On the product of balanced sequences

Antonio Restivo and Giovanna Rosone

University of Palermo, Dipartimento di Matematica ed Applicazioni, Via Archirafi 34, 90123 Palermo, ITALY {restivo, giovanna}@math.unipa.it

JM2010, Amiens, France, September 6-10, 2010

通 ト イヨ ト イヨト

Product of two balanced sequences 0000

Conclusions and further works

Balanced sequences

A infinite sequence v is *balanced* if for each letter a of the alphabet A and for all factors u and u' of v s.t. |u| = |u'| we have that

$$|u|_{a}-|u'|_{a}|\leq 1$$

Example

- $w = abcadbcadbacbdacbd \cdots$ is a balanced sequence.
- $v = abcbdbcadbacbdacbd \cdots$ is not a balanced sequence.

Remark

For a two-letter alphabet, being balanced is equivalent to being balanced with respect to one letter.

Product of two balanced sequences

Conclusions and further works 000000

Balanced sequences

A infinite sequence v is *balanced* if for each letter a of the alphabet A and for all factors u and u' of v s.t. |u| = |u'| we have that

$$||u|_a - |u'|_a| \le 1$$

Example

- $w = abcadbcadbacbdacbd \cdots$ is a balanced sequence.
- $v = abcbdbcadbacbdacbd \cdots$ is not a balanced sequence.

Remark

For a two-letter alphabet, being balanced is equivalent to being balanced with respect to one letter.

イロト 不得下 イヨト イヨト

Balanced sequences	Product of two balanced sequences	Conclusions and further works

Binary case

- An infinite aperiodic sequence v is balanced if and only if v is a sturmian sequence.
- Sturmian sequences are defined as the infinite sequences having exactly n + 1 distinct factors of length n.
- An infinite periodic sequence ν^ω is balanced if and only if ν is a conjugate of a standard word.

Example

Fibonacci words

$$f_0 = b$$

 $f_1 = a$

$$f_2 = ab$$

$$f_3 = aba$$

$$f_0 = b$$
 $f_1 = a$
 $f_{n+1} = f_n f_{n-1} \ (n \ge 1)$

The infinite Fibonacci word is the limit of the sequence of Fibonacci words.

Balanced words on larger alphabets

- If |A| > 2, the general structure of balanced words is not known.
- As a direct consequence of a result of Graham, one has that balanced sequences on a set of letters having different frequencies must be periodic.

Fraenkel's conjecture

Let $A_k = \{a_1, a_2, \dots, a_k\}$. For each k > 2, there is only one circularly balanced word $F_k \in A_k^*$, having different frequencies. It is defined recursively as follow $F_1 = a_1$ and $F_k = F_{k-1}a_kF_{k-1}$ for all $k \ge 2$.

イロト イヨト イヨト イヨト

000	0000	000000
Balanced sequences	Product of two balanced sequences	Conclusions and further works

Direct product

Let us define a *direct product* of two infinite sequences $u = u_0 u_1 \cdots$ and $v = v_0 v_1 \cdots$ on $\Sigma = \{a, b\}$ as the sequence

 $\mathbf{u} \otimes \mathbf{v} = < \mathbf{u}_0, \mathbf{v}_0 > < \mathbf{u}_1, \mathbf{v}_1 > \cdots$

on $\Sigma \times \Sigma$.

и:		1	1
	1		1
W :	b		

We define the *degree* of product, deg(w), as the cardinality of the alphabet of the product itself.

Balanced sequences 000	Product of two balanced sequences	Conclusions and further works					
Direct product							

Let us define a *direct product* of two infinite sequences $u = u_0 u_1 \cdots$ and $v = v_0 v_1 \cdots$ on $\Sigma = \{a, b\}$ as the sequence

 $u \otimes v = < u_0, v_0 > < u_1, v_1 > \cdots$

on $\Sigma \times \Sigma$.

	а	<u>b</u>	<u>с</u>	d
<i>v</i> :	0	1	0	1
<i>u</i> :	0	0	1	1

We define the *degree* of product, deg(w), as the cardinality of the alphabet of the product itself.

Balanced sequences	Product of two balanced sequences	000000				

Direct product

Let us define a *direct product* of two infinite sequences $u = u_0 u_1 \cdots$ and $v = v_0 v_1 \cdots$ on $\Sigma = \{a, b\}$ as the sequence

 $\mathbf{u} \otimes \mathbf{v} = < \mathbf{u}_0, \mathbf{v}_0 > < \mathbf{u}_1, \mathbf{v}_1 > \cdots$

on $\Sigma \times \Sigma$.

w :	а	b	с	d
<i>v</i> :	0	1	0	1
<i>u</i> :	0	0	1	1

We define the *degree* of product, deg(w), as the cardinality of the alphabet of the product itself.

Balanced sequences 000	Product of two balanced sequences	Conclusions and further works

Direct product

Let us define a *direct product* of two infinite sequences $u = u_0 u_1 \cdots$ and $v = v_0 v_1 \cdots$ on $\Sigma = \{a, b\}$ as the sequence

 $u \otimes v = < u_0, v_0 > < u_1, v_1 > \cdots$

on $\Sigma \times \Sigma$.

w :	а	b	с	d
<i>V</i> :	0	1	0	1
<i>u</i> :	0	0	1	1

We define the *degree* of product, deg(w), as the cardinality of the alphabet of the product itself.

Question

We ask us: when the product of two balanced sequences is balanced too?

Example

Consider the Fibonacci sequence f and the sturmian sequence s:

w: acbacadaadaacbcaadacb...

w is not a balanced sequence, because *w* has factors u = aa and v = cb, for which $||u|_a - |v|_a| = 2$.

Example

Consider the two following sturmian sequences:

t is a balanced sequence

Question

We ask us: when the product of two balanced sequences is balanced too?

Example

Consider the Fibonacci sequence f and the sturmian sequence s:

 f:
 0
 1
 0
 1
 0
 1
 0
 1
 0
 1
 0
 1
 0
 1
 0
 1
 0
 1
 0
 1
 0
 1
 0
 1
 0
 1
 0
 1
 0
 1
 0
 1
 0
 1
 0
 1
 0
 1
 0
 1
 0
 1
 0
 1
 0
 1
 0
 1
 0
 1
 0
 1
 0
 1
 0
 1
 0
 1
 0
 1
 0
 1
 0
 1
 0
 1
 0
 1
 0
 1
 0
 1
 0
 1
 0
 1
 0
 1
 1
 0
 1
 1
 0
 1
 1
 0
 1
 1
 0
 1
 1
 0
 1
 1
 0
 1
 1
 0
 1
 1
 0
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1

w is not a balanced sequence, because *w* has factors u = aa and v = cb, for which $||u|_a - |v|_a| = 2$.

Example

Consider the two following sturmian sequences:

t: adabcabadabacbadabacb...

t is a balanced sequence

Question

We ask us: when the product of two balanced sequences is balanced too?

Example

Consider the Fibonacci sequence f and the sturmian sequence s:

 f:
 0
 1
 0
 1
 0
 1
 0
 1
 0
 1
 0
 1
 0
 1
 0
 1
 0
 1
 0
 1
 0
 1
 0
 1
 0
 1
 0
 1
 0
 1
 0
 1
 0
 1
 0
 1
 0
 1
 0
 1
 0
 1
 0
 1
 0
 1
 0
 1
 0
 1
 0
 1
 0
 1
 0
 1
 0
 1
 0
 1
 0
 1
 0
 1
 0
 1
 0
 1
 0
 1
 0
 1
 0
 1
 0
 1
 1
 0
 1
 1
 0
 1
 1
 0
 1
 1
 0
 1
 1
 0
 1
 1
 0
 1
 1
 0
 1
 1
 0
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1

w is not a balanced sequence, because *w* has factors u = aa and v = cb, for which $||u|_a - |v|_a| = 2$.

Example

Consider the two following sturmian sequences:

t is a balanced sequence.

On four-letters alphabets

Theorem

Let u, v be two binary balanced sequences. If $w = u \otimes v$ is balanced and deg(w) = 4 then w is (ultimately) periodic and is a suffix of one of the following sequences:

- i) $(adacb)^t(adabc)^\omega$
- ii) $(adabc)^t(adacb)^\omega$
- iii) $(adabacb)^t(adabcab)^{\omega}$
- iv) $(adabcab)^t(adabacb)^{\omega}$

where $t \in \mathbb{N}$.

・ 何 ト ・ ヨ ト ・ ヨ ト

On three-letters alphabets

Theorem

Any balanced sequence w on three letters can be obtained as the product of two binary balanced sequences u and v.

Example

The balanced sequence $w = abaadaabaadaabaadaa\cdots$ is the product of two balanced sequences $u = 00001000000000000 \cdots$ and $v = 010010010010010010\cdots$.

イロト 不得下 イヨト イヨト

On three-letters alphabets

Theorem

For any binary balanced sequence v, one can construct a binary balanced sequence u such that $w = u \otimes v$ is balanced and deg(w) = 3.

Example If $v = 0010010010010010010 \cdots$ then $u = 00000100000010000010 \cdots$. 0 0 1 0 0 0 0 1 0 0 0 0 $0 \ 0 \ 0 \ 1$ 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 а а h а а d a a b а а a d а а b a a d а And $w = u \otimes v = aabaadaabaaadaabaada \cdots$ is balanced.

3

- We have proved that:
 - All balanced (periodic or aperiodic) sequences on an alphabet with three letters are obtained by the product of two binary balanced sequences.
 - There exist only finitely many balanced sequences on four letters that can be obtained as product of two binary balanced sequences. Moreover they are ultimately periodic.

< 回 ト < 三 ト < 三 ト

- We have proved that:
 - All balanced (periodic or aperiodic) sequences on an alphabet with three letters are obtained by the product of two binary balanced sequences.
 - There exist only finitely many balanced sequences on four letters that can be obtained as product of two binary balanced sequences. Moreover they are ultimately periodic.

A B F A B F

Given two integer k and h, one could determine the maximum degree of the product $w = u \otimes v$, such that u, v are balanced sequences, deg(u) = k and deg(v) = h:

 $m(k,h) = max\{deg(w) \text{ s.t. } w = u \otimes v, u, v \in \mathcal{B}, deg(u) = k, deg(v) = h\}$

where \mathcal{B} denotes the set of the balanced sequences.

Exan	nple																				
L	u :	0	1	0	0	0	1	0	0	1	0	0	0	1	0	0	0	1	0	•••	deg(u) = 2
v	v :	0	2	1	2	0	2	1	2	2	0	2	1	2	0	2	1	2	2	•••	deg(v) = 3
и	v :	а	d	b	с	а	d	b	с	d	а	с	b	d	а	с	b	d	с	•••	deg(w) = 4

Several experiments suggest that it is not possible to obtain a balanced sequence w with deg(w) = 5 or deg(w) = 6 as product of two balanced sequences u and v, where deg(u) = 2 and deg(v) = 3.

Product of two balanced sequences $_{\rm OOOO}$

Conclusions and further works $\bullet 0 \circ \circ \circ \circ$

Conclusions and further works

Example

u, v, and w are balanced sequences.

Example

3

イロン イ団と イヨン ト

Product of two balanced sequences 0000

Conclusions and further works $\bullet 0 \circ \circ \circ \circ$

Conclusions and further works

Example

u, v, and w are balanced sequences.

Example

3

イロト イポト イヨト イヨト

Product of two balanced sequences $_{\rm OOOO}$

Conclusions and further works 000000

Conclusions and further works

And on five letters alphabets ...

Exa	mpl	e																									
<i>u</i> :	0	0	0	0	1	0	0	0	2	0	0	0	1	0	0	0	0	2	0	0	0	1	0	0	0	2	
<i>v</i> :	0	1	2	0	2	1	2	0	2	1	2	0	2	1	0	2	1	2	0	2	1	2	0	2	1	2	
w :	а	b	с	а	d	b	с	а	е	b	с	а	d	b	а	с	b	е	а	с	b	d	а	с	b	е	

u, v, and w are balanced sequences, where deg(u) = 3, deg(v) = 3, deg(w) = 5.

Example

deg(u) = 3, deg(v) = 3, deg(w) = 5. w' is a balanced sequence.

But u' and v' are not balanced sequences.

Product of two balanced sequences $_{\rm OOOO}$

Conclusions and further works 000000

Conclusions and further works

And on five letters alphabets ...

Example	

w :	а	b	с	а	d	b	с	а	е	b	с	а	d	b	а	с	b	е	а	с	b	d	а	с	b	е	
<i>v</i> :	0	1	2	0	2	1	2	0	2	1	2	0	2	1	0	2	1	2	0	2	1	2	0	2	1	2	• • •
и:	0	0	0	0	1	0	0	0	2	0	0	0	1	0	0	0	0	2	0	0	0	1	0	0	0	2	

u, v, and w are balanced sequences, where deg(u) = 3, deg(v) = 3, deg(w) = 5.

Example

u':	0	1	2	0	2	1	2	0	2	1	2	0	1	2	0	2	1	2	0	2	1	2	0	2	1	2	
v':	0	0	0	0	1	0	0	0	2	0	0	0	0	1	0	0	0	2	0	0	0	1	0	0	0	2	•••
w':	а	b	с	а	d	b	с	а	е	b	с	а	b	d	а	с	b	е	а	с	b	d	а	с	b	е	

deg(u) = 3, deg(v) = 3, deg(w) = 5. w' is a balanced sequence.

But u' and v' are not balanced sequences.

Given k, is it possible to classify the balanced sequences $w = u \otimes v$, with degree(w) = k according to deg(u) and deg(v)?

Example

On a four-letter alphabet:

- There exist only finitely many balanced sequences on four letters that can be obtained as product of two binary balanced sequences. Moreover they are ultimately periodic.
- The balanced sequence w = u ⊗ v = adbcadbcdacbdacbdc · · · is obtained as product of two balanced sequences u and v, where deg(u) = 2 and deg(v) = 3 (the previous example).
- Can all remaining balanced sequences w on four letters be obtained as product u ⊗ v, where deg(u) = 2 and deg(v) = 3?

・ロン ・四 ・ ・ ヨン ・ ヨン

Given k, is it possible to classify the balanced sequences $w = u \otimes v$, with degree(w) = k according to deg(u) and deg(v)?

Example

On a four-letter alphabet:

- There exist only finitely many balanced sequences on four letters that can be obtained as product of two binary balanced sequences. Moreover they are ultimately periodic.
- The balanced sequence w = u ⊗ v = adbcadbcdacbdacbdc... is obtained as product of two balanced sequences u and v, where deg(u) = 2 and deg(v) = 3 (the previous example).
- Can all remaining balanced sequences w on four letters be obtained as product u ⊗ v, where deg(u) = 2 and deg(v) = 3?

Given k, is it possible to classify the balanced sequences $w = u \otimes v$, with degree(w) = k according to deg(u) and deg(v)?

Example

On a four-letter alphabet:

- There exist only finitely many balanced sequences on four letters that can be obtained as product of two binary balanced sequences. Moreover they are ultimately periodic.
- The balanced sequence w = u ⊗ v = adbcadbcdacbdacbdc... is obtained as product of two balanced sequences u and v, where deg(u) = 2 and deg(v) = 3 (the previous example).
- Can all remaining balanced sequences w on four letters be obtained as product u ⊗ v, where deg(u) = 2 and deg(v) = 3?

Given k, is it possible to classify the balanced sequences $w = u \otimes v$, with degree(w) = k according to deg(u) and deg(v)?

Example

On a four-letter alphabet:

- There exist only finitely many balanced sequences on four letters that can be obtained as product of two binary balanced sequences. Moreover they are ultimately periodic.
- The balanced sequence w = u ⊗ v = adbcadbcdacbdacbdc... is obtained as product of two balanced sequences u and v, where deg(u) = 2 and deg(v) = 3 (the previous example).
- Can all remaining balanced sequences w on four letters be obtained as product u ⊗ v, where deg(u) = 2 and deg(v) = 3?

イロト イヨト イヨト イヨト

Product of two balanced sequences

Conclusions and further works 000000

Conclusions and further works

• Clearly, a balanced sequence over k letters can always be obtained by the product of k-1 sequences.

Example

Product of two balanced sequences 0000

Conclusions and further works $\circ\circ\circ\bullet\circ\circ$

Conclusions and further works

 Clearly, a balanced sequence over k letters can always be obtained by the product of k - 1 sequences.

Example

Is it possible to obtain the sequence as product of 3 binary balanced sequences?

э

Product of two balanced sequences 0000

Conclusions and further works $\circ\circ\circ\bullet\circ\circ$

Conclusions and further works

 Clearly, a balanced sequence over k letters can always be obtained by the product of k - 1 sequences.

Example

Is it possible to obtain the sequence as product of 3 binary balanced sequences?

э

Product of two balanced sequences 0000

Conclusions and further works $\circ \circ \circ \circ \circ \circ \circ$

Conclusions and further works

• To determine the smallest value of *h* such that a balanced sequence over a *k*-letters alphabet is obtained as product of *h* binary balanced sequences.

 $g(k) = min\{h \text{ s.t. } w = u_1 \otimes u_2 \otimes \cdots \otimes u_h, deg(w) = k, u_i \in \mathcal{B}, deg(u_i) = 2, \text{ for each } i\}$

• Is it possible to classify the balanced sequences according to the different value of *h*?

Conclusions and further works

• To determine the smallest value of *h* such that a balanced sequence over a *k*-letters alphabet is obtained as product of *h* binary balanced sequences.

 $g(k) = min\{h \text{ s.t. } w = u_1 \otimes u_2 \otimes \cdots \otimes u_h, deg(w) = k, u_i \in \mathcal{B}, deg(u_i) = 2, \text{ for each } i\}$

• Is it possible to classify the balanced sequences according to the different value of *h*?

- 4 週 ト - 4 三 ト - 4 三 ト

Thank you for your attention!

3