
The Burrows-Wheeler Transform between Data
Compression and Combinatorics on Words

Giovanna Rosone and Marinella Sciortino

Dipartimento di Matematica e Informatica
University of Palermo, ITALY

CiE 2013

The BWT between Data Compression and Combinatorics on Words CiE 2013 1 / 40

Outline

1 Introduction
Preliminaries

2 The Burrows Wheeler Transform
How does BWT work?
How computing the BWT?
Applications
Combinatorial Issues on the BWT
Effects of the combinatorial properties

3 The Extended Burrows Wheeler Transform
How does EBWT work?
How computing the EBWT?
Applications

4 Further works

The BWT between Data Compression and Combinatorics on Words CiE 2013 2 / 40

Introduction Preliminaries

Preliminaries

Let Σ denote a non-empty finite alphabet.

A word w over an alphabet Σ is a finite sequence of letters of Σ. We
denote by Σ∗ the set of all words over Σ.

Given a finite word w = a1a2 · · · an, ai ∈ Σ, a factor of w is written
as w[i, j] = ai · · · aj . A factor w[1, j] is called a prefix, while a factor
w[i, n] is called a suffix.

A non-empty word w ∈ Σ∗ is primitive if w = uh implies w = u and
h = 1.

Two words u, v ∈ Σ∗ are conjugate, if u = xy and v = yx for some
x, y ∈ Σ∗. Thus conjugate words are just cyclic shifts of one another.

A Lyndon word is a primitive word which is the minimum among its
conjugates, with respect to the lexicographic order relation.

mathematics is not a Lyndon word
athematicsm is a Lyndon word.

The BWT between Data Compression and Combinatorics on Words CiE 2013 3 / 40

Introduction Preliminaries

Preliminaries

Let Σ denote a non-empty finite alphabet.

A word w over an alphabet Σ is a finite sequence of letters of Σ. We
denote by Σ∗ the set of all words over Σ.

Given a finite word w = a1a2 · · · an, ai ∈ Σ, a factor of w is written
as w[i, j] = ai · · · aj . A factor w[1, j] is called a prefix, while a factor
w[i, n] is called a suffix.

A non-empty word w ∈ Σ∗ is primitive if w = uh implies w = u and
h = 1.

Two words u, v ∈ Σ∗ are conjugate, if u = xy and v = yx for some
x, y ∈ Σ∗. Thus conjugate words are just cyclic shifts of one another.

A Lyndon word is a primitive word which is the minimum among its
conjugates, with respect to the lexicographic order relation.

mathematics is not a Lyndon word
athematicsm is a Lyndon word.

The BWT between Data Compression and Combinatorics on Words CiE 2013 3 / 40

Introduction Preliminaries

Preliminaries

Let Σ denote a non-empty finite alphabet.

A word w over an alphabet Σ is a finite sequence of letters of Σ. We
denote by Σ∗ the set of all words over Σ.

Given a finite word w = a1a2 · · · an, ai ∈ Σ, a factor of w is written
as w[i, j] = ai · · · aj . A factor w[1, j] is called a prefix, while a factor
w[i, n] is called a suffix.

A non-empty word w ∈ Σ∗ is primitive if w = uh implies w = u and
h = 1.

Two words u, v ∈ Σ∗ are conjugate, if u = xy and v = yx for some
x, y ∈ Σ∗. Thus conjugate words are just cyclic shifts of one another.

A Lyndon word is a primitive word which is the minimum among its
conjugates, with respect to the lexicographic order relation.

mathematics is not a Lyndon word
athematicsm is a Lyndon word.

The BWT between Data Compression and Combinatorics on Words CiE 2013 3 / 40

Introduction Preliminaries

The Burrows Wheeler Transform: the goal

The Burrows Wheeler Transform (BWT) is a reversible transformation
that produces a permutation bwt(w) of an input sequence w, defined over
an ordered alphabet Σ, so that occurrences of a given symbol tend to
occur in clusters in the output sequence.

The BWT between Data Compression and Combinatorics on Words CiE 2013 4 / 40

The Burrows Wheeler Transform How does BWT work?

The Burrows Wheeler Transform

Given a word w ∈ Σ∗, bwt(w) is a permutation of w, obtained as
concatenation of the last letters of the lexicographically sorted list of its
conjugates.
Example: w = mathematics

m a t h e m a t i c s

a t h e m a t i c s m
t h e m a t i c s m a
h e m a t i c s m a t
e m a t i c s m a t h
m a t i c s m a t h e
a t i c s m a t h e m
t i c s m a t h e m a
i c s m a t h e m a t
c s m a t h e m a t i
s m a t h e m a t i c

M
F L
↓ ↓

1 a t h e m a t i c s m
2 a t i c s m a t h e m
3 c s m a t h e m a t i
4 e m a t i c s m a t h
5 h e m a t i c s m a t
6 i c s m a t h e m a t

I →

7 m a t h e m a t i c s
8 m a t i c s m a t h e
9 s m a t h e m a t i c

10 t h e m a t i c s m a
11 t i c s m a t h e m a

Each row of M is a conjugate of w in lexicographic order.
The index I is the row of M containing the original word.
bwt(w) = L = mmihttsecaa and I = 7.

The BWT between Data Compression and Combinatorics on Words CiE 2013 5 / 40

The Burrows Wheeler Transform How does BWT work?

The Burrows Wheeler Transform

Given a word w ∈ Σ∗, bwt(w) is a permutation of w, obtained as
concatenation of the last letters of the lexicographically sorted list of its
conjugates.
Example: w = mathematics

m a t h e m a t i c s

a t h e m a t i c s m
t h e m a t i c s m a
h e m a t i c s m a t
e m a t i c s m a t h
m a t i c s m a t h e
a t i c s m a t h e m
t i c s m a t h e m a
i c s m a t h e m a t
c s m a t h e m a t i
s m a t h e m a t i c

M
F L
↓ ↓

1 a t h e m a t i c s m
2 a t i c s m a t h e m
3 c s m a t h e m a t i
4 e m a t i c s m a t h
5 h e m a t i c s m a t
6 i c s m a t h e m a t

I →

7 m a t h e m a t i c s
8 m a t i c s m a t h e
9 s m a t h e m a t i c

10 t h e m a t i c s m a
11 t i c s m a t h e m a

Each row of M is a conjugate of w in lexicographic order.
The index I is the row of M containing the original word.
bwt(w) = L = mmihttsecaa and I = 7.

The BWT between Data Compression and Combinatorics on Words CiE 2013 5 / 40

The Burrows Wheeler Transform How does BWT work?

The Burrows Wheeler Transform

Given a word w ∈ Σ∗, bwt(w) is a permutation of w, obtained as
concatenation of the last letters of the lexicographically sorted list of its
conjugates.
Example: w = mathematics

m a t h e m a t i c s
a t h e m a t i c s m
t h e m a t i c s m a
h e m a t i c s m a t
e m a t i c s m a t h
m a t i c s m a t h e
a t i c s m a t h e m
t i c s m a t h e m a
i c s m a t h e m a t
c s m a t h e m a t i
s m a t h e m a t i c

M
F L
↓ ↓

1 a t h e m a t i c s m
2 a t i c s m a t h e m
3 c s m a t h e m a t i
4 e m a t i c s m a t h
5 h e m a t i c s m a t
6 i c s m a t h e m a t

I →

7 m a t h e m a t i c s
8 m a t i c s m a t h e
9 s m a t h e m a t i c

10 t h e m a t i c s m a
11 t i c s m a t h e m a

Each row of M is a conjugate of w in lexicographic order.
The index I is the row of M containing the original word.
bwt(w) = L = mmihttsecaa and I = 7.

The BWT between Data Compression and Combinatorics on Words CiE 2013 5 / 40

The Burrows Wheeler Transform How does BWT work?

The Burrows Wheeler Transform

Given a word w ∈ Σ∗, bwt(w) is a permutation of w, obtained as
concatenation of the last letters of the lexicographically sorted list of its
conjugates.
Example: w = mathematics

m a t h e m a t i c s
a t h e m a t i c s m
t h e m a t i c s m a
h e m a t i c s m a t
e m a t i c s m a t h
m a t i c s m a t h e
a t i c s m a t h e m
t i c s m a t h e m a
i c s m a t h e m a t
c s m a t h e m a t i
s m a t h e m a t i c

M
F

M

L
↓ ↓

1 a t h e m a t i c s m
2 a t i c s m a t h e m
3 c s m a t h e m a t i
4 e m a t i c s m a t h
5 h e m a t i c s m a t
6 i c s m a t h e m a t

I →

7 m a t h e m a t i c s
8 m a t i c s m a t h e
9 s m a t h e m a t i c

10 t h e m a t i c s m a
11 t i c s m a t h e m a

Each row of M is a conjugate of w in lexicographic order.
The index I is the row of M containing the original word.
bwt(w) = L = mmihttsecaa and I = 7.

The BWT between Data Compression and Combinatorics on Words CiE 2013 5 / 40

The Burrows Wheeler Transform How does BWT work?

The Burrows Wheeler Transform

Given a word w ∈ Σ∗, bwt(w) is a permutation of w, obtained as
concatenation of the last letters of the lexicographically sorted list of its
conjugates.
Example: w = mathematics

m a t h e m a t i c s
a t h e m a t i c s m
t h e m a t i c s m a
h e m a t i c s m a t
e m a t i c s m a t h
m a t i c s m a t h e
a t i c s m a t h e m
t i c s m a t h e m a
i c s m a t h e m a t
c s m a t h e m a t i
s m a t h e m a t i c

M
F

M

L
↓ ↓

1 a t h e m a t i c s m
2 a t i c s m a t h e m
3 c s m a t h e m a t i
4 e m a t i c s m a t h
5 h e m a t i c s m a t
6 i c s m a t h e m a t

I →7 m a t h e m a t i c s
8 m a t i c s m a t h e
9 s m a t h e m a t i c

10 t h e m a t i c s m a
11 t i c s m a t h e m a

Each row of M is a conjugate of w in lexicographic order.
The index I is the row of M containing the original word.
bwt(w) = L = mmihttsecaa and I = 7.

The BWT between Data Compression and Combinatorics on Words CiE 2013 5 / 40

The Burrows Wheeler Transform How does BWT work?

The Burrows Wheeler Transform

Given a word w ∈ Σ∗, bwt(w) is a permutation of w, obtained as
concatenation of the last letters of the lexicographically sorted list of its
conjugates.
Example: w = mathematics

m a t h e m a t i c s
a t h e m a t i c s m
t h e m a t i c s m a
h e m a t i c s m a t
e m a t i c s m a t h
m a t i c s m a t h e
a t i c s m a t h e m
t i c s m a t h e m a
i c s m a t h e m a t
c s m a t h e m a t i
s m a t h e m a t i c

M

F

L

↓

↓
1 a t h e m a t i c s m
2 a t i c s m a t h e m
3 c s m a t h e m a t i
4 e m a t i c s m a t h
5 h e m a t i c s m a t
6 i c s m a t h e m a t

I →7 m a t h e m a t i c s
8 m a t i c s m a t h e
9 s m a t h e m a t i c

10 t h e m a t i c s m a
11 t i c s m a t h e m a

Each row of M is a conjugate of w in lexicographic order.
The index I is the row of M containing the original word.
bwt(w) = L = mmihttsecaa and I = 7.

The BWT between Data Compression and Combinatorics on Words CiE 2013 5 / 40

The Burrows Wheeler Transform How does BWT work?

The Burrows Wheeler Transform

Given a word w ∈ Σ∗, bwt(w) is a permutation of w, obtained as
concatenation of the last letters of the lexicographically sorted list of its
conjugates.
Example: w = mathematics

m a t h e m a t i c s
a t h e m a t i c s m
t h e m a t i c s m a
h e m a t i c s m a t
e m a t i c s m a t h
m a t i c s m a t h e
a t i c s m a t h e m
t i c s m a t h e m a
i c s m a t h e m a t
c s m a t h e m a t i
s m a t h e m a t i c

M

F

L

↓

↓
1 a t h e m a t i c s m
2 a t i c s m a t h e m
3 c s m a t h e m a t i
4 e m a t i c s m a t h
5 h e m a t i c s m a t
6 i c s m a t h e m a t

I →7 m a t h e m a t i c s
8 m a t i c s m a t h e
9 s m a t h e m a t i c

10 t h e m a t i c s m a
11 t i c s m a t h e m a

Each row of M is a conjugate of w in lexicographic order.
The index I is the row of M containing the original word.
bwt(w) = L = mmihttsecaa and I = 7.

The BWT between Data Compression and Combinatorics on Words CiE 2013 5 / 40

The Burrows Wheeler Transform How does BWT work?

The Burrows Wheeler Transform

Given a word w ∈ Σ∗, bwt(w) is a permutation of w, obtained as
concatenation of the last letters of the lexicographically sorted list of its
conjugates.
Example: w = mathematics

m a t h e m a t i c s
a t h e m a t i c s m
t h e m a t i c s m a
h e m a t i c s m a t
e m a t i c s m a t h
m a t i c s m a t h e
a t i c s m a t h e m
t i c s m a t h e m a
i c s m a t h e m a t
c s m a t h e m a t i
s m a t h e m a t i c

M
F L
↓ ↓

1 a t h e m a t i c s m
2 a t i c s m a t h e m
3 c s m a t h e m a t i
4 e m a t i c s m a t h
5 h e m a t i c s m a t
6 i c s m a t h e m a t

I →7 m a t h e m a t i c s
8 m a t i c s m a t h e
9 s m a t h e m a t i c

10 t h e m a t i c s m a
11 t i c s m a t h e m a

Each row of M is a conjugate of w in lexicographic order.
The index I is the row of M containing the original word.
bwt(w) = L = mmihttsecaa and I = 7.

The BWT between Data Compression and Combinatorics on Words CiE 2013 5 / 40

The Burrows Wheeler Transform How does BWT work?

Properties and Reversibility

Example: bwt(w) = L = mmihttsecaa and I = 7

I The last letter of w is L[I].
I For each letter z, the i-th

occurrence of z in L corresponds
to the i-th occurrence of z in F ;

π =

(
1 2 3 4 5 6 7 8 9 10 11
7 8 6 5 10 11 9 4 3 1 2

)

I For all i = 1, . . . , n and i 6= I,
the letter L[i] precedes F [i] in
the original word.

w =

mathematic

s

1
2
3
4
5
6
7
8
9
10
11

F

a
a
c
e
h
i
m
m
s
t
t

L

m
m
i
h
t
t
s
e
c
a
a

1
2
3
4
5
6
7
8
9
10
11

The BWT between Data Compression and Combinatorics on Words CiE 2013 6 / 40

The Burrows Wheeler Transform How does BWT work?

Properties and Reversibility

Example: bwt(w) = L = mmihttsecaa and I = 7

I The last letter of w is L[I].
I For each letter z, the i-th

occurrence of z in L corresponds
to the i-th occurrence of z in F ;

π =

(
1 2 3 4 5 6 7 8 9 10 11
7 8 6 5 10 11 9 4 3 1 2

)

I For all i = 1, . . . , n and i 6= I,
the letter L[i] precedes F [i] in
the original word.

w =

mathematic

s

1
2
3
4
5
6
7
8
9
10
11

F

a
a
c
e
h
i
m
m
s
t
t

L

m
m
i
h
t
t
s
e
c
a
a

1
2
3
4
5
6
7
8
9
10
11

The BWT between Data Compression and Combinatorics on Words CiE 2013 6 / 40

The Burrows Wheeler Transform How does BWT work?

Properties and Reversibility

Example: bwt(w) = L = mmihttsecaa and I = 7

I The last letter of w is L[I].
I For each letter z, the i-th

occurrence of z in L corresponds
to the i-th occurrence of z in F ;

π =

(
1 2 3 4 5 6 7 8 9 10 11
7 8 6 5 10 11 9 4 3 1 2

)

I For all i = 1, . . . , n and i 6= I,
the letter L[i] precedes F [i] in
the original word.

w =

mathematic

s

1
2
3
4
5
6
7
8
9
10
11

F

a
a
c
e
h
i
m
m
s
t
t

L

m
m
i
h
t
t
s
e
c
a
a

1
2
3
4
5
6
7
8
9
10
11

The BWT between Data Compression and Combinatorics on Words CiE 2013 6 / 40

The Burrows Wheeler Transform How does BWT work?

Properties and Reversibility

Example: bwt(w) = L = mmihttsecaa and I = 7

I The last letter of w is L[I].
I For each letter z, the i-th

occurrence of z in L corresponds
to the i-th occurrence of z in F ;

π =

(
1 2 3 4 5 6 7 8 9 10 11
7 8 6 5 10 11 9 4 3 1 2

)

I For all i = 1, . . . , n and i 6= I,
the letter L[i] precedes F [i] in
the original word.

w =

mathemati

cs

1
2
3
4
5
6
7
8
9
10
11

F

a
a
c
e
h
i
m
m
s
t
t

L

m
m
i
h
t
t
s
e
c
a
a

1
2
3
4
5
6
7
8
9
10
11

The BWT between Data Compression and Combinatorics on Words CiE 2013 6 / 40

The Burrows Wheeler Transform How does BWT work?

Properties and Reversibility

Example: bwt(w) = L = mmihttsecaa and I = 7

I The last letter of w is L[I].
I For each letter z, the i-th

occurrence of z in L corresponds
to the i-th occurrence of z in F ;

π =

(
1 2 3 4 5 6 7 8 9 10 11
7 8 6 5 10 11 9 4 3 1 2

)

I For all i = 1, . . . , n and i 6= I,
the letter L[i] precedes F [i] in
the original word.

w =

mathemati

cs

1
2
3
4
5
6
7
8
9
10
11

F

a
a
c
e
h
i
m
m
s
t
t

L

m
m
i
h
t
t
s
e
c
a
a

1
2
3
4
5
6
7
8
9
10
11

The BWT between Data Compression and Combinatorics on Words CiE 2013 6 / 40

The Burrows Wheeler Transform How does BWT work?

Properties and Reversibility

Example: bwt(w) = L = mmihttsecaa and I = 7

I The last letter of w is L[I].
I For each letter z, the i-th

occurrence of z in L corresponds
to the i-th occurrence of z in F ;

π =

(
1 2 3 4 5 6 7 8 9 10 11
7 8 6 5 10 11 9 4 3 1 2

)

I For all i = 1, . . . , n and i 6= I,
the letter L[i] precedes F [i] in
the original word.

w =

mathemat

ics

1
2
3
4
5
6
7
8
9
10
11

F

a
a
c
e
h
i
m
m
s
t
t

L

m
m
i
h
t
t
s
e
c
a
a

1
2
3
4
5
6
7
8
9
10
11

The BWT between Data Compression and Combinatorics on Words CiE 2013 6 / 40

The Burrows Wheeler Transform How does BWT work?

Properties and Reversibility

Example: bwt(w) = L = mmihttsecaa and I = 7

I The last letter of w is L[I].
I For each letter z, the i-th

occurrence of z in L corresponds
to the i-th occurrence of z in F ;

π =

(
1 2 3 4 5 6 7 8 9 10 11
7 8 6 5 10 11 9 4 3 1 2

)

I For all i = 1, . . . , n and i 6= I,
the letter L[i] precedes F [i] in
the original word.

w =

mathemat

ics

1
2
3
4
5
6
7
8
9
10
11

F

a
a
c
e
h
i
m
m
s
t
t

L

m
m
i
h
t
t
s
e
c
a
a

1
2
3
4
5
6
7
8
9
10
11

The BWT between Data Compression and Combinatorics on Words CiE 2013 6 / 40

The Burrows Wheeler Transform How does BWT work?

Properties and Reversibility

Example: bwt(w) = L = mmihttsecaa and I = 7

I The last letter of w is L[I].
I For each letter z, the i-th

occurrence of z in L corresponds
to the i-th occurrence of z in F ;

π =

(
1 2 3 4 5 6 7 8 9 10 11
7 8 6 5 10 11 9 4 3 1 2

)

I For all i = 1, . . . , n and i 6= I,
the letter L[i] precedes F [i] in
the original word.

w =

mathema

tics

1
2
3
4
5
6
7
8
9
10
11

F

a
a
c
e
h
i
m
m
s
t
t

L

m
m
i
h
t
t
s
e
c
a
a

1
2
3
4
5
6
7
8
9
10
11

The BWT between Data Compression and Combinatorics on Words CiE 2013 6 / 40

The Burrows Wheeler Transform How does BWT work?

Properties and Reversibility

Example: bwt(w) = L = mmihttsecaa and I = 7

I The last letter of w is L[I].
I For each letter z, the i-th

occurrence of z in L corresponds
to the i-th occurrence of z in F ;

π =

(
1 2 3 4 5 6 7 8 9 10 11
7 8 6 5 10 11 9 4 3 1 2

)

I For all i = 1, . . . , n and i 6= I,
the letter L[i] precedes F [i] in
the original word.

w =

mathema

tics

1
2
3
4
5
6
7
8
9
10
11

F

a
a
c
e
h
i
m
m
s
t
t

L

m
m
i
h
t
t
s
e
c
a
a

1
2
3
4
5
6
7
8
9
10
11

The BWT between Data Compression and Combinatorics on Words CiE 2013 6 / 40

The Burrows Wheeler Transform How does BWT work?

Properties and Reversibility

Example: bwt(w) = L = mmihttsecaa and I = 7

I The last letter of w is L[I].
I For each letter z, the i-th

occurrence of z in L corresponds
to the i-th occurrence of z in F ;

π =

(
1 2 3 4 5 6 7 8 9 10 11
7 8 6 5 10 11 9 4 3 1 2

)

I For all i = 1, . . . , n and i 6= I,
the letter L[i] precedes F [i] in
the original word.

w =

mathem

atics

1
2
3
4
5
6
7
8
9
10
11

F

a
a
c
e
h
i
m
m
s
t
t

L

m
m
i
h
t
t
s
e
c
a
a

1
2
3
4
5
6
7
8
9
10
11

The BWT between Data Compression and Combinatorics on Words CiE 2013 6 / 40

The Burrows Wheeler Transform How does BWT work?

Properties and Reversibility

Example: bwt(w) = L = mmihttsecaa and I = 7

I The last letter of w is L[I].
I For each letter z, the i-th

occurrence of z in L corresponds
to the i-th occurrence of z in F ;

π =

(
1 2 3 4 5 6 7 8 9 10 11
7 8 6 5 10 11 9 4 3 1 2

)

I For all i = 1, . . . , n and i 6= I,
the letter L[i] precedes F [i] in
the original word.

w =

mathem

atics

1
2
3
4
5
6
7
8
9
10
11

F

a
a
c
e
h
i
m
m
s
t
t

L

m
m
i
h
t
t
s
e
c
a
a

1
2
3
4
5
6
7
8
9
10
11

The BWT between Data Compression and Combinatorics on Words CiE 2013 6 / 40

The Burrows Wheeler Transform How does BWT work?

Properties and Reversibility

Example: bwt(w) = L = mmihttsecaa and I = 7

I The last letter of w is L[I].
I For each letter z, the i-th

occurrence of z in L corresponds
to the i-th occurrence of z in F ;

π =

(
1 2 3 4 5 6 7 8 9 10 11
7 8 6 5 10 11 9 4 3 1 2

)

I For all i = 1, . . . , n and i 6= I,
the letter L[i] precedes F [i] in
the original word.

w =

mathe

matics

1
2
3
4
5
6
7
8
9
10
11

F

a
a
c
e
h
i
m
m
s
t
t

L

m
m
i
h
t
t
s
e
c
a
a

1
2
3
4
5
6
7
8
9
10
11

The BWT between Data Compression and Combinatorics on Words CiE 2013 6 / 40

The Burrows Wheeler Transform How does BWT work?

Properties and Reversibility

Example: bwt(w) = L = mmihttsecaa and I = 7

I The last letter of w is L[I].
I For each letter z, the i-th

occurrence of z in L corresponds
to the i-th occurrence of z in F ;

π =

(
1 2 3 4 5 6 7 8 9 10 11
7 8 6 5 10 11 9 4 3 1 2

)

I For all i = 1, . . . , n and i 6= I,
the letter L[i] precedes F [i] in
the original word.

w =

mathe

matics

1
2
3
4
5
6
7
8
9
10
11

F

a
a
c
e
h
i
m
m
s
t
t

L

m
m
i
h
t
t
s
e
c
a
a

1
2
3
4
5
6
7
8
9
10
11

The BWT between Data Compression and Combinatorics on Words CiE 2013 6 / 40

The Burrows Wheeler Transform How does BWT work?

Properties and Reversibility

Example: bwt(w) = L = mmihttsecaa and I = 7

I The last letter of w is L[I].
I For each letter z, the i-th

occurrence of z in L corresponds
to the i-th occurrence of z in F ;

π =

(
1 2 3 4 5 6 7 8 9 10 11
7 8 6 5 10 11 9 4 3 1 2

)

I For all i = 1, . . . , n and i 6= I,
the letter L[i] precedes F [i] in
the original word.

w =

math

ematics

1
2
3
4
5
6
7
8
9
10
11

F

a
a
c
e
h
i
m
m
s
t
t

L

m
m
i
h
t
t
s
e
c
a
a

1
2
3
4
5
6
7
8
9
10
11

The BWT between Data Compression and Combinatorics on Words CiE 2013 6 / 40

The Burrows Wheeler Transform How does BWT work?

Properties and Reversibility

Example: bwt(w) = L = mmihttsecaa and I = 7

I The last letter of w is L[I].
I For each letter z, the i-th

occurrence of z in L corresponds
to the i-th occurrence of z in F ;

π =

(
1 2 3 4 5 6 7 8 9 10 11
7 8 6 5 10 11 9 4 3 1 2

)

I For all i = 1, . . . , n and i 6= I,
the letter L[i] precedes F [i] in
the original word.

w =

math

ematics

1
2
3
4
5
6
7
8
9
10
11

F

a
a
c
e
h
i
m
m
s
t
t

L

m
m
i
h
t
t
s
e
c
a
a

1
2
3
4
5
6
7
8
9
10
11

The BWT between Data Compression and Combinatorics on Words CiE 2013 6 / 40

The Burrows Wheeler Transform How does BWT work?

Properties and Reversibility

Example: bwt(w) = L = mmihttsecaa and I = 7

I The last letter of w is L[I].
I For each letter z, the i-th

occurrence of z in L corresponds
to the i-th occurrence of z in F ;

π =

(
1 2 3 4 5 6 7 8 9 10 11
7 8 6 5 10 11 9 4 3 1 2

)

I For all i = 1, . . . , n and i 6= I,
the letter L[i] precedes F [i] in
the original word.

w =

mat

hematics

1
2
3
4
5
6
7
8
9
10
11

F

a
a
c
e
h
i
m
m
s
t
t

L

m
m
i
h
t
t
s
e
c
a
a

1
2
3
4
5
6
7
8
9
10
11

The BWT between Data Compression and Combinatorics on Words CiE 2013 6 / 40

The Burrows Wheeler Transform How does BWT work?

Properties and Reversibility

Example: bwt(w) = L = mmihttsecaa and I = 7

I The last letter of w is L[I].
I For each letter z, the i-th

occurrence of z in L corresponds
to the i-th occurrence of z in F ;

π =

(
1 2 3 4 5 6 7 8 9 10 11
7 8 6 5 10 11 9 4 3 1 2

)

I For all i = 1, . . . , n and i 6= I,
the letter L[i] precedes F [i] in
the original word.

w =

mat

hematics

1
2
3
4
5
6
7
8
9
10
11

F

a
a
c
e
h
i
m
m
s
t
t

L

m
m
i
h
t
t
s
e
c
a
a

1
2
3
4
5
6
7
8
9
10
11

The BWT between Data Compression and Combinatorics on Words CiE 2013 6 / 40

The Burrows Wheeler Transform How does BWT work?

Properties and Reversibility

Example: bwt(w) = L = mmihttsecaa and I = 7

I The last letter of w is L[I].
I For each letter z, the i-th

occurrence of z in L corresponds
to the i-th occurrence of z in F ;

π =

(
1 2 3 4 5 6 7 8 9 10 11
7 8 6 5 10 11 9 4 3 1 2

)

I For all i = 1, . . . , n and i 6= I,
the letter L[i] precedes F [i] in
the original word.

w =

ma

thematics

1
2
3
4
5
6
7
8
9
10
11

F

a
a
c
e
h
i
m
m
s
t
t

L

m
m
i
h
t
t
s
e
c
a
a

1
2
3
4
5
6
7
8
9
10
11

The BWT between Data Compression and Combinatorics on Words CiE 2013 6 / 40

The Burrows Wheeler Transform How does BWT work?

Properties and Reversibility

Example: bwt(w) = L = mmihttsecaa and I = 7

I The last letter of w is L[I].
I For each letter z, the i-th

occurrence of z in L corresponds
to the i-th occurrence of z in F ;

π =

(
1 2 3 4 5 6 7 8 9 10 11
7 8 6 5 10 11 9 4 3 1 2

)

I For all i = 1, . . . , n and i 6= I,
the letter L[i] precedes F [i] in
the original word.

w =

ma

thematics

1
2
3
4
5
6
7
8
9
10
11

F

a
a
c
e
h
i
m
m
s
t
t

L

m
m
i
h
t
t
s
e
c
a
a

1
2
3
4
5
6
7
8
9
10
11

The BWT between Data Compression and Combinatorics on Words CiE 2013 6 / 40

The Burrows Wheeler Transform How does BWT work?

Properties and Reversibility

Example: bwt(w) = L = mmihttsecaa and I = 7

I The last letter of w is L[I].
I For each letter z, the i-th

occurrence of z in L corresponds
to the i-th occurrence of z in F ;

π =

(
1 2 3 4 5 6 7 8 9 10 11
7 8 6 5 10 11 9 4 3 1 2

)

I For all i = 1, . . . , n and i 6= I,
the letter L[i] precedes F [i] in
the original word.

w =

m

athematics

1
2
3
4
5
6
7
8
9
10
11

F

a
a
c
e
h
i
m
m
s
t
t

L

m
m
i
h
t
t
s
e
c
a
a

1
2
3
4
5
6
7
8
9
10
11

The BWT between Data Compression and Combinatorics on Words CiE 2013 6 / 40

The Burrows Wheeler Transform How does BWT work?

Properties and Reversibility

Example: bwt(w) = L = mmihttsecaa and I = 7

I The last letter of w is L[I].
I For each letter z, the i-th

occurrence of z in L corresponds
to the i-th occurrence of z in F ;

π =

(
1 2 3 4 5 6 7 8 9 10 11
7 8 6 5 10 11 9 4 3 1 2

)

I For all i = 1, . . . , n and i 6= I,
the letter L[i] precedes F [i] in
the original word.

w =

m

athematics

1
2
3
4
5
6
7
8
9
10
11

F

a
a
c
e
h
i
m
m
s
t
t

L

m
m
i
h
t
t
s
e
c
a
a

1
2
3
4
5
6
7
8
9
10
11

The BWT between Data Compression and Combinatorics on Words CiE 2013 6 / 40

The Burrows Wheeler Transform How does BWT work?

Properties and Reversibility

Example: bwt(w) = L = mmihttsecaa and I = 7

I The last letter of w is L[I].
I For each letter z, the i-th

occurrence of z in L corresponds
to the i-th occurrence of z in F ;

π =

(
1 2 3 4 5 6 7 8 9 10 11
7 8 6 5 10 11 9 4 3 1 2

)

I For all i = 1, . . . , n and i 6= I,
the letter L[i] precedes F [i] in
the original word.

w = mathematics

1
2
3
4
5
6
7
8
9
10
11

F

a
a
c
e
h
i
m
m
s
t
t

L

m
m
i
h
t
t
s
e
c
a
a

1
2
3
4
5
6
7
8
9
10
11

The BWT between Data Compression and Combinatorics on Words CiE 2013 6 / 40

The Burrows Wheeler Transform How does BWT work?

Properties and Reversibility

Example: bwt(w) = L = mmihttsecaa and I = 7

I The last letter of w is L[I].
I For each letter z, the i-th

occurrence of z in L corresponds
to the i-th occurrence of z in F ;

π =

(
1 2 3 4 5 6 7 8 9 10 11
7 8 6 5 10 11 9 4 3 1 2

)

I For all i = 1, . . . , n and i 6= I,
the letter L[i] precedes F [i] in
the original word.

w = mathematics

1
2
3
4
5
6
7
8
9
10
11

F

a
a
c
e
h
i
m
m
s
t
t

L

m
m
i
h
t
t
s
e
c
a
a

1
2
3
4
5
6
7
8
9
10
11

The BWT between Data Compression and Combinatorics on Words CiE 2013 6 / 40

The Burrows Wheeler Transform How does BWT work?

Properties and Reversibility

Example: bwt(w) = L = mmihttsecaa and I = 7

I The last letter of w is L[I].
I For each letter z, the i-th

occurrence of z in L corresponds
to the i-th occurrence of z in F ;

π =

(
1 2 3 4 5 6 7 8 9 10 11
7 8 6 5 10 11 9 4 3 1 2

)

I For all i = 1, . . . , n and i 6= I,
the letter L[i] precedes F [i] in
the original word.

w = mathematics

1
2
3
4
5
6
7
8
9
10
11

F

a
a
c
e
h
i
m
m
s
t
t

L

m
m
i
h
t
t
s
e
c
a
a

1
2
3
4
5
6
7
8
9
10
11

The BWT between Data Compression and Combinatorics on Words CiE 2013 6 / 40

The Burrows Wheeler Transform How computing the BWT?

Sorting of the conjugates

F Sorted Conjugates L
↓ ↓
a t h e m a t i c s m
a t i c s m a t h e m
c s m a t h e m a t i
e m a t i c s m a t h
h e m a t i c s m a t
i c s m a t h e m a t
m a t h e m a t i c s
m a t i c s m a t h e
s m a t h e m a t i c
t h e m a t i c s m a
t i c s m a t h e m a

In general, the computation of the sorting of the conjugates of a word is
slow!

Sorting the suffixes of a word is a simpler problem. So, in practical
applications the sorting of the suffixes is used!

The BWT between Data Compression and Combinatorics on Words CiE 2013 7 / 40

The Burrows Wheeler Transform How computing the BWT?

Sorting of the conjugates

F Sorted Conjugates L
↓ ↓
a t h e m a t i c s m
a t i c s m a t h e m
c s m a t h e m a t i
e m a t i c s m a t h
h e m a t i c s m a t
i c s m a t h e m a t
m a t h e m a t i c s
m a t i c s m a t h e
s m a t h e m a t i c
t h e m a t i c s m a
t i c s m a t h e m a

In general, the computation of the sorting of the conjugates of a word is
slow!

Sorting the suffixes of a word is a simpler problem. So, in practical
applications the sorting of the suffixes is used!

The BWT between Data Compression and Combinatorics on Words CiE 2013 7 / 40

The Burrows Wheeler Transform How computing the BWT?

Sorting of the conjugates

F Sorted Conjugates L
↓ ↓
a t h e m a t i c s m
a t i c s m a t h e m
c s m a t h e m a t i
e m a t i c s m a t h
h e m a t i c s m a t
i c s m a t h e m a t
m a t h e m a t i c s
m a t i c s m a t h e
s m a t h e m a t i c
t h e m a t i c s m a
t i c s m a t h e m a

In general, the computation of the sorting of the conjugates of a word is
slow!

Sorting the suffixes of a word is a simpler problem. So, in practical
applications the sorting of the suffixes is used!

The BWT between Data Compression and Combinatorics on Words CiE 2013 7 / 40

The Burrows Wheeler Transform How computing the BWT?

Sorting of the suffixes

To ensure the reversibility of the transform, one needs to append the
symbol $ at the end of the input string w ∈ Σ∗, where
$ /∈ Σ = {a1, a2, . . . , ak} and $ < a1 < a2 < . . . < ak.

bwt(w$) is a permutation of w$, obtained as concatenation of the letters
that (circularly) precede the first symbol of the suffix in the list of its
lexicographically sorted suffixes.

BWT Sorted Suffixes
s $
m a t h e m a t i c s $
m a t i c s $
i c s $
h e m a t i c s $
t h e m a t i c s $
t i c s $
$ m a t h e m a t i c s $
e m a t i c s $
c s $
a t h e m a t i c s $
a t i c s $

The BWT between Data Compression and Combinatorics on Words CiE 2013 8 / 40

The Burrows Wheeler Transform How computing the BWT?

The suffix array and the BWT

Given a word w ∈ Σ∗, with |w| = n:

SA[i]: The starting position of the ith smallest suffix of w$.

BWT [i]: The symbol that (circularly) precedes the first symbol of
the ith smallest suffix.

1 2 3 4 5 6 7 8 9 10 11 12
v = m a t h e m a t i c s $

SA BWT Sorted Suffixes
12 s $
2 m a t h e m a t i c s $
7 m a t i c s $
9 i c s $
5 h e m a t i c s $
4 t h e m a t i c s $
9 t i c s $
1 $ m a t h e m a t i c s $
6 e m a t i c s $
11 c s $
3 a t h e m a t i c s $
8 a t i c s $

More efficient!
The BWT between Data Compression and Combinatorics on Words CiE 2013 9 / 40

The Burrows Wheeler Transform How computing the BWT?

By sorting of the suffixes

There exist several algorithms in time linear for the construction of
the SA (see survey of [Puglisi and Smyth, 2007]).

There exist several algorithms in external memory for the construction
either of the BWT or of the SA (for instance [Ferragina, Gagie and
Manzini, 2012]).

Recently, an in-place computation of the BWT has been proposed in
[Crochemore, Grossi, Kärkkäinen and Landau, 2013], in which the
space occupied by word w is used to store the bwt(w).

The BWT between Data Compression and Combinatorics on Words CiE 2013 10 / 40

The Burrows Wheeler Transform How computing the BWT?

By sorting of the suffixes

There exist several algorithms in time linear for the construction of
the SA (see survey of [Puglisi and Smyth, 2007]).

There exist several algorithms in external memory for the construction
either of the BWT or of the SA (for instance [Ferragina, Gagie and
Manzini, 2012]).

Recently, an in-place computation of the BWT has been proposed in
[Crochemore, Grossi, Kärkkäinen and Landau, 2013], in which the
space occupied by word w is used to store the bwt(w).

The BWT between Data Compression and Combinatorics on Words CiE 2013 10 / 40

The Burrows Wheeler Transform How computing the BWT?

By sorting of the suffixes

There exist several algorithms in time linear for the construction of
the SA (see survey of [Puglisi and Smyth, 2007]).

There exist several algorithms in external memory for the construction
either of the BWT or of the SA (for instance [Ferragina, Gagie and
Manzini, 2012]).

Recently, an in-place computation of the BWT has been proposed in
[Crochemore, Grossi, Kärkkäinen and Landau, 2013], in which the
space occupied by word w is used to store the bwt(w).

The BWT between Data Compression and Combinatorics on Words CiE 2013 10 / 40

The Burrows Wheeler Transform How computing the BWT?

Conjugates and Suffixes

In spite of the closeness of these variants, the sorting processes involve
different sorting relations on different objects:

lexicographic order among suffixes of a single word;

lexicographic order among conjugates of a single word;

Note that,

in general, the sorting of the conjugates of a word w and the sorting
of the suffixes of a word w$ is different.

for a Lyndon word lexicographic sorting of the suffixes and
lexicographic sorting of the conjugates are equivalent. So, one can
obtain in linear time the sorting of conjugates of a word by using
Lyndon word (cf. Giancarlo, Restivo and S., 2007).

The BWT between Data Compression and Combinatorics on Words CiE 2013 11 / 40

The Burrows Wheeler Transform How computing the BWT?

Conjugates and Suffixes

In spite of the closeness of these variants, the sorting processes involve
different sorting relations on different objects:

lexicographic order among suffixes of a single word;

lexicographic order among conjugates of a single word;

Note that,

in general, the sorting of the conjugates of a word w and the sorting
of the suffixes of a word w$ is different.

for a Lyndon word lexicographic sorting of the suffixes and
lexicographic sorting of the conjugates are equivalent. So, one can
obtain in linear time the sorting of conjugates of a word by using
Lyndon word (cf. Giancarlo, Restivo and S., 2007).

The BWT between Data Compression and Combinatorics on Words CiE 2013 11 / 40

The Burrows Wheeler Transform How computing the BWT?

Conjugates and Suffixes

In spite of the closeness of these variants, the sorting processes involve
different sorting relations on different objects:

lexicographic order among suffixes of a single word;

lexicographic order among conjugates of a single word;

Note that,

in general, the sorting of the conjugates of a word w and the sorting
of the suffixes of a word w$ is different.

for a Lyndon word lexicographic sorting of the suffixes and
lexicographic sorting of the conjugates are equivalent. So, one can
obtain in linear time the sorting of conjugates of a word by using
Lyndon word (cf. Giancarlo, Restivo and S., 2007).

The BWT between Data Compression and Combinatorics on Words CiE 2013 11 / 40

The Burrows Wheeler Transform How computing the BWT?

Conjugates and Suffixes

In spite of the closeness of these variants, the sorting processes involve
different sorting relations on different objects:

lexicographic order among suffixes of a single word;

lexicographic order among conjugates of a single word;

Note that,

in general, the sorting of the conjugates of a word w and the sorting
of the suffixes of a word w$ is different.

for a Lyndon word lexicographic sorting of the suffixes and
lexicographic sorting of the conjugates are equivalent. So, one can
obtain in linear time the sorting of conjugates of a word by using
Lyndon word (cf. Giancarlo, Restivo and S., 2007).

The BWT between Data Compression and Combinatorics on Words CiE 2013 11 / 40

The Burrows Wheeler Transform How computing the BWT?

Conjugates and Suffixes

In spite of the closeness of these variants, the sorting processes involve
different sorting relations on different objects:

lexicographic order among suffixes of a single word;

lexicographic order among conjugates of a single word;

Note that,

in general, the sorting of the conjugates of a word w and the sorting
of the suffixes of a word w$ is different.

for a Lyndon word lexicographic sorting of the suffixes and
lexicographic sorting of the conjugates are equivalent. So, one can
obtain in linear time the sorting of conjugates of a word by using
Lyndon word (cf. Giancarlo, Restivo and S., 2007).

The BWT between Data Compression and Combinatorics on Words CiE 2013 11 / 40

The Burrows Wheeler Transform How computing the BWT?

BWT of a word by its Lyndon Factorization

Theorem (Chen, Fox and Lyndon, 1958)

Every word w ∈ Σ+ has a unique factorization w = w1 · · ·ws such that
w1 ≥lex · · · ≥lex ws is a non-increasing sequence of Lyndon words.

Let w = abaaaabaaaaabaaaabaaaaaab. The Lyndon factorization of w is

ab|aaaab|aaaaabaaaab|aaaaaab

The Lyndon factorization of a given word can be computed in linear time
[Duval 1983].

Theorem (Mantaci, Restivo, Rosone and S., 2013)

BWT of w can be computed by sorting the suffixes of the Lyndon factors
of w.

Property: the local suffixes inside factors keep their mutual order when
extended to the suffixes of the whole word.

The BWT between Data Compression and Combinatorics on Words CiE 2013 12 / 40

The Burrows Wheeler Transform Applications

BWT as tool

BWT
Other

applications

Bio-
Informatics

Text
Indexing

Etc . . .

Data
Compression

Combinatorics
on Words

The BWT between Data Compression and Combinatorics on Words CiE 2013 13 / 40

The Burrows Wheeler Transform Combinatorial Issues on the BWT

Characterization of bwt images

The word v = caraab is a bwt image, because bwt(abraca) = caraab.

The word u = bccaaab is not a bwt image.

All words apbq are not bwt images.

Problem

Characterizing all the words in Σ∗ that are images by bwt of some word in
Σ∗.

Theorem (Likhomanov and Shur, 2011)

A characterization of the words that are bwt images is given in terms of
combinatorial properties of the permutation π.

The BWT between Data Compression and Combinatorics on Words CiE 2013 14 / 40

The Burrows Wheeler Transform Combinatorial Issues on the BWT

Characterization of bwt images

The word v = caraab is a bwt image, because bwt(abraca) = caraab.

The word u = bccaaab is not a bwt image.

All words apbq are not bwt images.

Problem

Characterizing all the words in Σ∗ that are images by bwt of some word in
Σ∗.

Theorem (Likhomanov and Shur, 2011)

A characterization of the words that are bwt images is given in terms of
combinatorial properties of the permutation π.

The BWT between Data Compression and Combinatorics on Words CiE 2013 14 / 40

The Burrows Wheeler Transform Combinatorial Issues on the BWT

Characterization of bwt images

The word v = caraab is a bwt image, because bwt(abraca) = caraab.

The word u = bccaaab is not a bwt image.

All words apbq are not bwt images.

Problem

Characterizing all the words in Σ∗ that are images by bwt of some word in
Σ∗.

Theorem (Likhomanov and Shur, 2011)

A characterization of the words that are bwt images is given in terms of
combinatorial properties of the permutation π.

The BWT between Data Compression and Combinatorics on Words CiE 2013 14 / 40

The Burrows Wheeler Transform Combinatorial Issues on the BWT

Characterization of bwt images

The word v = caraab is a bwt image, because bwt(abraca) = caraab.

The word u = bccaaab is not a bwt image.

All words apbq are not bwt images.

Problem

Characterizing all the words in Σ∗ that are images by bwt of some word in
Σ∗.

Theorem (Likhomanov and Shur, 2011)

A characterization of the words that are bwt images is given in terms of
combinatorial properties of the permutation π.

The BWT between Data Compression and Combinatorics on Words CiE 2013 14 / 40

The Burrows Wheeler Transform Combinatorial Issues on the BWT

Characterization of bwt images

The word v = caraab is a bwt image, because bwt(abraca) = caraab.

The word u = bccaaab is not a bwt image.

All words apbq are not bwt images.

Problem

Characterizing all the words in Σ∗ that are images by bwt of some word in
Σ∗.

Theorem (Likhomanov and Shur, 2011)

A characterization of the words that are bwt images is given in terms of
combinatorial properties of the permutation π.

The BWT between Data Compression and Combinatorics on Words CiE 2013 14 / 40

The Burrows Wheeler Transform Combinatorial Issues on the BWT

Perfectly clustering words

Problem

Characterizing the perfectly clustering words by bwt, that are the words
that are transformed by bwt into expressions in which all the occurrences
of the same characters are consecutive, such as cibjah or dibjchak.

Theorem (Mantaci, Restivo and S., 2003)

Given a word u over the alphabet {a, b}, bwt(u) = bpaq (with
gcd(p, q) = 1) if and only if u is a conjugate of a standard sturmian word.

Standard sturmian words

Let d1, d2, . . . , dn, . . . be, with d1 ≥ 0 and di > 0 for i = 2, . . . , n, . . ., the directive sequence,
each finite word sn, where s0 = b, s1 = a, and sn+1 = sdnn sn−1, for n ≥ 1, is a standard
sturmian word.

The BWT between Data Compression and Combinatorics on Words CiE 2013 15 / 40

The Burrows Wheeler Transform Combinatorial Issues on the BWT

Simple bwt words

A special attention has been given to the words with simple bwt.

Definition

A word w over an ordered alphabet Σ = {a1, a2, . . . , ak} with
a1 < a2 < . . . < ak, has a simple bwt, if bwt(w) is of the form
ank
k a

nk−1

k−1 · · · a
n1
1 , for some positive integers n1, n2, . . . , nk.

Example

The word v = acbcbcadad is a simple bwt word, in fact
bwt(v) = ddcccbbaaa.

The BWT between Data Compression and Combinatorics on Words CiE 2013 16 / 40

The Burrows Wheeler Transform Combinatorial Issues on the BWT

Simple bwt words: three letters alphabets

Simpson and Puglisi get a constructive characterization of the set of
simple bwt words in the case of three letters alphabet.

Theorem (Simpson and Puglisi, 2008, Pak and Redlich, 2008)

The word u is a primitive word having a simple bwt on the alphabet
Σ = {a1, a2, a3}, i.e. bwt(u) = an3

3 a
n2
2 a

n1
1 , if and only if (n1, n2, n3) is a

triple of integers satisfying both the conditions gcd(n1, n2, n3) = 1 and
gcd(n1 + n2, n2 + n3) = 1.

Open problem

This result that involves the vector of the occurrences of the characters
cannot be naturally extended for greater alphabets.
The question is still open.

The BWT between Data Compression and Combinatorics on Words CiE 2013 17 / 40

The Burrows Wheeler Transform Combinatorial Issues on the BWT

Simple bwt words

Theorem (Restivo and Rosone, 2009)

If the word w ∈ Σ∗ of length n has a simple bwt then ww has 2n+ 1
distinct palindromic factors.

Example

The word v = acbcbcadad is a simple bwt, |v| = 10, in fact
bwt(acbcbcadad) = ddcccbbaaa. The word vv contains 21 distinct
palindromic factors.

We note that the converse of this result is false, for instance
bwt(ccaaccb) = cacccba and ccaaccbccaaccb has 15 distinct palindromic
factors.

The BWT between Data Compression and Combinatorics on Words CiE 2013 18 / 40

The Burrows Wheeler Transform Combinatorial Issues on the BWT

Simple bwt words

Theorem (Restivo and Rosone, 2009)

If the word w ∈ Σ∗ of length n has a simple bwt then ww has 2n+ 1
distinct palindromic factors.

Example

The word v = acbcbcadad is a simple bwt, |v| = 10, in fact
bwt(acbcbcadad) = ddcccbbaaa. The word vv contains 21 distinct
palindromic factors.

We note that the converse of this result is false, for instance
bwt(ccaaccb) = cacccba and ccaaccbccaaccb has 15 distinct palindromic
factors.

The BWT between Data Compression and Combinatorics on Words CiE 2013 18 / 40

The Burrows Wheeler Transform Combinatorial Issues on the BWT

Perfectly clustering words

In [Ferenczi and Zamboni, 2013] it is proved that perfectly clustering words
are intrinsically related to k-discrete interval exchange transformations.

Theorem

Perfectly clustering words are exactly those words w ∈ Σ∗ such that ww
occurs in a trajectory of a k-discrete interval exchange transformation,
where k is the size of Σ.

The BWT between Data Compression and Combinatorics on Words CiE 2013 19 / 40

The Burrows Wheeler Transform Effects of the combinatorial properties

BWT, Clustering effect and Compression

v BWT bwt(v) Compressor Output

The application of the BWT produces a clustering effect.

BWT-based compressors, in general, take advantage of such
clustering effect.

Perfect clustering corresponds to optimal performances of some
BWT-based compression algorithms.

The BWT between Data Compression and Combinatorics on Words CiE 2013 20 / 40

The Burrows Wheeler Transform Effects of the combinatorial properties

Balanced words and compression

What kind of regularity of the input
text produces a good compression
ratio?
The (experimental) answer:
Balanced input text!
It seems that the output of BWT is
more compressible if the input is very
close to be balanced.

Is there a statistic that allows to
decide whether a text is more
compressible by using the BWT?
The (experimental) answer:
Local Entropy of the input text!
The notion of local entropy seems to
be a measure of the degree of
balance of a text.

Conjecture

The more balanced the input word is, the more local similarity one has
after BWT, and the better the compression is.

Intuitively a word is circularly balanced if for any pair of different factors of the same length, the
frequency of the characters of the alphabet is almost the same.

The BWT between Data Compression and Combinatorics on Words CiE 2013 21 / 40

The Burrows Wheeler Transform Effects of the combinatorial properties

Balanced words and compression

What kind of regularity of the input
text produces a good compression
ratio?
The (experimental) answer:
Balanced input text!
It seems that the output of BWT is
more compressible if the input is very
close to be balanced.

Is there a statistic that allows to
decide whether a text is more
compressible by using the BWT?
The (experimental) answer:
Local Entropy of the input text!
The notion of local entropy seems to
be a measure of the degree of
balance of a text.

Conjecture

The more balanced the input word is, the more local similarity one has
after BWT, and the better the compression is.

Intuitively a word is circularly balanced if for any pair of different factors of the same length, the
frequency of the characters of the alphabet is almost the same.

The BWT between Data Compression and Combinatorics on Words CiE 2013 21 / 40

The Burrows Wheeler Transform Effects of the combinatorial properties

Balanced words and compression

What kind of regularity of the input
text produces a good compression
ratio?
The (experimental) answer:
Balanced input text!
It seems that the output of BWT is
more compressible if the input is very
close to be balanced.

Is there a statistic that allows to
decide whether a text is more
compressible by using the BWT?
The (experimental) answer:
Local Entropy of the input text!
The notion of local entropy seems to
be a measure of the degree of
balance of a text.

Conjecture

The more balanced the input word is, the more local similarity one has
after BWT, and the better the compression is.

Intuitively a word is circularly balanced if for any pair of different factors of the same length, the
frequency of the characters of the alphabet is almost the same.

The BWT between Data Compression and Combinatorics on Words CiE 2013 21 / 40

The Burrows Wheeler Transform Effects of the combinatorial properties

Balanced words and compression

What kind of regularity of the input
text produces a good compression
ratio?
The (experimental) answer:
Balanced input text!
It seems that the output of BWT is
more compressible if the input is very
close to be balanced.

Is there a statistic that allows to
decide whether a text is more
compressible by using the BWT?
The (experimental) answer:
Local Entropy of the input text!
The notion of local entropy seems to
be a measure of the degree of
balance of a text.

Conjecture

The more balanced the input word is, the more local similarity one has
after BWT, and the better the compression is.

Intuitively a word is circularly balanced if for any pair of different factors of the same length, the
frequency of the characters of the alphabet is almost the same.

The BWT between Data Compression and Combinatorics on Words CiE 2013 21 / 40

The Burrows Wheeler Transform Effects of the combinatorial properties

Balanced words and compression

What kind of regularity of the input
text produces a good compression
ratio?
The (experimental) answer:
Balanced input text!
It seems that the output of BWT is
more compressible if the input is very
close to be balanced.

Is there a statistic that allows to
decide whether a text is more
compressible by using the BWT?
The (experimental) answer:
Local Entropy of the input text!
The notion of local entropy seems to
be a measure of the degree of
balance of a text.

Conjecture

The more balanced the input word is, the more local similarity one has
after BWT, and the better the compression is.

Intuitively a word is circularly balanced if for any pair of different factors of the same length, the
frequency of the characters of the alphabet is almost the same.

The BWT between Data Compression and Combinatorics on Words CiE 2013 21 / 40

The Burrows Wheeler Transform Effects of the combinatorial properties

Statistic: Local Entropy based on Distance Coding

Distance coding: for each symbol of the input word, the DC algorithm
outputs the distance to the previous occurrence of the same symbol (in
circular way).

Example
v = a c b c a a b

dc(v) =

1 4 2 1 3 0 3

Let v = b1b2 · · · bn, bi ∈ A and dc(v) = d1d2 · · · dn, where 0 ≤ di < n.
Define the Local Entropy of v:

LE(v) =
1

n

n∑
i=1

log(di + 1)

Local entropy (LE) has been considered by
Bentley, Sleator, Tarjan and Wei, 1986
Manzini, 2001
Kaplan, Landau and Verbin, 2007

The BWT between Data Compression and Combinatorics on Words CiE 2013 22 / 40

The Burrows Wheeler Transform Effects of the combinatorial properties

Statistic: Local Entropy based on Distance Coding

Distance coding: for each symbol of the input word, the DC algorithm
outputs the distance to the previous occurrence of the same symbol (in
circular way).

Example
v = a c b c a a b

dc(v) = 1

4 2 1 3 0 3

Let v = b1b2 · · · bn, bi ∈ A and dc(v) = d1d2 · · · dn, where 0 ≤ di < n.
Define the Local Entropy of v:

LE(v) =
1

n

n∑
i=1

log(di + 1)

Local entropy (LE) has been considered by
Bentley, Sleator, Tarjan and Wei, 1986
Manzini, 2001
Kaplan, Landau and Verbin, 2007

The BWT between Data Compression and Combinatorics on Words CiE 2013 22 / 40

The Burrows Wheeler Transform Effects of the combinatorial properties

Statistic: Local Entropy based on Distance Coding

Distance coding: for each symbol of the input word, the DC algorithm
outputs the distance to the previous occurrence of the same symbol (in
circular way).

Example
v = a c b c a a b

dc(v) = 1 4

2 1 3 0 3

Let v = b1b2 · · · bn, bi ∈ A and dc(v) = d1d2 · · · dn, where 0 ≤ di < n.
Define the Local Entropy of v:

LE(v) =
1

n

n∑
i=1

log(di + 1)

Local entropy (LE) has been considered by
Bentley, Sleator, Tarjan and Wei, 1986
Manzini, 2001
Kaplan, Landau and Verbin, 2007

The BWT between Data Compression and Combinatorics on Words CiE 2013 22 / 40

The Burrows Wheeler Transform Effects of the combinatorial properties

Statistic: Local Entropy based on Distance Coding

Distance coding: for each symbol of the input word, the DC algorithm
outputs the distance to the previous occurrence of the same symbol (in
circular way).

Example
v = a c b c a a b

dc(v) = 1 4 2

1 3 0 3

Let v = b1b2 · · · bn, bi ∈ A and dc(v) = d1d2 · · · dn, where 0 ≤ di < n.
Define the Local Entropy of v:

LE(v) =
1

n

n∑
i=1

log(di + 1)

Local entropy (LE) has been considered by
Bentley, Sleator, Tarjan and Wei, 1986
Manzini, 2001
Kaplan, Landau and Verbin, 2007

The BWT between Data Compression and Combinatorics on Words CiE 2013 22 / 40

The Burrows Wheeler Transform Effects of the combinatorial properties

Statistic: Local Entropy based on Distance Coding

Distance coding: for each symbol of the input word, the DC algorithm
outputs the distance to the previous occurrence of the same symbol (in
circular way).

Example
v = a c b c a a b

dc(v) = 1 4 2 1

3 0 3

Let v = b1b2 · · · bn, bi ∈ A and dc(v) = d1d2 · · · dn, where 0 ≤ di < n.
Define the Local Entropy of v:

LE(v) =
1

n

n∑
i=1

log(di + 1)

Local entropy (LE) has been considered by
Bentley, Sleator, Tarjan and Wei, 1986
Manzini, 2001
Kaplan, Landau and Verbin, 2007

The BWT between Data Compression and Combinatorics on Words CiE 2013 22 / 40

The Burrows Wheeler Transform Effects of the combinatorial properties

Statistic: Local Entropy based on Distance Coding

Distance coding: for each symbol of the input word, the DC algorithm
outputs the distance to the previous occurrence of the same symbol (in
circular way).

Example
v = a c b c a a b

dc(v) = 1 4 2 1 3

0 3

Let v = b1b2 · · · bn, bi ∈ A and dc(v) = d1d2 · · · dn, where 0 ≤ di < n.
Define the Local Entropy of v:

LE(v) =
1

n

n∑
i=1

log(di + 1)

Local entropy (LE) has been considered by
Bentley, Sleator, Tarjan and Wei, 1986
Manzini, 2001
Kaplan, Landau and Verbin, 2007

The BWT between Data Compression and Combinatorics on Words CiE 2013 22 / 40

The Burrows Wheeler Transform Effects of the combinatorial properties

Statistic: Local Entropy based on Distance Coding

Distance coding: for each symbol of the input word, the DC algorithm
outputs the distance to the previous occurrence of the same symbol (in
circular way).

Example
v = a c b c a a b

dc(v) = 1 4 2 1 3 0

3

Let v = b1b2 · · · bn, bi ∈ A and dc(v) = d1d2 · · · dn, where 0 ≤ di < n.
Define the Local Entropy of v:

LE(v) =
1

n

n∑
i=1

log(di + 1)

Local entropy (LE) has been considered by
Bentley, Sleator, Tarjan and Wei, 1986
Manzini, 2001
Kaplan, Landau and Verbin, 2007

The BWT between Data Compression and Combinatorics on Words CiE 2013 22 / 40

The Burrows Wheeler Transform Effects of the combinatorial properties

Statistic: Local Entropy based on Distance Coding

Distance coding: for each symbol of the input word, the DC algorithm
outputs the distance to the previous occurrence of the same symbol (in
circular way).

Example
v = a c b c a a b

dc(v) = 1 4 2 1 3 0 3

Let v = b1b2 · · · bn, bi ∈ A and dc(v) = d1d2 · · · dn, where 0 ≤ di < n.
Define the Local Entropy of v:

LE(v) =
1

n

n∑
i=1

log(di + 1)

Local entropy (LE) has been considered by
Bentley, Sleator, Tarjan and Wei, 1986
Manzini, 2001
Kaplan, Landau and Verbin, 2007

The BWT between Data Compression and Combinatorics on Words CiE 2013 22 / 40

The Burrows Wheeler Transform Effects of the combinatorial properties

Statistic: Local Entropy based on Distance Coding

Distance coding: for each symbol of the input word, the DC algorithm
outputs the distance to the previous occurrence of the same symbol (in
circular way).

Example
v = a c b c a a b

dc(v) = 1 4 2 1 3 0 3

Let v = b1b2 · · · bn, bi ∈ A and dc(v) = d1d2 · · · dn, where 0 ≤ di < n.
Define the Local Entropy of v:

LE(v) =
1

n

n∑
i=1

log(di + 1)

Local entropy (LE) has been considered by
Bentley, Sleator, Tarjan and Wei, 1986
Manzini, 2001
Kaplan, Landau and Verbin, 2007

The BWT between Data Compression and Combinatorics on Words CiE 2013 22 / 40

The Burrows Wheeler Transform Effects of the combinatorial properties

Bounds

Theorem (Restivo and Rosone, 2011)

For any word v one has:

G(v) ≤ LE(v) ≤ H0(v)

LE(v) = H0(v) if and only if v is a constant gap word.

LE(v) = G(v) if and only if v is a clustered word.

where
H0(v) =

∑
a∈A

|v|a
|v| log |v||v|a , and G(v) =

∑
a∈A

1
|v| [log(|v| − |v|a + 1)].

The notion of local entropy can be used in order to define a measure of
the degree of balance of a text.

Constant gap words

A finite word v is constant gap if, for each letter a, the distance (the number of letters) between
two consecutive occurrences of a is constant (in circular way).
|v|a denotes the number of occurrences of the letter a in the word v.

The BWT between Data Compression and Combinatorics on Words CiE 2013 23 / 40

The Burrows Wheeler Transform Effects of the combinatorial properties

Preliminary experiments
File name Size H0 Bst Gzip Diff % δ(v) τ(bwt(v))

bible 4,047,392 4.343 796,231 1,191,071 9.755 0.117 0.233
english 52,428,800 4.529 11,533,171 19,672,355 15.524 0.136 0.238
etext99 105,277,340 4.596 24,949,871 39,493,346 13.814 0.141 0.264
english 104,857,600 4.556 23,993,810 39,437,704 14.728 0.143 0.250

dblp.xml 52,428,800 5.230 4,871,450 9,034,902 7.941 0.152 0.093
dblp.xml 296,135,874 5.262 25,597,003 50,481,103 8.403 0.164 0.086
world192 2,473,400 4.998 430,225 724,606 11.902 0.174 0.183
rctail96 114,711,151 5.154 11,429,406 24,007,508 10.965 0.178 0.097

sprot34.dat 109,617,186 4.762 18,850,472 26,712,981 7.173 0.215 0.206
jdk13c 69,728,899 5.531 3,187,900 7,525,172 6.220 0.224 0.041
howto 39,886,973 4.857 8,713,851 12,638,334 9.839 0.231 0.229

rfc 116,421,901 4.623 17,565,908 26,712,981 7.857 0.239 0.163
w3c2 104,201,579 5.954 7,021,478 15,159,804 7.810 0.246 0.058

chr22.dna 34,553,758 2.137 8,015,707 8,870,068 2.473 0.341 0.575
pitches 52,428,800 5.633 18,651,999 16,884,651 -3.371 0.530 0.344
pitches 55,832,855 5.628 19,475,065 16,040,370 -6.152 0.533 0.337

δ(v) measures the degree of balancing of the input text v;

τ(bwt(v)) measures the degree of clustering of the bwt(v).

The experiments show that when δ(v) is less than 0.23, then τ(bwt(v)) is less than 0.3 and the
BWT-based compressor (bst) has good performances.
Practical application: the computation of δ(v) is a fast test for the choice between bst and gzip.

The BWT between Data Compression and Combinatorics on Words CiE 2013 24 / 40

The Burrows Wheeler Transform Effects of the combinatorial properties

Preliminary experiments
File name Size H0 Bst Gzip Diff % δ(v) τ(bwt(v))

bible 4,047,392 4.343 796,231 1,191,071 9.755 0.117 0.233
english 52,428,800 4.529 11,533,171 19,672,355 15.524 0.136 0.238
etext99 105,277,340 4.596 24,949,871 39,493,346 13.814 0.141 0.264
english 104,857,600 4.556 23,993,810 39,437,704 14.728 0.143 0.250

dblp.xml 52,428,800 5.230 4,871,450 9,034,902 7.941 0.152 0.093
dblp.xml 296,135,874 5.262 25,597,003 50,481,103 8.403 0.164 0.086
world192 2,473,400 4.998 430,225 724,606 11.902 0.174 0.183
rctail96 114,711,151 5.154 11,429,406 24,007,508 10.965 0.178 0.097

sprot34.dat 109,617,186 4.762 18,850,472 26,712,981 7.173 0.215 0.206
jdk13c 69,728,899 5.531 3,187,900 7,525,172 6.220 0.224 0.041
howto 39,886,973 4.857 8,713,851 12,638,334 9.839 0.231 0.229

rfc 116,421,901 4.623 17,565,908 26,712,981 7.857 0.239 0.163
w3c2 104,201,579 5.954 7,021,478 15,159,804 7.810 0.246 0.058

chr22.dna 34,553,758 2.137 8,015,707 8,870,068 2.473 0.341 0.575
pitches 52,428,800 5.633 18,651,999 16,884,651 -3.371 0.530 0.344
pitches 55,832,855 5.628 19,475,065 16,040,370 -6.152 0.533 0.337

δ(v) measures the degree of balancing of the input text v;

τ(bwt(v)) measures the degree of clustering of the bwt(v).

The experiments show that when δ(v) is less than 0.23, then τ(bwt(v)) is less than 0.3 and the
BWT-based compressor (bst) has good performances.
Practical application: the computation of δ(v) is a fast test for the choice between bst and gzip.

The BWT between Data Compression and Combinatorics on Words CiE 2013 24 / 40

The Burrows Wheeler Transform Effects of the combinatorial properties

Preliminary experiments
File name Size H0 Bst Gzip Diff % δ(v) τ(bwt(v))

bible 4,047,392 4.343 796,231 1,191,071 9.755 0.117 0.233
english 52,428,800 4.529 11,533,171 19,672,355 15.524 0.136 0.238
etext99 105,277,340 4.596 24,949,871 39,493,346 13.814 0.141 0.264
english 104,857,600 4.556 23,993,810 39,437,704 14.728 0.143 0.250

dblp.xml 52,428,800 5.230 4,871,450 9,034,902 7.941 0.152 0.093
dblp.xml 296,135,874 5.262 25,597,003 50,481,103 8.403 0.164 0.086
world192 2,473,400 4.998 430,225 724,606 11.902 0.174 0.183
rctail96 114,711,151 5.154 11,429,406 24,007,508 10.965 0.178 0.097

sprot34.dat 109,617,186 4.762 18,850,472 26,712,981 7.173 0.215 0.206
jdk13c 69,728,899 5.531 3,187,900 7,525,172 6.220 0.224 0.041
howto 39,886,973 4.857 8,713,851 12,638,334 9.839 0.231 0.229

rfc 116,421,901 4.623 17,565,908 26,712,981 7.857 0.239 0.163
w3c2 104,201,579 5.954 7,021,478 15,159,804 7.810 0.246 0.058

chr22.dna 34,553,758 2.137 8,015,707 8,870,068 2.473 0.341 0.575
pitches 52,428,800 5.633 18,651,999 16,884,651 -3.371 0.530 0.344
pitches 55,832,855 5.628 19,475,065 16,040,370 -6.152 0.533 0.337

δ(v) measures the degree of balancing of the input text v;

τ(bwt(v)) measures the degree of clustering of the bwt(v).

The experiments show that when δ(v) is less than 0.23, then τ(bwt(v)) is less than 0.3 and the
BWT-based compressor (bst) has good performances.
Practical application: the computation of δ(v) is a fast test for the choice between bst and gzip.

The BWT between Data Compression and Combinatorics on Words CiE 2013 24 / 40

The Extended Burrows Wheeler Transform

Multiset of words

Problem

Is it possible to extend the notion of BWT to a multiset of words?

The BWT between Data Compression and Combinatorics on Words CiE 2013 25 / 40

The Extended Burrows Wheeler Transform How does EBWT work?

The Extended Burrows-Wheeler Transform [Mantaci,
Restivo, Rosone and S., 2005]

Given two words u, v ∈ Σ∗ we define the following order relation:

u �ω v ⇐⇒ uω <lex v
ω

where uω = uuuuu · · · and vω = vvvvv · · · .

Given a set of words , S = {w1, w2, . . . wm} with w1, w2, . . . wm ∈ Σ∗ the
EBWT is a transformation that produces a word obtained by sorting
according to the �ω order the conjugates of the words in S and by taking
the concatenation of the last letters of the sorted list.

The BWT between Data Compression and Combinatorics on Words CiE 2013 26 / 40

The Extended Burrows Wheeler Transform How does EBWT work?

The Extended Burrows-Wheeler Transform

Consider the set S = {abac, bca, cbab, cba}.

Sort all the conjugates of the
words in S by the �ω order
relation;

Consider the list of the sorted
words and take the word L
obtained by concatenating the
last letter of each word;

Take the set I containing the
positions of the words
corresponding to the ones in S;

a b a c a b · · ·
a b c a b c · · ·
a b c b a b · · ·
a c a b a c · · ·
a c b a c b · · ·
b a b c b a · · ·
b a c a b a · · ·
b a c b a c · · ·
b c a b c a · · ·
b c b a b c · · ·
c a b a c a · · ·
c a b c a b · · ·
c b a b c b · · ·
c b a c b a · · ·

=⇒

1 a b a c
2 a b c
3 a b c b
4 a c a b
5 a c b
6 b a b c
7 b a c a
8 b a c
9 b c a
10 b c b a
11 c a b a
12 c a b
13 c b a b
14 c b a

The output of ebwt(S) is the couple
(L, I) where L = ccbbbcacaaabba
and I = {1, 9, 13, 14}.

The BWT between Data Compression and Combinatorics on Words CiE 2013 27 / 40

The Extended Burrows Wheeler Transform How does EBWT work?

The Extended Burrows-Wheeler Transform

Consider the set S = {abac, bca, cbab, cba}.

Sort all the conjugates of the
words in S by the �ω order
relation;

Consider the list of the sorted
words and take the word L
obtained by concatenating the
last letter of each word;

Take the set I containing the
positions of the words
corresponding to the ones in S;

a b a c a b · · ·
a b c a b c · · ·
a b c b a b · · ·
a c a b a c · · ·
a c b a c b · · ·
b a b c b a · · ·
b a c a b a · · ·
b a c b a c · · ·
b c a b c a · · ·
b c b a b c · · ·
c a b a c a · · ·
c a b c a b · · ·
c b a b c b · · ·
c b a c b a · · ·

=⇒

1 a b a c
2 a b c
3 a b c b
4 a c a b
5 a c b
6 b a b c
7 b a c a
8 b a c
9 b c a
10 b c b a
11 c a b a
12 c a b
13 c b a b
14 c b a

The output of ebwt(S) is the couple
(L, I) where L = ccbbbcacaaabba
and I = {1, 9, 13, 14}.

The BWT between Data Compression and Combinatorics on Words CiE 2013 27 / 40

The Extended Burrows Wheeler Transform How does EBWT work?

The Extended Burrows-Wheeler Transform

Consider the set S = {abac, bca, cbab, cba}.

Sort all the conjugates of the
words in S by the �ω order
relation;

Consider the list of the sorted
words and take the word L
obtained by concatenating the
last letter of each word;

Take the set I containing the
positions of the words
corresponding to the ones in S;

a b a c a b · · ·
a b c a b c · · ·
a b c b a b · · ·
a c a b a c · · ·
a c b a c b · · ·
b a b c b a · · ·
b a c a b a · · ·
b a c b a c · · ·
b c a b c a · · ·
b c b a b c · · ·
c a b a c a · · ·
c a b c a b · · ·
c b a b c b · · ·
c b a c b a · · ·

=⇒

1 a b a c
2 a b c
3 a b c b
4 a c a b
5 a c b
6 b a b c
7 b a c a
8 b a c
9 b c a
10 b c b a
11 c a b a
12 c a b
13 c b a b
14 c b a

The output of ebwt(S) is the couple
(L, I) where L = ccbbbcacaaabba
and I = {1, 9, 13, 14}.

The BWT between Data Compression and Combinatorics on Words CiE 2013 27 / 40

The Extended Burrows Wheeler Transform How does EBWT work?

The Extended Burrows-Wheeler Transform

Consider the set S = {abac, bca, cbab, cba}.

Sort all the conjugates of the
words in S by the �ω order
relation;

Consider the list of the sorted
words and take the word L
obtained by concatenating the
last letter of each word;

Take the set I containing the
positions of the words
corresponding to the ones in S;

a b a c a b · · ·
a b c a b c · · ·
a b c b a b · · ·
a c a b a c · · ·
a c b a c b · · ·
b a b c b a · · ·
b a c a b a · · ·
b a c b a c · · ·
b c a b c a · · ·
b c b a b c · · ·
c a b a c a · · ·
c a b c a b · · ·
c b a b c b · · ·
c b a c b a · · ·

=⇒

1 a b a c
2 a b c
3 a b c b
4 a c a b
5 a c b
6 b a b c
7 b a c a
8 b a c
9 b c a
10 b c b a
11 c a b a
12 c a b
13 c b a b
14 c b a

The output of ebwt(S) is the couple
(L, I) where L = ccbbbcacaaabba
and I = {1, 9, 13, 14}.

The BWT between Data Compression and Combinatorics on Words CiE 2013 27 / 40

The Extended Burrows Wheeler Transform How does EBWT work?

The Extended Burrows-Wheeler Transform

Consider the set S = {abac, bca, cbab, cba}.

Sort all the conjugates of the
words in S by the �ω order
relation;

Consider the list of the sorted
words and take the word L
obtained by concatenating the
last letter of each word;

Take the set I containing the
positions of the words
corresponding to the ones in S;

a b a c a b · · ·
a b c a b c · · ·
a b c b a b · · ·
a c a b a c · · ·
a c b a c b · · ·
b a b c b a · · ·
b a c a b a · · ·
b a c b a c · · ·
b c a b c a · · ·
b c b a b c · · ·
c a b a c a · · ·
c a b c a b · · ·
c b a b c b · · ·
c b a c b a · · ·

=⇒

1 a b a c
2 a b c
3 a b c b
4 a c a b
5 a c b
6 b a b c
7 b a c a
8 b a c
9 b c a
10 b c b a
11 c a b a
12 c a b
13 c b a b
14 c b a

The output of ebwt(S) is the couple
(L, I) where L = ccbbbcacaaabba
and I = {1, 9, 13, 14}.

The BWT between Data Compression and Combinatorics on Words CiE 2013 27 / 40

The Extended Burrows Wheeler Transform How does EBWT work?

Properties and Reversibility

Example: L = ccbbbcacaaabba and I = {1, 9, 13, 14}.

I The last character of each word
wj is L[Ij];

I For each character z, the i-th
occurrence of z in L corresponds
to the i-th occurrence of z in F ;

I In any row i 6= I, the character
F [i] follows L[i] in a word in S.

1 a b a c
2 a b c
3 a b c b
4 a c a b
5 a c b
6 b a b c
7 b a c a
8 b a c
9 b c a
10 b c b a
11 c a b a
12 c a b
13 c b a b
14 c b a

π =

(
1 2 3 4 5 6 7 8 9 10 11 12 13 14
11 12 6 7 8 13 1 14 2 3 4 9 10 5

)
= (11 4 7 1)(9 2 12)(13 10 3 6)(14 5 8)

So, we can recover each word of the multiset

S = {abac, bca, cbab, cba}.

The BWT between Data Compression and Combinatorics on Words CiE 2013 28 / 40

The Extended Burrows Wheeler Transform How does EBWT work?

Properties and Reversibility

Example: L = ccbbbcacaaabba and I = {1, 9, 13, 14}.

I The last character of each word
wj is L[Ij];

I For each character z, the i-th
occurrence of z in L corresponds
to the i-th occurrence of z in F ;

I In any row i 6= I, the character
F [i] follows L[i] in a word in S.

1 a b a c
2 a b c
3 a b c b
4 a c a b
5 a c b
6 b a b c
7 b a c a
8 b a c
9 b c a
10 b c b a
11 c a b a
12 c a b
13 c b a b
14 c b a

π =

(
1 2 3 4 5 6 7 8 9 10 11 12 13 14
11 12 6 7 8 13 1 14 2 3 4 9 10 5

)
= (11 4 7 1)(9 2 12)(13 10 3 6)(14 5 8)

So, we can recover each word of the multiset

S = {abac, bca, cbab, cba}.

The BWT between Data Compression and Combinatorics on Words CiE 2013 28 / 40

The Extended Burrows Wheeler Transform How does EBWT work?

Properties and Reversibility

Example: L = ccbbbcacaaabba and I = {1, 9, 13, 14}.

I The last character of each word
wj is L[Ij];

I For each character z, the i-th
occurrence of z in L corresponds
to the i-th occurrence of z in F ;

I In any row i 6= I, the character
F [i] follows L[i] in a word in S.

1 a b a c
2 a b c
3 a b c b
4 a c a b
5 a c b
6 b a b c
7 b a c a
8 b a c
9 b c a
10 b c b a
11 c a b a
12 c a b
13 c b a b
14 c b a

π =

(
1 2 3 4 5 6 7 8 9 10 11 12 13 14
11 12 6 7 8 13 1 14 2 3 4 9 10 5

)
= (11 4 7 1)(9 2 12)(13 10 3 6)(14 5 8)

So, we can recover each word of the multiset

S = {abac, bca, cbab, cba}.

The BWT between Data Compression and Combinatorics on Words CiE 2013 28 / 40

The Extended Burrows Wheeler Transform How does EBWT work?

Properties and Reversibility

Example: L = ccbbbcacaaabba and I = {1, 9, 13, 14}.

I The last character of each word
wj is L[Ij];

I For each character z, the i-th
occurrence of z in L corresponds
to the i-th occurrence of z in F ;

I In any row i 6= I, the character
F [i] follows L[i] in a word in S.

1 a b a c
2 a b c
3 a b c b
4 a c a b
5 a c b
6 b a b c
7 b a c a
8 b a c
9 b c a
10 b c b a
11 c a b a
12 c a b
13 c b a b
14 c b a

π =

(
1 2 3 4 5 6 7 8 9 10 11 12 13 14
11 12 6 7 8 13 1 14 2 3 4 9 10 5

)
= (11 4 7 1)(9 2 12)(13 10 3 6)(14 5 8)

So, we can recover each word of the multiset

S = {abac, bca, cbab, cba}.

The BWT between Data Compression and Combinatorics on Words CiE 2013 28 / 40

The Extended Burrows Wheeler Transform How does EBWT work?

Properties and Reversibility

Example: L = ccbbbcacaaabba and I = {1, 9, 13, 14}.

I The last character of each word
wj is L[Ij];

I For each character z, the i-th
occurrence of z in L corresponds
to the i-th occurrence of z in F ;

I In any row i 6= I, the character
F [i] follows L[i] in a word in S.

1 a b a c
2 a b c
3 a b c b
4 a c a b
5 a c b
6 b a b c
7 b a c a
8 b a c
9 b c a
10 b c b a
11 c a b a
12 c a b
13 c b a b
14 c b a

π =

(
1 2 3 4 5 6 7 8 9 10 11 12 13 14
11 12 6 7 8 13 1 14 2 3 4 9 10 5

)
= (11 4 7 1)(9 2 12)(13 10 3 6)(14 5 8)

So, we can recover each word of the multiset

S = {abac, bca, cbab, cba}.

The BWT between Data Compression and Combinatorics on Words CiE 2013 28 / 40

The Extended Burrows Wheeler Transform How does EBWT work?

EBWT as bijection

Let M be the family of multisets of conjugacy classes of primitive words of
Σ∗. Then, if we don’t care about the indices EBWT : M −→ Σ∗

The transformation EBWT is injective.

The EBWT is surjective. For each word u ∈ Σ∗, there exists a
multiset S ∈M such that EBWT (S) = u. For instance,
EBWT (ab, abcac) = (bccaaab).

Theorem (Gessel and Reutenauer, 1993. Mantaci, Restivo, Rosone and S.,
2007)

There exists a bijection between Σ∗ and the family of multisets of
conjugacy classes of primitive words in Σ∗.

The BWT between Data Compression and Combinatorics on Words CiE 2013 29 / 40

The Extended Burrows Wheeler Transform How does EBWT work?

EBWT as bijection

Let M be the family of multisets of conjugacy classes of primitive words of
Σ∗. Then, if we don’t care about the indices EBWT : M −→ Σ∗

The transformation EBWT is injective.

The EBWT is surjective. For each word u ∈ Σ∗, there exists a
multiset S ∈M such that EBWT (S) = u. For instance,
EBWT (ab, abcac) = (bccaaab).

Theorem (Gessel and Reutenauer, 1993. Mantaci, Restivo, Rosone and S.,
2007)

There exists a bijection between Σ∗ and the family of multisets of
conjugacy classes of primitive words in Σ∗.

The BWT between Data Compression and Combinatorics on Words CiE 2013 29 / 40

The Extended Burrows Wheeler Transform How does EBWT work?

EBWT as bijection

Let M be the family of multisets of conjugacy classes of primitive words of
Σ∗. Then, if we don’t care about the indices EBWT : M −→ Σ∗

The transformation EBWT is injective.

The EBWT is surjective. For each word u ∈ Σ∗, there exists a
multiset S ∈M such that EBWT (S) = u. For instance,
EBWT (ab, abcac) = (bccaaab).

Theorem (Gessel and Reutenauer, 1993. Mantaci, Restivo, Rosone and S.,
2007)

There exists a bijection between Σ∗ and the family of multisets of
conjugacy classes of primitive words in Σ∗.

The BWT between Data Compression and Combinatorics on Words CiE 2013 29 / 40

The Extended Burrows Wheeler Transform How computing the EBWT?

Sorting of the conjugates

1 a b a c
2 a b c
3 a b c b
4 a c a b
5 a c b
6 b a b c
7 b a c a
8 b a c
9 b c a
10 b c b a
11 c a b a
12 c a b
13 c b a b
14 c b a

Sorting the conjugates of each word of the multiset in according to �ω
order is the bottleneck of the algorithm.

Mantaci, Restivo, Rosone and S.: An extension of the Burrows-Wheeler Transform, 2007.
Use a periodicity theorem to reduce the number of comparisons.
Hon, Ku, Lu, Shah and Thankachan: Efficient Algorithm for Circular Burrows-Wheeler
Transform, 2011. A O(n logn) algorithm is provided, where n denotes the total length of
the words in S.

The BWT between Data Compression and Combinatorics on Words CiE 2013 30 / 40

The Extended Burrows Wheeler Transform How computing the EBWT?

Efficient strategy by sorting the suffixes

To ensure the reversibility of the transform, one needs to append a
different end-marker at the end of each input string of the multiset.

Let S′ be the set of the strings of S included the end-markers.
ebwt(S′) is a permutation of S′, obtained as concatenation of the letters
that (circularly) precede the first symbol of the suffix in the list of its
lexicographically sorted suffixes of S′.

Bauer, Cox and Rosone: Lightweight algorithms for constructing and
inverting the BWT of string collections. 2013.

The BWT between Data Compression and Combinatorics on Words CiE 2013 31 / 40

The Extended Burrows Wheeler Transform How computing the EBWT?

Efficient strategy by sorting the suffixes

To ensure the reversibility of the transform, one needs to append a
different end-marker at the end of each input string of the multiset.

Let S′ be the set of the strings of S included the end-markers.
ebwt(S′) is a permutation of S′, obtained as concatenation of the letters
that (circularly) precede the first symbol of the suffix in the list of its
lexicographically sorted suffixes of S′.

Bauer, Cox and Rosone: Lightweight algorithms for constructing and
inverting the BWT of string collections. 2013.

The BWT between Data Compression and Combinatorics on Words CiE 2013 31 / 40

The Extended Burrows Wheeler Transform How computing the EBWT?

Different sorting relations

In order to compute EBWT of a multiset of words, different sorting
processes can be involved.

Lexicographic order among suffixes of a multiset of words;

�ω order among conjugates of a multiset of words.

A study of the combinatorial aspects that connect these two sorting can
be found in Bonomo, Mantaci, Restivo, Rosone and S. 2013.
An important role is played by the notion of Lyndon word.

The BWT between Data Compression and Combinatorics on Words CiE 2013 32 / 40

The Extended Burrows Wheeler Transform How computing the EBWT?

Different sorting relations

In order to compute EBWT of a multiset of words, different sorting
processes can be involved.

Lexicographic order among suffixes of a multiset of words;

�ω order among conjugates of a multiset of words.

A study of the combinatorial aspects that connect these two sorting can
be found in Bonomo, Mantaci, Restivo, Rosone and S. 2013.
An important role is played by the notion of Lyndon word.

The BWT between Data Compression and Combinatorics on Words CiE 2013 32 / 40

The Extended Burrows Wheeler Transform How computing the EBWT?

Different sorting relations

In order to compute EBWT of a multiset of words, different sorting
processes can be involved.

Lexicographic order among suffixes of a multiset of words;

�ω order among conjugates of a multiset of words.

A study of the combinatorial aspects that connect these two sorting can
be found in Bonomo, Mantaci, Restivo, Rosone and S. 2013.
An important role is played by the notion of Lyndon word.

The BWT between Data Compression and Combinatorics on Words CiE 2013 32 / 40

The Extended Burrows Wheeler Transform How computing the EBWT?

Different sorting relations

In order to compute EBWT of a multiset of words, different sorting
processes can be involved.

Lexicographic order among suffixes of a multiset of words;

�ω order among conjugates of a multiset of words.

A study of the combinatorial aspects that connect these two sorting can
be found in Bonomo, Mantaci, Restivo, Rosone and S. 2013.
An important role is played by the notion of Lyndon word.

The BWT between Data Compression and Combinatorics on Words CiE 2013 32 / 40

The Extended Burrows Wheeler Transform Applications

EBWT as tool

EBWT
Sequences
comparison

DNA

Proteins

Etc . . .

Data
Compression

Combinatorics
on Words

The BWT between Data Compression and Combinatorics on Words CiE 2013 33 / 40

The Extended Burrows Wheeler Transform Applications

Sequences comparison

The transformation EBWT is used in order to define an alignment-free
method for comparing sequences.

The comparison method based on transformation EBWT measures how
similar u and v are, by taking into account how much their conjugates are
mixed.

The BWT between Data Compression and Combinatorics on Words CiE 2013 34 / 40

The Extended Burrows Wheeler Transform Applications

Different possible formalizations of distance measures

For instance,
by computing the number of the alternations in the sequence of colors [Mantaci, Restivo,
Rosone and S., 2007].
by using different partitioning of the colored output of the EBWT and by finally counting
the difference of frequencies of colors into each block of the partition [Mantaci, Restivo,
Rosone and S., 2008].

For instance, let S = {u = ababccb, v = ababccc}, the output colored is bcbbcaaaacccbb.

Sorted conjugates EBWT

δ(u, v)

ababccb b

0

ababccc c

0

abccbab b

0

abcccab b

0

bababcc c
babccba a

1

babccca a

0

bccbaba a

0

bcccaba a
cababcc c

1

cbababc c

0

ccababc c

0

ccbabab b

0

cccabab b

0

For instance, the number of the
alternations in the sequence of colors,
computed as:

δ(u, v) =
k∑

i=1,

ni 6=0

(ni − 1),

is equal to 2.

The BWT between Data Compression and Combinatorics on Words CiE 2013 35 / 40

The Extended Burrows Wheeler Transform Applications

Different possible formalizations of distance measures

For instance,
by computing the number of the alternations in the sequence of colors [Mantaci, Restivo,
Rosone and S., 2007].
by using different partitioning of the colored output of the EBWT and by finally counting
the difference of frequencies of colors into each block of the partition [Mantaci, Restivo,
Rosone and S., 2008].

For instance, let S = {u = ababccb, v = ababccc}, the output colored is bcbbcaaaacccbb.

Sorted conjugates EBWT δ(u, v)
ababccb b 0
ababccc c 0
abccbab b 0
abcccab b 0
bababcc c
babccba a 1
babccca a 0
bccbaba a 0
bcccaba a
cababcc c 1
cbababc c 0
ccababc c 0
ccbabab b 0
cccabab b 0

For instance, the number of the
alternations in the sequence of colors,
computed as:

δ(u, v) =
k∑

i=1,

ni 6=0

(ni − 1),

is equal to 2.

The BWT between Data Compression and Combinatorics on Words CiE 2013 35 / 40

The Extended Burrows Wheeler Transform Applications

Different possible formalizations of distance measures

For instance,
by computing the number of the alternations in the sequence of colors [Mantaci, Restivo,
Rosone and S., 2007].
by using different partitioning of the colored output of the EBWT and by finally counting
the difference of frequencies of colors into each block of the partition [Mantaci, Restivo,
Rosone and S., 2008].

For instance, let S = {u = ababccb, v = ababccc}, the output colored is bcbbcaaaacccbb.

Sorted conjugates EBWT

%(u, v)

ababccb b

1

ababccc c

1

abccbab b

0

abcccab b
bababcc c

1

babccba a

0

babccca a
bccbaba a
bcccaba a
cababcc c

1

cbababc c
ccababc c
ccbabab b

0

cccabab b

%(u, v) =
k∑

i=1

|ci(u)− ci(v)| = 4

The BWT between Data Compression and Combinatorics on Words CiE 2013 36 / 40

The Extended Burrows Wheeler Transform Applications

Different possible formalizations of distance measures

For instance,
by computing the number of the alternations in the sequence of colors [Mantaci, Restivo,
Rosone and S., 2007].
by using different partitioning of the colored output of the EBWT and by finally counting
the difference of frequencies of colors into each block of the partition [Mantaci, Restivo,
Rosone and S., 2008].

For instance, let S = {u = ababccb, v = ababccc}, the output colored is bcbbcaaaacccbb.

Sorted conjugates EBWT %(u, v)
ababccb b 1
ababccc c 1
abccbab b

0
abcccab b
bababcc c 1
babccba a

0
babccca a
bccbaba a
bcccaba a
cababcc c

1cbababc c
ccababc c
ccbabab b

0
cccabab b

%(u, v) =
k∑

i=1

|ci(u)− ci(v)| = 4

The BWT between Data Compression and Combinatorics on Words CiE 2013 36 / 40

The Extended Burrows Wheeler Transform Applications

Applications to biological sequences

Such distances have been successfully used in several biological datasets,
as for instance mitochondrial DNA genomes, expressed sequence tags and
proteins

Mantaci, Restivo, Rosone and S.: A New Combinatorial Approach to
Sequence Comparison, 2008.

Yang, Chang, Zhang and Wang: Use of the Burrows-Wheeler
similarity distribution to the comparison of the proteins, 2010.

Yang, Zhang and Wang: The Burrows-Wheeler similarity distribution
between biological sequences based on Burrows-Wheeler transform,
2010.

Cox, Jakobi, Rosone and Schulz-Trieglaff: Comparing DNA Sequence
Collections by Direct Comparison of Compressed Text Indexes, 2012.

Ng, Ho, and Phon-Amnuaisuk: A hybrid distance measure for
clustering expressed sequence tags originating from the same gene
family, 2012.

The BWT between Data Compression and Combinatorics on Words CiE 2013 37 / 40

The Extended Burrows Wheeler Transform Applications

Massive Datasets

The EBWT has been used as a preprocessing for compression of big sets
of m texts.

Cox, Bauer, Jakobi and Rosone: Large-scale compression of genomic
sequence databases with the Burrows-Wheeler transform, 2012.

Janin, Rosone and Cox: Adaptive reference-free compression of
sequence quality scores, 2013.

The method is also used for the computation of the LCP of very large
collections of sequences.

Cox, Bauer, Rosone and S.: Lightweight LCP Construction for
Next-Generation Sequencing Datasets, 2012. The code is available as
part of the BEETL Library - http://beetl.github.com/BEETL/

The BWT between Data Compression and Combinatorics on Words CiE 2013 38 / 40

Further works

Further works and open problems

Use EBWT to define lightweight data structures for indexing big
datasets of sequences;

Study of the clustering effect of the EBWT from Combinatorics on
Words viewpoint.

The BWT between Data Compression and Combinatorics on Words CiE 2013 39 / 40

Further works

Thanks for your attention!

The BWT between Data Compression and Combinatorics on Words CiE 2013 40 / 40

	Introduction
	Preliminaries

	The Burrows Wheeler Transform
	How does BWT work?
	How computing the BWT?
	Applications
	Combinatorial Issues on the BWT
	Effects of the combinatorial properties

	The Extended Burrows Wheeler Transform
	How does EBWT work?
	How computing the EBWT?
	Applications

	Further works

