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Abstract

In this paper we study the clustering effect of the Burrows-Wheeler
Transform (BWT) from a combinatorial viewpoint. In particular, given
a word w we define the BWT-clustering ratio of w as the ratio be-
tween the number of clusters produced by BWT and the number of
the clusters of w. The number of clusters of a word is measured by its
Run-Length Encoding. We show that the BWT-clustering ratio ranges
in ]0, 2]. Moreover, given a rational number r ∈]0, 2], it is possible to
find infinitely many words having BWT-clustering ratio equal to r.
Finally, we show how the words can be classified according to their
BWT-clustering ratio. The behavior of such a parameter is studied for
very well-known families of binary words.

1 Introduction

Burrows-Wheeler Transform is a popular method used for text compression
(cf. [1, 3]). It produces a permutation of the characters of an input word w in
order to obtain a word easier to compress. Actually compression algorithms
based on BWT take advantage of the fact that the word output of BWT
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shows a local similarity (occurrences of a given symbol tend to occur in
clusters) and then turns out to be highly compressible. Several authors
refer to such a property as the “clustering effect” of BWT . The aim of this
paper is to study such a clustering effect of BWT from the point of view of
combinatorics on words.

In order to measure the amount of local similarity, or clustering, in a
word we consider its Run-Length Encoding (RLE). RLE is another fun-
damental string compression technique: it replaces in a word occurrences
of repeated equal symbols with a single symbol and a non-negative integer
(run length) counting the number of times the symbol is repeated. RLE can
be considered an efficient compression scheme when the input data is highly
repetitive. In a more formal way, every word w over the alphabet Σ has a
unique expression of the form w = wl11 w

l2
2 · · ·w

lk
k with li ∈ N and wi ∈ Σ and

wi 6= wi+1 for i = 1, 2, . . . , k. The run-length encoding of w is the sequence
rle(w) = (w1, l1)(w2, l2) · · · (wk, lk). For instance if w = aaabbbbbccbbbb the
run-length encoding is rle = (a, 3)(b, 5)(c, 2)(b, 4). We set ρ(w) = |rle(w)|,
i.e., ρ(w) is the number of maximal runs of equal letters in w. For instance,
ρ(aaabbbbbccbbbb) = 4. It is straightforward that 1 ≤ ρ(w) ≤ |w|. The
quantity |w|/ρ(w) provides a measure of the amount of local similarity of
the word w, in the sense that the lower is the value ρ(w) with respect to
|w|, the greater is the length of the runs of individual symbols in w.

In this paper we are interested to investigate the “clustering effect” of
BWT , extending some results presented in [8]. For this aim we introduce
for any word its BWT -clustering ratio

γ(w) =
ρ(bwt(w))

ρ(w)

where bwt(w) denotes the output of BWT on the input word w. Our first
result (Theorem 1) states that, for any word w, 0 < γ(w) ≤ 2. This means
that, if the number of runs increases after the application of the BWT (“un-
clustering effect”), in the worst case the number of runs in the output is at
most twice the number of runs in the original word. In other words, whereas
the “clustering effect” for some words w could be very high (γ(w) close to 0),
the “un-clustering effect” is in any case moderate. The fact that the worst
case is not too bad provides an additional formal motivation of usefulness
of BWT in Data Compression.

We further prove (Theorem 2) that, for any rational number r, with
0 < r ≤ 2, there exists a word w such that γ(w) = r.

Previous results suggest that the parameter γ(w) could be an interesting
tool for the study (or classification) of finite words. In particular, we derive
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a characterization of Christoffel words w in terms of γ(w) and we determine
the possible values of γ(w) for a de Bruijn word w.

Finally in Section 5 we show the results of some statistical experiments
that classify words in terms of their BWT -clustering ratio γ.

2 Burrows-Wheeler Transform

Let Σ = {a1, a2, . . . , aσ} be a finite ordered alphabet with a1 < a2 < . . . <
aσ, where < denotes the standard lexicographic order. We denote by Σ∗ the
set of words over Σ. Given a finite word w = w1w2 · · ·wn ∈ Σ∗ with each
wi ∈ Σ, the length of w, denoted |w|, is equal to n. We denote by alph(w)
the subset of Σ containing all the letters that appear in w. Given a finite
word w = w1w2 · · ·wn with each wi ∈ Σ, a factor of a word w is written as
w[i, j] = wi · · ·wj with 1 ≤ i ≤ j ≤ n. A factor of type w[1, j] is called a
prefix, while a factor of type w[i, n] is called a suffix. We also denote by w[i]
the i-th letter in w for any 1 ≤ i ≤ n.

We say that two words x, y ∈ Σ∗ are conjugate, if x = uv and y = vu,
where u, v ∈ Σ∗. Conjugacy between words is an equivalence relation over
Σ∗. The conjugacy class (w) of w ∈ Σn (or necklace) is the set of all words
wiwi+1 · · ·wnw1 · · ·wi−1, for any 1 ≤ i ≤ n. A necklace can be also thought
as a cyclic word.

A nonempty word w ∈ Σ∗ is primitive if w = uh implies w = u and
h = 1.

A Lyndon word is a primitive word which is the minimum in its conjugacy
class, with respect to the lexicographic order relation.

The Burrows-Wheeler Transform (BWT ) can be described as follows:
given a word w ∈ Σ∗, the output of BWT is the pair (bwt(w), I), where:

• bwt(w) is the permutation of the letters in the input word w obtained
by considering the matrix M containing the lexicographically sorted
list of the conjugates of w, and by concatenating the letters of the last
column L of matrix M .

• I is the index of the row of M containing the original word w.

Note that if two words v and w are conjugate then bwt(v) = bwt(w),
i.e. the output of BWT is the same up to the second component of the
pair. Note also that the first column F of the matrix M is the sequence of
lexicographically sorted symbols of w.

The Burrows-Wheeler transform is reversible by using the properties (cf.
[3]) described in the following proposition.
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F L
↓ ↓
a a a b a a b a a b a a b a a b
a a b a a a b a a b a a b a a b
a a b a a b a a a b a a b a a b
a a b a a b a a b a a a b a a b
a a b a a b a a b a a b a a a b
a a b a a b a a b a a b a a b a
a b a a a b a a b a a b a a b a
a b a a b a a a b a a b a a b a
a b a a b a a b a a a b a a b a
a b a a b a a b a a b a a a b a
a b a a b a a b a a b a a b a a
b a a a b a a b a a b a a b a a
b a a b a a a b a a b a a b a a
b a a b a a b a a a b a a b a a
b a a b a a b a a b a a a b a a
b a a b a a b a a b a a b a a a

(a)

F L
↓ ↓
a a a a b a a b b a b a b b b b
a a a b a a b b a b a b b b b a
a a b a a b b a b a b b b b a a
a a b b a b a b b b b a a a a b
a b a a b b a b a b b b b a a a
a b a b b b b a a a a b a a b b
a b b a b a b b b b a a a a b a
a b b b b a a a a b a a b b a b
b a a a a b a a b b a b a b b b
b a a b b a b a b b b b a a a a
b a b a b b b b a a a a b a a b
b a b b b b a a a a b a a b b a
b b a a a a b a a b b a b a b b
b b a b a b b b b a a a a b a a
b b b a a a a b a a b b a b a b
b b b b a a a a b a a b b a b a

(b)

Figure 1: On the left (a) the matrix of all lexicographic sorted conju-
gates of the Lyndon word aaabaabaabaabaab. In this case the output of
BWT is the pair (bbbbbaaaaaaaaaaa, 1). On the right (b) the matrix M
of the word aaaabaabbababbbb. For such a word BWT outputs the pair
(baabababbabababa, 1)
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Proposition 1. Let (L, I) be a pair produced by the BWT applied to a word
w. Let F be the sequence of the sorted letters of L = bwt(w). The following
properties hold:

1. for all i = 1, . . . , n, i 6= I, the letter F [i] follows L[i] in the original
string w;

2. for each letter c, the r-th occurrence of c in F corresponds to the r-th
occurrence of c in L;

3. the first letter of w is F [I].

From the above properties it follows that the BWT is reversible in the
sense that, given L and I, it is possible to reconstruct the original string w.
Note that when I = 1, one can build the Lyndon conjugate of the original
word.

Actually, according to Property 2 of Proposition 1, we can define a per-
mutation τ : {1, . . . , n} → {1, . . . , n} where τ gives the correspondence be-
tween the positions of letters of F and L. The permutation τ is also called
FL-mapping.

The permutation τ also represents the order in which we have to rear-
range the elements of F to reconstruct the original word w. Hence, starting
from I, we can recover the word w as follows:

w[i] = F [τ i−1(I)] , where τ0(x) = x, and τ i(x) = τ(τ i−1(x)),with 1 ≤ i ≤ n.

Example 1. Let us consider the words examined in Figure 1.
Given the pair (bbbbbaaaaaaaaaaa, 1) the permutation τ between the posi-

tions of F = aaaaaaaaaaabbbbb and L = bbbbbaaaaaaaaaaa is the following:

τ =

(
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
6 7 8 9 10 11 12 13 14 15 16 1 2 3 4 5

)
So, we can reconstruct the word w = aaabaabaabaabaab.

If we consider the pair (baabababbabababa, 1) the permutation τ between
F = aaaaaaaaaaabbbbb and L = baabababbabababa is :

τ =

(
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
2 3 5 7 10 12 14 16 1 4 6 8 9 11 13 15

)
So, the recovered word is w = aaaabaabbababbbb.
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3 BWT -Clustering Ratio of a Word

The Run-Length Encoding is a fundamental string compression technique
that replaces in a word occurrences of repeated equal symbols with a single
symbol and a non negative integer (run length) counting the number of times
the symbol is repeated. Formally, every word w over the alphabet Σ has a
unique expression of the form w = wl11 w

l2
2 · · ·w

lk
k with li ∈ N and wi ∈ Σ and

wi 6= wi+1 for i = 1, 2, . . . , k. The run-length encoding of a word w, denoted
by rle(w), is a sequence of pairs (wi, li) such that wiwi+1 · · ·wi+li−1 is a
maximal run of a letter wi (i.e., wi = wi+1 = · · · = wi+li−1, wi−1 6= wi and
wi+li 6= wi), and all such maximal runs are listed in rle(w) in the order
they appear in w. We denote by ρ(w) = |rle(w)| i.e., is the number of pairs
in w, or equivalently the number of equal-letter runs (also called clusters)
in w.

Moreover we denote by ρ(w)ai the number of pairs (wj , lj) in rle(w)
where wj = ai.

It is clear that for all w ∈ Σ∗ one has that |alph(w)| ≤ ρ(w) ≤ |w|. Notice
also that if w = uv then ρ(w) ≤ ρ(u) + ρ(v), that is, ρ is sub-additive.

In this section we introduce a parameter that gives a measure on how
much the application of the BWT to a given word modifies the number of
its clusters.

Definition 1. The BWT -clustering ratio of a word w is

γ(w) =
ρ(bwt(w))

ρ(w)

Example 2. Let us compute the BWT -clustering ratio for the words con-
sidered in Figure 1. If w = aaabaabaabaabaab we have that ρ(w) = 10 and
ρ(bwt(w)) = ρ(bbbbbaaaaaaaaaaa) = 2. So, γ(w) = 1/5.

Let us consider w = aaaabaabbababbbb. In this case we have that ρ(w) =
8. Since bwt(w) = baabababbabababa then ρ(bwt(w)) = 14. So, γ(w) = 7/4.

Remark 1. We note that if w is not a primitive word (i.e., w = vk for
some k > 1) one can prove that ρ(vk) ≤ kρ(v). Moreover, in [9] it has been
proved that if bwt(v) = v1v2 · · · vn, where vi ∈ Σ, then bwt(vk) = vk1v

k
2 · · · vkn.

So, ρ(bwt(vk)) = ρ(bwt(v)). This implies that γ(vk) ≥ 1
kγ(v). In particular,

it was proved (cf. [8]) that if v is a Lyndon word (different from a single
letter), then γ(vk) = 1

kγ(v).

Remark 2. We recall that if u and v are conjugate words, then bwt(u) =
bwt(v). On the other hand, one has that |ρ(u) − ρ(v)| ≤ 1 and, within
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the conjugacy class, a power of a Lyndon word is one of the conjugates
having least number of clusters. Since we are interested in evaluating how
the number of clusters produced by BWT can grow compared to the number
of clusters in the input necklace, we can consider words that are power of
a Lyndon word as input of the parameter γ. Moreover, due to the property
described in Remark 1 we can limit our attention to Lyndon words.

The following theorem, also reported in [8], shows that the number of
clusters can at most be doubled by the BWT .

Theorem 1. Given a Lyndon word w, we have that 0 < γ(w) ≤ 2.

Proof. Let Σ = {a1, a2, . . . , aσ} with a1 < a2 < · · · < aσ and let rle(w) =
(b1, l1), (b2, l2), . . . , (bk, lk), where b1, b2, . . . bk ∈ Σ.

Recall that when computing bwt(w), the column F of the matrix of

sorted conjugates of w has the form a
|w|a1
1 a

|w|a2
2 · · · a|w|aσσ . It is then naturally

defined a parsing of the column L according to the runs (a1, |w|a1)(a2, |w|a2) · · · (aσ, |w|aσ)
of F . We denote by uai the factor in L = bwt(w) associated to the run
(ai, |w|ai) of F , i.e. all the letters that in the original words precede an
occurrence of the letter ai. Then we can write bwt(w) = ua1ua2 · · ·uaσ .

Consider any block uaj . In this block there are at most as many letters
different from aj as the number of different runs of aj in w. In fact, in w,
aj is preceded by a letter different from aj itself only in the beginning of
each of its runs. So the greatest possible number of runs contained in uaj is
achieved when all the letters different from aj are spread in the block, never
one next to another, producing on uaj a number of runs rle(uaj ) at most
equal to 2ρ(w)aj . This happens for each block, then

ρ(bwt(w)) ≤
σ∑
i=1

ρ(uai) ≤
σ∑
i=1

2 · ρ(w)ai = 2
σ∑
i=1

ρ(w)ai = 2 ρ(w).

In the following theorem we show that for any positive rational number
r smaller than or equal to 2, it is possible to construct a binary word such
that its BWT -clustering ratio is equal to r.

Theorem 2. For any r ∈ Q∩ (0, 2], there exists a Lyndon word w ∈ {a, b}∗
having γ(w) = r.
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Proof. Let p and q two coprime positive integers such that r = p
q . Let k be

an integer such that k ≥ 2.
Let us define fi = a2i−1b2i−1 for i = 2, 3, . . . , k and f1 = abb. Let h be

an integer such that h ≥ 1.
We can define a family of words

vh,k = (fk)
hfk−1 · · · f1 = (a2k−1b2k−1)ha2k−3b2k−3 · · · a3b3ab2.

Since each fi has two clusters, the first an a-cluster and the second a
b-cluster, ρ(vh,k) = 2h+ 2k − 2.

We now compute ρ(bwt(vh,k)).
First of all we consider the case h = 1. In fact, bwt(v) can be factored

in two parts: the first one corresponding to all the conjugates starting with
a, and the second one corresponding to all the conjugates starting with b.

The first part starts with the only conjugate that has a2k−1b as prefix,
then the one with a2k−2b, then the two conjugates that start with a2k−3b
(from the rightmost to the leftmost), and so on. From this we can see that
the first part of bwt(v1,k) is baba3 · · · ba2(k−1)−1bak−1 that has 2k clusters.

For the second part, we have exactly all the conjugates starting in the
second part of each fi. In particular, there are k conjugates starting with
ba. All these conjugates are cyclicly preceded by b. Then we have all the
conjugates starting with bba. The lexicographically smallest in this group is
the one corresponding to the block f1, then we have the conjugates corre-
sponding to the other fi from the leftmost to the rightmost. Such conjugates
are lexicographically followed by the conjugates starting with bbba that cor-
respond to the blocks from fk to f2 and so on. This means that the second
part of bwt(v1,k) is bkab2k−3ab2k−5a · · · ba that has 2k clusters. It follows
that

bwt(v1,k) = baba3 · · · ba2(k−1)−1bak−1bkab2k−3ab2k−5a · · · ba,

that has 2k + 2k clusters. So ρ(bwt(v1,k)) = 4k.
Finally, one can prove that for any h ≥ 1, ρ(bwt(vh,k) = ρ(bwt(v1,k).
In fact, bwt(vh,k) is obtained by concatenating

bhahba2h+1ba2h+3 · · · ba2h+2k−5bak−2+h

and
bk−1+hab2k−5+2hab2k−7+2ha · · · b1+2habhah.

So, the thesis follows since

γ(vh,k) =
4k

2h+ 2k − 2
=

2k

h+ k − 1
=
p

q
.
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It is then sufficient to find suitable integer solutions to unknown h and k to
the above equation.

Example 3. Let us consider the rational number 6/5 (> 1). In this case a
solution to the equation

2k

h+ k − 1
=

6

5

is k = 3 and h = 3. In fact one can verify that if w = (a5b5)3a3b3abb then
bwt(w) = b3a3ba7ba4b5ab7ab3a3, so ρ(w) = 10 and ρ(bwt(w)) = 12.

On the other hand if we consider the rational number 4/5 (< 1) a solution
to

2k

h+ k − 1
=

4

5

is k = 2 and h = 4. One can verify that w = (a3b3)4abb and bwt(w) =
b4a4ba4b5ab4a4, so ρ(w) = 10 and ρ(bwt(w)) = 8.

Corollary 1. For any rational number 0 < r ≤ 2, there are infinitely many
words w with γ(w) = r.

Proof. The solutions of the equation

2k

h+ k − 1
=
p

q

corresponds to the integer solutions to all of the following systems:{
2k = lp
h+ k − 1 = lq

for any choice of l that gives integer solutions to h and k. In particular, if
p is even, any integer value of l is allowed, if p is odd, only even values of l
are allowed.

4 Special Cases on Binary Alphabet

In this section we give some characterization and properties of families of
words over two letters alphabets well known in combinatorics on words,
according to their BWT -clustering ratio γ.
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4.1 Clusters in Christoffel Words

In this subsection we take into account the BWT -clustering ratio of a class
of words over a binary alphabet known in literature as Christoffel words (cf.
[6, 2]). We start by giving the definition of a class of words strictly related
to them, i.e. the Standard words. There exist many equivalent definitions of
Standard words. Here we use the one that makes evident their relationships
with the notion of characteristic Sturmian word.

Let d1, d2, . . . , dn, . . ., n ≥ 1 be a sequence of natural integers, with
d1 ≥ 0 and di > 0 for i = 2, . . . , n, . . .. Consider the sequence of words
{sn}n≥0 recursively defined by:

s0 = b, s1 = a, and sn+1 = sn
dnsn−1 for n ≥ 1.

Each finite word sn is called a standard word. It is univocally determined
by the (finite) directive sequence (d1, d2, . . . , dn). Such sequences are very
important, since their limit, for n → ∞ converges to infinite words called
characteristic Sturmian words, well known in literature for its numerous and
interesting combinatorial properties.

For any standard word w, the Lyndon word in its class is also called
Christoffel word. We are now considering Christoffel words since, as usual,
we take the Lyndon word for each class. For instance the word aaabaabaabaabaab
considered in Figure 1(a) is a Christoffel word.

The following proposition gives a new characterization of Christoffel
words in terms of the γ ratio.

Proposition 2. A word w is a Christoffel word ⇐⇒ γ(w) = 1
min{|w|a,|w|b} .

Proof. Let w be a Christoffel word and suppose that |w|b = h and |w|a = k
with h < k (the other case has an analogous proof). Then no b in w appears
next to another b, therefore w has 2h clusters, i.e. ρ(w) = 2|w|b. On the
other side in [9] it has been proved that any conjugate of a standard word
(in particular any Christoffel word) has a totally clustered bwt; in particular
bwt(w) = bhak, i.e. ρ(bwt(w)) = 2. Therefore

γ(w) =
2

2h
=

1

|w|b
.

Suppose now that γ(w) = 1/|w|b, that is

ρ(bwt(w))

ρ(w)
=

1

|w|b
.
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Then ρ(bwt(w)) · |w|b = ρ(w) ≤ 2|w|b, i.e. ρ(bwt(w)) ≤ 2.
But on binary words ρ(bwt(w)) ≥ 2, then ρ(bwt(w)) = 2 and this is true

if and only if w is a Christoffel word (cf [9]).

Remark 3. For any ε > 0 there exists a Christoffel word w such that
γ(w) < ε. In fact let us consider a Christoffel word where |w| = 2n + 1,
|w|b = n and |w|a = n + 1. By Proposition 2 γ(w) = 1

n . For n sufficiently
large, 1/n < ε.

4.2 Clusters in Binary de Bruijn Words

In this section we consider another famous class of words called de Bruijn
words. In particular here we consider de Bruijn words over a binary alpha-
bet.

A de Bruijn word of order n on an alphabet Σ of size k is a cyclic word
in which every word of length n on Σ occurs exactly once as a factor. By
Remark 2, in the following when we refer to a de Bruijn word we mean
the corresponding Lyndon word in its necklace. Such a word is denoted by
B(k, n) and has length kn, which is also the number of distinct factors of

length n on Σ. There are (k!)k
n−1

kn many distinct de Bruijn words B(k, n). In
particular for two letters alphabets, all de Bruijn words B(2, n) have length

2n, and there are 22
n−1

2n many distinct de Bruijn words B(2, n).
One can verify that the word aaaabaabbababbbb considered in Figure 1(b)

is a de Bruijn word of order 4 over the alphabet {a, b}, since every word in
{a, b}4 appears once in the corresponding cyclic word.

In the following proposition, also reported in [8], we find the number of
runs of a de Bruijn word of order n on a binary alphabet. Note that this
result can be inferred by using some combinatorial properties analyzed in
[4].

Proposition 3. Let B(2, n) be any de Bruijn word of order n over a binary
alphabet. Then ρ(B(2, n)) = 2n−1.

Proof. We first consider the runs of a’s. First of all there is no run ai with
i > n otherwise an would be a word of length n that appears more than once
in B(2, n). The run an is a particular word of length n, then, by definition,
it appears exactly once as a factor in B(2, n) (in particular as factor of banb).

The words ban−1 and an−1b also appear once, but since they are factors
of banb, we have no runs of a’s of length n− 1.

For any 1 ≤ i ≤ n − 2 consider the runs of the form ai. They appear
as factors of all the words of the form baibw where w is any word of length
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n − i − 2. Each of the words baibw appear exactly once. There are 2n−i−2

of such words, therefore there are 2n−i−2 runs ai. We have overall:

1 +
n−2∑
i=1

2n−i−2 = 1 +
n−3∑
i=0

2i = 1 + 2n−2 − 1 = 2n−2

So there are 2n−2 runs of a’s. For the same reason there are 2n−2 runs
of b’s, then overall 2 · 2n−2 = 2n−1 runs.

Remark 4. As a byproduct of the theorem proved by Higgins in [5] (cf.
also [10]) we have that if B(n, k) is a de Bruijn word of order n, then
bwt(B(k, n)) ∈ Gk

n−1
, where G is the set of all sequences of Σ of length

|Σ| obtained by permuting all the letters in Σ. In particular, if k = 2,
bwt(B(2, n)) ∈ {ab, ba}2n−1

.

The following theorem is a consequence of Proposition 3 and of the above
remark.

Theorem 3. If w is a binary de Bruijn word then:

1 +
4

|w|
≤ γ(w) ≤ 2− 4

|w|
.

Proof. Recall that any binary de Bruijn word of order n has length 2n, with
n ≥ 2.

As remarked above, by Higgins’s Theorem, bwt(w) ∈ {ab, ba}2n−1
. More-

over, one can note that ba must be the prefix and the suffix of bwt(B(2, n)),
since for any word its bwt cannot start with the smallest symbol and can-
not end with the biggest symbol. Since, as proved in [8], ρ(bwt(B(2, n))) <
|B(2, n)| = 2n, then bwt(w) 6= (ba)2

n−1
then both aa and bb must be fac-

tors of bwt(B(2, n)). So, the upper bound follows because ρ(bwt(w)) ≤
2n − 2. The lower bound on the number of runs is reached when bwt(w) =
b(aabb)2

n−2−1aba. In this case this value is 2n−1 + 2. Then, the thesis fol-
lows.

5 Experimental Results

It is commonly said that the application of BWT as a preprocessing to the
application of a statistical compressor is useful since BWT tends to cluster
together equal letters that appear in equal contexts, generating a so called
“clustering effect”. In this paper we highlight that this is not always the
case, that is, there are words that are “un-clustered” by the BWT , that is,
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the application of BWT generate on such words a greater number of shorter
clusters.

The BWT -clustering ratio γ allows to classify words into BWT -good
words, if 0 < γ(w) < 1, and BWT -bad words, if 1 < γ(w) ≤ 2. The
qualities good and bad reflects a good or bad behavior of BWT with respect
to clustering, that is a good requirement for compression. For instance, since
for any Christoffel word w, γ(w) < 1, then Christoffel words are BWT -good.
On the other hand, any binary Bruijn word is BWT -bad.

Of course, the other special case is when this ratio is 1, i.e. the words,
called BWT -neutral, where the BWT has no effect in terms of cluster-
ing. Among these words we can find fixed points (i.e. words w such that
bwt(w) = w), that are studied in [7].

In this section, we show some experiments that highlight the distribution
of the BWT -neutral, BWT -good and BWT -bad binary words when the
length is fixed. In particular, table in Figure 2 shows such a distribution for
all Lyndon words w of length 16 and 24.

length number of words γ(w) = 1 γ(w) < 1 γ(w) > 1 γ(w) = 2
16 4.080 1.160 1.247 1.673 142
24 698.870 156.652 237.636 304.582 4.362

Figure 2: Distribution of Lyndon words of length 16 and 24

Figure 3: Lyndon words of length 16 and 24

On the other hand, table in Figure 4 shows such a distribution for all
Lyndon words w of length 16, 20, 24 and 28. with the same number of
occurrences of letter a and letter b.

For completeness, the graphs in Figure 3 and Figure 5 show the number
of Lyndon words of length 16 and 24 as a function of the BWT-clustering
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length number of words γ(w) = 1 γ(w) < 1 γ(w) > 1 γ(w) = 2
16 800 224 239 337 26
20 9.225 2.183 3.042 4.000 129
24 112.632 23.866 38.884 49.882 666
28 1.432.613 288.485 504.505 639.623 3.556

Figure 4: Distribution of Lyndon words of length 16, 20, 24 and 28. with the
same number of letters a and b

Figure 5: Lyndon words of length 16 and 24 with the same number of letters
a and b

ratio. It is interesting to point out that the graphs show that the trend does
not change substantially when words having the same number of a and b are
considered. A possible further work could be to develop an analytic study
of this behavior.

Acknowledgements

Thanks to Published source. S. Mantaci, G. Rosone and M. Sciortino are
partially supported by the project MIUR-SIR CMACBioSeq (“Combinato-
rial methods for analysis and compression of biological sequences”) grant
n. RBSI146R5L and by the Gruppo Nazionale per il Calcolo Scientifico
(GNCS-INDAM).

References

[1] D. Adjeroh, T. Bell, and A. Mukherjee. The Burrows-Wheeler
Transform: Data Compression, Suffix Arrays, and Pattern Matching.
Springer, 2008.

14



[2] J. Berstel, A. Lauve, C. Reutenauer, and F.V. Saliola. Combinatorics
on Words: Christoffel Words and Repetitions in Words, volume 27 of
CRM monograph series. American Mathematical Soc., 2008.

[3] M. Burrows and D. J. Wheeler. A block sorting data compression
algorithm. Technical report, DIGITAL System Research Center, 1994.

[4] H. Fredricksen. A survey of full length nonlinear shift register cycle
algorithms. SIAM Review, 24(2):195–221, 1982.

[5] P. M. Higgins. Burrows-Wheeler transformations and de Bruijn words.
Theoretical Computer Science, 457:128–136, 2012.

[6] M. Lothaire. Applied Combinatorics on Words (Encyclopedia of Math-
ematics and its Applications). Cambridge University Press, New York,
NY, USA, 2005.

[7] S. Mantaci, A. Restivo, G. Rosone, F. Russo, and M. Sciortino. On
Fixed Points of the Burrows-Wheeler Transform. Fundamenta Infor-
maticae. to appear.

[8] S. Mantaci, A. Restivo, G. Rosone, M. Sciortino, and L. Versari. Mea-
suring the clustering effect of BWT via RLE. Theoretical Computer
Science. to appear.

[9] S. Mantaci, A. Restivo, and M. Sciortino. Burrows-Wheeler transform
and Sturmian words. Information Processing Letters, 86:241–246, 2003.

[10] D. Perrin and A. Restivo. Words. In Miklos Bona, editor, Handbook of
Enumerative Combinatorics. CRC Press, 2015.

15


	Introduction
	Burrows-Wheeler Transform
	BWT-Clustering Ratio of a Word
	Special Cases on Binary Alphabet
	Clusters in Christoffel Words
	Clusters in Binary de Bruijn Words

	Experimental Results

