Balanced words haviing simple Burrows-Wheeler Transform

Antonio Restivo and Giovanna Rosone

Università degli Studi di Palermo Italy

Motivations

- In 1994 M. Burrows and D. Wheeler introduced a new data compression method based on a preprocessing on the input string. Such a preprocessing is called the Burrows-Wheeler Transform (BWT).
- The application of the BWT produces a clustering effect (occurrences of a given symbol tend to occur in clusters).
- Perfect clustering corresponds to optimal performances of some BWT-based compression algorithms.
- We study the words where the BWT produces a perfect clustering.

How does BWT work?

BWT takes as input a text v and produces:

- a permutation $b w t(v)$ of the letters of v.
- the index I, that is useful to recover the original word v.

Example: $v=$ diekert

- Each row of M is a conjugate of v in lexicographic order.
- $b w t(v)$ coincides with the last column L of the BW-matrix M.
- The index I is the row of M containing the original sequence.

Notice that if we except the index, all the mutual conjugate words have the same Burrows-Wheeler Transform.
Hence, the BWT can be thought as a transformation acting on circular words.

Perfect clustering: Simple BWT words

Let v be a word over a finite ordered alphabet $A=\left\{a_{1}, a_{2}, \ldots, a_{k}\right\}\left(\right.$ with $\left.a_{1}<a_{2}<\ldots<a_{k}\right)$:

The word v is a simple BWT words if

$$
b w t(v)=a_{k}^{i_{k}} a_{k-1}^{i_{k-1}} \cdots a_{2}^{i_{2}} a_{1}^{i_{1}}
$$

for some non-negative integers $i_{k}, i_{k-1}, \ldots, i_{1}>0$.

We denote by S the set of the simple BWT words.
Example: $\quad v=a c b c b c a d a d \in S, b w t(v)=d d c c c b b a a a$

Matrix M and R

> Example:
> $v=$ diekert $n=|v|=7$

Since the matrix R is obtained from M by a rotation of 180° it follows that the i-th conjugate of M is the reverse of the ($n-i+1$)-th conjugate of R.

Theorem.
A word $v \in S$ if and only if $M=R$.

A word $v \in S$ iff $M=R$
$F_{R}=F_{M}$ and $L_{R}=L_{M}$

- So [v] and its factors are closed under reverse.
- Under these conditions each conjugate of v has the two palindrome property (cf. Simpson and Puglisi, 2008).

Simple BWT words

- In the case of binary alphabet, the elements of S have been characterized by Mantaci, Restivo and Sciortino: they are related to Standard words and balanced words.
- In the case of a three letters alphabet a constructive characterization of the elements of S has been given by Simpson and Puglisi, 2008.
- The case of larger alphabets is more complex.

Standard words

Standard words:
Directive sequence: $d_{1}, d_{2}, \ldots, d_{n}, \ldots \quad d_{1} \geq 0, \mathrm{~d}_{\mathrm{i}}>0$ for $i>1$

$$
\begin{aligned}
& s_{0}=b \quad s_{1}=a \\
& s_{n+1}=s_{n}^{d_{n}} s_{n-1} \quad n \geq 1
\end{aligned}
$$

Standard words are special prefixes of Sturmian sequences.
Fibonacci words:

$$
\begin{aligned}
& f_{o}=b \\
& f_{1}=a
\end{aligned}
$$

$$
f_{2}=a b
$$

$$
f_{3}=a b a
$$

$$
\begin{array}{lr}
f_{o}=b & f_{1}=a \\
f_{n+1}=f_{n} f_{n-1} & (n \geq 1)
\end{array}
$$

$f_{4}=a b a a b$

Balancing

A word v is balanced if for all letters a of the alphabet A we have for all factors \boldsymbol{u} and \boldsymbol{u} ' of \boldsymbol{v} s.t. $|u|=|u \prime|$ then $\|\left. u\right|_{a}-\left|u^{\prime}\right|_{a} \mid \leq 1$.

A finite word is circullarly-balanced if all its conjugates are balanced.

For instance:
$w=c a c b c a c$ is circularly balanced word. $v=a c a c b b c$ is unbalanced word.

Binary alphabets

Theorem (Mantaci, Restivo and Sciortino, 2003)

In the binary case, the following sets of words coincide:

- simple BWT words;
- circularly balanced words;
- conjugates of a power of a Standard words.

Generalization to alphabets-with more

than two letters

In alphabets with more than two letters, the following sets do not coincide:

- circularly balanced words;
- simple BWT words;
- finite epistandard words (a generalization of the Standard words).

Remark

The problem of characterizing balanced words over large alphabets is still open and it is related to a conjecture of Fraenkel.

Balancing and BWT

The BWT of circularly balanced words over more than two letters alphabets does not always produce a "perfect clustering".

For instance:
$v=c a c b c a c$ is circularly balanced and $b w t(v)=c c c c b a a$ $\mathrm{w}=a b a b c$ is circularly balanced and $b w t(w)=c b a a \underline{b}$
Moreover there exist unbalanced words that produce perfect clustering.

For instance:
$u=\underline{a c a c} \underline{b b c}$ is unbalanced and $b w t(u)=c c c b b a a$

A generalization of Sturmian: Episturmian

An infinite word t on A is episturmian (Droubay, J. Justin, G. Pirillo, 2001) if:

- $F(t)$ (its set of factors) is closed under reversal,
- t has at most one right special factor of each length.
t is standard episturmian if all of its left special factors are prefixes of it.
An infinite word on the finite alphabet A is standard episturmian if and only if it can be obtained by the Rauzy rules for A.

Let s be an infinite word, then a factor u of s is right (resp. left) special if there exist $x, y \in A, x \neq y$, such that $u x, u y \in F(s)$ (resp. $x u, y u \in F(s)$).

Finite epistandard and Rauzyrules

Rules:			1	2	3
R_{o}		a	b	c	d
R_{1}	1	a	$\boldsymbol{a} b$	$\boldsymbol{a} c$	\boldsymbol{a} d
R_{2}	1	a	$\boldsymbol{a} a b$	$\boldsymbol{a} a c$	aad
R_{3}	4	aada	aadaab	aadaac	aad
R_{4}	3	aadaacaada	aadaacaadaab	aadaac	aadaacaad

- Let $|A|=k$ be. A word $v \in A^{*}$ is called finite epistandard if v is an element of a k-tuples R_{n}, for some $n \geq 1$.
- We denote by $E P$ the set of words that are a power of a conjugate of a finite epistandard word.

Balancing and Episturmian

Theorem (Paquin and Vuillon, 2006):
Any balanced standard episturmian sequence s over an alphabet with 3 or more letters is of the form $s=t^{\omega}$, where t is a finite epistandard word that belongs to one of the following three families (up to letter permutation):

1. $\quad t=\left(p a_{2}\right)$ and $p=\operatorname{Pal}\left(a_{1}^{m} a_{k} a_{(k-1)} \ldots a_{3}\right)$, where $k \geq 3$ and $\mathrm{m}>0$;
2. $t=\left(p a_{2}\right)$ and $p=\operatorname{Pal}\left(a_{1} a_{k} \ldots a_{(k-l)} a_{1} a_{(k-l-1)} \ldots a_{3}\right)$, where $0 \leq l \leq k-4$ and $k \geq 4$;
3. $t=\operatorname{Pal}\left(a_{1} a_{k} \ldots a_{3} a_{2}\right)^{\omega}$, where $k \geq 3$ (Fraenkel's sequence), where the operator $P a l$ is the iterated palindromic closure function.

Since s is balanced, then the finite word t is circularly balanced.

Rich words

- A finite word v is rich if it has exactly $|v|+1$ distinct palindromic factors, including ε (Droubay, Justin, Pirillo, 2001).
- A finite or infinite word is rich if all of its factors are rich.
- Example:
$v=$ diekert is rich, $|v|=7$, in fact:
$P(v)=\{\varepsilon, d, e, i, k, r, t, e k e\},|P(v)|=8$.

Circularly rich words

For a finite word v, the following properties are equivalent (Glen, Justin,Widmer and Zamboni, 2009):

- v^{ω} is rich;
- v^{2} is rich;
- v is a product of two palindromes and all of the conjugates of v (including itself) are rich.
- We say that a finite word v is circularly rich if the infinite word v^{ω} is rich.
- We say that R is the set of the circularly rich words.

Our theorem

Let $A=\left\{a_{n}, a_{2}, \ldots, a_{k}\right\}$ be a totally ordered alphabet.
Let $v \in A^{*}$ be a circularly balanced over A, the following statements are equivalent:

1) $v \in S$ (simple BWT words);
2) v is circularly rich;
3) v is a conjugate of a power of a finite epistandard.

Proof: $3>1$

The finite balanced epistandard words belong to S.

From the result by Paquin and Vuillon, we have to prove that each finite balanced epistandard word t of the form:

1. $t=p a_{3} p a_{2}$ and $p=\operatorname{Pal}\left(a_{1}^{m} a_{k} a_{(k-1)} \ldots a_{4}\right)$, where $k \geq 3$ and $\mathrm{m}>0$;
2. $t=p a_{3} p a_{2}$ and $p=\operatorname{Pal}\left(a_{1} a_{k} \ldots a_{(k-l)} a_{1} a_{(k-l-1)} \ldots a_{4}\right)$, where $l \geq 1$ and $k \geq 4$;
3. $t=\operatorname{Pal}\left(a_{1} a_{k} \ldots a_{3} a_{2}\right)$, where $k \geq 3$ (Fraenkel's word).
belongs to S .
The proof follows from the structure of t and from the construction of BW-matrix.

Proof: $2 \leftrightarrow 3$:

v is circularly rich if and only if v is a conjugate of a power of a finite epistandard

The proof is an immediate consequence of the fact that

- The set of the episturmian sequences is a subset of the set of the rich words. (Glen, Justin,Widmer and Zamboni, 2009).
- Recurrent balanced rich infinite words are precisely the balanced episturmian words (Glen, Justin,Widmer and Zamboni, 2009).

Proof: $1 \rightarrow 2$

If the word w belongs to S then w is circularly rich.

We know that

- w is circularly rich if and only if w is a product of two palindromes and all the conjugates of w (including itself) are rich.
- each word $w \in S$ has the two palindrome property.

We prove that
If $w \in S$ then all the conjugates of w (including itself) are rich.

Example: $1 \rightarrow 2$

If the word $w \in S$ then w is circularly rich.

- The word $v=a c b c b c a d a d \in S,|v|=10$, in fact $b w t(a c b c b c a d a d)=d d c c c b b a a a$ $\left|P\left(v^{2}\right)\right|=21, \quad$ so v is circularly rich.

We note that the converse of this result is false.

- The word $u=c с a a c c b$ is circularly rich, but bwt (ccaaccb) $=c a c c c b a(u \notin S)$.

Conclusions and examples

Only under the condition of circularly balanced, the following statements are equivalent:

1) $v \in S$ (simple BWT words);
2) v is circularly rich,
3) v is a conjugate of a power of a finite epistandard.

In fact the circularly unbalanced word:

- $w=b b b b b a c a c a \in S$ (clearly it is circularly rich), but $w \notin E P$.
- u=(adac)2adab(adac)2ada(adac)2adab(adac) $\notin S$ and $u \in E P$.

The following example shows that there exist words unbalanced which belong to $E P \cap S$:

- $v=$ aadaacaad is a circularly unbalanced word: $v \in E P$ and $v \in S$.

Further works

- Characterize the words in S (we have only characterized the balanced words in S).
- Introduce measures of balancing on words and study the effect of BWT on such measures (this corresponds to study the clustering effect of BWT).

Thank you for your attention!

