
Space-Efficient Construction of Compressed Suffix
TreesI

Nicola Prezzaa,b, Giovanna Rosoneb,∗

a Luiss Guido Carli, Rome, Italy
b Department of Computer Science, University of Pisa, Italy

Abstract

We show how to build several data structures of central importance to string
processing by taking as input the Burrows-Wheeler transform (BWT) and us-
ing small extra working space. Let n be the text length and σ be the al-
phabet size. We first provide two algorithms that enumerate all LCP values
and suffix tree intervals in O(n log σ) time using just o(n log σ) bits of working
space on top of the input re-writable BWT. Using these algorithms as building
blocks, for any parameter 0 < ε ≤ 1 we show how to build the PLCP bitvec-
tor and the balanced parentheses representation of the suffix tree topology in
O
(
n(log σ + ε−1 · log log n)

)
time using at most n log σ ·(ε+o(1)) bits of working

space on top of the input re-writable BWT and the output. For example, we
can build a compressed suffix tree from the BWT using just succinct working
space (i.e. o(n log σ) bits) and Θ

(
n log σ + n(log log n)1+δ

)
time, for any con-

stant δ > 0. This improves the previous most space-efficient algorithms, which
worked in O(n) bits and O(n log n) time. We also consider the problem of merg-
ing BWTs of string collections, and provide a solution running in O(n log σ) time
and using just o(n log σ) bits of working space. An efficient implementation of
our LCP construction and BWT merge algorithms uses (in RAM) as few as n
bits on top of a packed representation of the input/output and process data as
fast as 2.92 megabases per second.

Keywords: Burrows-Wheeler transform, compressed suffix tree, LCP, PLCP.

I c©2020 c©2021. This manuscript version is made available under the CC-BY-NC-ND 4.0
license http://creativecommons.org/licenses/by-nc-nd/4.0/. Final publication available
at https://doi.org/10.1016/j.tcs.2020.11.024. Please, cite the publisher version: Nicola
Prezza and Giovanna Rosone, Space-Efficient Construction of Compressed Suffix Trees The-
oretical Computer Science, https://doi.org/10.1016/j.tcs.2020.11.024

∗Corresponding author
Email addresses: nprezza@luiss.it (Nicola Prezza), giovanna.rosone@unipi.it

(Giovanna Rosone)

Postprint version; to appear on Theoretical Computer Science

http://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1016/j.tcs.2020.11.024

1. Introduction and Related Work

The increasingly-growing production of large string collections—especially
in domains such as biology, where new generation sequencing technologies can
nowadays generate gigabytes of data in few hours—is lately generating much
interest towards fast and space-efficient algorithms able to index this data. The5

Burrows-Wheeler Transform [1] and its extension to sets of strings [2, 3] is be-
coming the gold-standard in the field: even when not compressed, its size is
asymptotically smaller than classic suffix arrays (while preserving many of their
indexing capabilities). This generated considerable interest towards fast and
space-efficient BWT construction algorithms [3, 4, 5, 6, 7, 8, 9, 5]. As a result,10

the problem of building the BWT is well understood to date. The fastest al-
gorithm solving this problem operates in sublinear O(n/

√
log n) time and O(n)

bits of space on a binary text of length n by exploiting word parallelism [8].
The authors also provide a conditional lower bound suggesting that this run-
ning time might be optimal. On general alphabets, the most space-efficient15

algorithm terminates in O(n log n/ log log n) time and uses just o(n log σ) bits
of space (succinct) on top of the input and compressed output [9], where σ is
the alphabet’s size. In the average case, this running time can be improved to
O(n) on constant-sized alphabets while still operating within succinct space [5].

In some cases, a BWT alone is not sufficient to complete efficiently particu-20

lar string-processing tasks. For this reason, the functionalities of the BWT are
often extended by augmenting it with additional structures such as the Longest
Common Prefix (LCP) array [10] (see e.g. [11, 12, 13, 14] for bioinformatic ap-
plications requiring this additional component). A disadvantage of the LCP
array is that it requires O(n log n) bits to be stored in plain form. To alleviate25

this problem, usually the PLCP array [15]—an easier-to-compress permutation
of the LCP array—is preferred. The PLCP relies on the idea of storing LCP
values in text order instead of suffix array order. As shown by Kasai et al. [16],
this permutation is almost increasing (PLCP [i + 1] ≥ PLCP [i] − 1) and can
thus be represented in just 2n bits in a bitvector known as the PLCP bitvec-30

tor. More advanced applications might even require full suffix tree functionality.
In such cases, compressed suffix trees [17, 18] (CSTs) are the preferred choice
when the space is at a premium. A typical compressed suffix tree is formed by
a compressed suffix array (CSA), the PLCP bitvector, and a succinct represen-
tation of the suffix tree topology [18] (there exist other designs, see Ohlebusch35

et al. [19] for an exhaustive survey). To date, several practical algorithms have
been developed to solve the task of building de novo such additional compo-
nents [10, 20, 21, 22, 23, 24, 25, 26], but little work has been devoted to the
task of computing them from the BWT in little working space (internal and
external). Considering the advanced point reached by state-of-the-art BWT40

construction algorithms, it is worth exploring whether such structures can be
built more efficiently starting from the BWT, rather than from the raw input
text.

CSA As far as the CSA is concerned, this component can be easily built
from the BWT using small space as it is formed (in its simplest design) by just45

2

a BWT with rank/select functionality enhanced with a suffix array sampling,
see also [24].

LCP We are aware of only one work building the LCP array in small space
from the BWT: Beller et al. [27] show how to build the LCP array in O(n log σ)
time and O(n) bits of working space on top of the input BWT and the output.50

PLCP Kärkkäinen et al. [25] show that the PLCP bitvector can be built in
O(n log n) time using n bits of working space on top of the text, the suffix array,
and the output PLCP. Kasai at al.’s lemma also stands at the basis of a more
space-efficient algorithm from Välimäki et al. [26], which computes the PLCP
from a CSA in O(n log n) time using constant working space on top of the CSA55

and the output. Belazzougui [24] recently presented an algorithm for building
the PLCP bitvector from the text in O(n) randomized time and compact space
(O(n log σ) bits). This was later improved by Munro et al. [28], who made the
running time deterministic.

Suffix tree topology The remaining component required to build a com-60

pressed suffix tree (in the version described by Sadakane [18]) is the suffix tree
topology, represented either in BPS [29] (balanced parentheses) or DFUDS [30]
(depth first unary degree sequence), using 4n bits. As far as the BPS repre-
sentation is concerned, Hon et al. [31] show how to build it from a CSA in
O(n(log σ + logε n)) time and compact space for any constant ε > 0. Belaz-65

zougui [24] improves this running time to the optimal O(n), still working within
compact space. Välimäki et al. [26] describe a linear-time algorithm that im-
proves the space to O(n) bits on top of the LCP array (which however needs
to be represented in plain form), while Ohlebusch et al. [19] show how to build
the DFUDS representation of the suffix tree topology in O(tlcp · n) time using70

n + o(n) bits of working space on top of a structure supporting access to LCP
array values in O(tlcp) time.

Summing up, the situation for building compressed suffix trees from the
BWT is the following: algorithms working in optimal linear time requireO(n log σ)
bits of working space. Algorithms reducing this space to O(n) (on top of a75

CSA) are only able to build the suffix tree topology within O(n · tlcp) time,
which is Ω(n logε n) with the current best techniques, and the PLCP bitvector
in O(n log n) time. No algorithm can build all the three CST components within
o(n log σ) bits of working space on top of the input BWT and the output. Com-
bining the most space-efficient existing algorithms, the following two trade-offs80

can therefore be achieved for building all compressed suffix tree components
from the BWT:

• O(n log σ) bits of working space and O(n) time, or

• O(n) bits of working space and O(n log n) time.

Our contributions. In this paper, we give new space-time trade-offs that al-85

low building the CST’s components in smaller working space (and in some
cases even faster) with respect to the existing solutions. We start by combining
Beller et al.’s algorithm [27] with the suffix-tree enumeration procedure of Be-
lazzougui [24] to obtain an algorithm that enumerates (i) all pairs (i, LCP [i]),

3

and (ii) all suffix tree intervals in O(n log σ) time using just o(n log σ) bits of90

working space on top of the input re-writable BWT. We use this procedure to
obtain algorithms that build (working space is on top of the input BWT and
the output):

1. The LCP array of a string collection in O(n log σ) time and o(n log σ) bits
of working space (Section 5).95

2. the PLCP bitvector and the BPS representation of the suffix tree topology
in O

(
n(log σ + ε−1 · log log n)

)
time and n log σ · (ε+ o(1)) bits of working

space, for any user-defined parameter 0 < ε ≤ 1 (Section 7 and 8).

3. The BWT of the union of two string collections of total size n in O(n log σ)
time and o(n log σ) bits of working space, given the BWTs of the two100

collections as input (Section 9).

Contribution (1) is the first showing that the LCP array can be induced
from the BWT using succinct working space for any alphabet size.

Contribution (2) can be used to build a compressed suffix tree from the BWT
using just o(n log σ) bits of working space and Θ

(
n log σ + n(log log n)1+δ

)
time,105

for any constant δ > 0. On small alphabets, this improves both working space
and running time of existing O(n)-bits solutions.

Also contribution (3) improves the state-of-the-art, due to Belazzougui et
al. [24, 32]. In those papers, the authors show how to merge the BWTs of two
texts T1, T2 and obtain the BWT of the collection {T1, T2} in O(nk) time and110

n log σ(1 + 1/k) + 11n + o(n) bits of working space for any k ≥ 1 [32, Thm.
7]. When k = log σ, this running time is the same as our result (3), but the
working space is much higher on small alphabets.

We implemented and tested our algorithms (1) and (3) on DNA alphabet.
Our tools use (in RAM) as few as n bits on top of a packed representation of115

the input/output, and process data as fast as 2.92 megabases per second.
Contributions (1) and (3) are part of a preliminary version [33] of this paper.

This paper also extends such results with the suffix tree interval enumeration
procedure and with the algorithms of contribution (2) for building the PLCP
bitvector and the BPS representation of the suffix tree topology.120

2. Basic Concepts

Let Σ = {c1, c2, . . . , cσ} be a finite ordered alphabet of size σ with # = c1 <
c2 < . . . < cσ, where < denotes the standard lexicographic order. Given a text
T = t1t2 · · · tn ∈ Σ∗ we denote by |T | its length n. We assume that the input
text is terminated by the special symbol (terminator) #, which does not appear125

elsewhere in T . We use ε to denote the empty string. A factor (or substring) of
T is written as T [i, j] = ti · · · tj with 1 ≤ i ≤ j ≤ n. When declaring an array
A, we use the same notation A[1, n] to indicate that the array has n entries
indexed from 1 to n. A right-maximal substring W of T is a string for which
there exist at least two distinct characters a, b such that Wa and Wb occur in130

T .

4

The suffix array SA of a string T (see [34] for a survey) is an array containing
the permutation of the integers 1, 2, . . . , n that arranges the starting positions
of the suffixes of T into lexicographical order, i.e., for all 1 ≤ i < j ≤ n,
T [SA[i], n] < T [SA[j], n].135

The inverse suffix array ISA[1, n] is the inverse permutation of SA, i.e.,
ISA[i] = j if and only if SA[j] = i.

The Burrows-Wheeler Transform of a string T is a reversible transformation
that permutes its symbols, i.e. BWT [i] = T [SA[i] − 1] if SA[i] > 1 or #
otherwise.140

In some of our results we deal with string collections. There exist some
natural extensions of the suffix array and the Burrows-Wheeler Transform to a
collection of strings.

Let S = {T1, . . . , Tm} be a string collection of total length n, where each Ti
is terminated by a character # (the terminator) lexicographically smaller than145

all other alphabet’s characters. In particular, a collection is an ordered multiset,
and we denote S[i] = Ti.

We define lexicographic order among the strings’ suffixes in the usual way,
except that, only while sorting, each terminator # of the i-th string S[i] is
considered (implicitly) a different symbol #i, with #i < #j if and only if150

i < j. Equivalently, in case of equal suffixes ties are broken by input’s order:
if Ti[k, |Ti| − 1] = Tj [k

′, |Tj | − 1], then we define Ti[k, |Ti|] < Tj [k
′, |Tj |] if and

only if i < j.
The generalized suffix array GSA[1, n] (see [35, 10, 36]) of S is an array of

pairsGSA[i] = 〈j, k〉 such that S[j][k, |S[j]|] is the i-th lexicographically smallest155

suffix of strings in S, where we break ties by input position (i.e. j in the notation
above). Note that, if the collection is formed by a single string T , then the first
component in GSA’s pairs is always equal to 1, and the second components
form the suffix array of T . We denote by range(W) = 〈left(W), right(W)〉,
also referred to as suffix array (SA) interval of W , or simply W -interval, the160

maximal pair 〈L,R〉 such that all suffixes in GSA[L,R] are prefixed by W . We
use the same notation with the suffix array of a single string T . Note that the
number of suffixes lexicographically smaller than W in the collection is L − 1.
We extend this definition also to cases where W is not present in the collection:
in this case, the (empty) range is 〈L,L − 1〉 and we still require that L − 1 is165

the number of suffixes lexicographically smaller than W in the collection (or in
the string).

The extended Burrows-Wheeler Transform BWT [1, n] [2, 3] of S is the char-
acter array defined as BWT [i] = S[j][k − 1 mod |S[j]|], where 〈j, k〉 = GSA[i].

To simplify notation, we indicate with “BWT” both the Burrows-Wheeler170

Transform of a string and of a string collection. The used transform will be
clear from the context.

The longest common prefix (LCP) array of a string s [37] (resp. a collection S
of strings, see [10, 36, 23]) is an array storing the lengths of the longest common
prefixes between two consecutive suffixes of s (resp. S) in lexicographic order175

(with LCP [1] = 0). More formally, LCP [1] = 0 and LCP [i], for i > 1, stores
the length of the longest common prefix between the suffixes T [SA[i], n] and

5

T [SA[i− 1], n] on a text T , or the length of the longest common prefix between
the substrings S[j][k, |S[j]| − 1] and S[j′][k′, |S[j′]| − 1], where 〈j, k〉 = GSA[i]
and 〈j′, k′〉 = GSA[i − 1], respectively, on a string collection S (note that, by180

this definition, the strings’ terminators do not contribute to LCP [i]).
Given two collections S1,S2 of total length n, the Document Array of their

union is the binary array DA[1, n] such that DA[i] = 0 if and only if the i-th
smallest suffix comes from S1. When merging suffixes of the two collections, ties
are broken by collection number (i.e. suffixes of S1 are smaller than suffixes of185

S2 in case of ties).
The C-array of a string (or collection) S is an array C[1, σ] such that C[i]

contains the number of characters lexicographically smaller than i in S, plus one
(S will be clear from the context). Equivalently, C[c] is the starting position
of suffixes starting with c in the suffix array of the string. When S (or any of190

its permutations) is represented with a balanced wavelet tree, then we do not
need to store explicitly C, and C[c] can be computed in O(log σ) time with no
space overhead on top of the wavelet tree (see [38]). Function S.rankc(i) returns
the number of characters equal to c in S[1, i − 1]. When S is represented by a
wavelet tree, rank can be computed in O(log σ) time.195

Function getIntervals(L, R, BWT), where BWT is the extended Burrows-
Wheeler transform of a string collection S and 〈L,R〉 is the suffix array interval
of some string W appearing as a substring of some element of S, returns all
suffix array intervals of strings cW , with c 6= #, that occur in S. When BWT
is represented with a balanced wavelet tree, we can implement this function so200

that it terminates in O(log σ) time per returned interval [27]. The function can
be made to return the output intervals on-the-fly, one by one (in an arbitrary
order), without the need to store them all in an auxiliary vector, with just
O(log n) bits of additional overhead in space [27] (this requires a DFS-visit of
the wavelet tree’s subtree induced by BWT [L,R]; the visit requires only log σ205

bits to store the current path in the tree).
An extension of the above function that navigates in parallel two BWTs is

immediate. Function getIntervals(L1, R1, L2, R2, BWT1, BWT2) takes as input two
ranges of a string W on the BWTs of two collections, and returns the pairs of
ranges on the two BWTs corresponding to all left-extensions cW of W (c 6= #)210

such that cW appears in at least one of the two collections. To implement this
function, it is sufficient to navigate in parallel the two wavelet trees as long as
at least one of the two intervals is not empty.

Let S be a string. The function S.rangeDistinct(i, j) returns the set of
distinct alphabet characters different than the terminator # in S[i, j]. Also this215

function can be implemented in O(log σ) time per returned element when S is
represented with a wavelet tree (again, this requires a DFS-visit of the sub-tree
of the wavelet tree induced by S[i, j]).

BWT.bwsearch(〈L, R〉, c) is the function that, given the suffix array interval
〈L,R〉 of a string W occurring in the collection, returns the suffix array interval220

of cW by using the BWT of the collection [39]. This function requires access to
array C and rank support on BWT , and runs in O(log σ) time when BWT is
represented with a balanced wavelet tree.

6

To conclude, our algorithms will take as input a wavelet tree representing
the BWT. As shown in the next lemma by Claude et al., this is not a restriction:225

Lemma 1 ([40]). Given a re-writable word-packed string of length n on alphabet
[1, σ], we can replace it with its wavelet matrix [40] in O(n log σ) time using n
bits of additional working space.

Wavelet matrices [40] are a space-efficient representation of wavelet trees230

taking n log σ · (1+o(1)) bits of space and supporting all their operations within
the same running times. Since the output of all our algorithms will be at least n
bits, it will always be possible to re-use a portion of the output’s space (before
computing it) to fit the extra n bits required by Lemma 1.

3. Belazzougui’s Enumeration Algorithm235

In [24], Belazzougui showed that a BWT with rank and range distinct func-
tionality (see Section 2) is sufficient to enumerate in small space a rich represen-
tation of the internal nodes of the suffix tree of a text T . For the purposes of this
article, we assume that the BWT is represented using a wavelet tree (whereas
Belazzougui’s original result is more general), and thus that all queries take240

O(log σ) time.

Theorem 1 (Belazzougui [24]). Given the Burrows-Wheeler Transform of a
text T ∈ [1, σ]n represented with a wavelet tree, we can enumerate the following
information for each distinct right-maximal substring W of T : (i) |W |, and (ii)245

range(Wci) for all c1 < · · · < ck such that Wci occurs in T . The process runs
in O(n log σ) time and uses O(σ2 log2 n) bits of working space on top of the
BWT.

To keep the article self-contained, in this section we describe the algorithm
at the core of the above result. Remember that explicit suffix tree nodes cor-
respond to right-maximal substrings. The first idea is to represent any sub-
string W (not necessarily right-maximal) as follows. Let charsW[1, kW] be the
alphabetically-sorted character array such that W · charsW[i] is a substring of
T for all i = 1, . . . , kW , where kW is the number of right-extensions of W . We
require charsW to be also complete: if Wc is a substring of T , then c ∈ charsW.
Let moreover firstW[1, kW + 1] be the array such that firstW[i] is the starting
position of (the range of) W ·charsW[i] in the suffix array of T for i = 1, . . . , kW ,
and firstW[kW + 1] is the end position of W in the suffix array of T . The repre-
sentation for W is (differently from [24], we omit charsW from the representation
and we add |W |; these modifications will turn out to be useful later):

repr(W) = 〈firstW, |W|〉

Note that, if W is not right-maximal nor a text suffix, then W is followed by
kW = 1 distinct characters in T and the above representation is still well-defined.250

7

When W is right-maximal, we will also say that repr(W) is the representation of
a suffix tree explicit node (i.e. the node reached by following the path labeled
W from the root).

Weiner Link Tree Visit. The enumeration algorithm works by visiting the Weiner
Link tree of T starting from the root’s representation, that is, repr(ε) = 〈firstε, 0〉,255

where firstε = 〈C[c1], . . . , C[cσ], n〉 (see Section 2 for a definition of the C-
array) and c1, . . . , cσ are the sorted alphabet’s characters. Since the suffix tree
and the Weiner link tree share the same set of nodes, this is sufficient to enu-
merate all suffix tree nodes. The visit uses a stack storing representations of
suffix tree nodes, initialized with repr(ε). At each iteration, we pop the head260

repr(W) from the stack and we push repr(cW) such that cW is right-maximal
in T . To keep the stack’s size under control, once we have computed repr(cW)
for the right-maximal left-extensions cW of W we push them on the stack in
decreasing order of range length range(cW) (i.e. the node with the smallest
range is pushed last). This guarantees that the stack will always contain at265

most O(σ log n) elements [24]. Since each element takes O(σ log n) bits to be
represented, the stack’s size never exceeds O(σ2 log2 n) bits.

Computing Weiner Links. We now show how to efficiently compute the node
representation repr(cW) from repr(W) for the characters c such that cW is right-
maximal in T . In [24, 32] this operation is supported efficiently by first enu-
merating all distinct characters in each range BWT [firstW[i], firstW[i + 1]]
for i = 1, . . . , kW , using function BWT.rangeDistinct(firstW[i], firstW[i + 1])
(see Section 2). Equivalently, for each a ∈ charsW we want to list all dis-
tinct left-extensions cWa of Wa. Note that, in this way, we may also visit
implicit suffix tree nodes (i.e. some of these left-extensions could be not right-
maximal). Stated otherwise, we are traversing all explicit and implicit Weiner
links. Since the number of such links is linear [24, 41] (even including im-
plicit Weiner links1), globally the number of distinct characters returned by
rangeDistinct operations is O(n). An implementation of rangeDistinct on
wavelet trees is discussed in [27] with the procedure getIntervals (this pro-
cedure actually returns more information: the suffix array range of each cWa).
This implementation runs in O(log σ) time per returned character. Globally, we
therefore spend O(n log σ) time using a wavelet tree. We now need to compute
repr(cW) for all left-extensions of W and keep only the right-maximal ones. Let
x = repr(W) and BWT.Weiner(x) be the function that returns the representa-
tions of such strings (used in Line 12 of Algorithm 1). This function can be

1To see this, first note that the number of right-extensions Wa of W that have only one
left-extension cWa is at most equal to the number of right-extensions of W ; globally, this is
at most the number of suffix tree’s nodes (linear). Any other right-extension Wa that has at
least two distinct left-extensions cWa and bWa is, by definition, left maximal and corresponds
therefore to a node in the suffix tree of the reverse of T . It follows that all left-extensions of
Wa can be charged to an edge of the suffix tree of the reverse of T (again, the number of such
edges is linear).

8

implemented by observing that

range(cWa) = 〈 C[c] + BWT.rankc(left(Wa)),
C[c] + BWT.rankc(right(Wa) + 1)− 1 〉

where a = charsW[i] for 1 ≤ i < |firstW|, and noting that left(Wa) and
right(Wa) are available in repr(W). Note also that we do not actually need
to know the value of characters charsW[i] to compute the ranges of each cW ·270

charsW[i]; this is the reason why we can omit charsW from repr(W). Using a
wavelet tree, the above operation takes O(log σ) time. By the above observa-
tions, the number of strings cWa such that W is right-maximal is bounded by
O(n). Overall, computing repr(cW) = 〈firstcW, |W |+ 1〉 for all left-extensions
cW of all right-maximal strings W takes therefore O(n log σ) time. Within the275

same running time, we can check which of those extensions is right maximal
(i.e. those such that |firstcW| ≥ 2), sort them in-place by interval length (we
always sort at most σ node representations, therefore also sorting takes globally
O(n log σ) time), and push them on the stack.

4. Beller et al.’s Algorithm280

The second ingredient used in our solutions is the following result, due to
Beller et al. (we slightly re-formulate their result to fit our purposes, read below
for a description of the differences):

Theorem 2 (Beller et al.[27]). Given the Burrows-Wheeler Transform of a text285

T represented with a wavelet tree, we can enumerate all pairs (i, LCP [i]) in
O(n log σ) time using 5n bits of working space on top of the BWT.

Theorem 2 represents the state of the art for computing the LCP array from
the BWT. Also Beller et al.’s algorithm works by enumerating a (linear) subset
of the BWT intervals. LCP values are induced from a particular visit of those290

intervals. Belazzougui’s and Beller et al.’s algorithms have, however, two key
differences which make the former more space-efficient on small alphabets, while
the latter is more space-efficient on large alphabets: (i) Beller et al. use a queue
(FIFO) instead of a stack (LIFO), and (ii) they represent W -intervals with just
the pair of coordinates range(W) and the value |W |. In short, while Beller et295

al.’s queue might grow up to size Θ(n), the use of intervals (instead of the more
complex representation used by Belazzougui) makes it possible to represent it
using O(1) bitvectors of length n. On the other hand, the number of items on
Belazzougui’s stack can be upper-bounded by O(σ log n), but its elements take
more space to be represented.300

We now describe in detail Beller et al.’s result. We keep a bitvector U [1, n]
such that U [i] = 0 if and only if the pair (i, LCP [i]) has not been output yet.
In their original algorithm, Beller et al. use the LCP array itself to mark un-
defined LCP entries. In our case, we do not want to store the whole LCP
array (for reasons that will be clear in the next sections) and thus we only305

9

record which LCP values have been output. Bitvector U accounts for the ad-
ditional n bits used by Theorem 2 with respect to the original result described
in [27]. At the beginning, U [i] = 0 for all i = 1, . . . , n. Beller et al.’s al-
gorithm starts by inserting in the queue the triple 〈1, n, 0〉, where the first
two components are the BWT interval of ε (the empty string) and the third310

component is its length. From this point, the algorithm keeps performing the
following operations until the queue is empty. We remove the first (i.e. the
oldest) element 〈L,R, `〉 from the queue, which (by induction) is the interval
and length of some string W : range(W) = 〈L,R〉 and |W | = `. Using op-
eration getIntervals(L, R, BWT) [27] (see Section 2) we left-extend the BWT315

interval 〈L,R〉 with the characters c1, . . . , ck in BWT.rangeDistinct(L, R), ob-
taining the triples 〈L1, R1, `+1〉, . . . , 〈Lk, Rk, `+1〉 corresponding to the strings
c1W, . . . , ckW . For each such triple 〈Li, Ri, `+ 1〉, if Ri 6= n and U [Ri + 1] = 0
then we set U [Ri + 1] ← 1, we output the LCP pair (Ri + 1, `) and push
〈Li, Ri, ` + 1〉 on the queue. Importantly, note that we can push the intervals320

returned by getIntervals(L, R, BWT) in the queue in any order; as discussed in
Section 2, this step can be implemented with just O(log n) bits of space over-
head with a DFS-visit of the wavelet tree’s sub-tree induced by BWT [L,R] (i.e.
the intervals are not stored temporarily anywhere: they are pushed as soon as
they are generated).325

Queue implementation. To limit space usage, Beller et al. use the following
queue representations. First note that, at each time point, the queue’s triples
are partitioned into a (possibly empty) sequence with associated length (i.e.
the third element in the triples) ` + 1, followed by a sequence with associated
length `, for some `. To simplify the description, let us assume that these two330

sequences are kept as two distinct queues, indicated in the following as Q` and
Q`+1. At any stage of the algorithm, we pop from Q` and push into Q`+1. It
follows that there is no need to store strings’ lengths in the triples themselves
(i.e. the queue’s elements become just ranges), since the length of each element
in Q` is `. When Q` is empty, we create a new empty queue Q`+2, pop from335

Q`+1, and push into Q`+2 (and so on). Beller et al. represent Q` as follows.
While pushing elements in Q`, as long as its size does not exceed n/ log n we
represent it as a vector of pairs (of total size at most O(n) bits). This repre-
sentation supports push/pop operations in (amortized) constant time and takes
at most O(log n · n/ log n) = O(n) bits of space. As soon as Q`’s size exceeds340

n/ log n, we switch to a representation that uses two packed bitvectors open[1, n]
and close[1, n] storing, respectively, the left- and right-most boundaries of the
ranges in the queue. Note that this representation can be safely used since the
pairs in Q` are suffix array ranges of strings of some fixed length `, therefore
there cannot be overlapping intervals. Pushing an interval into such a queue345

takes constant time (it just requires setting two bits). Popping all the t = |Q`|
intervals, on the other hand, can easily be implemented in O(t+ n/ log n) time
by scanning the bitvectors and exploiting word-parallelism: since open[1, n] is
packed into n/ log n words of log n bits each, it is sufficient to scan it left-to-
right in O(n/ log n) time in order to locate words containing at least one bit set.350

10

Then, the position of the leftmost bit set in the word can be found in O(1) time
by using a standard universal table of size O(

√
n log n) bits indexing all combi-

nations of log n/2 bits. Since Beller et al.’s procedure visits O(n) SA intervals,
Q` will exceed size n/ log n for at most O(log n) values of `. It follows that also
with this queue representation pop operations take amortized constant time.355

Time complexity. It is easy to see that the algorithm inserts in total a linear
number of intervals in the queue since an interval 〈Li, Ri, ` + 1〉 is inserted
only if U [Ri + 1] = 0, and successively U [Ri + 1] is set to 1. Clearly, this can
happen at most n times. In [27] the authors moreover show that, even when
counting the left-extensions of those intervals (computed after popping each360

interval from the queue), the total number of generated intervals stays linear.
Overall, the algorithm runs therefore in O(n log σ) time (as discussed in Section
2, getIntervals runs in O(log σ) time per returned element).

5. Enumerating LCP values

In this section we prove our first main result: how to enumerate LCP pairs365

(i, LCP [i]) using succinct working space on top of a wavelet tree representing
the BWT. Later we will use this procedure to build the LCP and PLCP arrays in
small space on top of a plain representation of the BWT. We give our lemma in
the general form of string collections, which will require adapting the algorithms
seen in the previous sections to this more general setting. Our first observation370

is that Theorem 1, extended to string collections as described below, can be
directly used to enumerate LCP pairs (i, LCP [i]) using just O(σ2 log2 n) bits of
working space on top of the input and output. We combine this procedure with
an extended version of Beller et al.’s algorithm working on string collections in
order to get small working space for all alphabets. Algorithms 1 and 2 report375

our complete procedure; read below for an exhaustive description. We obtain
our first main result:

Lemma 2. Given a wavelet tree for the Burrows-Wheeler Transform of a col-
lection S = {T1, . . . , Tm} of total length n on alphabet [1, σ], we can enumerate380

all pairs (i, LCP [i]) in O(n log σ) time using o(n log σ) bits of working space on
top of the BWT.

Proof. If σ <
√
n/ log2 n then σ2 log2 n = o(n) and our extension of Theorem

1 gives us o(n log σ) additional working space. If σ ≥
√
n/ log2 n then log σ =

Θ(log n) and we can use our extension to string collections of Theorem 2, which385

yields extra working space O(n) = o(n log n) = o(n log σ). Note that, while we
used the threshold σ <

√
n/ log2 n, any threshold of the form σ <

√
n/ log1+ε n,

with ε > 0 would work. The only constraint is that ε > 0, since otherwise for
ε = 0 the working space would become O(n log σ) for constant σ (which is no
good because we aim at o(n log σ)).390

11

We now describe all the details of our extensions of Theorems 1 and 2 used
in the proof of Lemma 2. Procedure BGOS(BWT) in Line 2 of Algorithm 1 is a
call to Beller et al.’s algorithm, modified as follows. First, we enumerate the
LCP pairs (C[c], 0) for all c ∈ Σ. Then, we push in the queue 〈range(c), 1〉 for
all c ∈ Σ and start the main algorithm. Note moreover that (see Section 2) from395

now on we never left-extend ranges with #.
Recall that each string of a text collection S is ended by a terminator #

that is equal for all strings. Consider now the LCP and GSA arrays of S.
We divide LCP values into two types. A LCP value LCP[i], with i > 1, is of
node type when the i-th and (i − 1)-th suffixes (which includes the two equal400

terminators) are distinct: S[j][k, |S[j]|] 6= S[j′][k′, |S[j′]|], where GSA[i] = 〈j, k〉
and GSA[i − 1] = 〈j′, k′〉. Those two suffixes differ before the terminator is
reached in both suffixes (it might be reached in one of the two suffixes, however);
we use the name node-type because i − 1 and i are the last and first suffix
array positions of the ranges of two adjacent children of some suffix tree node,405

respectively (i.e. the node corresponding to string S[j][k, k+LCP [i]−1]). Note
that it might be that one of the two suffixes, S[j][k, |S[j]|] or S[j′][k′, |S[j′]|], is
the string “#”. Similarly, a leaf-type LCP value LCP[i], with i > 1, is such that
the i-th and (i−1)-th suffixes are equal: S[j][k, |S[j]|] = S[j′][k′, |S[j′]|]. We use
the name leaf-type because, in this case, it must be the case that i ∈ [L+ 1, R],410

where 〈L,R〉 is the suffix array range of some suffix tree leaf (it might be that
R > L since there might be repeated suffixes in the collection). Note that, in
this case, S[j][k, |S[j]|] = S[j′][k′, |S[j′]|] could coincide with #. Entry LCP[1]
escapes the above classification, so we output it separately.

Our idea is to compute first node-type and then leaf-type LCP values. We415

argue that Beller et al.’s algorithm already computes the former kind of LCP
values. When this algorithm uses too much space (i.e. on small alphabets),
we show that Belazzougui’s enumeration strategy can be adapted to reach the
same goal: by the very definition of node-type LCP values, they lie between
children of some suffix tree node x, and their value corresponds to the string420

depth of x. This strategy is described in Algorithm 1. Function BWT.Weiner(x)
in Line 12 takes as input the representation of a suffix tree node x and returns
all explicit nodes reached by following Weiner links from x (an implementation
of this function is described in Section 3). Figure 1 shows how node-type LCP
values are computed using Algorithm 1. Leaf-type LCP values, on the other425

hand, can easily be computed by enumerating intervals corresponding to suffix
tree leaves. To reach this goal, it is sufficient to enumerate ranges of suffix tree
leaves starting from range(#) and recursively left-extending with backward
search with characters different from # whenever possible. For each range
〈L,R〉 obtained in this way, we set each entry LCP [L+1, R] to the string depth430

(terminator excluded) of the corresponding leaf. This strategy is described
in Algorithm 2, and Figure 2 shows an example. In the figure, we denote with
leaf repr the representation we use for the leaves (that is, range of the leaf and
its string depth). In order to limit space usage, we use again a stack or a queue
to store leaves and their string depth (note that each leaf takes O(log n) bits435

to be represented): we use a queue when σ > n/ log3 n, and a stack otherwise.

12

The queue is the same used by Beller et al.[27] and described in Section 4.
This guarantees that the bit-size of the queue/stack never exceeds o(n log σ)
bits: since leaves take just O(log n) bits to be represented and the stack’s size
never contains more than O(σ · log n) leaves, the stack’s bit-size never exceeds440

O(n/ log n) = o(n) when σ ≤ n/ log3 n. Similarly, Beller et al’s queue always
takes at most O(n) bits of space, which is o(n log σ) for σ > n/ log3 n. Note
that in Lines 18-21 we can afford storing temporarily the k resulting intervals
since, in this case, the alphabet’s size is small enough.

To sum up, our full procedure works as follows: (1) we output node-type445

LCP values using procedure Node-Type(BWT) described in Algorithm 1, and (2)
we output leaf-type LCP values using procedure Leaf-Type(BWT) described in
Algorithm 2.

Algorithm 1 Node-Type(BWT)

1: if σ >
√
n/ log2 n then

2: BGOS(BWT) . Run Beller et al.’s algorithm
3: else
4: P← new stack() . Initialize new stack
5: P.push(repr(ε)) . Push representation of ε
6: while not P.empty() do
7: 〈firstW, `〉 ← P.pop() . Pop highest-priority element
8: t← |firstW| − 1 . Number of children of ST node
9: for i = 2, . . . , t do

10: output (firstW[i], `) . Output LCP value
11: end for
12: x1, . . . , xk ← BWT.Weiner(〈firstW, `〉) . Follow Weiner Links
13: x′1, . . . , x

′
k ← sort(x1, . . . , xk) . Sort by interval length

14: for i = k . . . 1 do
15: P.push(x′i) . Push representations
16: end for
17: end while
18: end if

The correctness, completeness, and complexity of our procedure are proved
in the following Lemma:450

Lemma 3. Algorithms 1 and 2 correctly output all LCP pairs (i, LCP [i]) of the
collection in O(n log σ) time using o(n log σ) bits of working space on top of the
input BWT.

Proof. Correctness - Algorithm 1. We start by proving that Beller et al.’s proce-455

dure in Line 2 of Algorithm 1 (procedure BGOS(BWT)) outputs all the node-type
LCP entries correctly. The proof proceeds by induction on the LCP value ` and
follows the original proof of [27]. At the beginning, we insert in the queue all c-
intervals, for c ∈ Σ. For each such interval 〈L,R〉 we output LCP [R+1] = ` = 0.

13

Algorithm 2 Leaf-Type(BWT)

1: for i = left(#), . . . , right(#) do
2: output (i, 0)
3: end for
4: if σ > n/ log3 n then
5: P← new queue() . Initialize new queue
6: else
7: P← new stack() . Initialize new stack
8: end if
9: P.push(BWT.range(#), 0) . Push range of terminator and LCP value 0

10: while not P.empty() do
11: 〈〈L,R〉, `〉 ← P.pop() . Pop highest-priority element
12: for i = L+ 1 . . . R do
13: output (i, `) . Output LCP inside range of ST leaf
14: end for
15: if σ > n/ log3 n then
16: P.push(getIntervals(L, R, BWT), `+ 1) . Pairs 〈interval,`+ 1〉
17: else
18: 〈Li, Ri〉i=1,...,k ← getIntervals(L, R, BWT)
19: 〈L′i, R′i〉i=1,...,k ← sort(〈Li, Ri〉i=1,...,k) . Sort by interval length
20: for i = k . . . 1 do
21: P.push(〈L′i, R′i〉, `+ 1) . Push in order of decreasing length
22: end for
23: end if
24: end while

14

index LCP BWT Suffixes

1 0 T #

2 0 T #

3 0 A #

4 0 T A #
5 1 # A A G C T #

6 1 A A G C T #

7 1 T A T #

8 2 T A T A #

9 3 G A T A T #
10 0 G C T #

11 2 # C T A T A #

12 0 # G A T A T #

13 1 A G C T #

14 0 C T #
15 1 A T #

16 1 A T A #

17 2 A T A T #

18 3 C T A T A #

repr(A) = 〈〈4, 5, 6, 7, 9〉,1〉wwww� Weiner(T)

repr(TA) = 〈〈16, 17, 18〉,2〉

Figure 1: Running example for Algorithm 1, finding node-type LCP values with our exten-
sion of Belazzougui’s strategy. Left. The BWT matrix and LCP array of the string collection
{AAGCT#, CTATA#, GATAT#}. Top right. Suppose we pop from the stack the rep-
resentation of the right-maximal string A, of length 1. The range of A spans rows 4-9 (in
orange) and the corresponding suffix tree node has four children labeled #, A, G, and T and
starting at positions 4,5,6, and 7, respectively. Then, by Algorithm 1 the LCP value of posi-
tions 5,6,7 (that is, the ones corresponding to the beginning of the sub-ranges os A’s children,
excluded the lexicographically-smallest) is 1 = |A| (in blue). We therefore output the LCP
pairs 〈5, 1〉, 〈6, 1〉, and 〈7, 1〉. Bottom right. After left-extending A with T by following the
corresponding Weiner link, we obtain another right-maximal string, TA, of length 2. Note
that this step is performed by applying the LF mapping to the T s in the BWT range 4-9 (in
red). The ranges of the two children of suffix tree node TA begin in positions 16 (symbol #)
and 17 (symbol T), therefore by Algorithm 1 the LCP value of position 17 is 2 = |TA| (in
green) and we output the LCP pair 〈17, 2〉.

15

index LCP BWT Suffixes

1 0 T #

2 0 T #

3 0 A #

4 0 T A #

5 1 # A A G C T #

6 1 A A G C T #

7 1 T A T #

8 2 T A T A #

9 3 G A T A T #

10 0 G C T #

11 2 # C T A T A #

12 0 # G A T A T #

13 1 A G C T #

14 0 C T #

15 1 A T #

16 1 A T A #

17 2 A T A T #

18 3 C T A T A #

leaf repr(#) = 〈〈1, 3〉,0〉wwww� LF(T)

leaf repr(T#) = 〈〈14, 15〉,1〉

Figure 2: Running example for Algorithm 2, finding leaf-type LCP values. Left. The BWT
matrix and LCP array of the string collection {AAGCT#, CTATA#, GATAT#}. Top
right. Suppose we pop from the stack the representation of the leaf #, of string depth 0
(we do not count terminators in the string depth). The range of the leaf spans rows 1-3 (in
orange). Then, by Algorithm 2 the LCP value of the positions inside the leaf’s range (except
the first) is 0 = |#|−1 (in blue). We therefore output the LCP pairs 〈2, 0〉 and 〈3, 0〉. Bottom
right. After left-extending # with T by applying the LF mapping to the T s in the BWT
range 1-3 (in red), we obtain the range 14-15 of the leaf T#. By Algorithm 2, the LCP value
of position 15 is therefore 1 = |T#| − 1 (in green) and we output the LCP pair 〈15, 1〉.

16

It is easy to see that after this step all and only the node-type LCP values equal460

to 0 have been correctly computed. Assume, by induction, that all node-type
LCP values less than or equal to ` have been correctly output, and that we are
about to extract from the queue the first triple 〈L,R, `+ 1〉 having length `+ 1.
For each extracted triple with length `+1 associated to a string W , consider the
triple 〈L′, R′, `+ 2〉 associated to one of its left-extensions cW . If LCP [R′ + 1]465

has been computed, i.e. if U [R′+ 1] = 1, then we have nothing to do. However,
if U [R′ + 1] = 0, then it must be the case that (i) the corresponding LCP value
satisfies LCP [R′ + 1] ≥ `+ 1, since by induction we have already computed all
node-type LCP values smaller than or equal to `, and (ii) LCP [R′ + 1] is of
node-type, since otherwise the BWT interval of cW would also include position470

R′+ 1. On the other hand, it cannot be the case that LCP [R′+ 1] > `+ 1 since
otherwise the cW -interval would include position R′+ 1. We therefore conclude
that LCP [R′ + 1] = `+ 1 must hold.

Completeness - Algorithm 1. The above argument settles correctness. To
prove completeness, assume that, at some point, U [i] = 0 and the value of475

LCP [i] to be computed and output is ` + 1. We want to show that we will
pull a triple 〈L,R, ` + 1〉 from the queue corresponding to a string W (note
that ` + 1 = |W | and, moreover, W could end with #) such that one of the
left-extensions aW of W satisfies range(aW) = 〈L′, i− 1〉, for some L′. This will
show that, at some point, we will output the LCP pair (i, ` + 1). We proceed480

by induction on |W |. Note that we separately output all LCP values equal
to 0. The base case |W | = 1 is easy: by the way we initialized the queue,
〈range(c), 1〉, for all c ∈ Σ, are the first triples we pop. Since we left-extend
these ranges with all alphabet’s characters except #, it is easy to see that
all LCP values equal to 1 have been output. From now on we can therefore485

assume that we are working on LCP values equal to ` + 1 > 1, i.e. W = b · V ,
for b ∈ Σ − {#} and V ∈ Σ+. Let abV be the length-(` + 2) left-extension
of W = bV such that right(abV) + 1 = i. Since, by our initial hypothesis,
LCP[i] = ` + 1, the collection contains also a suffix aU lexicographically larger
than abV and such that LCP(aU, abV) = ` + 1. But then, it must be the case490

that LCP(right(bV) + 1) = ` (it cannot be smaller by the existence of U and it
cannot be larger since |bV | = `+1). By inductive hypothesis, this value was set
after popping a triple 〈L′′, R′′, `〉 corresponding to string V , left-extending V
with b, and pushing 〈range(bV), `+1〉 in the queue. This ends the completeness
proof since we showed that 〈range(bV), `+ 1〉 is in the queue, so at some point495

we will pop it, extend it with a, and output (right(abV) + 1, `+ 1) = (i, `+ 1).
If the queue uses too much space, then Algorithm 1 switches to a stack and
Lines 4-15 are executed instead of Line 2. Note that this pseudocode fragment
corresponds to Belazzougui’s enumeration algorithm, except that now we also
set LCP values in Line 10. By the enumeration procedure’s correctness, we have500

that, in Line 10, 〈firstW[1], firstW[t + 1]〉 is the SA-range of a right-maximal
string W with ` = |W |, and firstW[i] is the first position of the SA-range of
Wci, with i = 1, . . . , t, where c1, . . . , c2 are all the (sorted) right-extensions ofW .
Then, clearly each LCP value in Line 10 is of node-type and has value `, since it
is the LCP between two strings prefixed by W ·charsW[i− 1] and W ·charsW[i].505

17

Similarly, completeness of the procedure follows from the completeness of the
enumeration algorithm. Let LCP [i] be of node-type. Consider the prefix Wb of
length LCP [i] + 1 of the i-th suffix in the lexicographic ordering of all strings’
suffixes. Since LCP [i] = |W |, the (i−1)-th suffix is of the form Wa, with b 6= a,
and W is right-maximal. But then, at some point our enumeration algorithm510

will visit the representation of W , with |W | = `. Since i is the first position
of the range of Wb, we have that i = firstW[j] for some j ≥ 2, and Line 10
correctly outputs the LCP pair (firstW [j], |W |) = (i, |W |).

Correctness and completeness - Algorithm 2. To prove the correctness and
completeness of this procedure, it is sufficient to note that the while loop it-515

erates over all ranges 〈L,R〉 of strings ending with # and not containing #
anywhere else (note that we start from the range of # and we proceed by recur-
sively left-extending this range with symbols different than #). Then, for each
such range we conclude that LCP [L+1, R] is equal to `, i.e. the string depth of
the corresponding string (excluding the final character #). By their definition,520

all leaf-type LCP values are correctly computed in this way.
Complexity - Algorithm 1. If σ >

√
n/ log2 n, then we run Beller et al’s

algorithm, which terminates in O(n log σ) time and uses O(n) = o(n log σ) bits
of additional working space. Otherwise, we perform a linear number of op-
erations on the stack since, as observed in Section 3, the number of Weiner525

links is linear. By the same analysis of Section 3, the operation in Line 12
takes O(k log σ) amortized time on wavelet trees, and sorting in Line 13 (us-
ing any comparison-sorting algorithm sorting m integers in O(m logm) time)
takes O(k log σ) time. Note that in this sorting step we can afford storing in
temporary space nodes x1, . . . , xk since this takes additional space O(kσ log n) =530

O(σ2 log n) = O(n/ log3 n) = o(n) bits. All these operations sum up toO(n log σ)
time. Since the stack always takes at most O(σ2 log2 n) bits and σ ≤

√
n/ log2 n,

the stack’s size never exceeds O(n/ log2 n) = o(n) bits.
Complexity - Algorithm 2. Note that, in the while loop, we start from the

interval of # and recursively left-extend with characters different than # until535

this is possible. It follows that we visit the intervals of all strings of the form W#
such that # does not appear insideW . Since these intervals form a cover of [1, n],
their number (and therefore the number of iterations in the while loop) is also
bounded by n. This is also the maximum number of operations performed on
the queue/stack. Using Beller et al.’s implementation for the queue and a simple540

vector for the stack, each operation takes constant amortized time. Operating
on the stack/queue takes therefore overall O(n) time. For each interval 〈L,R〉
popped from the queue/stack, in Line 13 we output R − L − 2 LCP values.
As observed above, these intervals form a cover of [1, n] and therefore Line 13
is executed no more than n times. Line 18 takes time O(k log σ). Finally, in545

Line 19 we sort at most σ intervals. Using any fast comparison-based sorting
algorithm, this costs overall at most O(n log σ) time.

As far as the space usage of Algorithm 2 is concerned, note that we al-
ways push just pairs interval/length (O(log n) bits) in the queue/stack. If
σ > n/ log3 n, we use Beller et al.’s queue, taking at most O(n) = o(n log σ) bits550

of space. Otherwise, the stack’s size never exceeds O(σ · log n) elements, with

18

each element taking O(log n) bits. This amounts to O(σ·log2 n) = O(n/ log n) =
o(n) bits of space usage. Moreover, in Lines 18-19 it holds σ ≤ n/ log3 n so
we can afford storing temporarily all intervals returned by getIntervals in
O(k log n) = O(σ log n) = O(n/ log2 n) = o(n) bits.555

Combining Lemma 2 and Lemma 1, we obtain:

Theorem 3. Given the word-packed Burrows-Wheeler Transform of a collection
S = {T1, . . . , Tm} of total length n on alphabet [1, σ], we can build the LCP array
of the collection in O(n log σ) time using o(n log σ) bits of working space on top560

of the BWT.

6. Enumerating Suffix Tree Intervals

In this section we show that the procedures described in Section 5 can be
used to enumerate all suffix tree intervals—that is, the suffix array intervals of
all right-maximal text substrings—taking as input the BWT of a text. Note565

that in this section we consider just simple texts rather than string collections
as later we will use this procedure to build the compressed suffix tree of a text.

When σ ≤
√
n/ log2 n, we can directly use Belazzougui’s procedure (Theo-

rem 1), which already solves the problem. When σ >
√
n/ log2 n, we modify

Beller et al.’s procedure (Theorem 2) to enumerate suffix tree intervals using570

O(n) = o(n log σ) bits of working space, as follows.
We recall that (see Section 4), Beller et al’s procedure can be conveniently

described using two separate queues: Q` and Q`+1. At each step, we pop from
Q` an element 〈〈L,R〉, |W |〉 with 〈L,R〉 = range(W) and |W | = ` for some string
W , left-extend the range with all a ∈ BWT.rangeDistinct(L, R), obtaining the575

ranges range(aW) = 〈La, Ra〉 and, only if U [Ra + 1] = 0, set U [Ra + 1] ← 1,
output the LCP pair (Ra+1, |W |), and push 〈〈La, Ra〉, |W |+1〉 into Q`+1. Note
that, since LCP [Ra+1] = |W | we have that the Ra-th and (Ra+1)-th smallest
suffixes start, respectively, with aXc and aXd for some c < d ∈ Σ, where
W = Xc. This implies that aX is right-maximal. It is also clear that, from580

the completeness of Beller et al.’s procedure, all right-maximal text substrings
are visited by the procedure, since otherwise the LCP values equal to ` = |aX|
inside range(aX) would not be generated. Note that the procedure generates
only intervals of right-maximal substrings, thus intervals corresponding to suffix
tree leaves are not generated. However, these intervals are 〈i, i〉 for all 1 ≤ i ≤ n,585

therefore they can be generated before starting the procedure. It follows that, in
order to generate the suffix tree intervals of all suffix tree nodes (leaves included)
once, we need two extra ingredients: (i) whenever we pop from Q` an element
〈〈L,R〉, |W |〉 corresponding to a string W = Xc, we also need the range of X,
and (ii) we need to quickly check if a given range range(aX) of a right-maximal590

substring aX has already been output. Point (ii) is necessary since, using only
the above procedure (augmented with point (i)), range(aX) will be output for

19

each of its right-extensions (except the lexicographically largest, which does not
cause the generation of an LCP pair).

Remember that, in order to keep space usage under control (i.e. O(n) bits),595

we represent Q` as a standard queue of pairs 〈range(W), |W |〉 if and only if
|Q`| < n/ log n. For now, let us assume that the queue size does not exceed this
quantity (the other case will be considered later). In this case, to implement
point (i) we simply augment queue pairs as 〈range(W), range(X), |W |〉, where
W = Xc for some c ∈ Σ. When left-extending W with a character a, we also600

left-extend X with a, obtaining range(aX). Let range(aW) = 〈La, Ra〉. At this
point, if Ra < n and U [Ra + 1] = 0 we do the following:

1. we set U [Ra + 1]← 1,

2. we push 〈range(aW), range(aX), |W |+ 1〉 in Q`+1, and

3. if range(aX) has not already been generated, we output the suffix tree605

range range(aX).

Note that steps (1) and (2) correspond to Beller et al.’s procedure. By the
way we defined our procedure, we add an additional small difference with their
algorithm: instead of initializing the queue with the range of W = ε (for which
X would not be defined), we start by outputting the suffix tree range 〈1, n〉610

(that is, the range of the root) and by initializing the queue with the elements
〈range(c), range(ε), 1〉 for each c ∈ Σ. Since this corresponds (in Beller et al.’s
algorithm) to having generated all LCP values equal to 0, we also need to set
U [Lc] = 1 for all the ranges 〈Lc, Rc〉 = range(c), c ∈ Σ. Figure 3 shows an
example of our full procedure.615

The test in step (3) can be implemented as follows. Note that a suffix array
range range(aX) = 〈L,R〉 can be identified unambiguously by the two integers
L and |aX| = `. Note also that we generate suffix tree intervals in increasing
order of string depth (i.e. when popping elements from Q`, we output suffix
array intervals of string depth `). It follows that we can keep a bitvector GEN`620

of length n recording in GEN`[i] whether or not the suffix array interval of the
string of length ` whose first coordinate is i has already been output. Each time
we change the value of a bit GEN`[i] from 0 to 1, we also push i into a stack
SET`. Let us assume for now that also SET`’s size does not exceed n/ log n
(later we will consider a different representation for the other case). Then, also625

the bit-size of SET` will never exceed O(n) bits. After Q` has been emptied,
for each i ∈ SET` we set GEN`[i] ← 0. This makes all GEN`’s entries equal
to 0, and we can thus re-use its space for GEN`+1 at the next stage (i.e. when
popping elements from Q`+1).

Now, let us consider the case |Q`| ≥ n/ log n. The key observation is that630

Q` exceeds this value for at most O(log n) values of `, therefore we can afford
spending extra O(n/ log n) time to process each of these queues. As seen in Sec-
tion 4 (paragraph “Queue implementation”), whenever Q`’s size exceeds n/ log n
(while pushing elements in it) we switch to a different queue representation using
packed bitvectors. Point (i) can be solved by storing two additional bitvectors635

as follows. Suppose we are about to push the triple 〈range(W), range(X), |W |〉 in
Q`, where W = Xc for some c ∈ Σ. The solution seen in Section 4 consisted in

20

index BWT Suffixes

1 A #

2 T A #
3 T A T A #

4 # C T A T A #

5 A T A #

6 C T A T A #

1

2

3
4

5

6

#
A

C
T
A
T
A
#

T
A
#

TA

#
T
A
#

Figure 3: Running example of our extension of Beller et al.’s algorithm for generat-
ing the suffix tree nodes’ intervals (leaves included). In the example, the string is
CTATA#. Left. BWT and sorted suffixes of the string. Right. Suffix tree of the
string. First, we output the leaves’ intervals, 〈i, i〉 for i = 1, . . . , 6, and the root’s in-
terval, 〈1,6〉. We initialize the queue with triples 〈range(c), range(ε), 1〉 for all c ∈ Σ:
Q = {〈〈1, 1〉, 〈1, 6〉, 1〉, 〈〈2, 3〉, 〈1, 6〉, 1〉, 〈〈4, 4〉, 〈1, 6〉, 1〉, 〈〈5, 6〉, 〈1, 6〉, 1〉}, and we create the
bitvector U [1, 6] = 1, 1, 0, 1, 1, 0 (remember that we set all bits corresponding to the beginning
of the range of a single character). The first element we pop from the queue is 〈〈1, 1〉, 〈1, 6〉, 1〉,
corresponding to the strings W = # and X = ε. There is only one way to left-extend W ,
namely, with letter A. The range of A# is on rows 〈L,R〉 = 〈2, 2〉; since U [R+ 1] = U [3] = 0,
we (1) set U [3] ← 1, (2) append the left-extended intervals 〈〈2, 2〉, 〈2, 3〉, 2〉 (of strings A#
and A, respectively) at the end of the queue, and, since range(X) = range(A) = 〈2, 3〉 has not
been output yet, we (3) output the suffix tree range 〈2,3〉 of the right-maximal string A. The
queue is now Q = {〈〈2, 3〉, 〈1, 6〉, 1〉, 〈〈4, 4〉, 〈1, 6〉, 1〉, 〈〈5, 6〉, 〈1, 6〉, 1〉, 〈〈2, 2〉, 〈2, 3〉, 2〉}. We ex-
tract the first element, corresponding to W = A and X = ε. W can only be left-extended
with T . The resulting range of TA is 〈5, 6〉; since 6 = n however, we do not proceed further.
Also the next two elements, corresponding to W = C and W = T , are discarded since all
their extensions cW , with range(cW) = 〈L,R〉 are such that U [R + 1] = 1. The only element
left in the queue is 〈〈2, 2〉, 〈2, 3〉, 2〉, corresponding to W = A# and X = A. The string A#
can be extended only by character T . This leads to the range range(TA#) = 〈L,R〉 = 〈5, 5〉,
for which we have U [R + 1] = U [6] = 0. We therefore set U [6] ← 1 and output the suffix
tree interval of string TX = TA, that is, 〈5,6〉. The algorithm continues by appending to the
queue the intervals of TW and TX but will not output any other suffix tree interval since all
bits in U are now set.

21

marking, in two packed bitvectors open[1, n] and close[1, n], the start and end
points of range(W). Now, we just use two additional packed bitvectors open[1, n]
and close[1, n] to also mark the start and end points of range(X). As seen in640

Section 4 (paragraph “Queue implementation”), intervals are extracted from Q`
by scanning open[1, n] and close[1, n] in O(n/ log n+|Q`|) time. Note that W is
a right-extension of X, therefore range(W) is contained in range(X). It follows
that we can scan in parallel the bitvectors open[1, n], close[1, n], open[1, n],
and close[1, n] and retrieve, for each range(W) extracted from the former two645

bitvectors, the (unique in the queue) interval range(X) enclosing range(W) (us-
ing the latter two bitvectors). More formally, whenever finding a bit set at
open[i], we search close[i, n] to find the next bit set. Let us call j the posi-
tion containing such bit set. Then, we similarly scan open[i, j] and close[i, j]
to generate all intervals 〈l, r〉 enclosed by 〈i, j〉, and for each of them generate650

the triple 〈〈l, r〉, 〈i, j〉, `〉. Again, exploiting word-parallelism the process takes
O(n/ log n+ |Q`|) time to extract all triples 〈range(W), range(X), |W |〉 from Q`.

A similar solution can be used to solve point (ii) for large SET`. Whenever
SET` exceeds size n/ log n, we simply empty it and just use bitvector GEN`.
This time, however, this bitvector is packed in O(n/ log n) words. It can there-655

fore be erased (i.e. setting all its entries to 0) in O(n/ log n) time, and we do
not need to use the stack SET` at all. Since (a) we insert an element in some
SET` only when outputting a suffix tree range and (b) in total we output O(n)
such ranges, SET` can exceed size n/ log n for at most O(log n) values of `.
We conclude that also the cost of creating and processing all GEN` and SET`660

amortizes to O(n).
To sum up, the overall procedure runs in O(n log σ) time and uses O(n)

bits of space. By combining it with Belazzougui’s procedure as seen above (i.e.
choosing the right procedure according to the alphabet’s size), we obtain:

665

Lemma 4. Given a wavelet tree representing the Burrows-Wheeler transform
of a text T of length n on alphabet [1, σ], in O(n log σ) time and o(n log σ) bits
of working space we can enumerate the suffix array intervals corresponding to
all right maximal text’s substrings.

7. Building the PLCP Bitvector670

The PLCP array is defined as PLCP [i] = LCP [ISA[i]], and can thus be
used to retrieve LCP values as LCP [i] = PLCP [SA[i]] (note that this requires
accessing the suffix array). Kasai et al. showed in [16] that PLCP is almost
increasing: PLCP [i + 1] ≥ PLCP [i] − 1. This allows representing it in small
space as follows. Let plcp[1, 2n] denote the bitvector having a bit set at each675

position PLCP [i] + 2i, for i = 1, . . . , n (and 0 in all other positions). Since
PLCP [i + 1] ≥ PLCP [i] − 1, the quantity PLCP [i] + 2i is different for each
i. By definition, PLCP [i] can be written as j − 2i, where j is the position of
the i-th bit set in plcp; this shows that each PLCP entry can be retrieved in

22

constant time using the bitvector plcp, augmented to support constant-time680

select queries.
We now show how to build the plcp bitvector in small space using the LCP

enumeration procedure of Section 5. Our procedure relies on the concept of
irreducible LCP values:

685

Definition 1. LCP [i] is said to be irreducible if and only if either i = 0 or
BWT [i] 6= BWT [i− 1] hold.

We call reducible a non-irreducible LCP value. We extend the above defini-
tion to PLCP values, saying that PLCP [i] is irreducible if and only if LCP [ISA[i]]
is irreducible. The following Lemma, shown in [42], is easy to prove (see also690

[25, Lem. 4]):

Lemma 5 ([42], Lem. 1). If PLCP [i] is reducible, then PLCP [i] = PLCP [i−
1]− 1.

We also make use of the following Theorem from Kärkkäinen et al. [25]:695

Theorem 4 ([25], Thm. 1). The sum of all irreducible lcp values is at most
2n log n.

Our strategy is as follows. We divide BWT [1, n] in dn/Be blocks BWT [(i−
1) ·B+ 1, i ·B], i = 1, . . . , dn/Be of size B (assume for simplicity that B divides700

n). For each block i = 1, . . . , dn/Be, we use Lemma 2 to enumerate all pairs
(j, LCP [j]). Whenever we generate a pair (j, LCP [j]) such that (i) j falls in the
current block’s range [(i−1) ·B+1, i ·B], (ii) LCP [j] > log3 n, and (iii) LCP [j]
is irreducible (this can be checked easily using Definition 1), we store (j, LCP [j])
in a temporary array LARGE LCP (note: each such pair requires O(log n) bits to705

be stored). By Theorem 4, there cannot be more than 2n/ log2 n irreducible
LCP values being larger than log3 n, that is, LARGE LCP will never contain more
than 2n/ log2 n values and its bit-size will never exceed O(n/ log n) = o(n)
bits. We also mark all such relative positions j − (i − 1) · B in a bitvector of
length B with rank support and radix-sort LARGE LCP in O(B) time to guarantee710

constant-time access to LCP [j] whenever conditions (i-iii) hold true for index j.
On the other hand, if (i) j falls in the current block’s range [(i−1) ·B+ 1, i ·B],
(ii) LCP [j] ≤ log3 n, and (iii) LCP [j] is irreducible then we can store LCP [j] in
another temporary vector SMALL LCP[1, B] as follows: SMALL LCP[j−(i−1)·B]←
LCP [j] (at the beginning, the vector is initialized with undefined values). By715

condition (ii), SMALL LCP can be stored in O(B log log n) bits. Using LARGE LCP

and SMALL LCP, we can access in constant time all irreducible values LCP [j]
whenever j falls in the current block [(i − 1) · B + 1, i · B]. At this point, we
enumerate all pairs (i, ISA[i]) in text order (i.e. for i = 1, . . . , n) using the
FL function on the BWT. Whenever one of those pairs (i, ISA[i]) = (i, j) is720

such that (i) j falls in the current block’s range [(i − 1) · B + 1, i · B] and

23

(ii) LCP [j] is irreducible, we retrieve LCP [j] in constant time as seen above
and we set plcp[2i + LCP[j]] ← 1; the correctness of this assignment follows
from the fact that j = ISA[i], thus LCP [j] = PLCP [i]. Using Lemma 5, we
can moreover compute the reducible PLCP values that follow PLCP [i] in text725

order (up to the next irreducible value), and set the corresponding bits in plcp.
After repeating the above procedure for all blocks BWT [(i − 1) · B + 1, i · B],
i = 1, . . . , dn/Be, we terminate the computation of bitvector plcp. For each
block, we spend O(n log σ) time (one application of Lemma 2 and one BWT
navigation to generate all pairs (i, ISA[i])). We also spend O(n/ log2 n) time730

to allocate the instances of LARGE LCP across all blocks. Overall, we spend
O((n2/B) log σ+n log σ) time across all blocks. The space used is o(n) +O(B ·
log log n) bits on top of the BWT. By setting B = (ε · n log σ)/ log log n we
obtain our result:

735

Lemma 6. Given a wavelet tree for the Burrows-Wheeler transform of a text
T of length n on alphabet [1, σ], for any parameter 0 < ε ≤ 1 we can build the
PLCP bitvector in O(n(log σ + ε−1 log log n)) time and ε · n log σ + o(n) bits of
working space on top of the input BWT and the optput.

8. Building the Suffix Tree Topology740

In order to build the suffix tree topology we use a strategy analogous to
the one proposed by Belazzougui [24]. The main observation is that, given a
procedure that enumerates suffix tree intervals, for each interval [l, r] we can
increment a counter Open[l] and a counter Close[r], where Open and Close

are integer vectors of length n. Then, the BPS representation of the suffix745

tree topology can be built by scanning left-to right the two arrays and, for
each i = 1, . . . , n, append Open[i] open parentheses followed by Close[i] close
parentheses to the BPS representation. The main drawback of this solution is
that it takes too much space: 2n log n bits to store the two arrays. Belazzougui
solves this problem by noticing that the sum of all the values in the two arrays750

is the length of the final BPS representation, that is, at most 4n. This makes it
possible to represent the arrays in just O(n) bits of space by representing (the
few) large counters in plain form and (the many) small counters using delta
encoding (while still supporting updates in constant time).

Our goal in this section is to reduce the working space from O(n) to a755

(small) fraction of n log σ. A first idea could be to iterate Belazzougui’s strat-
egy on chunks of the interval [1, n]. Unfortunately, this does not immediately
give the correct solution as a chunk could still account for up to Θ(n) paren-
theses, no matter what the length of the chunk is; as a result, Belazzougui’s
representation could still take O(n) bits of space for a chunk (when using large760

enough chunks to keep the running time under control as seen in the previ-
ous section). We use a solution analogous to the one discussed in the previous
section. This solution corresponds to the first part of Belazzougui’s strategy
(in particular, we will store small counters in plain form instead of using delta

24

encoding). We divide BWT [1, n] in dn/Be blocks BWT [(i − 1) · B + 1, i · B],765

i = 1, . . . , dn/Be of size B (assume for simplicity that B divides n). For each
block i = 1, . . . , dn/Be, we use Lemma 4 to enumerate all suffix tree intervals
[l, r]. We keep two arrays Open[1, B] and Close[1, B] storing integers of 2 log log n
bits each. Whenever the beginning l of a suffix tree interval [l, r] falls inside the
current block [(i−1)·B+1, i·B], we increment Open[l− (i− 1) · B] (the descrip-770

tion is analogous for index r and array Close). If Open[l− (i− 1) · B] reaches
the maximum value 22 log logn−1, we no longer increment it. Adopting Belaz-
zougui’s terminology, we call such a bucket “saturated”. After having generated
all suffix tree intervals, let k be the number of saturated counters. We allocate a
vector LARGE COUNTERS storing k integers of log n+ 2 bits each (enough to store775

the value 4n, i.e. an upper-bound to the value that a counter can reach). We
also allocate a bitvector of length B marking saturated counters, and process it
to support constant-time rank queries. This allows us to obtain in constant time
the location in LARGE COUNTERS corresponding to any saturated counter in the
block. We generate all suffix tree intervals for a second time using again Lemma780

4, this time incrementing (in LARGE COUNTERS) only locations corresponding to
saturated counters. Since the BPS sequence has length at most 4n and a counter
saturates when it reaches value Θ(log2 n), we have that k = O(n/ log2 n) and
thus LARGE COUNTERS takes at most O(n/ log n) = o(n) bits to be stored. The
rest of the analysis is identical to the algorithm described in the previous sec-785

tion. For each block, we spend O(n log σ) time (two applications of Lemma 4).
We also spend O(n/ log2 n) time to allocate the instances of LARGE COUNTERS

across all blocks. Overall, we spend O((n2/B) log σ + n log σ) time across all
blocks. The space used is o(n) + O(B · log log n) bits on top of the BWT. By
setting B = (ε · n log σ)/ log log n we obtain:790

Lemma 7. Given a wavelet tree for the Burrows-Wheeler transform of a text T
of length n on alphabet [1, σ], for any parameter 0 < ε ≤ 1 we can build the BPS
representation of the suffix tree topology in O(n(log σ + ε−1 log log n)) time and
ε · n log σ+ o(n) bits of working space on top of the input BWT and the optput.795

To conclude, we note that our procedures can be immediately used to build
space-efficiently the compressed suffix tree described by Sadakane [18] starting
from the BWT. The only missing ingredients are (i) to augment the BWT
with a suffix array sample in order to turn it into a CSA, and (ii) to pre-
process the PLCP and BPS sequences to support fast queries (select on the800

PLCP and navigational queries on the BPS). Step (i) can be easily performed
in O(n log σ) time and n + o(n) bits of working space with a folklore solution
that iteratively applies function LF to navigate all BWT’s positions and collect
one suffix array sample every O(log1+δ n/ log σ) text positions, for any fixed
δ > 0 (using a succinct bitvector to mark sampled positions). The resulting805

CSA takes n log σ + o(n log σ) bits of space and allows computing any SA[i]
in O(log1+δ n) time. Step (ii) can be performed in O(n) time and o(n) bits of
working space using textbook solutions (see [43]). Combining this with Lemmas
1, 6, and 7, we obtain:

25

810

Theorem 5. Given the re-writable word-packed BWT of a text T of length n
on alphabet [1, σ], for any parameter 0 < ε ≤ 1 we can replace it in O(n(log σ+
ε−1 log log n)) time and (ε + o(1)) · n log σ bits of working space with a com-
pressed suffix tree taking n log σ + 6n + o(n log σ) bits of space and supporting
all operations in O(polylog n) time.815

9. Merging BWTs in Small Space

In this section we use our space-efficient BWT-navigation strategies to tackle
an additional problem: to merge the BWTs of two string collections. In [24, 32],
Belazzougui et al. show that Theorem 1 can be adapted to merge the BWTs
of two texts T1, T2 and obtain the BWT of the collection {T1, T2} in O(nk)820

time and n log σ(1 + 1/k) + 11n+ o(n) bits of working space for any k ≥ 1 [32,
Thm. 7]. We show that our strategy enables a more space-efficient algorithm for
the task of merging BWTs of collections. The following theorem, whose proof
is reported later in this section, merges two BWTs by computing the binary
DA of their union. After that, the merged BWT can be streamed to external825

memory (the DA tells how to interleave characters from the input BWTs) and
does not take additional space in internal memory. Similarly to what we did in
the proof of Theorem 3, this time we re-use the space of the Document Array to
accommodate the extra n bits needed to replace the BWTs of the two collections
with their wavelet matrices. This is the main result of this section:830

Theorem 6. Given the Burrows-Wheeler Transforms of two collections S1 and
S2 of total length n on alphabet [1, σ], we can compute the Document Array of
S1 ∪ S2 in O(n log σ) time using o(n log σ) bits of working space on top of the
input BWTs and the output DA.835

We also briefly discuss how to extend Theorem 6 to build the LCP array
of the merged collection. In Section 10 we present an implementation of our
algorithms and an experimental comparison with eGap [44], the state-of-the-art
tool designed for the same task of merging BWTs while inducing the LCP of
their union.840

The procedure of Algorithm 2 can be extended to merge BWTs of two collec-
tions S1, S2 using o(n log σ) bits of working space on top of the input BWTs and
output Document Array (here, n is the cumulative length of the two BWTs).
The idea is to simulate a navigation of the leaves of the generalized suffix tree
of S1 ∪ S2 (note: for us, a collection is an ordered multi-set of strings). Our845

procedure differs from that described in [32, Thm. 7] in two ways. First, they
navigate a subset of the suffix tree nodes (so-called impure nodes, i.e. the roots
of subtrees containing suffixes from distinct strings), whereas we navigate leaves.
Second, their visit is implemented by following Weiner links. This forces them
to represent the nodes with the “heavy” representation repr of Section 3, which850

is not efficient on large alphabets. On the contrary, leaves can be represented
simply as ranges and allow for a more space-efficient queue/stack representation.

26

We represent each leaf by a pair of intervals, respectively on BWT (S1) and
BWT (S2), of strings of the form W#. Note that: (i) the suffix array of S1 ∪S2

is covered by the non-overlapping intervals of strings of the form W#, and (ii)855

for each such string W#, the interval range(W#) = 〈L,R〉 in GSA(S1∪S2) can
be partitioned as 〈L,M〉 · 〈M + 1, R〉, where 〈L,M〉 contains only suffixes from
S1 and 〈M + 1, R〉 contains only suffixes from S2 (one of these two intervals
could be empty). It follows that we can navigate in parallel the leaves of the
suffix trees of S1 and S2 (using again a stack or a queue containing pairs of860

intervals on the two BWTs), and fill the Document Array DA[1, n], an array
that will tell us whether the i-th entry of BWT (S1 ∪S2) comes from BWT (S1)
(DA[i] = 0) or BWT (S2) (DA[i] = 1). To do this, let 〈L1, R1〉 and 〈L2, R2〉
be the ranges on the suffix arrays of S1 and S2, respectively, of a suffix W#
of some string in the collections. Note that one of the two intervals could be865

empty: Rj < Lj . In this case, we still require that Lj − 1 is the number of
suffixes in Sj that are smaller than W#. Then, in the collection S1 ∪ S2 there
are L1 + L2 − 2 suffixes smaller than W#, and R1 + R2 suffixes smaller than
or equal to W#. It follows that the range of W# in the suffix array of S1 ∪ S2

is 〈L1 + L2 − 1, R1 + R2〉, where the first R1 − L1 + 1 entries correspond to870

suffixes of strings from S1. Then, we set DA[L1 + L2 − 1, L2 + R1 − 1] ← 0
and DA[L2 +R1, R1 +R2]← 1. The procedure starts from the pair of intervals
corresponding to the ranges of the string “#” in the two BWTs, and proceeds
recursively by left-extending the current pair of ranges 〈L1, R1〉, 〈L2, R2〉 with
the symbols in BWT1.rangeDistinct(L1, R1)∪ BWT2.rangeDistinct(L2, R2). The875

detailed procedure is reported in Algorithm 3 and we show an example in Figure
4. The leaf visit is implemented, again, using a stack or a queue; this time
however, these containers are filled with pairs of intervals 〈L1, R1〉, 〈L2, R2〉.
We implement the stack simply as a vector of quadruples 〈L1, R1, L2, R2〉. As
far as the queue is concerned, some care needs to be taken when representing880

the pairs of ranges using bitvectors as seen in Section 4 with Beller et al.’s
representation. Recall that, at any time, the queue can be partitioned into two
sub-sequences associated with LCP values ` and `+ 1 (we pop from the former,
and push in the latter). This time, we represent each of these two subsequences
as a vector of quadruples (pairs of ranges on the two BWTs) as long as the885

number of quadruples in the sequence does not exceed n/ log n. When there are
more quadruples than this threshold, we switch to a bitvector representation
defined as follows. Let |BWT (S1)| = n1, |BWT (S2)| = n2, and |BWT (S1 ∪
S2)| = n = n1 + n2. We keep two bitvectors Open[1, n] and Close[1, n] storing
opening and closing parentheses of intervals in BWT (S1 ∪ S2). We moreover890

keep two bitvectors NonEmpty1[1, n] and NonEmpty2[1, n] keeping track, for each
i such that Open[i] = 1, of whether the interval starting in BWT (S1 ∪ S2)[i]
contains suffixes of reads coming from S1 and S2, respectively. Finally, we
keep four bitvectors Openj[1, nj] and Closej[1, nj], for j = 1, 2, storing non-
empty intervals on BWT (S1) and BWT (S2), respectively. To insert a pair895

of intervals 〈L1, R1〉, 〈L2, R2〉 in the queue, let 〈L,R〉 = 〈L1 + L2 − 1, R1 +
R2〉. We set Open[L] ← 1 and Close[R] ← 1. Then, for j = 1, 2, we set
NonEmptyj[L] ← 1, Openj[Lj] ← 1 and Closej[Rj] ← 1 if and only if Rj ≥ Lj .

27

This queue representation takes O(n) bits. By construction, for each bit set
in Open at position i, there is a corresponding bit set in Openj if and only if900

NonEmptyj[i] = 1 (moreover, corresponding bits set appear in the same order
in Open and Openj). It follows that a left-to-right scan of these bitvectors is
sufficient to identify corresponding intervals on BWT (S1 ∪S2), BWT (S1), and
BWT (S2). By packing the bits of the bitvectors in words of Θ(log n) bits, the t
pairs of intervals contained in the queue can be extracted in O(t+n/ log n) time905

(as described in [27]) by scanning in parallel the bitvectors forming the queue.
Particular care needs to be taken only when we find the beginning of an interval
Open[L] = 1 with NonEmpty1[L] = 0 (the case NonEmpty2[L] = 0 is symmetric).
Let L2 be the beginning of the corresponding non-empty interval on BWT (S2).
Even though we are not storing L1 (because we only store nonempty intervals),910

we can retrieve this value as L1 = L − L2 + 1. Then, the empty interval on
BWT (S1) is 〈L1, L1 − 1〉.

The same arguments used in the previous section show that the algorithm
runs in O(n log σ) time and uses o(n log σ) bits of space on top of the input
BWTs and output Document Array. This proves Theorem 6. To conclude, we915

note that the algorithm can be easily extended to compute the LCP array of the
merged collection while merging the BWTs. This requires adapting Algorithm
1 to work on pairs of suffix tree nodes (as we did in Algorithm 3 with pairs of
leaves). Results on an implementation of the extended algorithm are discussed
in the next section. From the practical point of view, note that it is more920

advantageous to induce the LCP of the merged collection while merging the
BWTs (rather than first merging and then inducing the LCP using the algorithm
of the previous section), since leaf-type LCP values can be induced directly while
computing the document array.

Note that Algorithm 3 is similar to Algorithm 2, except that now we manip-925

ulate pairs of intervals. In Line 27, we sort quadruples according to the length
Ri1 +Ri2−(Li1 +Li2)+2 of the combined interval on BWT (S1∪S2). Finally, note
that Backward search can be performed correctly also when the input interval
is empty: BWTj.bwsearch(〈Lj, Lj − 1〉, c), where Lj − 1 is the number of suffixes
in Sj smaller than some string W , correctly returns the pair 〈L′, R′〉 such that930

L′ − 1 is the number of suffixes in Sj smaller than cW : this is true when im-
plementing backward search with a rankc operation on position Lj ; then, if the
original interval is empty we just set R′ = L′ − 1 to keep the invariant that
R′ − L′ + 1 is the interval’s length.

10. Implementation and Experimental Evaluation935

We implemented our LCP construction and BWT merge algorithms on DNA
alphabet in https://github.com/nicolaprezza/bwt2lcp using the language
C++. Due to the small alphabet size, it was actually sufficient to implement our
extension of Belazzougui’s enumeration algorithm (and not the strategy of Beller
et al., which becomes competitive only on large alphabets). The repository940

features a new packed string on DNA alphabet ΣDNA = {A,C,G, T,#} using
4 bits per character and able to compute the quintuple 〈BWT.rankc(i)〉i∈ΣDNA

28

https://github.com/nicolaprezza/bwt2lcp

Algorithm 3 Merge(BWT1, BWT2, DA)

1: if σ > n/ log3 n then
2: P← new queue() . Initialize new queue of interval pairs
3: else
4: P← new stack() . Initialize new stack of interval pairs
5: end if
6: P.push(BWT1.range(#), BWT2.range(#)) . Push SA-ranges of terminator
7: while not P.empty() do
8: 〈L1, R1, L2, R2〉 ← P.pop() . Pop highest-priority element
9: for i = L1 + L2 − 1 . . . L2 +R1 − 1 do

10: DA[i]← 0 . Suffixes from S1

11: end for
12: for i = L2 +R1 . . . R1 +R2 do
13: DA[i]← 1 . Suffixes from S2

14: end for
15: if σ > n/ log3 n then
16: P.push(getIntervals(L1, R1, L2, R2, BWT1, BWT2)) . New intervals
17: else
18: c11, . . . , c

1
k1
← BWT1.rangeDistinct(L1, R1)

19: c21, . . . , c
2
k2
← BWT2.rangeDistinct(L2, R2)

20: {c1 . . . ck} ← {c11, . . . , c1k1} ∪ {c
2
1, . . . , c

2
k2
}

21: for i = 1 . . . k do
22: 〈Li1, Ri1〉 ← BWT1.bwsearch(〈L1, R1〉, ci) . Backward search step
23: end for
24: for i = 1 . . . k do
25: 〈Li2, Ri2〉 ← BWT2.bwsearch(〈L2, R2〉, ci) . Backward search step
26: end for
27: 〈L̂i1, R̂i1, L̂i2, R̂i2, 〉i=1,...,k ← sort(〈Li1, Ri1, Li2, Ri2, 〉i=1,...,k)
28: for i = k . . . 1 do
29: P.push(L̂i1, R̂

i
1, L̂

i
2, R̂

i
2) . Push in order of decreasing length

30: end for
31: end if
32: end while

29

index BWT(S1) Suffixes

1 T #

2 T #

3 # A A T #

4 A A T #

5 G C T #

6 # G C T #

7 C T #

8 A T #

index BWT(S2) Suffixes

1 T #

2 T G T #

3 G T #

4 # T G T #

index DA BWT(S1 ∪ S2) Suffixes

1 0 T #

2 0 T #

3 1 T #

4 0 # A A T #

5 0 A A T #

6 0 G C T #
7 0 # G C T #

8 1 T G T #

9 0 C T #

10 0 A T #

11 1 G T #
12 1 # T G T #

Figure 4: Running example for Algorithm 3, merging the BWTs of two sets of strings. Top
Left: BWT of the set S1 = {GCT#, AAT#}. Top Right: BWT of the set S2 = {TGT#}.
Bottom: BWT of the (ordered) union S1 ∪ S2 = {GCT#, AAT#, TGT#}. We use the
colors black/red to show suffixes and BWT characters coming from the sets S1 and S2,
respectively. The document array (DA), computed by Algorithm 3, encodes these numbers
(0 for black and 1 for red) and thus is sufficient to specify how the characters from the two
input BWTs are interleaved in the output. The algorithm starts with the ranges of # on
the two BWTs: 〈L1, R1, L2, R2〉 = 〈1, 2, 1, 1〉. In Lines 9-14, we set DA[1, . . . , 2] ← 0 and
DA[3, . . . , 3] ← 1. These ranges can be left-extended only by letter T , yielding the ranges of
T# on the two BWTs: 〈L1, R1, L2, R2〉 = 〈7, 8, 3, 3〉. This quadruple leads to the assignments
DA[9, . . . , 10]← 0 andDA[11, . . . , 11]← 1 in Lines 9-14. By left-extending T# with A, we can
now see an example of the case where one of the two BWT ranges becomes empty. By applying
the LF mapping to these ranges with letter A, we obtain that the ranges of AT# on the two
BWTs are: 〈L1, R1, L2, R2〉 = 〈4, 4, 2, 1〉 (note the empty range on BWT (S2)). The rule in
lines 9-14 of the algorithm is still correct: we set DA[5, . . . , 5] ← 0 and DA[6, . . . , 5] ← 1.
Note that the latter assignment is on an empty interval of DA, therefore the operation does
not modify any bit of the array.

30

with just one cache miss. This is crucial for our algorithms, since at each step
we need to left-extend ranges by all characters. This structure divides the text
in blocks of 128 characters. Each block is stored using 512 cache-aligned bits945

(the typical size of a cache line), divided as follows. The first 128 bits store
four 32-bits counters with the partial ranks of A, C, G, and T before the block
(if the string is longer than 232 characters, we further break it into superblocks
of 232 characters; on reasonably-large inputs, the extra rank table fits in cache
and does not cause additional cache misses). The following three blocks of950

128 bits store the first, second, and third bits, respectively, of the characters’
binary encodings (each character is packed in 3 bits). Using this layout, the
rank of each character in the block can be computed with at most three masks,
a bitwise AND (actually less, since we always compute the rank of all five
characters and we re-use partial results whenever possible), and a popcount955

operation. We also implemented a packed string on the augmented alphabet
Σ+
DNA = {A,C,G,N, T,#} using 4.38 bits per character and offering the same

cache-efficiency guarantees. In this case, a 512-bits block stores 117 characters,
packed as follows. As seen above, the first 128 bits store four 32-bits counters
with the partial ranks of A, C, G, and T before the block. Each of the following960

three blocks of 128 bits is divided in a first part of 117 bits and a second part of
11 bits. The first parts store the first, second, and third bits, respectively, of the
characters’ binary encodings. The three parts of 11 bits, concatenated together,
store the rank of N’s before the block. This layout minimizes the number of
bitwise operations (in particular, shifts and masks) needed to compute a parallel965

rank.
Several heuristics have been implemented to reduce the number of cache

misses in practice. In particular, we note that in Algorithm 2 we can avoid
backtracking when the range size becomes equal to one; the same optimization
can be implemented in Algorithm 3 when also computing the LCP array, since970

leaves of size one can be identified during navigation of internal suffix tree
nodes. Overall, we observed (using a memory profiler) that in practice the
combination of Algorithms 1-2 generates at most 1.5n cache misses, n being the
total collection’s size. The extension of Algorithm 3 that computes also LCP
values generates twice this number of cache misses (this is expected, since the975

algorithm navigates two BWTs).
We now report some preliminary experiments on our algorithms: bwt2lcp

(Algorithms 1-2) and merge (Algorithm 3, extended to compute also the LCP
array). All tests were done on a DELL PowerEdge R630 machine, used in non
exclusive mode. Our platform is a 24-core machine with Intel(R) Xeon(R) CPU980

E5-2620 v3 at 2.40 GHz, with 128 GiB of shared memory and 1TB of SSD. The
system is Ubuntu 14.04.2 LTS. The code was compiled using gcc 8.1.0 with flags
-Ofast -fstrict-aliasing.

Table 1 summarizes the datasets used in our experiments. “NA12891.8”2

2ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/phase3/data/NA12891/sequence_read/SRR622458_1.

filt.fastq.gz

31

ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/phase3/data/NA12891/sequence_read/SRR622458_1.filt.fastq.gz
ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/phase3/data/NA12891/sequence_read/SRR622458_1.filt.fastq.gz

Name Size σ N. of Max read bytes for
GiB reads length lcp values

NA12891.8 8.16 5 85,899,345 100 1
shortreads 8.0 6 85,899,345 100 1
pacbio 8.0 6 942,248 71,561 4
pacbio.1000 8.0 6 8,589,934 1000 2
NA12891.24 23.75 6 250,000,000 100 1
NA12878.24 23.75 6 250,000,000 100 1

Table 1: Datasets used in our experiments. Size accounts only for the alphabet’s characters.
The alphabet’s size σ includes the terminator.

Preprocessing eGap merge

Name Wall Clock RAM Wall Clock RAM Wall Clock RAM
(h:mm:ss) (GiB) (h:mm:ss) (GiB) (h:mm:ss) (GiB)

NA12891.8 1:15:57 2.84
10:15:07 18.09 (-m 32000) 3:16:40 26.52

NA12891.8.RC 1:17:55 2.84
shortreads 1:14:51 2.84

11:03:10 16.24 (-m 29000) 3:36:21 26.75
shortreads.RC 1:19:30 2.84
pacbio.1000 2:08:56 31.28

5:03:01 21.23 (-m 45000) 4:03:07 42.75
pacbio.1000.RC 2:15:08 31.28

pacbio 2:27:08 31.25
2:56:31 33.40 (-m 80000) 4:38:27 74.76

pacbio.RC 2:19:27 31.25
NA12878.24 4:24:27 7.69

31:12:28 47.50 (-m 84000) 6:41:35 73.48
NA12891.24 4:02:42 7.69

Table 2: In this experiment, we merge pairs of BWTs and induce the LCP of their union
using eGap and merge. We also show the resources used by the pre-processing step (building
the BWTs) for comparison. Wall clock is the elapsed time from start to completion of the
instance, while RAM (in GiB) is the peak Resident Set Size (RSS). All values were taken using
the /usr/bin/time command. During the preprocessing step on the collections pacBio.1000
and pacBio, the available memory in MB (parameter m) of eGap was set to 32000 MB. In the
merge step this parameter was set to about to the memory used by merge. eGap and merge

take as input the same BWT file.

contains Human DNA reads on the alphabet ΣDNA where we have removed985

reads containing the nucleotide N . “shortreads” contains Human DNA short
reads on the extended alphabet Σ+

DNA. “pacbio” contains PacBio RS II reads
from the species Triticum aestivum (wheat). “pacbio.1000” are the strings from
“pacbio” trimmed to length 1,000. All the above datasets except the first have
been download from https://github.com/felipelouza/egap/tree/master/990

dataset. To conclude, we added two collections, “NA12891.24” and “NA12878.24”
obtained by taking the first 250, 000, 000 reads from individuals NA128783 and
NA12891. All datasets except “NA12891.8” are on the alphabet Σ+

DNA. In Ta-
bles 2 and 3, the suffix “.RC” added to a dataset’s name indicates the reverse-
complemented dataset.995

We compare our algorithms with eGap4 and BCR5, two tools designed to
build the BWT and LCP of a set of DNA reads. Since no tools for inducing the
LCP from the BWT of a set of strings are available in the literature, in Table

3ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/phase3/data/NA12878/sequence_read/SRR622457_1.

filt.fastq.gz
4https://github.com/felipelouza/egap
5https://github.com/giovannarosone/BCR_LCP_GSA

32

https://github.com/felipelouza/egap/tree/master/dataset
https://github.com/felipelouza/egap/tree/master/dataset
https://github.com/felipelouza/egap/tree/master/dataset
ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/phase3/data/NA12878/sequence_read/SRR622457_1.filt.fastq.gz
ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/phase3/data/NA12878/sequence_read/SRR622457_1.filt.fastq.gz
https://github.com/felipelouza/egap
https://github.com/giovannarosone/BCR_LCP_GSA

Preprocessing bwt2lcp

Name Wall Clock RAM Wall Clock RAM
(h:mm:ss) GiB (h:mm:ss) (GiB)

NA12891.8 ∪ NA12891.8.RC (BCR) 2:43:02 5.67 1:40:01 24.48
shortread ∪ shortread.RC (BCR) 2:47:07 5.67 2:14:41 24.75

pacbio.1000 ∪ pacbio.1000.RC (eGap-m 32000) 7:07:46 31.28 1:54:56 40.75
pacbio ∪ pacbio.RC (eGap-m 80000) 6:02:37 78.125 2:14:37 72.76
NA12878.24 ∪ NA12891.24 (BCR) 8:26:34 16.63 6:41:35 73.48

Table 3: In this experiment, we induced the LCP array from the BWT of a collection (each
collection is the union of two collections from Table 2). We also show pre-processing require-
ments (i.e. building the BWT) of the better performing tool between BCR and eGap.

3 we simply compare the resources used by bwt2lcp with the time and space
requirements of eGap and BCR when building the BWT. In [23], experimental1000

results show that BCR works better on short reads and collections with a large
average LCP, while eGap works better when the datasets contain long reads
and relatively small average LCP. For this reason, in the preprocessing step
we have used BCR for the collections containing short reads and eGap for the
other collections. eGap, in addition, is capable of merging two or more BWTs1005

while inducing the LCP of their union. In this case, we can therefore directly
compare the performance of eGap with our tool merge; results are reported in
Table 2. Since the available RAM is greater than the size of the input, we have
used the semi-external strategy of eGap. Notice that an entirely like-for-like
comparison between our tools and eGap is not completely feasible, since eGap1010

is a semi-external memory tool (our tools, instead, use internal memory only).
While in our tables we report RAM usage only, it is worth noticing that eGap

uses a considerable amount of disk working space. For example, the tool uses
56GiB of disk working space when run on a 8GiB input (in general, the disk
usage is of 7n bytes).1015

Our tools exhibit a dataset-independent linear time complexity, whereas
eGap’s running time depends on the average LCP. Table 3 shows that our tool
bwt2lcp induces the LCP from the BWT faster than building the BWT itself.
When N’s are not present in the dataset, bwt2lcp processes data at a rate of
2.92 megabases per second and uses 0.5 bytes per base in RAM in addition to1020

the LCP. When N’s are present, the throughput decreases to 2.12 megabases per
second and the tool uses 0.55 bytes per base in addition to the LCP. As shown in
Table 2, our tool merge is from 1.25 to 4.5 times faster than eGap on inputs with
large average LCP, but 1.6 times slower when the average LCP is small (dataset
“pacbio”). When N’s are not present in the dataset, merge processes data at1025

a rate of 1.48 megabases per second and uses 0.625 bytes per base in addition
to the LCP. When N’s are present, the throughput ranges from 1.03 to 1.32
megabases per second and the tool uses 0.673 bytes per base in addition to the
LCP. When only computing the merged BWT (results not shown here for space
reasons), merge uses in total 0.625/0.673 bytes per base in RAM (without/with1030

N’s) and is about 1.2 times faster than the version computing also the LCP.

33

11. Acknowledgements

GR is partially, and NP is totally, supported by the project MIUR-SIR
CMACBioSeq (“Combinatorial methods for analysis and compression of biolog-
ical sequences”) grant n. RBSI146R5L.1035

[1] M. Burrows, D. Wheeler, A Block Sorting data Compression Algorithm,
Tech. rep., DEC Systems Research Center (1994).

[2] S. Mantaci, A. Restivo, G. Rosone, M. Sciortino, An extension of the
Burrows-Wheeler Transform, Theor. Comput. Sci. 387 (3) (2007) 298–312.

[3] M. Bauer, A. Cox, G. Rosone, Lightweight algorithms for constructing and1040

inverting the BWT of string collections, Theor. Comput. Sci. 483 (0) (2013)
134–148.

[4] J. Kärkkäinen, Fast BWT in small space by blockwise suffix sorting, Theor.
Comput. Sci. 387 (3) (2007) 249–257. doi:10.1016/j.tcs.2007.07.018.

[5] A. Policriti, N. Gigante, N. Prezza, Average Linear Time and Compressed1045

Space Construction of the Burrows-Wheeler Transform, in: Language and
Automata Theory and Applications, Springer International Publishing,
Cham, 2015, pp. 587–598.

[6] T. Beller, M. Zwerger, S. Gog, E. Ohlebusch, Space-Efficient Construction
of the Burrows-Wheeler Transform, in: String Processing and Information1050

Retrieval, Springer International Publishing, Cham, 2013, pp. 5–16.

[7] J. Fuentes-Seplveda, G. Navarro, Y. Nekrich, Space-efficient computation
of the burrows-wheeler transform, in: 2019 Data Compression Conference
(DCC), 2019, pp. 132–141. doi:10.1109/DCC.2019.00021.

[8] D. Kempa, T. Kociumaka, String Synchronizing Sets: Sublinear-time BWT1055

Construction and Optimal LCE Data Structure, in: Proceedings of the 51st
Annual ACM SIGACT Symposium on Theory of Computing, STOC 2019,
ACM, New York, NY, USA, 2019, pp. 756–767. doi:10.1145/3313276.

3316368.

[9] G. Navarro, Y. Nekrich, Optimal dynamic sequence representations, SIAM1060

Journal on Computing 43 (5) (2014) 1781–1806.

[10] A. Cox, F. Garofalo, G. Rosone, M. Sciortino, Lightweight LCP construc-
tion for very large collections of strings, J. Discrete Algorithms 37 (2016)
17–33.

[11] N. Prezza, N. Pisanti, M. Sciortino, G. Rosone, Detecting Mutations by1065

eBWT, in: WABI 2018, Vol. 113 of LIPIcs, 2018, pp. 3:1–3:15.

[12] N. Prezza, N. Pisanti, M. Sciortino, G. Rosone, SNPs detection by eBWT
positional clustering, Algorithms Mol. Biol. 14 (1) (2019) 3.

34

http://dx.doi.org/10.1016/j.tcs.2007.07.018
http://dx.doi.org/10.1109/DCC.2019.00021
http://dx.doi.org/10.1145/3313276.3316368
http://dx.doi.org/10.1145/3313276.3316368
http://dx.doi.org/10.1145/3313276.3316368

[13] V. Guerrini, G. Rosone, Lightweight Metagenomic Classification via
eBWT, in: Algorithms for Computational Biology, Vol. 11488 LNBI,1070

Springer International Publishing, 2019, pp. 112–124.

[14] W. Tustumi, S. Gog, G. Telles, F. Louza, An improved algorithm for the
all-pairs suffix-prefix problem, Journal of Discrete Algorithms 37 (2016) 34
– 43. doi:https://doi.org/10.1016/j.jda.2016.04.002.

[15] K. Sadakane, Succinct representations of lcp information and improvements1075

in the compressed suffix arrays, in: Proceedings of the Thirteenth Annual
ACM-SIAM Symposium on Discrete Algorithms, SODA ’02, Society for
Industrial and Applied Mathematics, Philadelphia, PA, USA, 2002, pp.
225–232.

[16] T. Kasai, G. Lee, H. Arimura, S. Arikawa, K. Park, Linear-time longest-1080

common-prefix computation in suffix arrays and its applications, in: Com-
binatorial Pattern Matching, Springer Berlin Heidelberg, Berlin, Heidel-
berg, 2001, pp. 181–192.

[17] R. Grossi, J. S. Vitter, Compressed suffix arrays and suffix trees with ap-
plications to text indexing and string matching, SIAM J. Comput. 35 (2)1085

(2005) 378–407. doi:10.1137/S0097539702402354.

[18] K. Sadakane, Compressed suffix trees with full functionality, Theor. Comp.
Sys. 41 (4) (2007) 589–607. doi:10.1007/s00224-006-1198-x.

[19] E. Ohlebusch, J. Fischer, S. Gog, CST++, in: String Processing and In-
formation Retrieval, Springer Berlin Heidelberg, Berlin, Heidelberg, 2010,1090

pp. 322–333.

[20] J. Holt, L. McMillan, Constructing Burrows-Wheeler transforms of large
string collections via merging, in: ACM-BCB, ACM, 2014, pp. 464–471.

[21] J. Holt, L. McMillan, Merging of multi-string BWTs with applications,
Bioinformatics 30 (24) (2014) 3524–3531.1095

[22] P. Bonizzoni, G. Della Vedova, S. Nicosia, Y. Pirola, M. Previtali, R. Rizzi,
Divide and conquer computation of the multi-string BWT and LCP array,
in: CiE, LNCS, Springer, 2018, pp. 107–117.

[23] L. Egidi, F. Louza, G. Manzini, G. Telles, External memory BWT and
LCP computation for sequence collections with applications, Algorithms1100

Mol. Biol. 14 (1) (2019) 6.

[24] D. Belazzougui, Linear time construction of compressed text indices in
compact space, in: Proceedings of the Forty-sixth Annual ACM Symposium
on Theory of Computing, STOC ’14, ACM, New York, NY, USA, 2014,
pp. 148–193. doi:10.1145/2591796.2591885.1105

35

http://dx.doi.org/https://doi.org/10.1016/j.jda.2016.04.002
http://dx.doi.org/10.1137/S0097539702402354
http://dx.doi.org/10.1007/s00224-006-1198-x
http://dx.doi.org/10.1145/2591796.2591885

[25] J. Kärkkäinen, G. Manzini, S. J. Puglisi, Permuted longest-common-prefix
array, in: Combinatorial Pattern Matching, Springer Berlin Heidelberg,
Berlin, Heidelberg, 2009, pp. 181–192.

[26] N. Välimäki, V. Mäkinen, W. Gerlach, K. Dixit, Engineering a compressed
suffix tree implementation, J. Exp. Algorithmics 14 (2010) 2:4.2–2:4.23.1110

doi:10.1145/1498698.1594228.

[27] T. Beller, S. Gog, E. Ohlebusch, T. Schnattinger, Computing the longest
common prefix array based on the Burrows–Wheeler transform, J. Discrete
Algorithms 18 (2013) 22–31.

[28] J. I. Munro, G. Navarro, Y. Nekrich, Space-efficient construction of com-1115

pressed indexes in deterministic linear time, in: SODA, SIAM, 2017, pp.
408–424.

[29] J. I. Munro, V. Raman, Succinct representation of balanced parentheses,
static trees and planar graphs, in: Proceedings of the 38th Annual Sym-
posium on Foundations of Computer Science, FOCS ’97, IEEE Computer1120

Society, Washington, DC, USA, 1997, pp. 118–.

[30] D. Benoit, E. D. Demaine, J. I. Munro, R. Raman, V. Raman, S. S. Rao,
Representing trees of higher degree, Algorithmica 43 (4) (2005) 275–292.
doi:10.1007/s00453-004-1146-6.

[31] W.-K. Hon, K. Sadakane, W.-K. Sung, Breaking a time-and-space barrier1125

in constructing full-text indices, SIAM J. Comput. 38 (6) (2009) 2162–2178.
doi:10.1137/070685373.

[32] D. Belazzougui, F. Cunial, J. Kärkkäinen, V. Mäkinen, Linear-time string
indexing and analysis in small space, arXiv preprint arXiv:1609.06378.

[33] N. Prezza, G. Rosone, Space-Efficient Computation of the LCP Array1130

from the Burrows-Wheeler Transform, in: 30th Annual Symposium on
Combinatorial Pattern Matching (CPM 2019), Vol. 128 of Leibniz Inter-
national Proceedings in Informatics (LIPIcs), Schloss Dagstuhl–Leibniz-
Zentrum fuer Informatik, Dagstuhl, Germany, 2019, pp. 7:1–7:18. doi:

10.4230/LIPIcs.CPM.2019.7.1135

[34] S. Puglisi, A. Turpin, Space-time tradeoffs for longest-common-prefix array
computation, in: ISAAC, Vol. 5369 of LNCS, Springer, 2008, pp. 124–135.

[35] F. Shi, Suffix arrays for multiple strings: A method for on-line multiple
string searches, in: ASIAN, Vol. 1179 of LNCS, Springer, 1996, pp. 11–22.

[36] F. Louza, G. Telles, S. Hoffmann, C. Ciferri, Generalized enhanced suffix1140

array construction in external memory, Algorithms Mol. Biol. 12 (1) (2017)
26.

36

http://dx.doi.org/10.1145/1498698.1594228
http://dx.doi.org/10.1007/s00453-004-1146-6
http://dx.doi.org/10.1137/070685373
http://dx.doi.org/10.4230/LIPIcs.CPM.2019.7
http://dx.doi.org/10.4230/LIPIcs.CPM.2019.7
http://dx.doi.org/10.4230/LIPIcs.CPM.2019.7

[37] U. Manber, G. Myers, Suffix arrays: A new method for on-line string
searches, SIAM Journal on Computing 22 (5) (1993) 935–948. doi:

10.1137/0222058.1145

[38] G. Navarro, Wavelet trees for all, J. Discrete Algorithms 25 (2014) 2 – 20.

[39] P. Ferragina, G. Manzini, Opportunistic data structures with applications,
in: FOCS, IEEE, 2000, pp. 390–398.

[40] F. Claude, G. Navarro, A. Ordónez, The wavelet matrix: An efficient
wavelet tree for large alphabets, Information Systems 47 (2015) 15–32.1150

[41] D. Belazzougui, G. Navarro, Alphabet-independent compressed text index-
ing, TALG 10 (4) (2014) 23.

[42] G. Manzini, Two Space Saving Tricks for Linear Time LCP Array Compu-
tation, in: T. Hagerup, J. Katajainen (Eds.), Algorithm Theory - SWAT
2004, Springer Berlin Heidelberg, Berlin, Heidelberg, 2004, pp. 372–383.1155

[43] G. Navarro, Compact Data Structures: A Practical Approach, 1st Edition,
Cambridge University Press, New York, NY, USA, 2016.

[44] L. Egidi, G. Manzini, Lightweight BWT and LCP merging via the Gap
algorithm, in: SPIRE, LNCS, Springer, 2017, pp. 176–190.

37

http://dx.doi.org/10.1137/0222058
http://dx.doi.org/10.1137/0222058
http://dx.doi.org/10.1137/0222058

	Introduction and Related Work
	Basic Concepts
	Belazzougui's Enumeration Algorithm
	Beller et al.'s Algorithm
	Enumerating LCP values
	Enumerating Suffix Tree Intervals
	Building the PLCP Bitvector
	Building the Suffix Tree Topology
	Merging BWTs in Small Space
	Implementation and Experimental Evaluation
	Acknowledgements

