Lightweight BWT Construction for Very Large String Collections

Markus J. Bauer, Anthony J. Cox and Giovanna Rosone

Computational Biology Group, Illumina Cambridge Ltd., United Kingdom Dipartimento di Matematica e Informatica, University of Palermo, Palermo, ITALY

Incontro PRIN, Settembre 2011

Whole human genome sequencing

- Modern DNA sequencing machines produce a lot of data!
 e.g. Illumina HiSeq 2000: > 40Gbases of sequence per day (paired 100-mers)
- Whole human genome sequencing: 3Gbase genome typically sampled to 20 to 30-fold redundancy to ensure adequate coverage of both copies

- Other experiment types (rare variants in heterogeneous sample of cancer cells) demand even higher redundancy
- Datasets of 100 Gbases or more are common

The BWT

- The BWT is a reversible transformation that produces a permutation bwt(v) of an input sequence v, defined over an ordered alphabet Σ, so that occurrences of a given symbol tend to occur in clusters in the output sequence.
- Traditionally the major application of the Burrows-Wheeler Transform has been for Data Compression. The BWT represents for instance the heart of the BZIP2 algorithm.
- Today, there are reports of the application of the BWT in bio-informatics, full-text compressed indexes, prediction and entropy estimation, and shape analysis in computer vision, etc. Moreover, there exist several variants and extensions of such a transform.

The BWT

- The BWT is a reversible transformation that produces a permutation bwt(v) of an input sequence v, defined over an ordered alphabet Σ, so that occurrences of a given symbol tend to occur in clusters in the output sequence.
- Traditionally the major application of the Burrows-Wheeler Transform has been for Data Compression. The BWT represents for instance the heart of the BZIP2 algorithm.
- Today, there are reports of the application of the BWT in bio-informatics, full-text compressed indexes, prediction and entropy estimation, and shape analysis in computer vision, etc. Moreover, there exist several variants and extensions of such a transform.

The BWT

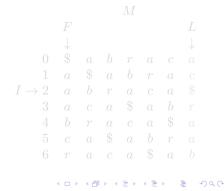
- The BWT is a reversible transformation that produces a permutation bwt(v) of an input sequence v, defined over an ordered alphabet Σ, so that occurrences of a given symbol tend to occur in clusters in the output sequence.
- Traditionally the major application of the Burrows-Wheeler Transform has been for Data Compression. The BWT represents for instance the heart of the BZIP2 algorithm.
- Today, there are reports of the application of the BWT in bio-informatics, full-text compressed indexes, prediction and entropy estimation, and shape analysis in computer vision, etc. Moreover, there exist several variants and extensions of such a transform.

How does BWT work?

- BWT takes as input a text v, append \$ to the end of v (\$ is unique and smaller then any other character) and produces:
 - a permutation bwt(v) of the letters of v\$.
 - the index I, that is useful in order to recover the original word v.
- Example: v = abraca
- Each row of *M* is a conjugate of *v*\$ in lexicographic order.
 - *bwt*(*v*) coincides with the last column *L* of the BW-matrix *M*.
 - The index *I* is the row of *M* containing the original sequence followed by \$.

How does BWT work?

- BWT takes as input a text v, append \$ to the end of v (\$ is unique and smaller then any other character) and produces:
 - a permutation bwt(v) of the letters of v\$.
 - the index I, that is useful in order to recover the original word v.
- Example: v = abraca
- Each row of *M* is a conjugate of *v*\$ in lexicographic order.
 - *bwt*(*v*) coincides with the last column *L* of the BW-matrix *M*.
 - The index *I* is the row of *M* containing the original sequence followed by \$.



How does BWT work?

- BWT takes as input a text v, append \$ to the end of v (\$ is unique and smaller then any other character) and produces:
 - a permutation bwt(v) of the letters of v\$.
 - the index I, that is useful in order to recover the original word v.
- Example: v = abraca
- Each row of *M* is a conjugate of *v*\$ in lexicographic order.
 - **bwt**(v) coincides with the last column L of the BW-matrix M.
 - The index *I* is the row of *M* containing the original sequence followed by \$.

M

Properties

The following properties hold:

- For all $i = 0, ..., |v|, i \neq I$, the character F[i] follows L[i] in the original string;
- **2** for each character c, the r-th occurrence of c in F corresponds to the r-th occurrence of c in L.

Ferragina and Manzini (2000) noticed the following connection:

$$LF[i] = C[L[i]] + rank(L[i], i-1) \qquad M$$

5 c a a b r a6 r a c a a b a b

Properties

The following properties hold:

- For all $i = 0, ..., |v|, i \neq I$, the character F[i] follows L[i] in the original string;
- **2** for each character c, the r-th occurrence of c in F corresponds to the r-th occurrence of c in L.

Ferragina and Manzini (2000) noticed the following connection:

$$LF[i] = C[L[i]] + rank(L[i], i - 1) \qquad M$$

instance:
$$= 5 \text{ then } L[i] = a \text{ and}$$

$$I[5] = C[a] + rank(a, 4) = 1 + 2 = 3$$

$$I \rightarrow 2 \text{ a } b \text{ r } a \text{ c } a \text{ s } a$$

$$3 \text{ a } c \text{ a } \text{ s } a \text{ b } r \text{ a } c$$

$$3 \text{ a } c \text{ a } \text{ s } a \text{ b } r \text{ a } c$$

$$4 \text{ b } r \text{ a } c \text{ a } \text{ s } a \text{ b } r \text{ a } c$$

$$5 \text{ c } a \text{ s } a \text{ b } r \text{ a } c$$

$$4 \text{ b } r \text{ a } c \text{ a } \text{ s } a \text{ b } r \text{ a } c$$

$$5 \text{ c } a \text{ s } a \text{ b } r \text{ a } c$$

$$6 \text{ c } r \text{ a } c \text{ a } \text{ s } a \text{ b } r \text{ a } c$$

Properties

LF[5]

The following properties hold:

- For all $i = 0, ..., |v|, i \neq I$, the character F[i] follows L[i] in the original string;
- 2) for each character c, the r-th occurrence of c in F corresponds to the *r*-th occurrence of c in L.

Ferragina and Manzini (2000) noticed the following connection:

$$LF[i] = C[L[i]] + rank(L[i], i - 1) \qquad M$$

For instance:
if $i = 5$ then $L[i] = a$ and
 $LF[5] = C[a] + rank(a, 4) = 1 + 2 = 3$
$$I \rightarrow 2$$
 a b r a c a \$
3 a c a \$ a b r a c a \$
3 a c a \$ a b r a c a \$
3 a c a \$ a b r a c a \$
3 a c a \$ a b r a c a \$
3 a c a \$ a b r a c a \$
3 a c a \$ a b r a c a \$
3 a c a \$ a b r a c a \$
3 a c a \$ a b r a c a \$
3 a c a \$ a b r a c a \$
3 a c a \$ a b r a c a \$
3 a c a \$ a b r a c a \$
3 a c a \$ a b r a c a \$
3 a c a \$ a b r a c a \$
3 a c a \$ a b r a c a \$
3 a c a \$ a b r a c a \$ a b r a c a \$
3 a c a \$ a b r a c a \$ b c c a \$ b

The BWT in bioinformatics

• BWT-based text indexes are the core of popular mapping programs

- Bowtie (Langmead et al., Genome Biology 2009)
- BWA (Li and Durbin, Bioinformatics 2009, 2010)
- SOAP2 (Li et al., Bioinformatics 2009)
- Create index from reference genome (e.g. human) create once, use many times
- Simpson and Durbin, Bioinformatics 2010: FM-index of a set of DNA sequences for overlap detection stage of de novo assembly See also Vlimki et al., CPM 2010

The BWT in bioinformatics

• BWT-based text indexes are the core of popular mapping programs

- Bowtie (Langmead et al., Genome Biology 2009)
- BWA (Li and Durbin, Bioinformatics 2009, 2010)
- SOAP2 (Li et al., Bioinformatics 2009)
- Create index from reference genome (e.g. human) create once, use many times

 Simpson and Durbin, Bioinformatics 2010: FM-index of a set of DNA sequences for overlap detection stage of de novo assembly See also Vlimki et al., CPM 2010

The BWT in bioinformatics

- BWT-based text indexes are the core of popular mapping programs
 - Bowtie (Langmead et al., Genome Biology 2009)
 - BWA (Li and Durbin, Bioinformatics 2009, 2010)
 - SOAP2 (Li et al., Bioinformatics 2009)
- Create index from reference genome (e.g. human) create once, use many times
- Simpson and Durbin, Bioinformatics 2010: FM-index of a set of DNA sequences for overlap detection stage of de novo assembly See also Vlimki et al., CPM 2010

BWT of a collection of strings

- BWT extended to set of strings by Mantaci et al. (CPM 2005, TCS 2007) by using a different ordering of the conjugates of the strings
- Straightforward to compute BWT from suffix array.
- Lots of work on efficient linear time SA generation methods.
- **But**: need to hold SA in RAM (Simpson et al. estimate 700Gbytes RAM for SA of 60 Gbases of data)
- Other options:
 - Siren, SPIRE 2009: divide collection into batches, compute BWT of each then merge
 - Ferragina et al., Latin 2010: partition string T into blocks $T_r \cdots T_1$, create SA of each in turn

- without concatenating the strings belonging to S and without needing to compute their suffix array.
- incrementally via k iterations. At each of the iterations
 j = 1, 2, ..., k 1, the algorithms compute a partial BWT string
 bwt_j(S) by inserting the symbols preceding the *j*-suffixes of S at their
 correct positions into bwt_{j-1}(S). Each iteration *j* simulates the
 insertion of the *j*-suffixes in the suffix array.
- The string bwt_j(S) is a 'partial BWT' in the sense that the addition of m end markers in their correct positions would make it the BWT of the collection {S₁[k - j - 1, k], S₂[k - j - 1, k], ..., S_m[k - j - 1, k]}.
- This insertion does not affect the relative ordering of symbols inserted during previous iterations.

- without concatenating the strings belonging to S and without needing to compute their suffix array.
- incrementally via k iterations. At each of the iterations
 j = 1, 2, ..., k 1, the algorithms compute a partial BWT string
 bwt_j(S) by inserting the symbols preceding the *j*-suffixes of S at their
 correct positions into bwt_{j-1}(S). Each iteration *j* simulates the
 insertion of the *j*-suffixes in the suffix array.
- The string bwt_j(S) is a 'partial BWT' in the sense that the addition of m end markers in their correct positions would make it the BWT of the collection {S₁[k j 1, k], S₂[k j 1, k], ..., S_m[k j 1, k]}.
- This insertion does not affect the relative ordering of symbols inserted during previous iterations.

- without concatenating the strings belonging to S and without needing to compute their suffix array.
- incrementally via k iterations. At each of the iterations
 j = 1, 2, ..., k 1, the algorithms compute a partial BWT string
 bwt_j(S) by inserting the symbols preceding the *j*-suffixes of S at their
 correct positions into bwt_{j-1}(S). Each iteration *j* simulates the
 insertion of the *j*-suffixes in the suffix array.
- The string bwt_j(S) is a 'partial BWT' in the sense that the addition of *m* end markers in their correct positions would make it the BWT of the collection {*S*₁[*k j* 1, *k*], *S*₂[*k j* 1, *k*], ..., *S*_m[*k j* 1, *k*]}.
- This insertion does not affect the relative ordering of symbols inserted during previous iterations.

- without concatenating the strings belonging to S and without needing to compute their suffix array.
- incrementally via k iterations. At each of the iterations
 j = 1, 2, ..., k - 1, the algorithms compute a partial BWT string
 bwt_j(S) by inserting the symbols preceding the *j*-suffixes of S at their
 correct positions into bwt_{j-1}(S). Each iteration *j* simulates the
 insertion of the *j*-suffixes in the suffix array.
- The string bwt_j(S) is a 'partial BWT' in the sense that the addition of *m* end markers in their correct positions would make it the BWT of the collection {*S*₁[*k j* 1, *k*], *S*₂[*k j* 1, *k*], ..., *S*_m[*k j* 1, *k*]}.
- This insertion does not affect the relative ordering of symbols inserted during previous iterations.

- without concatenating the strings belonging to S and without needing to compute their suffix array.
- incrementally via k iterations. At each of the iterations
 j = 1, 2, ..., k - 1, the algorithms compute a partial BWT string
 bwt_j(S) by inserting the symbols preceding the *j*-suffixes of S at their
 correct positions into bwt_{j-1}(S). Each iteration *j* simulates the
 insertion of the *j*-suffixes in the suffix array.
- The string $bwt_j(S)$ is a 'partial BWT' in the sense that the addition of m end markers in their correct positions would make it the BWT of the collection $\{S_1[k-j-1,k], S_2[k-j-1,k], \ldots, S_m[k-j-1,k]\}$.
- This insertion does not affect the relative ordering of symbols inserted during previous iterations.

- without concatenating the strings belonging to S and without needing to compute their suffix array.
- incrementally via k iterations. At each of the iterations
 j = 1, 2, ..., k - 1, the algorithms compute a partial BWT string
 bwt_j(S) by inserting the symbols preceding the *j*-suffixes of S at their
 correct positions into bwt_{j-1}(S). Each iteration *j* simulates the
 insertion of the *j*-suffixes in the suffix array.
- The string bwt_j(S) is a 'partial BWT' in the sense that the addition of m end markers in their correct positions would make it the BWT of the collection $\{S_1[k-j-1,k], S_2[k-j-1,k], \ldots, S_m[k-j-1,k]\}$.
- This insertion does not affect the relative ordering of symbols inserted during previous iterations.

Let $S = \{S_1, S_2, S_3\} = \{TGCCAAC, AGAGCTC, GTCGCTT\}$ be a collection of m = 3 strings of length k = 7 on an alphabet of $\sigma = 4$ letters.

	0	1	2	3	4	5	6	7
S_1								$\$_1$
S_2								$\$_2$
S_3								$\$_3$

We suppose that $\$_1 = \$_2 = \$_2 = \$$ and \$ < A < C < G < T. The (implicit) end marker is in position k, i.e. $S_i[k] = S_j[k] = \$$, and we define $S_i[k] < S_j[k]$, if i < j.

j-suffix of S_i is the last *j* non-\$ symbols of that string and 0-suffix of S_i is $\$_i$.

Let $S = \{S_1, S_2, S_3\} = \{TGCCAAC, AGAGCTC, GTCGCTT\}$ be a collection of m = 3 strings of length k = 7 on an alphabet of $\sigma = 4$ letters.

	0	1	2	3	4	5	6	7
S_1							C	$\$_1$
S_2							C	$\$_2$
S_3							T	$\$_3$

We suppose that $\$_1 = \$_2 = \$_2 = \$$ and \$ < A < C < G < T. The (implicit) end marker is in position k, i.e. $S_i[k] = S_j[k] = \$$, and we define $S_i[k] < S_j[k]$, if i < j.

j-suffix of S_i is the last j non-\$ symbols of that string and 0-suffix of S_i is $\$_i$.

Let $S = \{S_1, S_2, S_3\} = \{TGCCAAC, AGAGCTC, GTCGCTT\}$ be a collection of m = 3 strings of length k = 7 on an alphabet of $\sigma = 4$ letters.

	0	1	2	3	4	5	6	7
S_1						A	C	$\$_1$
S_2						T	C	$\$_2$
S_3						Т	Т	$\$_3$

We suppose that $\$_1 = \$_2 = \$_2 = \$$ and \$ < A < C < G < T. The (implicit) end marker is in position k, i.e. $S_i[k] = S_j[k] = \$$, and we define $S_i[k] < S_j[k]$, if i < j.

j-suffix of S_i is the last *j* non-\$ symbols of that string and 0-suffix of S_i is $\$_i$.

Let $S = \{S_1, S_2, S_3\} = \{TGCCAAC, AGAGCTC, GTCGCTT\}$ be a collection of m = 3 strings of length k = 7 on an alphabet of $\sigma = 4$ letters.

	0	1	2	3	4	5	6	7
S_1					A	A	C	$\$_1$
S_2					C	T	C	$\$_2$
S_3					C	Т	Т	$\$_3$

We suppose that $\$_1 = \$_2 = \$_2 = \$$ and \$ < A < C < G < T. The (implicit) end marker is in position k, i.e. $S_i[k] = S_j[k] = \$$, and we define $S_i[k] < S_j[k]$, if i < j.

j-suffix of S_i is the last *j* non-\$ symbols of that string and 0-suffix of S_i is $\$_i$.

Let $S = \{S_1, S_2, S_3\} = \{TGCCAAC, AGAGCTC, GTCGCTT\}$ be a collection of m = 3 strings of length k = 7 on an alphabet of $\sigma = 4$ letters.

	0	1	2	3	4	5	6	7
S_1				C	A	A	C	$\$_1$
S_2				G	C	Т	C	$\$_2$
S_3				G	C	Т	Т	$\$_3$

We suppose that $\$_1 = \$_2 = \$_2 = \$$ and \$ < A < C < G < T. The (implicit) end marker is in position k, i.e. $S_i[k] = S_j[k] = \$$, and we define $S_i[k] < S_j[k]$, if i < j.

j-suffix of S_i is the last j non-\$ symbols of that string and 0-suffix of S_i is $\$_i$.

Let $S = \{S_1, S_2, S_3\} = \{TGCCAAC, AGAGCTC, GTCGCTT\}$ be a collection of m = 3 strings of length k = 7 on an alphabet of $\sigma = 4$ letters.

	0	1	2	3	4	5	6	7
S_1			C	C	A	A	C	$\$_1$
S_2			A	G	C	T	C	$\$_2$
S_3			C	G	C	T	Т	$\$_3$

We suppose that $\$_1 = \$_2 = \$_2 = \$$ and \$ < A < C < G < T. The (implicit) end marker is in position k, i.e. $S_i[k] = S_j[k] = \$$, and we define $S_i[k] < S_j[k]$, if i < j.

j-suffix of S_i is the last j non-\$ symbols of that string and 0-suffix of S_i is $\$_i$.

Let $S = \{S_1, S_2, S_3\} = \{TGCCAAC, AGAGCTC, GTCGCTT\}$ be a collection of m = 3 strings of length k = 7 on an alphabet of $\sigma = 4$ letters.

	0	1	2	3	4	5	6	7
S_1		G	C	C	A	A	C	$\$_1$
S_2		G	A	G	C	T	C	$\$_2$
S_3		T	C	G	C	T	T	$\$_3$

We suppose that $\$_1 = \$_2 = \$_2 = \$$ and \$ < A < C < G < T. The (implicit) end marker is in position k, i.e. $S_i[k] = S_j[k] = \$$, and we define $S_i[k] < S_j[k]$, if i < j.

j-suffix of S_i is the last j non-\$ symbols of that string and 0-suffix of S_i is $\$_i$.

Let $S = \{S_1, S_2, S_3\} = \{TGCCAAC, AGAGCTC, GTCGCTT\}$ be a collection of m = 3 strings of length k = 7 on an alphabet of $\sigma = 4$ letters.

	0	1	2	3	4	5	6	7
S_1	Т	G	C	C	A	A	C	$\$_1$
S_2	A	G	A	G	C	T	C	$\$_2$
S_3	G	T	C	G	C	T	T	$\$_3$

We suppose that $\$_1 = \$_2 = \$_2 = \$$ and \$ < A < C < G < T. The (implicit) end marker is in position k, i.e. $S_i[k] = S_j[k] = \$$, and we define $S_i[k] < S_j[k]$, if i < j.

j-suffix of S_i is the last j non-\$ symbols of that string and 0-suffix of S_i is $\$_i$.

Let $S = \{S_1, S_2, S_3\} = \{TGCCAAC, AGAGCTC, GTCGCTT\}$ be a collection of m = 3 strings of length k = 7 on an alphabet of $\sigma = 4$ letters.

	0	1	2	3	4	5	6	7
S_1	T	G	C	C	A	A	C	$\$_1$
S_2	A	G	A	G	C	T	C	$\$_2$
S_3	G	T	C	G	C	T	T	$\$_3$

We suppose that $\$_1 = \$_2 = \$_2 = \$$ and \$ < A < C < G < T. The (implicit) end marker is in position k, i.e. $S_i[k] = S_j[k] = \$$, and we define $S_i[k] < S_j[k]$, if i < j.

j-suffix of S_i is the last j non-\$ symbols of that string and 0-suffix of S_i is $\$_i$.

Let $S = \{S_1, S_2, S_3\} = \{TGCCAAC, AGAGCTC, GTCGCTT\}$ be a collection of m = 3 strings of length k = 7 on an alphabet of $\sigma = 4$ letters.

	0	1	2	3	4	5	6	7
S_1								$\$_1$
S_2								$\$_2$
S_3								$\$_3$

We obtain:

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Let $S = \{S_1, S_2, S_3\} = \{TGCCAAC, AGAGCTC, GTCGCTT\}$ be a collection of m = 3 strings of length k = 7 on an alphabet of $\sigma = 4$ letters.

	0	1	2	3	4	5	6	7
S_1							C	$\$_1$
S_2							C	$\$_2$
S_3							Т	$\$_3$

We obtain:

$$\begin{array}{c}
B(0)\\
\hline C\\
\hline C\\
\hline T\\
\end{array}$$

Let $S = \{S_1, S_2, S_3\} = \{TGCCAAC, AGAGCTC, GTCGCTT\}$ be a collection of m = 3 strings of length k = 7 on an alphabet of $\sigma = 4$ letters.

	0	1	2	3	4	5	6	7
S_1							C	$\$_1$
S_2							C	$\$_2$
S_3							Т	$\$_3$

We obtain:

$$\begin{array}{c}
B(0)\\
\hline C\\
\hline C\\
\hline T\\
\end{array}$$

Let $S = \{S_1, S_2, S_3\} = \{TGCCAAC, AGAGCTC, GTCGCTT\}$ be a collection of m = 3 strings of length k = 7 on an alphabet of $\sigma = 4$ letters.

	0	1	2	3	4	5	6	7
S_1						A	C	$\$_1$
S_2						Т	C	$\$_2$
S_3						Т	Τ	$\$_3$

We obtain:

$$\begin{array}{c}
B(0)\\
\hline C\\
\hline C\\
\hline T\\
\end{array}$$

Let $S = \{S_1, S_2, S_3\} = \{TGCCAAC, AGAGCTC, GTCGCTT\}$ be a collection of m = 3 strings of length k = 7 on an alphabet of $\sigma = 4$ letters.

	0	1	2	3	4	5	6	7
S_1						A	C	$\$_1$
S_2						Т	C	$\$_2$
S_3						Т	Τ	$\$_3$

We obtain:

$$\begin{array}{c}
B(0)\\
\hline C\\
\hline C\\
\hline T\\
\end{array}$$

Let $S = \{S_1, S_2, S_3\} = \{TGCCAAC, AGAGCTC, GTCGCTT\}$ be a collection of m = 3 strings of length k = 7 on an alphabet of $\sigma = 4$ letters.

	0	1	2	3	4	5	6	7
S_1						A	C	$\$_1$
S_2						Т	C	$\$_2$
S_3						Т	Τ	$\$_3$

We obtain:

$$\begin{array}{c}
B(0)\\
\hline C\\
\hline C\\
\hline T\\
\end{array}$$

Iteration 0

Let $S = \{S_1, S_2, S_3\} = \{TGCCAAC, AGAGCTC, GTCGCTT\}$ be a collection of m = 3 strings of length k = 7 on an alphabet of $\sigma = 4$ letters.

	0	1	2	3	4	5	6	7
S_1						A	C	$\$_1$
S_2						Т	C	$\$_2$
S_3						Т	Τ	$\$_3$

We obtain:

$$\begin{array}{c}
B(0)\\
\hline C\\
\hline C\\
\hline T\\
\end{array}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Iteration 0

Let $S = \{S_1, S_2, S_3\} = \{TGCCAAC, AGAGCTC, GTCGCTT\}$ be a collection of m = 3 strings of length k = 7 on an alphabet of $\sigma = 4$ letters.

	0	1	2	3	4	5	6	7
S_1						A	C	$\$_1$
S_2						Т	C	$\$_2$
S_3						Т	Τ	$\$_3$

We obtain:

$$\begin{array}{c}
B(0)\\
\hline C\\
\hline C\\
\hline T\\
\end{array}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Iteration 0

Let $S = \{S_1, S_2, S_3\} = \{TGCCAAC, AGAGCTC, GTCGCTT\}$ be a collection of m = 3 strings of length k = 7 on an alphabet of $\sigma = 4$ letters.

	0	1	2	3	4	5	6	7
S_1						A	C	$\$_1$
S_2						Т	C	$\$_2$
S_3						Т	Τ	$\$_3$

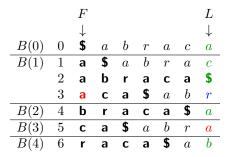
We obtain:

$$\begin{array}{c}
B(0)\\
\hline C\\
\hline C\\
\hline T\\
\end{array}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

$$LF[i] = C[L[i]] + rank(L[i], i-1) \\$$

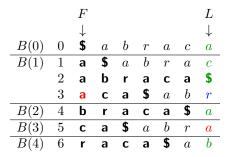
We can think of $bwt_j(S)$ as being partitioned into $\sigma + 1$ strings $B_j(0), B_j(1), \ldots, B_j(\sigma)$, with the symbols in $B_j(h)$ being those that are associated with the suffixes of S that are of length j or less and begin with $c_0 =$ and $c_h \in \Sigma$, for $h = 1, \ldots, \sigma$.



We do not need the array C. We only need the rank function. We note that $B_j(0)$ is constant for all j and, at each iteration j, we store $B_j(h)$ in $\sigma + 1$ external files that are sequentially read one-by concerned at $\sigma = 0.00$

$$LF[i] = C[L[i]] + rank(L[i], i-1) \\$$

We can think of $bwt_j(S)$ as being partitioned into $\sigma + 1$ strings $B_j(0), B_j(1), \ldots, B_j(\sigma)$, with the symbols in $B_j(h)$ being those that are associated with the suffixes of S that are of length j or less and begin with $c_0 =$ and $c_h \in \Sigma$, for $h = 1, \ldots, \sigma$.

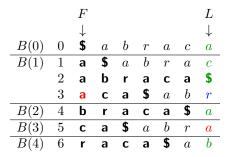


We do not need the array C. We only need the rank function.

We note that $B_j(0)$ is constant for all j and, at each iteration j, we store $B_j(h)$ in $\sigma + 1$ external files that are sequentially read one-by one σ , τ , τ , τ , τ , σ , σ , σ

$$LF[i] = C[L[i]] + rank(L[i], i-1) \\$$

We can think of $bwt_j(S)$ as being partitioned into $\sigma + 1$ strings $B_j(0), B_j(1), \ldots, B_j(\sigma)$, with the symbols in $B_j(h)$ being those that are associated with the suffixes of S that are of length j or less and begin with $c_0 =$ and $c_h \in \Sigma$, for $h = 1, \ldots, \sigma$.

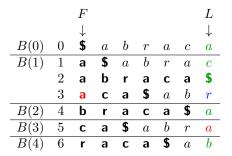


We do not need the array C. We only need the rank function.

We note that $B_j(0)$ is constant for all j and, at each iteration j, we store $B_j(h)$ in $\sigma + 1$ external files that are sequentially read one-by one σ , τ , τ , τ , τ , σ , σ , σ

$$LF[i] = C[L[i]] + rank(L[i], i-1) \\$$

We can think of $bwt_j(S)$ as being partitioned into $\sigma + 1$ strings $B_j(0), B_j(1), \ldots, B_j(\sigma)$, with the symbols in $B_j(h)$ being those that are associated with the suffixes of S that are of length j or less and begin with $c_0 =$ and $c_h \in \Sigma$, for $h = 1, \ldots, \sigma$.



We do not need the array C. We only need the rank function. We note that $B_j(0)$ is constant for all j and, at each iteration j, we store $B_j(h)$ in $\sigma + 1$ external files that are sequentially read one-by-one.

Looking in detail at iteration 6

	C					
	$B_{5}(0)$	Associated Suffixes	$TGCCAAC\$_1$,		$B_{6}(0)$	Associated Suffixes
0	C	\$ ₁	$AGAGCTC\$_2$,	0	C	\$ ₁
1	C	\$ ₂	$GTCGCTT\$_3$.	1	C	\$ ₂
2	T	\$3		2	T	\$3
		-	$P_5(0) = [], N_5(0) = [](empty array)$			-
	$B_{5}(1)$	Associated Suffixes	$P_5(1) = [2], N_5(1) = [2]$		$B_{6}(1)$	Associated Suffixes
0	C	$AAC\$_1$	$P_5(2) = [3, 4], N_5(2) = [1, 3]$	0	C	$AAC\$_1$
1	A	$AC\$_1$	$P_5(3) = [], N_5(3) = []$	1	A	$AC\$_1$
2	G	AGCTC\$2	$P_5(4) = [], N_5(4) = []$	2	G	AGCTC\$2
	$B_{5}(2)$	Associated Suffixes	\downarrow		$B_{6}(2)$	Associated Suffixes
0	A	C\$1		0	A	C\$1
1	T	$C\$_2$	For $h = 0, 3, 4$: nothing	1	T	$C\$_2$
2	C	CAAC ¹	For $h = 1$:	2	C	CAAC ¹
3	G	CCAAC ^{\$1}	rank(G, 2) = 0(sequence = 2)	3	G	CCAAC ^{\$1}
4	т	CGCTT\$3	For $h = 2$:	4	T	$CGCTT\$_3$
5	G	CTC	rank(G, 3) = 1(sequence = 1)	5	G	$CTC\$_2$
6	\overline{G}	$CTT\$_3$	rank(T, 4) = 2(sequence = 3)	6	\overline{G}	$CTT\$_3$
						- 3
	$B_{5}(3)$	Associated Suffixes	T GCCAAC $\$_1$,		$B_{6}(3)$	Associated Suffixes
0	À	GCTC\$2	A GAGCTC $\$_2$,	0	A	GAGCTC\$2
1	C	$GCTT\$_3$	GTCGCTT\$3.	1	т	GCCAAC [®] 1
				2	Α	$GCTC\$_2$
			¥	3	C	$GCTT\$_3^2$
			v	0	Ũ	001103
	$B_{5}(4)$	Associated Suffixes	$P_6(0) = [], N_6(0) = []$		$B_{6}(4)$	Associated Suffixes
0	- 3(-) T	T_{3}	$P_6(1) = [], N_6(1) = []$	0	-0(-) T	$T\$_{3}$
1	\hat{C}	$TC\$_2$	$P_6(2) = [], N_6(2) = []$	1	\hat{C}	$TC\$_2$
2	\tilde{C}	$TT_{3}^{10,02}$	$P_6(3) = [0, 1]$ and $N_6(3) = [2, 1]$	2	Ğ	TCGCTT\$3
4	0	1 1 43	$P_6(4) = [2]$ and $N_6(4) = [3]$	3	C	$TT\$_3$
			$r_{6(4)} - [2]$ and $r_{6(4)} = [3]$	э	U	1 1 03

Position of GCCAAC^{\$1} in G segment = # of G before CCAAC^{\$1} in partial BWT = # of G in \$-segment +# of G in

A-segment +# of G before CCAAC^{\$1} in C-segment

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Looking in detail at iteration 6

	- C					
	$B_{5}(0)$	Associated Suffixes	$TGCCAAC\$_1$,		$B_{6}(0)$	Associated Suffixes
0	C	\$1	$A_{G}^{G}AGCTC\$_{2},$	0	C	\$1
1	C	\$2	GTCGCTT\$3.	1	C	\$2
2	T	\$3	0	2	T	\$3
-	-	-3	$P_5(0) = [], N_5(0) = [](empty array)$	-	-	-3
	$B_{5}(1)$	Associated Suffixes	$P_5(1) = [2], N_5(1) = [2]$		$B_{6}(1)$	Associated Suffixes
0	$C^{D_5(1)}$	AAC\$1	$P_5(2) = [3, 4], N_5(2) = [1, 3]$	0	C	AAC\$1
1					A	$AC\$_1$
2	A	$AC\$_1$	$P_5(3) = [], N_5(3) = []$	1		
2	G	AGCTC $\$_2$	$P_5(4) = [], N_5(4) = []$	2	G	$AGCTC\$_2$
	$\mathbf{P}(\mathbf{a})$	Associated Suffixes			$\mathcal{D}(0)$	Associated Suffixes
~	$B_{5}(2)$		\downarrow	0	$B_{6}(2)$	
0	A	$C\$_1$		0	A	$C\$_1$
1	T	$C\$_{2}$	For $h = 0, 3, 4$: nothing	1	T	$C\$_{2}$
2	C	$CAAC\$_1$	For $h = 1$:	2	C	$CAAC\$_1$
3	G	CCAAC\$1	rank(G, 2) = 0(sequence = 2)	3	G	CCAAC ¹
4	т	CGCTT\$3	For $h = 2$:	4	T	CGCTT ^{\$3}
5	G	$CTC\$_2$	rank(G, 3) = 1(sequence = 1)	5	G	$CTC\$_2$
6	G	$CTT\$_3$	rank(T, 4) = 2(sequence = 3)	6	G	$CTT\$_3$
		5				5
	$B_{5}(3)$	Associated Suffixes	T GCCAAC $\$_1$,		$B_{6}(3)$	Associated Suffixes
0	A	$GCTC\$_2$	AGAGCTC\$2,	0	A	GAGCTC\$2
1	C	$GCTT\$_3$	GTCGCTT\$3.	1	т	GCCAAC\$1
-	0	001103	0.0001.03	2	À	GCTC\$2
			\Downarrow	3	Ĉ	$GCTT\$_3$
			V	3	C	601193
	$B_{5}(4)$	Associated Suffixes	$P_6(0) = [], N_6(0) = []$		$B_{6}(4)$	Associated Suffixes
0	$T^{5(4)}$		$P_6(1) = [], N_6(0) = []$	0	D ₀ (4) T	T\$3
1		$TC\$_{2}$	$P_6(1) = [], N_6(1) = []$ $P_6(2) = [], N_6(2) = []$	1		$TC\$_{2}$
2	C					
2	C	$TT\$_{3}$	$P_6(3) = [0, 1] \text{ and } N_6(3) = [2, 1]$	2	G	TCGCTT\$3
			$P_6(4) = [2]$ and $N_6(4) = [3]$	3	C	$TT\$_{3}$

Position of GCCAAC^{\$1} in G segment = # of G before CCAAC^{\$1} in partial BWT = # of G in \$-segment +# of G in

A-segment +# of G before $CCAAC\$_1$ in C-segment

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへで

Two versions of our algorithm: BCR vs. BCRext

	BCR	BCRext
CPUtime	O(ksort(m))	O(km)
RAMusage (bits)	$O((m + \sigma^2)log(mk))$	$O(\sigma^2 log(mk))$
I/O(bits)	$O(mk^2log(s))$	$O(mk^2log(\sigma))$
	(partial BWT)	(partialBWT)
	$O(mklog(\sigma))$	$O(mk^2log(\sigma))$
	(sequence slices)	(sequences)
		O(mklog(mk))
		(P - array)
		O(mklog(m))
		(N - array)

Performance on human DNA sequence data

Dataset size	Program	Wallclock time	CPU	Max RAM
(millions of 100-mers)	Program	(s per input base)	efficiency (%)	(Gbyte)
85	bwte	7.99	99	4.00
	rlcsa	2.44	99	13.40
	BCR	1.01	83	1.10
	BCRext	4.75	27	negligible
1000	BCR	5.74	19	13.00
	BCRext	5.89	21	negligible

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Further works

- Able to compute BWT of 1 billion 100-mers in under 24 hours
- Ongoing work:
 - Further optimizations to construction, parallelization
 - Software library for construction/querying of BWT of large string collections
 - Algorithm can be adapted to allow sets of strings to be added/removed from collection

• Applications of BWT of string collection to bioinformatics