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Introduction

Whole human genome sequencing

Modern DNA sequencing machines produce a lot of data!
e.g. Illumina HiSeq 2000: > 40Gbases of sequence per day (paired
100-mers)

Whole human genome sequencing: 3Gbase genome typically sampled
to 20 to 30-fold redundancy to ensure adequate coverage of both
copies

Other experiment types (rare variants in heterogeneous sample of
cancer cells) demand even higher redundancy

Datasets of 100 Gbases or more are common



Burrows-Wheeler Transform How does BWT work?

The BWT

The BWT is a reversible transformation that produces a permutation
bwt(v) of an input sequence v, defined over an ordered alphabet Σ,
so that occurrences of a given symbol tend to occur in clusters in the
output sequence.

Traditionally the major application of the Burrows-Wheeler Transform
has been for Data Compression. The BWT represents for instance the
heart of the BZIP2 algorithm.

Today, there are reports of the application of the BWT in
bio-informatics, full-text compressed indexes, prediction and entropy
estimation, and shape analysis in computer vision, etc. Moreover,
there exist several variants and extensions of such a transform.



Burrows-Wheeler Transform How does BWT work?

The BWT

The BWT is a reversible transformation that produces a permutation
bwt(v) of an input sequence v, defined over an ordered alphabet Σ,
so that occurrences of a given symbol tend to occur in clusters in the
output sequence.

Traditionally the major application of the Burrows-Wheeler Transform
has been for Data Compression. The BWT represents for instance the
heart of the BZIP2 algorithm.

Today, there are reports of the application of the BWT in
bio-informatics, full-text compressed indexes, prediction and entropy
estimation, and shape analysis in computer vision, etc. Moreover,
there exist several variants and extensions of such a transform.



Burrows-Wheeler Transform How does BWT work?

The BWT

The BWT is a reversible transformation that produces a permutation
bwt(v) of an input sequence v, defined over an ordered alphabet Σ,
so that occurrences of a given symbol tend to occur in clusters in the
output sequence.

Traditionally the major application of the Burrows-Wheeler Transform
has been for Data Compression. The BWT represents for instance the
heart of the BZIP2 algorithm.

Today, there are reports of the application of the BWT in
bio-informatics, full-text compressed indexes, prediction and entropy
estimation, and shape analysis in computer vision, etc. Moreover,
there exist several variants and extensions of such a transform.
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How does BWT work?

BWT takes as input a text v, append $ to the end of v ($ is unique
and smaller then any other character) and produces:

a permutation bwt(v) of the letters of v$.
the index I, that is useful in order to recover the original word v.

Example: v = abraca

Each row of M is a conjugate of v$
in lexicographic order.

bwt(v) coincides with the last
column L of the BW-matrix M .

The index I is the row of M
containing the original sequence
followed by $.

M
F L
↓ ↓

0 $ a b r a c a
1 a $ a b r a c

I → 2 a b r a c a $
3 a c a $ a b r
4 b r a c a $ a
5 c a $ a b r a
6 r a c a $ a b
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Burrows-Wheeler Transform How does BWT work?

Properties

The following properties hold:

1 For all i = 0, . . . , |v|, i 6= I, the character F [i] follows L[i] in the
original string;

2 for each character c, the r-th occurrence of c in F corresponds to the
r-th occurrence of c in L.

Ferragina and Manzini (2000) noticed the following connection:

LF [i] = C[L[i]] + rank(L[i], i− 1)

For instance:
if i = 5 then L[i] = a and
LF [5] = C[a] + rank(a, 4) = 1 + 2 = 3

M
F L
↓ ↓

0 $ a b r a c a
1 a $ a b r a c

I → 2 a b r a c a $
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Burrows-Wheeler Transform How does BWT work?

The BWT in bioinformatics

BWT-based text indexes are the core of popular mapping programs
1 Bowtie (Langmead et al.,Genome Biology 2009)
2 BWA (Li and Durbin, Bioinformatics 2009, 2010)
3 SOAP2 (Li et al., Bioinformatics 2009)

Create index from reference genome (e.g. human)
create once, use many times

Simpson and Durbin, Bioinformatics 2010: FM-index of a set of DNA
sequences for overlap detection stage of de novo assembly
See also Vlimki et al., CPM 2010
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BWT of a collection

BWT of a collection of strings

BWT extended to set of strings by Mantaci et al. (CPM 2005, TCS
2007) by using a different ordering of the conjugates of the strings

Straightforward to compute BWT from suffix array.

Lots of work on efficient linear time SA generation methods.

But: need to hold SA in RAM (Simpson et al. estimate 700Gbytes
RAM for SA of 60 Gbases of data)

Other options:

Siren, SPIRE 2009: divide collection into batches, compute BWT of
each then merge
Ferragina et al., Latin 2010: partition string T into blocks Tr · · ·T1,
create SA of each in turn



BWT of a collection

Observations

Let S be a collection of m strings of length k on an alphabet of σ letters.
Our algorithm computes the BWT of S

without concatenating the strings belonging to S and without needing
to compute their suffix array.

incrementally via k iterations. At each of the iterations
j = 1, 2, . . . , k − 1, the algorithms compute a partial BWT string
bwtj(S) by inserting the symbols preceding the j-suffixes of S at their
correct positions into bwtj−1(S). Each iteration j simulates the
insertion of the j-suffixes in the suffix array.

The string bwtj(S) is a ‘partial BWT’ in the sense that the addition
of m end markers in their correct positions would make it the BWT of
the collection {S1[k− j − 1, k], S2[k− j − 1, k], . . . , Sm[k− j − 1, k]}.
This insertion does not affect the relative ordering of symbols inserted
during previous iterations.
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BWT of a collection

Example

Let S = {S1, S2, S3} = {TGCCAAC,AGAGCTC,GTCGCTT} be a
collection of m = 3 strings of length k = 7 on an alphabet of σ = 4 letters.

0 1 2 3 4 5 6 7

S1

T G C C A A C

$1
S2

A G A G C T C

$2
S3

G T C G C T T

$3

We suppose that $1 = $2 = $2 = $ and $ < A < C < G < T .
The (implicit) end marker is in position k, i.e. Si[k] = Sj [k] = $, and we
define Si[k] < Sj [k], if i < j.
j-suffix of Si is the last j non-$ symbols of that string and 0-suffix of Si is
$i.
At stage j, insert the characters associated with the j-suffixes into the
partial BWT.
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BWT of a collection

Iteration 0

Let S = {S1, S2, S3} = {TGCCAAC,AGAGCTC,GTCGCTT} be a
collection of m = 3 strings of length k = 7 on an alphabet of σ = 4 letters.

0 1 2 3 4 5 6 7

S1

A C

$1
S2

T C

$2
S3

T T

$3

We obtain:
B(0)

C

C

T
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BWT of a collection

Observation
LF [i] = C[L[i]] + rank(L[i], i− 1)

We can think of bwtj(S) as being partitioned into σ + 1 strings
Bj(0), Bj(1), . . . , Bj(σ), with the symbols in Bj(h) being those that are
associated with the suffixes of S that are of length j or less and begin with
c0 = $ and ch ∈ Σ, for h = 1, . . . , σ.

F L
↓ ↓

B(0) 0 $ a b r a c a
B(1) 1 a $ a b r a c

2 a b r a c a $
3 a c a $ a b r

B(2) 4 b r a c a $ a
B(3) 5 c a $ a b r a
B(4) 6 r a c a $ a b

We do not need the array C. We only need the rank function.

We note that Bj(0) is constant for all j and, at each iteration j, we store Bj(h)

in σ + 1 external files that are sequentially read one-by-one.
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Looking in detail at iteration 6
B5(0) Associated Suffixes

0 C $1
1 C $2
2 T $3

B5(1) Associated Suffixes
0 C AAC$1
1 A AC$1
2 G AGCTC$2

B5(2) Associated Suffixes
0 A C$1
1 T C$2
2 C CAAC$1
3 G CCAAC$1
4 T CGCTT$3
5 G CTC$2
6 G CTT$3

B5(3) Associated Suffixes
0 A GCTC$2
1 C GCTT$3

B5(4) Associated Suffixes
0 T T$3
1 C TC$2
2 C TT$3

TGCCAAC$1,
AGAGCTC$2,
GTCGCTT$3.

P5(0) = [], N5(0) = [](empty array)
P5(1) = [2], N5(1) = [2]

P5(2) = [3, 4], N5(2) = [1, 3]
P5(3) = [], N5(3) = []
P5(4) = [], N5(4) = []

⇓

For h = 0, 3, 4: nothing
For h = 1:

rank(G, 2) = 0(sequence = 2)
For h = 2:

rank(G, 3) = 1(sequence = 1)
rank(T, 4) = 2(sequence = 3)

TGCCAAC$1,
AGAGCTC$2,
GTCGCTT$3.

⇓

P6(0) = [], N6(0) = []
P6(1) = [], N6(1) = []
P6(2) = [], N6(2) = []

P6(3) = [0, 1] and N6(3) = [2, 1]
P6(4) = [2] and N6(4) = [3]

B6(0) Associated Suffixes
0 C $1
1 C $2
2 T $3

B6(1) Associated Suffixes
0 C AAC$1
1 A AC$1
2 G AGCTC$2

B6(2) Associated Suffixes
0 A C$1
1 T C$2
2 C CAAC$1
3 G CCAAC$1
4 T CGCTT$3
5 G CTC$2
6 G CTT$3

B6(3) Associated Suffixes
0 A GAGCTC$2
1 T GCCAAC$1
2 A GCTC$2
3 C GCTT$3

B6(4) Associated Suffixes
0 T T$3
1 C TC$2
2 G TCGCTT$3
3 C TT$3

Position of GCCAAC$1 in G segment = # of G before CCAAC$1 in partial BWT = # of G in $-segment +# of G in

A-segment +# of G before CCAAC$1 in C-segment
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Two versions of our algorithm: BCR vs. BCRext

BCR BCRext

CPUtime O(ksort(m)) O(km)

RAMusage(bits) O((m+ σ2)log(mk)) O(σ2log(mk))

I/O(bits) O(mk2log(s)) O(mk2log(σ))
(partialBWT ) (partialBWT )
O(mklog(σ)) O(mk2log(σ))

(sequenceslices) (sequences)
O(mklog(mk))

(P − array)
O(mklog(m))
(N − array)
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Performance on human DNA sequence data

Dataset size Program Wallclock time CPU Max RAM
(millions of 100-mers) Program (s per input base) efficiency (%) (Gbyte)
85 bwte 7.99 99 4.00

rlcsa 2.44 99 13.40
BCR 1.01 83 1.10

BCRext 4.75 27 negligible
1000 BCR 5.74 19 13.00

BCRext 5.89 21 negligible
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Further works

Able to compute BWT of 1 billion 100-mers in under 24 hours

Ongoing work:

Further optimizations to construction, parallelization
Software library for construction/querying of BWT of large string
collections
Algorithm can be adapted to allow sets of strings to be added/removed
from collection
Applications of BWT of string collection to bioinformatics
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