorting of its suffixes.
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Compute the BWT and the SA

@ the Suffix Array (SA): the array containing the starting positions of the suffixes of a
word, sorted in lexicographic order;

@ the Burrows-Wheeler Transform (BWT'): the array containing a permutation of the
symbols of a word according to the sorting of its suffixes.

Let w = aabcabbaabaabdabbaaabbdc. Its Lyndon factorization is
aabeabb|aabaabdabblaaabbdc.

| L1 = aabcabb Lo = aabaabdabb L3 = aaabbdc L4 = $

I |
T T

w$ =
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Compute the BWT and the SA

@ the Suffix Array (SA): the array containing the starting positions of the suffixes of a
word, sorted in lexicographic order;

@ the Burrows-Wheeler Transform (BWT'): the array containing a permutation of the
symbols of a word according to the sorting of its suffixes.

Let w = aabcabbaabaabdabbaaabbdc. Its Lyndon factorization is
aabeabb|aabaabdabblaaabbdc.

s L1 = aabcabb Lo = aabaabdabb L3 = aaabbdc Ls=$
wo = f f } f }

Consider:‘ L% = aabcabb$‘
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Compute the BWT and the SA

@ the Suffix Array (SA): the array containing the starting positions of the suffixes of a
word, sorted in lexicographic order;
@ the Burrows-Wheeler Transform (BWT'): the array containing a permutation of the
symbols of a word according to the sorting of its suffixes.
Let w = aabcabbaabaabdabbaaabbdc. Its Lyndon factorization is
aabeabb|aabaabdabblaaabbdc.
L1 = aabcabb Lo = aabaabdabb L3 = aaabbdc Ls=$
w$ = | : } 1 |
Consider: L1$ = aabcabb$

Compute the BWT(L:$) and SA(L:$):

L1$
SA | BWT | Sorted Suffixes
8 b $
1 $ aabcabb$
5 c abb$
2 a abcabb$
7 b b$
6 a bb$
3 a bcabb$
4 b cabb$
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Compute the BWT and the SA

L = aabcabb Lo = aabaabdabb L3 = aaabbdc Ly= $
w = f } } {

L1$ = aabcabb$

Li$
BWT | Sorted Suffixes
$
aabcabb$
abb$
abcabb$
b$
bb$
beabb$
cabb$

n
N

WO NN Ot o
TR Q TR O LIT
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Compute the BWT and the SA

L1 = aabcabb Lo = aabaabdabb L3 = aaabbdc L4 = $

w= | : 1 !
L1$ = aabcabb$

Consider:; L% = aabaabdabb$ |
Note that |L1| = j; = 7. Compute the BWT(L2$) and SA(L2$).

Lo2$
SA BWT | Sorted Suffixes
SA BWTL1$5 ted Suffi 7=18) b 18
- - $°' ec outhixes 1+7=8 $ | aabaabdabb$
1 $ aabeabb$ 44+7=11 b aabdabb$
5 . abb$ 24+7=9 a abaabdabb$
2 a abcabb$ 8+7=15 d abb3
7 b b% 54+7=12 a abdabb$
6 a S 1004+7=17 b b$
3+7=10 a baabdabb$
3 a bcabb$
4 b cabb$ 94+7=16 a bb$
6+7=13 a bdabb$
T+ T7=14 b dabb$
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Compute the BWT and the SA

L1$
SgA BV;/'T gorted Suffixes L1Ly$
- SA| BWT | Sorted Suffixes
1 $ aabcabb$
5 c abb$ 18 b $
8 b aabaabdabb$
2 a abcabb$ —
1 $ aabcabbaabaabdabb$
7 b b$
11 b aabdabb$
6 a bb$
9 a abaabdabb$
3 a bcabb$
4 b cabb$ 15 d abb8
Lo$ 5 c abbaabaabdabb$
G SA BWT'| Sorted Suffixes merge 122 @ al;zal;l;;abaabdabw
0|11+7=18] b |$ = e ‘g Z$ “
0| 1+7=8 $ aabaabdabb$ 7 b baabaabdabb$
21 4+7=11 b aabdabb$ 10 o baabdabb$
21 247=9 a abaabdabb$ 16 " bbS
21 84+7=15 d abb$
6 a bbaabaabdabb$
4| 5+7=12 a abdabb$
3 a beabbaabaabdabb$
41 1047=17 b b$ 13 o bdabb$
5| 34+7=10 a baabdabb$
4 b cabbaabaabdabb$
5| 947=16 a bb$ 14 b dabb$
7] 64+7=13 a bdabb$
8| 7T+7=14 b dabb$
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Compute the BWT and the SA

L1 = aabcabb Lo = aabaabdabb L3 = aaabbdc .L4 = $

w = I f } T

L1L>$ = aabcabbaabaabdabb$
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Compute the BWT and the SA

| L1 = aabcabb Lo = aabaabdabb L3 = aaabbdc L4 = $

I |
T T T

w =
L1L>$ = aabcabbaabaabdabb$

Consider:, Ls$ = aaabbdc$
Compute the BWT(L3$) and SA(L3$).

L3$

SA BWT | Sorted Suffixes
174+8 =25 c $
17+1=18 $ aaabbdc$
17+2=19 a aabbdc$
17+3 =20 a abbdc$
17+4=21 a bbdc$
17+5=22 b bdc$
174+7=24 d c$
17+6 =23 b dc$
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Compute the BWT and the SA

| L1 = aabcabb Lo = aabaabdabb L3 = aaabbdc L4 = $

I |
T T T

w =

L1L>$ = aabcabbaabaabdabb$ |
Consider:, Ls$ = aaabbdc$
Compute the BWT(L3$) and SA(L3$).

L3$

SA BWT | Sorted Suffixes
174+8 =25 c $
17+1=18 $ aaabbdc$
17+2=19 a aabbdc$
17+3 =20 a abbdc$
17+4=21 a bbdc$
1745 =22 b bdc$
174+7=24 d c$
17+6 =23 b dc$

By merging the sorted list of the suffixes of L1 L2$ and of L3$, we obtain
the SA/BWT of w$ = Ly L,L3$.
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Conclusions

Further work: Parallel sorting

@ The word could be partitioned into several sequences of consecutive
blocks of Lyndon words, and the sorting algorithm can be applied in
parallel to each of those sequences. Then one should merge the
sorted lists.

@ Furthermore, also the Lyndon factorization can be performed in
parallel, as shown in [Apostolico and Crochemore, 1989] and [Daykin,
lliopoulos and Smyth, 1994].
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Further work

One can compute the BWT without the SA by using our strategy and the
strategies already used in the following papers:

@ Hon, Lam, Sadakane, Sung and Yiu, 2007,

o Ferragina, Gagie and Manzini, 2010 and 2012;
@ Bauer, Cox and R., 2011 and 2013;
°

Crochemore, Grossi, Karkkainen and Landau, 2013.

In this way, one could obtain algorithms that work:
@ in external memory;

@ in place.

One could use efficient dynamic data structures for the rank and insert
operations, for instance by using Navarro and Nekrich's recent results on
optimal representations of dynamic sequences.
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Further work: linear algorithm

Does there exist a linear algorithm that uses the Lyndon Factorization in
order to sort (implicity or explicity) the suffixes?

Open problem!
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Conclusions

Thank you for your attention! |
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