
Lightweight Reference-Free Variation Detection using the Burrows-Wheeler Transform
Nicola Prezza1, Nadia Pisanti1, Marinella Sciortino2, and Giovanna Rosone1∗

1 Dipartimento di Informatica, Università di Pisa, Pisa, Italy.
2 Dipartimento di Matematica e Informatica, Università di Palermo, Palermo, Italy.

∗ Corresponding author: giovanna.rosone@unipi.it.

Motivation We study the problem of identifying SNPs and INDELs wi-
thin a reads set without aligning it against a reference sequence. Most
existing tools for this problem are based on de-Bruijn graphs and share
some limitations as their order k is usually small (≈ 30 bases) and they
do not store k-mer coverage and k-mer adjacency in reads.
Methods We describe a new approach based on the extension of the
Burrows-Wheeler transform (BWT) to a collection of strings. We show
that the the output of such a transformation can be partitioned in clu-
sters (substrings), each associated with a position of the underlying
(unknown) genome; if that position exhibits a variant, then the cluster
will contain more than one distinct character.

Results We compared the performance of our tool eBWT2SNP with
the state-of-the-art tool DISCOSNP++ on real and simulated Human
datasets. Already at 10x coverage, our tool discovers 80% of exi-
sting SNPs and 59% of the INDELs (versus 55% and 32% of DISCO-
SNP++ ). At 48x, these percentages increase to 96% and 87% (versus
75% and 46% of DISCOSNP++ ). DISCOSNP++ , on the other hand,
is more precise: on average, 89% of its output SNPs and 94% of its
output INDELs are correct (versus 80% and 90% of our tool). Due to
the fact that we use compressed data structures, DISCOSNP++ is also
faster. We are currently developing a parallel version our algorithms
to become competitive also under this metric.

DEFINITIONS

Our tool relies on the extended Burrows-Wheeler
transform of the input reads:

Definition: eBWT
eBWT is the string containing the characters
preceding the lexicographically-sorted reads’
suffixes. Ties are broken by input order.

We also use the Longest Common Prefix array:

Definition: LCP
LCP is the array containing the lengths of
the longest common prefixes between adjacent
suffixes in lexicographic order.

In the following example, we show eBWT and
LCP on the reads set {AAGCT, GATAT, CTATA}. Al-
so the sorted reads’ suffixes are shown (blue box).
Note that these are shown only for illustrative
purposes and are not stored in practice.

��������������������������	�
���������

�

�

�

��

������

�����

���

����

�����

���

������

������

����

��

��

���

����

�����

�

�

�

��

�

�

�

�

�

��

���

���

�

�

��

��

�

�

����������������������

���������������
�������������������
����������������

��� !�����

�

�

�

��

�

�

�

	




��

	��

���

�

�

��

��

	




"�#���$

PRE-PROCESSING

eBWT can be computed with lightweight tools
such as BCR (github.com/BEETL/BEETL) and
EGSA (github.com/felipelouza/egsa). Cur-
rently, this is the bottleneck of our method: these
tools process data at a rate of ≈ 5GB per hour.
We are currently looking into parallel algorithms
to speed this step up.

POSITIONAL CLUSTERING

Our method relies on the clustering property of
the eBWT. In [1] we prove the following theorem:

Theorem [1]
Let i and j be local minima in LCP. With high-
enough probability, the cluster eBWT[i, . . . , j]
contains the sequenced copies of a single
position in the genome.

According to the previous theorem, a genome
position contains a variation if and only if the
corresponding eBWT cluster contains two diffe-
rent letters. This suggests the following strategy:

Our strategy: eBWT2SNP

1. Compute eBWT and LCP.

2. Detect LCP minima⇒ eBWT clusters.

3. If the cluster contains 2 distinct letters
⇒ variation found.

4. Extract context, output variation.

We add INDELs detection w.r.t. the preliminary
version [1]. See the following example; in bold:
LCP minima. Inside orange box: eBWT cluster.

GATGCGCGATATC

GATGCG ATATC

GATGCG

GATGCGC

GCGCAAT

ATGCGCGATC ATGCGCGAT

TGCGCGAT

GATGCG

GATGCGA

GATGCCAT

GATGCGATA ATGCGAT

TGCGCT

ATGCGC

AT GC

LEFT
...

GA
GA
GA

A
ATG
TG
GA

ATG
GA

...

eBWT
...
T
T
T
T
C
C
T
C
T
$
...

RIGHT
...
GCG$
GCG$
GCGA$
GCGAT$
GCGAT$
GCGAT$ 
GCGATA …
GCGATC ...
GCGC$
GCGCA …
...

LCP
…
...
3
3

4
5
5
5
5
3

4
...

1. Genotype

2. Input reads

3. eBWT cluster

4. Output INDEL

Sequencing (in vitro)

eBWT/LCP minima 
computation (in silico)

Calling (in silico)

SPACE-EFFICIENT COMPUTATION

Our tool takes as input just eBWT. How do we
find LCP minima? In [2], we show:

Theorem [2]
Given eBWT, we can find all LCP minima in
linear time using just 1 Byte per base in RAM.

We moreover build a compressed index on top of
the eBWT to extract the context surrounding the
variations. This strategy uses 8 times less space
than the preliminary version [1].

RESULTS

We compared eBWT2SNP with DISCOSNP++ , the
state-of-the-art tool for reference-free variation de-
tection. All datasets have been downloaded from
the 1000genomes website. We processed reads
— both real and simulated — from a single indi-
vidual in order to reconstruct its genotype:

Experiments

1. Simulated. Heterozygous reads simu-
lated from HG00096, Chr1, cov. 50x.
Variations taken from the real VCF file.

2. Real. Reads sequenced from HG00096,
Chr1, cov. 48x.

Results on simulated data:

75 80 85 90 95

4
0

5
0

6
0

7
0

8
0

9
0

1
0
0

Simulated − precision and sensitivity

coverage: 30−40−50

PREC (%)

S
E

N
 (

%
)

ebwt2snp, SNP

ebwt2snp, INDEL

DiscoSnp++, SNP

DiscoSnp++, INDEL

REFERENCES

[1] N. Prezza, N. Pisanti, M. Sciortino, and G. Roso-
ne. SNPs detection by eBWT positional clustering.
Algorithms for Molecular Biology, 14(1):3, 2019.

[2] N. Prezza and G. Rosone. Space-Efficient Com-
putation of the LCP Array from the Burrows-
Wheeler Transform. In CPM 2019, Leibniz Inter-
national Proceedings in Informatics (LIPIcs). Schloss
Dagstuhl–Leibniz-Zentrum fuer Informatik, 2019.


