
Measuring the clustering effect of BWT via RLEI

Sabrina Mantacia, Antonio Restivoa, Giovanna Rosoneb, Marinella
Sciortinoa,∗, Luca Versaric

aUniversity of Palermo, Dipartimento di Matematica e Informatica, ITALY.
bUniversity of Pisa, Dipartimento di Informatica, ITALY.

cScuola Normale Superiore, Pisa, ITALY.

Abstract

The Burrows-Wheeler Transform (BWT) is a reversible transformation on
which are based several text compressors and many other tools used in Bioin-
formatics and Computational Biology. The BWT is not actually a compres-
sor, but a transformation that performs a context-dependent permutation of
the letters of the input text that often create runs of equal letters (clusters)
longer than the ones in the original text, usually referred to as the “clus-
tering effect” of BWT. In particular, from a combinatorial point of view,
great attention has been given to the case in which the BWT produces the
fewest number of clusters (cf. [5, 16, 21, 23]). In this paper we are concerned
about the cases when the clustering effect of the BWT is not achieved. For
this purpose we introduce a complexity measure that counts the number of
equal-letter runs of a word. This measure highlights that there exist many

I c©2017. This manuscript version is made available under the CC-BY-NC-ND 4.0 li-
cense http://creativecommons.org/licenses/by-nc-nd/4.0/. Final publication avail-
able at https://doi.org/10.1016/j.tcs.2017.07.015. Please, cite the publisher ver-
sion: Sabrina Mantaci, Antonio Restivo, Giovanna Rosone, Marinella Sciortino, Luca
Versari, Measuring the clustering effect of BWT via RLE, Theoretical Computer Science,
2017, DOI: https://doi.org/10.1016/j.tcs.2017.07.015. S. Mantaci, G. Rosone and
M. Sciortino are partially supported by the project MIUR-SIR CMACBioSeq (“Combina-
torial methods for analysis and compression of biological sequences”) grant n. RBSI146R5L
and by the Gruppo Nazionale per il Calcolo Scientifico (INdAM-GNCS Project 2016).

∗Corresponding Author.
Email addresses: sabrina.mantaci@unipa.it (Sabrina Mantaci),

antonio.restivo@unipa.it (Antonio Restivo), giovanna.rosone@unipi.it (Giovanna
Rosone), marinella.sciortino@unipa.it (Marinella Sciortino), luca.versari@sns.it
(Luca Versari)

Postprint version; to appear on Theoretical Computer Science

words for which BWT gives an “un-clustering effect”, that is BWT produce
a great number of short clusters.

More in general we show that the application of BWT to any word at
worst doubles the number of equal-letter runs. Moreover, we prove that
this bound is tight by exhibiting some families of words where such upper
bound is always reached. We also prove that for binary words the case in
which the BWT produces the maximal number of clusters is related to the
very well known Artin’s conjecture on primitive roots. The study of some
combinatorial properties underlying this transformation could be useful for
improving indexing and compression strategies.

Keywords: BWT, permutation, run-length encoding

1. Introduction

The Burrows-Wheeler Transform (BWT) is a reversible transformation
on the characters of a word on which are based several text compressors
available today and also many tools used in different research fields, such as
Bioinformatics and Computational Biology. It is known that the Burrows-
Wheeler Transform performs a context-dependent permutation of all of the
letters of the input data (cf. [4]). Since similar contexts usually adjoin
similar sets of few letters, the permuted data has extensive groupings of
similar letters and especially runs of equal letters (also called clusters).

In literature, several papers are related to the study of the compressibility
of the BWT . Many of these studies use a natural statistical metric of the
compressibility of a sequence, the empirical entropy1.

Several papers (cf. [6, 11, 12, 17]) prove analytical upper bounds on
the compression ratio of BWT -based compressors in terms of the k-th order
empirical entropy Hk of the input word. Recall that, under the hypothesis
of the Markovian nature of the input word w, Hk(w) gives a lower bound on
the compression ratio of any encoder that is allowed to use only the k-length
context preceding letter in order to encode it. In [11, 12], the authors report
some empirical results which seem to indicate that achieving good bounds
with respect to Hk does not necessarily guarantee good compression results
in practice.

1Empirical entropy states roughly that, given k consecutive letters, how much uncer-
tainty there is on the average over the next letter in the sequence.

2

The empirical entropy, as has been observed in [15, 24], it does not reflect
well the large-scale repetitiveness of the text2, indeed when a text is repet-
itive, the letters preceding lexicographically adjacent suffixes are identical
with high probability. Hence, the number of runs should be small when the
text is repetitive. It has also been analyzed how various edit operations affect
the number of runs when the input is a highly repetitive collection. Moreover,
in [14] the relationship between the equal-letter runs in the Burrows-Wheeler
transformed word and the k-th order entropy of the text is studied.

Actually, compression algorithms based on the BWT take advantage of
the fact that the output of BWT shows a local similarity (occurrences of
a given letter tend to occur in clusters) and so it turns out to be highly
compressible. In literature, this property is referred to as the “clustering
effect” of BWT . For instance, BWT applied to the word mathematics
outputs the word mmihttsecaa, where one can see that equal letters are
consecutive.

In order to investigate this “clustering effect” from a combinatorial view-
point, it is interesting to consider which are the structural properties of the
words for which the BWT produces the maximal or the minimal amount of
clusters and whether the increase of the number of clusters can be maximal.
Such a behavior may have some effects in terms of input compressibility.
In fact, a perfect clustering produced by the BWT corresponds to optimal
performances of compression techniques such as run-length encoding (RLE)
and move-to-front (MTF)[2]. In past, several authors have considered the
set S of the words v over a totally ordered alphabet Σ = {a1, a2, . . . , aσ},
with a1 < a2 < . . . < aσ, for which the words produced by BWT is
anσσ a

nσ−1

σ−1 · · · an2
2 a

n1
1 for some non-negative integers n1, n2, . . . , nσ. A complete

description of the set S in the case of a binary alphabet has been given
in [16], where it is proved that a word is in S if and only if it is a power of
a conjugate of a standard sturmian word (cf. [13]). In the case of three let-
ters alphabet a constructive characterization of the elements of S has been
given by Simpson and Puglisi in [23]. In [21], the authors show that the
elements of S are “rich” in palindromes, in the sense that they contain the
maximum number of different palindromic factors. Finally, in [5] it is proved
that perfectly clustering words are intrinsically related to k-discrete interval

2Informally, a text can be considered highly repetitive, if the number of equal letter
runs in the Burrows-Wheeler Transform is much less than the length of the sequence.

3

exchange transformations. Such transformations can be intuitively defined
by partitioning the interval {1, . . . , n} into k distinct sub-intervals. If each
position of the interval is labeled by a letter of the alphabet Σ, the transfor-
mation produces a trajectory starting from a given position and is the infinite
sequences of letters obtained by following the transformation. Formal defini-
tions can be found in [5]. In [22], the authors propose an experimental study
in order to analyze the clustering effect on “real” texts. In this study, the
authors compare the rate of compression of a BWT -based compressor and
of the LZ-based compressor [25] in relation to the clustering of the input.

In this paper we make a combinatorial analysis of the “clustering effect”
of the BWT . In particular we use a measure that counts the number of equal-
letter runs produced by the BWT . We are interested in exploring how the
number of equal-letter runs (clusters) of the BWT output varies depending
on the number equal-letter runs of the input. This measure highlights that
there exist many words for which BWT gives an “un-clustering effect”, that
is BWT spreads equal letters far away from one another, producing many
runs. For instance, for the infinite family of binary de Bruijn words, theBWT
always determines an increase of the number of equal-letter runs. More in
general we prove that the application of BWT to a word at most doubles
the number of equal-letter runs with respect to the ones in the input word.
Moreover we prove that this bound is tight by showing some families of words
where such upper bound is always reached. We also prove that for binary
words the case in which the BWT produces the maximal number of clusters
is related to the very well known Artin’s conjecture on primitive roots.

2. Preliminaries

Let Σ = {a1, a2, . . . , aσ} be a finite ordered alphabet with a1 < a2 < . . . <
aσ, where < denotes the standard lexicographic order. We denote by Σ∗ the
set of words over Σ. Given a finite word w = w1w2 · · ·wn ∈ Σ∗ with each
wi ∈ Σ, the length of w, denoted |w|, is equal to n. We denote by alph(w)
the subset of Σ containing all the letters that appear in w. Given a finite
word w = w1w2 · · ·wn with each wi ∈ Σ, a factor of a word w is written as
w[i, j] = wi · · ·wj with 1 ≤ i ≤ j ≤ n. A factor of type w[1, j] is called a
prefix, while a factor of type w[i, n] is called a suffix. A subsequence of w is a
word obtained by deleting some (not necessarily contiguous) letters from w.
We also denote by w[i] the i-th letter in w for any 1 ≤ i ≤ n.

4

The concatenation of two words w and v, written wv, is simply the word
consisting of the letters of w followed by the letters of v.

We say that two words x, y ∈ Σ∗ are conjugate, if x = uv and y =
vu, where u, v ∈ Σ∗. Conjugacy between words is an equivalence rela-
tion over Σ∗. The conjugacy class (w) of w ∈ Σ∗ is the set of all words
wiwi+1 · · ·wnw1 · · ·wi−1, for any 1 ≤ i ≤ n and wi ∈ Σ.

A nonempty word w ∈ Σ∗ is primitive if w = uh implies w = u and h = 1.
Recall that every nonempty word u ∈ Σ∗ can be written in a unique way as a
power of a primitive word, i.e., there exists a unique primitive word w, called
the root of u, and a unique integer k such that u = wk.

A Lyndon word is a primitive word which is the minimum in its conjugacy
class, with respect to the lexicographic order relation.

The run-length encoding of a word w, denoted by rle(w), is a sequence
of pairs (wi, li) such that wiwi+1 · · ·wi+li−1 is a maximal run of a letter wi
(i.e., wi = wi+1 = · · · = wi+li−1, wi−1 6= wi and wi+li 6= wi), and all such
maximal runs are listed in rle(w) in the order they appear in w. We denote
by ρ(w) = |rle(w)| i.e., is the number of pairs in w, or equivalently the
number of equal-letter runs in w. Moreover we denote by ρ(w)ai the number
of pairs (wj, lj) in rle(w) where wj = ai.

Notice that ρ(w) ≤ ρ(w1) + ρ(w2) + · · · + ρ(wp), where w1w2 · · ·wp = w
is any partition of w.

The Burrows-Wheeler Transform (BWT) can be described as follows:
given a word w ∈ Σ∗, the output of BWT is the pair (bwt(w), I), where:

• bwt(w) is the permutation of the letters in the input word w obtained
by considering the matrix M (also called BWT matrix) containing the
lexicographically sorted list of the conjugates of w, and by concatenat-
ing the letters of the last column L of matrix M .

• I is the position where the original word w appears in M .

Note also that the first column F of the BWT matrix M is the sequence
of lexicographically sorted symbols of w.

The Burrows-Wheeler Transform is reversible by using the properties (cf.
[4]) described in the following proposition.

Proposition 2.1. Let (L, I) be a pair produced by the BWT applied to a word
w. Let F be the sequence of the lexicographically sorted letters of L = bwt(w).
The following properties hold:

5

1. For all i = 1, . . . , n, i 6= I, the letter F [i] cyclically follows L[i] in the
original word w;

2. for each letter c, the r-th occurrence of c in F corresponds to the r-th
occurrence of c in L;

3. The first letter of w is F [I].

From the above properties it follows that the BWT is reversible in the
sense that, given L and I, it is possible to recover the original word w. These
properties are the basis of a very well known indexing data structure called
FM-index (cf. [7]).

Actually, according to Property 2 of Proposition 2.1, we can define a
permutation µ : {1, . . . , n} → {1, . . . , n} where µ gives the correspondence
between the positions of letters of F and L. The permutation µ is also called
FL-mapping.

The permutation µ also represents the order in which we have to rearrange
the elements of F to reconstruct the original word w. Hence, starting from
the position I, we can recover the word w as follows:

w[i] = F [µi−1(I)] , where µ0(x) = x and µi(x) = µ(µi−1(x)),with 1 ≤ i ≤ n.

Remark 2.2. Note that given a pair (L, I) where L ∈ Σ∗ and 1 ≤ I ≤ n,
the word w =BWT−1(L, I) (and then bwt(w) = L) exists if and only if the
permutation µ consists of a single cycle.

Remark 2.3. It follows by the definition that a Lyndon word is located at the
first row of the correspondent BWT matrix, so in order to recover a Lyndon
conjugate of a word w it is sufficient to apply |w| times the FL-mapping by
starting from I = 1. In this paper we are mainly interested to Lyndon words,
so we can omit the index I.

3. How many equal-letter runs when the BWT is applied?

Several papers dealing with BWT focus on its “clustering effect”, mean-
ing that bwt(w) usually contains longer (and therefore less) equal-letters runs
than the ones in w. This is the main reason for using BWT as a preprocessing
for text compression.

On the other side one can find several examples where this clustering effect
is not achieved at all, since BWT “un-clusters” the word as, for instance, in
the following example.

6

Example 3.1. Consider the word w = aacbbcccc where ρ(w) = 4. Then one
can verify that bwt(w) = cacbcaccb and ρ(bwt(w)) = 8.

The above mentioned “un-clustering effect” also happens for some im-
portant infinite classes, such as de Bruijn words, as we are going to prove in
Section 5.

Here we are interested in exploring how the number of equal-letter runs
of the BWT output varies depending on the number equal-letter runs of the
input. It is clear that ρ(bwt(w)) ≥ |alph(w)|.

To this concern, by considering that much literature studied the case
when the maximum clustering effect is achieved, a natural question is to find
the cases where the maximum un-clustering is achieved, formalized in the
following:

Problem 3.2. How much can ρ(bwt(w)) grow compared to ρ(w)?

First, note that if v and w are conjugate words, then |ρ(v) − ρ(w)| ≤ 1.
On the other hand, for two conjugate words BWT produces the same word
as output but with a different index. Since we are interested in the number
of equal-letter runs of such a word, then we can assume that the input is
a Lyndon word because it is one of the conjugates having least number of
equal-letter runs.

The following theorem gives the answer to Problem 3.2 and the result
can be somehow unexpected: the number of equal-letter runs can at most be
doubled by the BWT .

Theorem 3.3. Let w ∈ Σ∗ be a Lyndon word over a finite alphabet Σ. Then:

ρ(bwt(w)) ≤ 2ρ(w).

Proof. Let Σ = {a1, a2, . . . , aσ} with a1 < a2 < · · · < aσ and let rle(w) =
(b1, l1), (b2, l2), . . . , (bk, lk), where b1, b2, . . . bk ∈ Σ.

When computing bwt(w), one can split the BWT matrix into groups of
rows according to their first letter ai (i = 1, 2, . . . , σ). This splitting induces
a parsing on bwt(w). We denote by uai the factor in bwt(w) associated to the
letter ai, i.e., all the letters that in the original words precede an occurrence
of the letter ai. Then we can write bwt(w) = ua1ua2 · · ·uaσ .

Consider any block uaj . In this block there are at most as many letters
different from aj as the number of different runs of aj in w. In fact, in w, aj
is preceded by a letter different from aj itself only in the beginning of each of

7

its runs. So the greatest possible number of runs contained in uaj is achieved
when all the letters different from aj never appear in the block one next to
another, producing on uaj a number of runs rle(uaj) equal to 2 ·ρ(w)aj . This
happens for each block, then

ρ(bwt(w)) ≤
σ∑
i=1

ρ(uai) ≤
σ∑
i=1

2 · ρ(w)ai = 2
σ∑
i=1

ρ(w)ai = 2 ρ(w)

Note that Example 3.1 shows that the upper bound given by Theorem
3.3 is tight.

In order to evaluate whether the application of the Burrows-Wheeler
Transform increases the number of equal-letter runs of the input text we
consider the measure defined as the ratio ρ(bwt(w))

ρ(w)
.

The next goal of this paper is to look for a solution to the following
problem:

Problem 3.4. Find an infinite family of Lyndon words w such that

ρ(bwt(w))

ρ(w)
> 1.

Such a problem is faced in Section 5. Furthermore, since we proved in
Theorem 3.3 that the ratio ρ(bwt(w))

ρ(w)
is at most 2, we are also interested in the

following problem:

Problem 3.5. Find an infinite family of Lyndon words w such that

ρ(bwt(w))

ρ(w)
= 2.

In the remaining part of this section we show some properties of this
measure.

Proposition 3.6. Let v be a Lyndon word (different from a single letter)
and let k be a positive integer. Then

ρ(bwt(vk))

ρ(vk)
=

1

k

ρ(bwt(v))

ρ(v)
.

8

Proof. Since v is a Lyndon word containing at least two different letters, it
is straightforward that ρ(vk) = kρ(v). Moreover, in [16] it has been proved
that if bwt(v) = v1v2 · · · vn then bwt(vk) = vk1v

k
2 · · · vkn. So, ρ(bwt(vk)) =

ρ(bwt(v)). Then the thesis follows.

Corollary 3.7. Let w = vk, for some Lyndon word v and for some positive
integer k. Then

ρ(bwt(w))

ρ(w)
= 2⇒ ρ(bwt(v))

ρ(v)
= 2

Proof. From Proposition 3.6 we have that ρ(bwt(w))
ρ(w)

≤ ρ(bwt(v))
ρ(v)

. The thesis

follows from the fact that, by Theorem 3.3, ρ(bwt(v))
ρ(v)

must be smaller than or
equal to 2.

Proposition 3.9 and Corollary 3.10 show that the Burrows-Wheeler Trans-
form can lead to a maximum increase in the number of equal-letter runs even
if the input word does not have a large number of runs, compared to its
length.

Lemma 3.8. Let w = w1w2 · · ·wn ∈ Σ∗ and let v be a subsequence of w,
i.e., v = wi1wi2 · · ·wik where i1 < i2 < . . . < ik. Then ρ(v) ≤ ρ(w).

Proof. The thesis immediately follows from the fact that the presence of any
letter between two consecutive letters of v or before the first letter or after
the last letter of v, can not decrease the number of runs.

We call expansion of order r of the letter c ∈ Σ (denoted by θr,c) the
morphism that fixes all the letters except c, which is mapped to cr, i.e.,
θr,c(b) = b if b 6= c, θr,c(c) = cr.

Proposition 3.9. Let w be a Lyndon word over the alphabet Σ. Then, for
each c ∈ Σ and for each positive integer r,

ρ(bwt(θr,c(w)))

ρ(θr,c(w))
≥ ρ(bwt(w))

ρ(w)
.

Proof. It is obvious that ρ(θr,c(w)) = ρ(w). Let us denote by w′ and w′′

two conjugates of w. One can verify that θr,c(w
′) and θr,c(w

′′) are conju-
gate of θr,c(w). Moreover, if w′ is lexicographically smaller than w′′, then
θr,c(w

′) is lexicographically smaller than θr,c(w
′′). Consequently, bwt(w) is

a subsequence of bwt(θr,c(w)). So, by using Lemma 3.8, ρ(bwt(θr,c(w))) ≥
ρ(bwt(w)). Then the thesis follows.

9

Corollary 3.10. Let w be a Lyndon word, over the alphabet Σ, such that

ρ(bwt(w))

ρ(w)
= 2.

Then, for each c ∈ Σ and for each positive integer r,

ρ(bwt(θr,c(w)))

ρ(θr,c(w))
= 2.

Note that Corollary 3.10 shows that the expansion of one or more letters
could be a tool to construct infinite families of Lyndon words keeping the
maximal increase of the number of equal-letter runs produced by BWT .

The following theorem shows that, for any alphabet, there exists an infi-
nite family of Lyndon words where ρ(bwt(v)) = 2ρ(v).

Theorem 3.11. For any alphabet Σ and any k ≥ max{|Σ|, 3}, there is a
Lyndon word v on Σ such that ρ(v) = 2k − 2 and ρ(bwt(v)) = 4k − 4.

Proof. Let σ be the smallest letter in Σ and let δ1, . . . , δk−1 be a non-decreasing
sequence of letters covering all the letters of the alphabet different from σ.
Let fi = σ2i−1δ2i−1i for i = 2, . . . , k − 1, f1 = σδ1δ1 and v = fk−1 · · · f1.
Clearly, ρ(v) = 2k − 2. One can note that bwt(v) can be factored in two
parts: the first corresponding to all the conjugates starting with σ, and the
second corresponding to all other conjugates.

For the first part, we first have the only conjugate that starts with 2k−3
σ letters, then the one with 2k − 4, then the two conjugates that start with
2k − 5 σ letters (from the rightmost to the leftmost), and so on. From this
we can easily see that the first part of bwt(v) is δ1σδk−1σ

3 · · · δ3σ2k−5δ2σ
k−2.

For the second part, let us assume first that all letters δi are distinct. In
this case, we have exactly all the conjugates starting in the second part of
each fi, from the rightmost to the leftmost. This means that the second part
of bwt(v) is δ1σδ

2
2σδ

4
3σ · · · δ2k−4k−1 σ.

It follows that bwt(v) = δ1σδk−1σ
3 · · · δ3σ2k−5δ2σ

k−2δ1σδ
2
2σδ

4
3σ · · · δ2k−4k−1 σ,

that clearly has 4k − 4 runs. So ρ(bwt(v)) = 4k − 4, that is the thesis.
On the other hand, when some letters δi are not distinct, we can still

prove that any two occurrences of σ in the second part of bwt(v) have a
non-σ character between them. This still generates 2k−2 runs in the second
part. We know that any conjugate that ends with σ starts with δeii , where
ei = 2 if i = 1, and ei = 2i− 1 otherwise.

10

Also in this case the first conjugate starts with δ1σ
2k−3 and ends with δ1.

If there are conjugates between the first one and the conjugate starting with
δ21 and ending with σ, they must start with δ1σ and end with δ1. Let us now
consider 1 ≤ i ≤ k − 2 and the conjugates ending with σ and starting with
δ2i−1i and δ2i+1

i+1 , respectively. If δi 6= δi+1, all the conjugates between them
end with δi+1. If δi = δi+1, all the conjugates that appear between them start
with δxi (for some x such that 2i− 1 ≤ x ≤ 2i+ 1). Moreover, the conjugate
starting with δ2ii must appear between them, and clearly ends with δi. This
proves that two occurrences of σ cannot be consecutive and are interspersed
by the same symbol (that is different by σ). Finally, the last conjugate starts
with δ2k−3k−1 and ends with σ. This completes the proof.

Example 3.12. Let Σ = {a, b}. The word v = a3b3abb has bwt(v) =
bababbaba, so ρ(v) = 4 and ρ(bwt(v)) = 8. The word w = a5b5a3b3abb
has bwt(w) = babaaabaabbbabbbaba, so ρ(w) = 6 and ρ(bwt(w)) = 12.
The word u = a7e7a5d5a3c3abb over the alphabet {a, b, c, d, e} has bwt(u) =
baeaaadaaaaacaaabaccaddddaeeeeeea, so ρ(u) = 8 and ρ(bwt(u)) = 16.

4. Maximal number of equal-letter runs by BWT in binary alpha-
bets

In this section, we face with Problem 3.5 by considering the additional
constraint that the Burrows-Wheeler Transform produces the maximal num-
ber of equal-letter runs, i.e., ρ(bwt(w)) = |w|. This could have an inde-
pendent interest because it represents a dual point of view compared to
the analysis of the case in which the BWT produces the fewest number of
clusters. In fact, it is quite clear that, given any word w ∈ Σ∗, the value
ρ(bwt(w)) is in the range [|alph(w)|, |w|]. In [16] there is a characterization
of the binary words for which this clustering effect is maximal, i.e., BWT
produces a word with just 2 equal-letter runs (one for each letter). Such
words are the so-called standard sturmian words.

In [5, 21, 23] the authors show that the maximal clustering effect for k-
letter alphabets can be achieved, since there exist families of words for which
the BWT produces exactly k equal-letter runs.

We are interested in the following problem on the binary alphabet and we
prove that it is related to the very well known Artin’s conjecture on primitive
roots.

11

Problem 4.1. Characterize the family, denoted by B, of Lyndon words w ∈
{a, b}∗ such that ρ(bwt(w)) = |w|, i.e., bwt(w) = (ba)

n
2 where |w| = n and

n is even.

Note that one can verify that in case of a word w over a binary alphabet
{a, b}, bwt(w) must begin with the letter b and end with a. Therefore, if |w|
is odd then ρ(bwt(w)) ≤ |w| − 1. In order to face with the Problem 4.1 we
have to consider the FL-mapping from the words a

n
2 b

n
2 to (ba)

n
2 .

One can verify that in this case the FL-mapping µ : {1, 2, . . . , n} 7→
{1, 2, . . . , n} is defined as µ(m) = 2m (mod n+ 1).

This means that Problem 4.1 of characterizing the words in B can be
reduced to the following problem.

Problem 4.2. Characterize the set, denoted by P, of all the positive even
integers n such that the permutation µ consists of a single cycle of length n.

Note that the integer n belongs to the set P if and only (ba)
n
2 is a word

produced by BWT and the word w =BWT−1((ba)
n
2 , 1) belongs to the family

B.
Recall that given an integer m > 1, the congruence modulo m over Z

is defined as follows: ∀a, b ∈ Z, a ≡ b (mod m) iff a − b = km for some
k ∈ Z. We denote by Zm the set of the congruence classes [x] modulo m,
x = 0, 1, . . . ,m− 1.

The multiplicative group of integers modulo m, denoted by Z∗m, is the set
of congruence classes [x] (x = 1, . . . ,m− 1) such that x and m are coprime.

The following proposition gives the solution to Problem 4.2.

Proposition 4.3. A positive integer n solves Problem 4.2 if and only if n+1
is an odd prime number and 2 generates the multiplicative group Z∗n+1.

Proof. Since µ is defined as the permutation that sends m in 2m (mod n+1),
we have that µi(1) ≡ 2i (mod n+ 1). This implies that µ has a single cycle
if and only if we can obtain any number from 1 to n as µi(1) for some i, i.e.,
if and only if |Z∗n+1| = n and 2 is a generator of the multiplicative group. As
|Z∗n+1| = n if and only if n+ 1 is a prime number, the thesis follows.

From previous proposition the set P of all numbers solving Problem 4.2
is the following:

P = {2, 4, 10, 12, 18, 28, 36, 52, 58, 60, 66, 82, 100, 106, 130, 138, 148, 162, 172, 178,

12

180, 196, 210, 226, 268, 292, 316, 346, 348, 372, 378, 388, 418, 420, 442, 460, 466, 490,

508, 522, 540, 546, 556, 562, 586, 612, 618, 652, 658, 660, 676, 700, 708, 756, 772, . . .}.

It is the sequence of integers n such that n + 1 belongs to the integer
sequence A001122 in [18] of primes with primitive root 2.

It is an open problem to establish whether P is an infinite set of integers.
This problem is related to the very famous Artin’s conjecture on primitive
roots stating that a given integer c which is neither a perfect square nor
−1 is a primitive root modulo infinitely many primes. The conjecture was
formulated in 1927 and it is still open for each value of c. However, there
exists a conditional proof for the conjecture proposed by Hooley in 1967 by
assuming certain cases of the Generalized Riemann hypothesis (cf. [10]).

The following example shows two words such that their length belongs to
P .

Example 4.4. Let bwt(w) = (ba)26, then ρ(bwt(w)) = 52 and

w = aaaaabaabbababaabaaaabbbaabbbbbabbaabababbabbbbaaabb

contains 26 equal-letter runs.
Let bwt(v) = (ba)9, then ρ(bwt(v)) = 18 and

v = aaaabbababbbbaabab

contains 10 equal-letter runs.

The following two propositions show that the family B of Lyndon words,
for which BWT outputs the maximal numbers of equal-letter runs, can be
partitioned into two disjoint families B1 and B2, where B1 is the family of
Lyndon words w such that ρ(bwt(w)) = 2ρ(w) and B2 is the family of Lyndon
words v such that ρ(bwt(v)) = 2ρ(v)−2. In Example 4.4, w ∈ B1 and v ∈ B2.

In particular, Proposition 4.5 describes a family of Lyndon words w such
that ρ(bwt(w))

ρ(w)
= 2 and ρ(bwt(w)) = |w|.

Proposition 4.5. There exists a family B1 ⊂ B of binary Lyndon words
such that for each word w ∈ B1, ρ(bwt(w)) = 2ρ(w) = |w|.

Proof. By Proposition 4.3 w ∈ B if and only if n+ 1 is an odd prime number
with primitive root 2, where n = |w|. The set P can be partitioned into the
sets P1 and P2, where P1 is the set of odd primes of the form 4k+1, for k ≥ 1,

13

and P2 is the set of odd primes of the form 4k + 3, for k ≥ 0. We consider
the words w such that n+ 1 ∈ P1. We know that bwt(w) = (ba)

n
2 . Let h be

such that n = 2h. Then bwt(w) contains exactly 2h equal-letter runs. We
have to prove that if we recover the word w by using the FL-mapping µ we
obtain h runs.

We know that, since n + 1 = 4k + 1, then h = n/2 = 4k/2 = 2k is
even. We can decompose L = bwt(w) = (ba)2k in two parts, i.e., L[1, 2k]
and L[2k + 1, 4k]. Such a decomposition induces a split of the column F of
the BWT matrix into F [1, 2k] = a2k and F [2k+ 1, 4k] = b2k. Recall that by
Proposition 2.1 for each i = 1, . . . , 4k the letter F [i] follows L[i] in the word
w. This means that all the letters in L[1, 2k] are followed by a and all the
letters in L[2k+1, 4k] are followed by b in the word w. In particular, L[1, 2k]
contains k letters equal to b. This implies that w contains exactly k runs of
b’s. A similar argument can be used for L[2k + 1, 4k]. In fact, L[2k + 1, 4k]
contains k letters equal to a. Consequently, w contains exactly k runs of a’s.

So, we have 2k equal-letter runs in v.

We formulate the following

Conjecture 4.6. The family B1 is infinite.

Note that if the conjecture were true, B1 would solve Problem 3.5. More-
over, it is strictly related to a possible solution of Artin’s conjecture.

The following proposition completes the evaluation of the increase of the
equal-letter runs when the Burrows-Wheeler Transform determines the max-
imal value of ρ in the binary case.

Proposition 4.7. There exists a family B2 ⊂ B of binary Lyndon words
such that for each word v ∈ B2, ρ(bwt(v)) = 2ρ(v)− 2 = |v|.

Proof. By Proposition 4.3 w ∈ B if and only if n+ 1 is an odd prime number
with primitive root 2, where n = |w|. Even in this case we can observe that
the set P can be partitioned into the sets P1 and P2, where P1 is the set of
odd primes of the form 4k + 1, for k ≥ 1, and P2 is the set of odd primes of
the form 4k+3, for k ≥ 0. We consider the words v such that n+1 ∈ P2. We
know that bwt(v) = (ba)

n
2 . Let h such that n = 2h. Then bwt(v) contains

exactly 2h equal-letter runs. We have to prove that if we recover the word v
by using the FL-mapping µ we obtain h+ 1 runs.

We know that n + 1 = 4k + 3. Then h = n/2 = (4k + 2)/2 = 2k + 1 is
odd. We can decompose L = bwt(v) = (ba)2k+1 in two parts each of length

14

2k+ 1, i.e., L[1, 2k+ 1] and L[2k+ 2, 4k+ 2]. Such a decomposition induces
a split of the column F of the BWT matrix into F [1, 2k + 1] = a2k+1 and
F [2k + 2, 4k + 2] = b2k+1. By Proposition 2.1, all the letters in L[1, 2k + 1]
are followed by a and all the letters in L[2k + 2, 4k + 2] are followed by b in
the word v. Note that, since L starts with the letter b, L[1, 2k + 1] contains
k + 1 b’s and k a’s. This implies that v contains exactly k + 1 runs of b’s.
Analogously, L[2k+2, 4k+2] starts with the letter a and, therefore, contains
k + 1 letters equal to a and k letters equal to b. Consequently, v contains
exactly k + 1 runs of a’s.

So, this implies that v contains 2k + 2 equal-letter runs.

The following proposition gives information about the combinatorial struc-
ture of the binary words w for which the Burrows-Wheeler Transform pro-
duces the maximal number of equal-letter runs, i.e., ρ(bwt(w)) = |w|.

Given a binary word u, we denote by ū the word obtained from u by
exchanging a with b and, conversely, b with a.

Proposition 4.8. The binary Lyndon word v of even length n such that
bwt(v) = (ba)n/2 is of the form uū.

Proof. We have to prove that for each i = 1, . . . , n/2, one has v[i] = a and
v[n/2 + i] = b or v[i] = b and v[n/2 + i] = a. Note that the elements in slots
1, . . . , n/2 coincide with the letter a and the elements in slots n/2 + 1, . . . , n
coincide with the letter b in the column F of the BWT matrix.

Since 2 is a generator modulo n + 1, we have that 2n/2 6≡ 1 (mod n +

1). Moreover, since we know that
(
2n/2

)2 ≡ 1 (mod n + 1), the only other

possibility is that 2n/2 ≡ −1 (mod n+ 1). Thus, µn/2(1) ≡ −1 (mod n+ 1).
So, it is easy to prove that µn/2+i(1) ≡ 2n/2+i ≡ −2i ≡ −µi(1) (mod n + 1)
for each i = 1, . . . , n/2.

Hence:
µi(1) + µn/2+i(1) ≡ 0 (mod n+ 1).

As 1 ≤ µi(1) ≤ n, the only way this can hold is if

µn/2+i(1) = n+ 1− µi(1)

This implies that µn/2+i(1) > n/2 if and only if µi(1) ≤ n/2, i.e., that v[i]
and v[n/2 + i] are different letters.

15

Example 4.9. We consider the word bwt(w) = (ba)n/2 where n = 28, so
that bwt(w) ∈ B1, indeed 29 can be written as 4k + 1, k = 7. Then w =
uū = (aaaabaaabbabaa)(bbbbabbbaababb). Note that ρ(w) = 14.

We consider the word bwt(v) = (ba)n/2 where n = 18, so that bwt(v) ∈ B2,
indeed 19 can be written as 4k + 3, k = 4. Note that ρ(bwt(v)) = 18, so
v = uū = (aaaabbaba)(bbbbaabab) and ρ(v) = 10.

5. Equal-letter runs in de Bruijn Words

In this section we consider the family of de Bruijn words. Such words
have been considered in order to asymptotically compare Lempel-Ziv and
Burrows-Wheeler based compression (cf. [20]). Here we prove that BWT
always determines an increase of the number of equal-letter runs when applied
to a binary de Bruijn word. We recall that a de Bruijn word of span n over a
finite k-ary alphabet is a Lyndon word dn of length kn for which every word
of length n appears exactly once as a factor in a conjugate of dn. Moreover,
for every n and for every k-ary alphabet, (k!)k

n−1
/kn de Bruijn words dn exist

(cf. [8, 19]).
In the following proposition we give a direct proof of the number of runs

appearing in a binary de Bruijn word. Note that this result can be inferred
by using some combinatorial properties analyzed in [8].

Proposition 5.1. Let dn be a de Bruijn word of span n over the binary
alphabet {a, b}. Then ρ(dn) = 2n−1.

Proof. We first consider the runs of a’s. First of all there is no run ai with
i > n otherwise an would be a word of length n that appears more than
once in dn. The run an is a particular word of length n, then, since dn is a
Lyndon word, it appears exactly once in dn (in particular as factor of banb
in a conjugate of dn).

The words ban−1 and an−1b also appear once, but since they are factors
of banb, we have no runs of a’s of length n− 1.

For any 1 ≤ i ≤ n − 2 consider the runs of the form ai. They appear
as factors of all the words of the form baibw where w is any word of length
n− i− 2. Each of the words baibw appear exactly once. There are 2n−i−2 of
such words, therefore there are 2n−i−2 runs ai. We have overall:

1 +
n−2∑
i=1

2n−i−2 = 1 +
n−3∑
i=0

2i = 1 + 2n−2 − 1 = 2n−2

16

So there are 2n−2 runs of a’s. For the same reason there are 2n−2 runs of
b’s, then overall 2 · 2n−2 = 2n−1 runs.

Theorem 5.2. Let dn a de Bruijn word of span n over a binary alphabet
with n ≥ 3. Then

1 +
1

2n−2
≤ ρ(bwt(dn))

ρ(dn)
≤ 2− 1

2n−2
.

Proof. Recall that any binary de Bruijn word of span n has length 2n, with
n ≥ 2. It was proved that numbers as 2n with n ≥ 2 do not belong to P (cf.
[1, 3], so by Proposition 4.3 ρ(bwt(dn)) < |dn| = 2n. It was proved in [9, 19]
that bwt(dn) ∈ Γ2n−1

, where Γ = {ab, ba}. Moreover, one can note that ba
must be a prefix and a suffix of bwt(dn). Since bwt(dn) 6= (ba)2

n−1
then aa

and bb must be factors of bwt(dn). So, the upper bound follows because
ρ(bwt(dn)) ≤ 2n − 2. The lower bound on the number of equal-letter runs is
reached when bwt(dn) = b(aabb)2

n−2−1aba. In this case this value is 2n−1 + 2.
Then, the thesis follows.

6. Acknowledgments

The authors are very grateful to the anonymous referees for their helpful
remarks and constructive comments.

References

[1] P. R. J. Asveld. Permuting operations on strings and their relation
to prime numbers. Discrete Applied Mathematics, 159(17):1915–1932,
2011.

[2] J. L. Bentley, D. D. Sleator, R. E. Tarjan, and V. K. Wei. A locally adap-
tive data compression scheme. Commun. ACM, 29(4):320–330, 1986.

[3] M. Bringer. Sur un problème de R. Queneau. Math. Sci. Humaines No.,
27:13–20, 1969.

[4] M. Burrows and D. J. Wheeler. A block sorting data compression algo-
rithm. Technical report, DIGITAL System Research Center, 1994.

[5] S. Ferenczi and L. Q. Zamboni. Clustering Words and Interval Ex-
changes. Journal of Integer Sequences, 16(2):Article 13.2.1, 2013.

17

[6] P. Ferragina, R. Giancarlo, G. Manzini, and M. Sciortino. Boosting
textual compression in optimal linear time. J. ACM, 52(4):688–713,
2005.

[7] P. Ferragina and G. Manzini. Opportunistic data structures with appli-
cations. In FOCS 2000, pages 390–398. IEEE Computer Society, 2000.

[8] H. Fredricksen. A survey of full length nonlinear shift register cycle
algorithms. SIAM Review, 24(2):195–221, 1982.

[9] P. M. Higgins. Burrows-Wheeler transformations and de Bruijn words.
Theor. Comput. Sci., 457:128–136, 2012.

[10] C. Hooley. On Artin’s conjecture. Journal für die reine und angewandte
Mathematik, 225:209–220, 1967.

[11] H. Kaplan, S. Landau, and E. Verbin. A simpler analysis of Burrows-
Wheeler-based compression. Theoret. Comput. Sci., 387(3):220–235,
2007.

[12] H. Kaplan and E. Verbin. Most Burrows-Wheeler based compressors
are not optimal. In CPM 2007, volume 4580 of LNCS, pages 107–118.
Springer, 2007.

[13] M. Lothaire. Algebraic Combinatorics on Words. Cambridge University
Press, 2002.

[14] V. Mäkinen and G. Navarro. Compressed compact suffix arrays. In
CPM 2004, volume 3109 of LNCS, pages 420–433. Springer, 2004.

[15] V. Mäkinen, G. Navarro, J. Sirén, and N. Välimäki. Storage and retrieval
of highly repetitive sequence collections. Journal of Computational Bi-
ology, 17(3):281–308, 2010.

[16] S. Mantaci, A. Restivo, and M. Sciortino. Burrows-Wheeler transform
and Sturmian words. Information Processing Letters, 86:241–246, 2003.

[17] G. Manzini. An analysis of the Burrows-Wheeler transform. J. ACM,
48(3):407–430, 2001.

[18] The On-Line Encyclopedia of Integer Sequences. Primes with primitive
root 2. https://oeis.org/A001122.

18

[19] D. Perrin and A. Restivo. Words. In Miklos Bona, editor, Handbook of
Enumerative Combinatorics. CRC Press, 2015.

[20] N. Prezza. Can Lempel-Ziv and Burrows-Wheeler compression be
asymptotically compared? International Workshop on Combinatorial
Algorithms - Problems Section, 2016.

[21] A. Restivo and G. Rosone. Burrows-Wheeler transform and palindromic
richness. Theoret. Comput. Sci., 410(30-32):3018 – 3026, 2009.

[22] A. Restivo and G. Rosone. Balancing and clustering of words in the
Burrows-Wheeler transform. Theoret. Comput. Sci., 412(27):3019 –
3032, 2011.

[23] J. Simpson and S. J. Puglisi. Words with simple Burrows-Wheeler trans-
forms. Electronic Journal of Combinatorics, 15, article R83, 2008.

[24] J. Sirén. Compressed Full-Text Indexes for Highly Repetitive Collections.
PhD thesis, 2012.

[25] J. Ziv and A. Lempel. A universal algorithm for sequential data com-
pression. IEEE Transactions on Information Theory, 23(3):337–343,
1977.

19

