
Metagenomic analysis through the eBWT

Veronica Guerrini Giovanna Rosone

University of Pisa, Italy

Supported by the Project MIUR-SIR CMACBioSeq
”Combinatorial Methods for Analysis and Compression of Biological Sequences”

BITS 2019
Bioinformatics Italian Society Annual Meeting

Palermo, June 26 - 28, 2019

Introduction

Introduction

Metagenomics is the study of genetic material collected from the environment

[Illustration: Spencer Phillips, EMBL-EBI]

Aim to explore the relations between the
microbes and their habitats

Applications. Clinical microbiology,
plant-microbe interactions, monitoring
pollution, sustainability, ecology, ...

Goal: Identify the taxon of each short read

Metagenomic analysis through the eBWT June 26-28 , 2019 2 / 14

Introduction

Introduction

Metagenomics is the study of genetic material collected from the environment

[Illustration: Spencer Phillips, EMBL-EBI]

Aim to explore the relations between the
microbes and their habitats

Applications. Clinical microbiology,
plant-microbe interactions, monitoring
pollution, sustainability, ecology, ...

Goal: Identify the taxon of each short read

Metagenomic analysis through the eBWT June 26-28 , 2019 2 / 14

Introduction

Our approach based on (e)BWT

G

R

We introduce an alignment-free and
assembly-free strategy...
... by using the properties of

the Burrows-Wheeler Transform (BWT)
of a string,

an extension of BWT to a multiset of
strings (eBWT).

Definition

Given a string v (resp. a string collection S), the Burrows-Wheeler Transform (resp. extended BWT)a is a reversible
transformation that produces a permutation of the symbols of v (resp. S), defined over an ordered alphabet.

a
Burrows and D. Wheeler, A block sorting lossless data compression algorithm, Technical Report 124, Digital Equipment Corporation, 1994

S. Mantaci, A. Restivo, G. R., M. Sciortino: An extension of the Burrows-Wheeler Transform. TCS 2007

M.Bauer, A. Cox, G. R.: Lightweight algorithms for constructing and inverting the BWT of string collections. TCS 2013

Metagenomic analysis through the eBWT June 26-28 , 2019 3 / 14

Introduction

Our approach based on (e)BWT

G

R

We introduce an alignment-free and
assembly-free strategy...
... by using the properties of

the Burrows-Wheeler Transform (BWT)
of a string,

an extension of BWT to a multiset of
strings (eBWT).

Definition

Given a string v (resp. a string collection S), the Burrows-Wheeler Transform (resp. extended BWT)a is a reversible
transformation that produces a permutation of the symbols of v (resp. S), defined over an ordered alphabet.

a
Burrows and D. Wheeler, A block sorting lossless data compression algorithm, Technical Report 124, Digital Equipment Corporation, 1994

S. Mantaci, A. Restivo, G. R., M. Sciortino: An extension of the Burrows-Wheeler Transform. TCS 2007

M.Bauer, A. Cox, G. R.: Lightweight algorithms for constructing and inverting the BWT of string collections. TCS 2013

Metagenomic analysis through the eBWT June 26-28 , 2019 3 / 14

Introduction

Our approach based on (e)BWT

G

R

We introduce an alignment-free and
assembly-free strategy...
... by using the properties of

the Burrows-Wheeler Transform (BWT)
of a string,

an extension of BWT to a multiset of
strings (eBWT).

Definition

Given a string v (resp. a string collection S), the Burrows-Wheeler Transform (resp. extended BWT)a is a reversible
transformation that produces a permutation of the symbols of v (resp. S), defined over an ordered alphabet.

a
Burrows and D. Wheeler, A block sorting lossless data compression algorithm, Technical Report 124, Digital Equipment Corporation, 1994

S. Mantaci, A. Restivo, G. R., M. Sciortino: An extension of the Burrows-Wheeler Transform. TCS 2007

M.Bauer, A. Cox, G. R.: Lightweight algorithms for constructing and inverting the BWT of string collections. TCS 2013

Metagenomic analysis through the eBWT June 26-28 , 2019 3 / 14

Introduction Preprocessing: eBWT and properties

How does EBWT work?

Let S = {S1, S2, . . . , Sm} be a collection of strings.

Append an end-marker $, where $i < A < C < G < T (we add subscripts $i only for
illustrative purposes), to each string in S by obtaining a new collection S′.

String collection S
0 1 2 3 4 5

S1 G C C A A C
S2 G A G C T C
S3 T C G C T T

Sort all the suffixes of the strings in S′;

Take the string eBWT (S′) obtained by concatenating
the symbols that (circularly) precede the first symbol of
each suffix in the list of (lexicographically) sorted
suffixes of S′.

eBWT (S′) = CCTCAGATCGTGG$2$1ACTC$3C

Note that the colors and suffixes are only for illustrative purposes.

Sorted Suffixes of S′

$1
$2
$3
AAC$1
AC$1
AGCTC$2
C$1
C$2
CAAC$1
CCAAC$1
CGCTT$3
CTC$2
CTT$3
GAGCTC$2
GCCAAC$1
GCTC$2
GCTT$3
T$3
TC$2
TCGCTT$3
TT$3

Metagenomic analysis through the eBWT June 26-28 , 2019 4 / 14

Introduction Preprocessing: eBWT and properties

How does EBWT work?

Let S = {S1, S2, . . . , Sm} be a collection of strings.

Append an end-marker $, where $i < A < C < G < T (we add subscripts $i only for
illustrative purposes), to each string in S by obtaining a new collection S′.

String collection S′

0 1 2 3 4 5 6
S1 G C C A A C $1
S2 G A G C T C $2
S3 T C G C T T $3

Sort all the suffixes of the strings in S′;

Take the string eBWT (S′) obtained by concatenating
the symbols that (circularly) precede the first symbol of
each suffix in the list of (lexicographically) sorted
suffixes of S′.

eBWT (S′) = CCTCAGATCGTGG$2$1ACTC$3C

Note that the colors and suffixes are only for illustrative purposes.

Sorted Suffixes of S′

$1
$2
$3
AAC$1
AC$1
AGCTC$2
C$1
C$2
CAAC$1
CCAAC$1
CGCTT$3
CTC$2
CTT$3
GAGCTC$2
GCCAAC$1
GCTC$2
GCTT$3
T$3
TC$2
TCGCTT$3
TT$3

Metagenomic analysis through the eBWT June 26-28 , 2019 4 / 14

Introduction Preprocessing: eBWT and properties

How does EBWT work?

Let S = {S1, S2, . . . , Sm} be a collection of strings.

Append an end-marker $, where $i < A < C < G < T (we add subscripts $i only for
illustrative purposes), to each string in S by obtaining a new collection S′.

String collection S′

0 1 2 3 4 5 6
S1 G C C A A C $1
S2 G A G C T C $2
S3 T C G C T T $3

Sort all the suffixes of the strings in S′;

Take the string eBWT (S′) obtained by concatenating
the symbols that (circularly) precede the first symbol of
each suffix in the list of (lexicographically) sorted
suffixes of S′.

eBWT (S′) = CCTCAGATCGTGG$2$1ACTC$3C

Note that the colors and suffixes are only for illustrative purposes.

Sorted Suffixes of S′

$1
$2
$3
AAC$1
AC$1
AGCTC$2
C$1
C$2
CAAC$1
CCAAC$1
CGCTT$3
CTC$2
CTT$3
GAGCTC$2
GCCAAC$1
GCTC$2
GCTT$3
T$3
TC$2
TCGCTT$3
TT$3

Metagenomic analysis through the eBWT June 26-28 , 2019 4 / 14

Introduction Preprocessing: eBWT and properties

How does EBWT work?

Let S = {S1, S2, . . . , Sm} be a collection of strings.

Append an end-marker $, where $i < A < C < G < T (we add subscripts $i only for
illustrative purposes), to each string in S by obtaining a new collection S′.

String collection S′

0 1 2 3 4 5 6
S1 G C C A A C $1
S2 G A G C T C $2
S3 T C G C T T $3

Sort all the suffixes of the strings in S′;

Take the string eBWT (S′) obtained by concatenating
the symbols that (circularly) precede the first symbol of
each suffix in the list of (lexicographically) sorted
suffixes of S′.

eBWT (S′) = CCTCAGATCGTGG$2$1ACTC$3C

Note that the colors and suffixes are only for illustrative purposes.

eBWT (S′) Sorted Suffixes of S′

C $1
C $2
T $3
C AAC$1
A AC$1
G AGCTC$2
A C$1
T C$2
C CAAC$1
G CCAAC$1
T CGCTT$3
G CTC$2
G CTT$3
$2 GAGCTC$2
$1 GCCAAC$1
A GCTC$2
C GCTT$3
T T$3
C TC$2
$3 TCGCTT$3
C TT$3

Metagenomic analysis through the eBWT June 26-28 , 2019 4 / 14

Introduction Preprocessing: eBWT and properties

How does EBWT work?

Let S = {S1, S2, . . . , Sm} be a collection of strings.

Append an end-marker $, where $i < A < C < G < T (we add subscripts $i only for
illustrative purposes), to each string in S by obtaining a new collection S′.

String collection S′

0 1 2 3 4 5 6
S1 G C C A A C $1
S2 G A G C T C $2
S3 T C G C T T $3

Sort all the suffixes of the strings in S′;

Take the string eBWT (S′) obtained by concatenating
the symbols that (circularly) precede the first symbol of
each suffix in the list of (lexicographically) sorted
suffixes of S′.

eBWT (S′) = CCTCAGATCGTGG$2$1ACTC$3C

Note that the colors and suffixes are only for illustrative purposes.

eBWT (S′) Sorted Suffixes of S′

C $1
C $2
T $3
C AAC$1
A AC$1
G AGCTC$2
A C$1
T C$2
C CAAC$1
G CCAAC$1
T CGCTT$3
G CTC$2
G CTT$3
$2 GAGCTC$2
$1 GCCAAC$1
A GCTC$2
C GCTT$3
T T$3
C TC$2
$3 TCGCTT$3
C TT$3

Metagenomic analysis through the eBWT June 26-28 , 2019 4 / 14

Method

Formalization: Metagenomic classification problem

G

R

R = {r1, . . . , r|R|} metagenome (collection of short reads)

G = {g1, . . . , g|G|} reference genomes (collection of long sequences)
Pre-processing step: build the data structures eBWT (S), DA(S), LCP (S), where
S = R∪ G.
The data structures for the reference database can be built only once, and updated with the
data structures for the reads collection in order to obtain the data structures for S.

Goal: to assign each read ri in R to a unique genome gj in G

Metagenomic analysis through the eBWT June 26-28 , 2019 5 / 14

Method

Formalization: Metagenomic classification problem

G

R

R = {r1, . . . , r|R|} metagenome (collection of short reads)

G = {g1, . . . , g|G|} reference genomes (collection of long sequences)
Pre-processing step: build the data structures eBWT (S), DA(S), LCP (S), where
S = R∪ G.
The data structures for the reference database can be built only once, and updated with the
data structures for the reads collection in order to obtain the data structures for S.

Goal: to assign each read ri in R to a unique genome gj in G

Metagenomic analysis through the eBWT June 26-28 , 2019 5 / 14

Method

Preprocessing: eBWT, DA and LCP array

DA[i] : index of the string to which the i-th suffix belongs.

LCP [i]: length of the Longest Common Prefix between the i-th and the (i− 1)-th suffix.

S = {GGCGTACCA$1, GGGGCGTAT$2, ACGATTAGC$3}
DA LCP eBWT Sorted suffixes DA LCP eBWT Sorted suffixes

1 0 A $1 3 0 C GATTAGC$3

2 0 T $2 3 1 A GC$3

3 0 C $3 1 2 G GCGTACCA$1

1 0 C A$1 2 5 G GCGTAT$2

1 1 T ACCA$1 1 1 $1 GGCGTACCA$1

3 2 $3 ACGATTAGC$3 2 6 G GGCGTAT$2

3 1 T AGC$3 2 2 G GGGCGTAT$2

2 1 T AT$2 2 3 $2 GGGGCGTAT$2

3 2 G ATTAGC$3 1 1 C GTACCA$1

3 0 G C$3 2 3 C GTAT$2

1 1 C CA$1 2 0 A T$2

1 1 A CCA$1 1 1 G TACCA$1

3 1 A CGATTAGC$3 3 2 T TAGC$3

1 2 G CGTACCA$1 2 2 G TAT$2

2 4 G CGTAT$2 3 1 A TTAGC$3

Metagenomic analysis through the eBWT June 26-28 , 2019 6 / 14

Method

Preprocessing: eBWT, DA and LCP array

DA[i] : index of the string to which the i-th suffix belongs.

LCP [i]: length of the Longest Common Prefix between the i-th and the (i− 1)-th suffix.

S = {GGCGTACCA$1, GGGGCGTAT$2, ACGATTAGC$3}
DA LCP eBWT Sorted suffixes DA LCP eBWT Sorted suffixes

1 0 A $1 3 0 C GATTAGC$3

2 0 T $2 3 1 A GC$3

3 0 C $3 1 2 G GCGTACCA$1

1 0 C A$1 2 5 G GCGTAT$2

1 1 T ACCA$1 1 1 $1 GGCGTACCA$1

3 2 $3 ACGATTAGC$3 2 6 G GGCGTAT$2

3 1 T AGC$3 2 2 G GGGCGTAT$2

2 1 T AT$2 2 3 $2 GGGGCGTAT$2

3 2 G ATTAGC$3 1 1 C GTACCA$1

3 0 G C$3 2 3 C GTAT$2

1 1 C CA$1 2 0 A T$2

1 1 A CCA$1 1 1 G TACCA$1

3 1 A CGATTAGC$3 3 2 T TAGC$3

1 2 G CGTACCA$1 2 2 G TAT$2

2 4 G CGTAT$2 3 1 A TTAGC$3

Metagenomic analysis through the eBWT June 26-28 , 2019 6 / 14

Method

Preprocessing: eBWT, DA and LCP array

DA[i] : index of the string to which the i-th suffix belongs.

LCP [i]: length of the Longest Common Prefix between the i-th and the (i− 1)-th suffix.

S = {GGCGTACCA$1, GGGGCGTAT$2, ACGATTAGC$3}
DA LCP eBWT Sorted suffixes DA LCP eBWT Sorted suffixes

1 0 A $1 3 0 C GATTAGC$3

2 0 T $2 3 1 A GC$3

3 0 C $3 1 2 G GCGTACCA$1

1 0 C A$1 2 5 G GCGTAT$2

1 1 T ACCA$1 1 1 $1 GGCGTACCA$1

3 2 $3 ACGATTAGC$3 2 6 G GGCGTAT$2

3 1 T AGC$3 2 2 G GGGCGTAT$2

2 1 T AT$2 2 3 $2 GGGGCGTAT$2

3 2 G ATTAGC$3 1 1 C GTACCA$1

3 0 G C$3 2 3 C GTAT$2

1 1 C CA$1 2 0 A T$2

1 1 A CCA$1 1 1 G TACCA$1

3 1 A CGATTAGC$3 3 2 T TAGC$3

1 2 G CGTACCA$1 2 2 G TAT$2

2 4 G CGTAT$2 3 1 A TTAGC$3

Metagenomic analysis through the eBWT June 26-28 , 2019 6 / 14

Method

Preprocessing: eBWT, DA and LCP array

DA[i] : index of the string to which the i-th suffix belongs.

LCP [i]: length of the Longest Common Prefix between the i-th and the (i− 1)-th suffix.

S = {GGCGTACCA$1, GGGGCGTAT$2, ACGATTAGC$3}
DA LCP eBWT Sorted suffixes DA LCP eBWT Sorted suffixes

1 0 A $1 3 0 C GATTAGC$3

2 0 T $2 3 1 A GC$3

3 0 C $3 1 2 G GCGTACCA$1

1 0 C A$1 2 5 G GCGTAT$2

1 1 T ACCA$1 1 1 $1 GGCGTACCA$1

3 2 $3 ACGATTAGC$3 2 6 G GGCGTAT$2

3 1 T AGC$3 2 2 G GGGCGTAT$2

2 1 T AT$2 2 3 $2 GGGGCGTAT$2

3 2 G ATTAGC$3 1 1 C GTACCA$1

3 0 G C$3 2 3 C GTAT$2

1 1 C CA$1 2 0 A T$2

1 1 A CCA$1 1 1 G TACCA$1

3 1 A CGATTAGC$3 3 2 T TAGC$3

1 2 G CGTACCA$1 2 2 G TAT$2

2 4 G CGTAT$2 3 1 A TTAGC$3

Metagenomic analysis through the eBWT June 26-28 , 2019 6 / 14

Method

Property of the eBWT: Mixing and clustering effect

Intuitive idea

The greater is the number of substrings share
by two strings, the smaller is their “distance”

Key property of the eBWT

The greater is the number of substrings shared
by u and v, the greater is the mixing of the
suffixes of u and v in the sorted list and the
greater are the runs (clusters) of the same
symbol in the eBWT.

u=GGCGTACCA$1. v=GGGGCGTAT$2

eBWT Sorted suffixes
A $1

T $2

C A$1

T ACCA$1

T AT$2

C CA$1

A CCA$1

G CGTACCA$1

G CGTAT$2

G GCGTACCA$1

G GCGTAT$2

$1 GGCGTACCA$1

G GGCGTAT$2

G GGGCGTAT$2

$2 GGGGCGTAT$2

C GTACCA$1

C GTAT$2

A T$2

G TACCA$1

G TAT$2

Metagenomic analysis through the eBWT June 26-28 , 2019 7 / 14

Method

Property of the eBWT: Mixing and clustering effect

Intuitive idea

The greater is the number of substrings share
by two strings, the smaller is their “distance”

Key property of the eBWT

The greater is the number of substrings shared
by u and v, the greater is the mixing of the
suffixes of u and v in the sorted list and the
greater are the runs (clusters) of the same
symbol in the eBWT.

u=GGCGTACCA$1. v=GGGGCGTAT$2

eBWT Sorted suffixes
A $1

T $2

C A$1

T ACCA$1

T AT$2

C CA$1

A CCA$1

G CGTACCA$1

G CGTAT$2

G GCGTACCA$1

G GCGTAT$2

$1 GGCGTACCA$1

G GGCGTAT$2

G GGGCGTAT$2

$2 GGGGCGTAT$2

C GTACCA$1

C GTAT$2

A T$2

G TACCA$1

G TAT$2

Metagenomic analysis through the eBWT June 26-28 , 2019 7 / 14

Method

Property of the eBWT: Mixing and clustering effect

Intuitive idea

The greater is the number of substrings share
by two strings, the smaller is their “distance”

Key property of the eBWT

The greater is the number of substrings shared
by u and v, the greater is the mixing of the
suffixes of u and v in the sorted list and the
greater are the runs (clusters) of the same
symbol in the eBWT.

u=GGCGTACCA$1. v=GGGGCGTAT$2

eBWT Sorted suffixes
A $1

T $2

C A$1

T ACCA$1

T AT$2

C CA$1

A CCA$1

G CGTACCA$1

G CGTAT$2

G GCGTACCA$1

G GCGTAT$2

$1 GGCGTACCA$1

G GGCGTAT$2

G GGGCGTAT$2

$2 GGGGCGTAT$2

C GTACCA$1

C GTAT$2

A T$2

G TACCA$1

G TAT$2

Metagenomic analysis through the eBWT June 26-28 , 2019 7 / 14

Method

Property of the eBWT: Mixing and clustering effect

Intuitive idea

The greater is the number of substrings share
by two strings, the smaller is their “distance”

Key property of the eBWT

The greater is the number of substrings shared
by u and v, the greater is the mixing of the
suffixes of u and v in the sorted list and the
greater are the runs (clusters) of the same
symbol in the eBWT.

u=GGCGTACCA$1. v=GGGGCGTAT$2

eBWT Sorted suffixes
A $1

T $2

C A$1

T ACCA$1

T AT$2

C CA$1

A CCA$1

G CGTACCA$1

G CGTAT$2

G GCGTACCA$1

G GCGTAT$2

$1 GGCGTACCA$1

G GGCGTAT$2

G GGGCGTAT$2

$2 GGGGCGTAT$2

C GTACCA$1

C GTAT$2

A T$2

G TACCA$1

G TAT$2

Metagenomic analysis through the eBWT June 26-28 , 2019 7 / 14

Method

Property of the eBWT: Mixing and clustering effect

Intuitive idea

The greater is the number of substrings share
by two strings, the smaller is their “distance”

Key property of the eBWT

The greater is the number of substrings shared
by u and v, the greater is the mixing of the
suffixes of u and v in the sorted list and the
greater are the runs (clusters) of the same
symbol in the eBWT.

u=GGCGTACCA$1. v=GGGGCGTAT$2

eBWT Sorted suffixes
A $1

T $2

C A$1

T ACCA$1

T AT$2

C CA$1

A CCA$1

G CGTACCA$1

G CGTAT$2

G GCGTACCA$1

G GCGTAT$2

$1 GGCGTACCA$1

G GGCGTAT$2

G GGGCGTAT$2

$2 GGGGCGTAT$2

C GTACCA$1

C GTAT$2

A T$2

G TACCA$1

G TAT$2

Metagenomic analysis through the eBWT June 26-28 , 2019 7 / 14

Method

Property of the eBWT: Mixing and clustering effect

Intuitive idea

The greater is the number of substrings share
by two strings, the smaller is their “distance”

Key property of the eBWT

The greater is the number of substrings shared
by u and v, the greater is the mixing of the
suffixes of u and v in the sorted list and the
greater are the runs (clusters) of the same
symbol in the eBWT.

u=GGCGTACCA$1. v=GGGGCGTAT$2

eBWT Sorted suffixes
A $1

T $2

C A$1

T ACCA$1

T AT$2

C CA$1

A CCA$1

G CGTACCA$1

G CGTAT$2

G GCGTACCA$1

G GCGTAT$2

$1 GGCGTACCA$1

G GGCGTAT$2

G GGGCGTAT$2

$2 GGGGCGTAT$2

C GTACCA$1

C GTAT$2

A T$2

G TACCA$1

G TAT$2

Metagenomic analysis through the eBWT June 26-28 , 2019 7 / 14

Method

Property of the eBWT: Mixing and clustering effect

Intuitive idea

The greater is the number of substrings share
by two strings, the smaller is their “distance”

Key property of the eBWT

The greater is the number of substrings shared
by u and v, the greater is the mixing of the
suffixes of u and v in the sorted list and the
greater are the runs (clusters) of the same
symbol in the eBWT.

u=GGCGTACCA$1. v=GGGGCGTAT$2

eBWT Sorted suffixes
A $1

T $2

C A$1

T ACCA$1

T AT$2

C CA$1

A CCA$1

G CGTACCA$1

G CGTAT$2

G GCGTACCA$1

G GCGTAT$2

$1 GGCGTACCA$1

G GGCGTAT$2

G GGGCGTAT$2

$2 GGGGCGTAT$2

C GTACCA$1

C GTAT$2

A T$2

G TACCA$1

G TAT$2

Metagenomic analysis through the eBWT June 26-28 , 2019 7 / 14

Method Steps

Step 1: Build α-clusters and Similarity Arrays (Part I)
Minimum LCP value α = 3 ri=KGGCGTACCA$i

gj=TTATTTTGGCGGGGCGTATGTATTAGTTT$j

i LCP eBWT Sorted suffixes
1 0 A $i
2 0 T $j
3 0 C A$i
4 1 T ACCA$i
5 1 T AGTTT$j
6 1 T ATGTATTAGTTT$j
7 2 T ATTAGTTT$j
8 0 C CA$i
9 1 A CCA$i
10 1 G CGGGGCGTA . . . $j
11 2 G CGTACCA$i
12 4 G CGTATGAT . . . $j
13 1 T CTTTTGGCG . . . $j
14 0 G GCGGGGCGT . . . $j
15 3 G GCGTACCA$i
16 5 G GCGTATGTAA . . . $j
...

...
...

...

Detect blocks (α-clusters) of eBWT (S): An α-cluster Cα of
eBWT (S) is any pair of indices (pS, pE) such that

LCP [pS] < α and LCP [pE + 1] < α,

LCP [k] ≥ α, pS < k ≤ pE,

DA[s] ∈ R and DA[t] ∈ G, pS ≤ s, t ≤ pE.

Cα(ri, gj) = {

Compute the similarity between any read and any genome:

Simr[g] =
∑
x∈Cα

∑
a∈Σ

min(nr, ng)

nr=number of indices s in x such that eBWT [s] = a and DA[s] = r,
ng=number of indices t in x such that eBWT [t] = a and DA[t] = g.

i.e. the total number of bases of r and g that match (by using
IUPAC list) in each α-cluster.

Simri [gj] =
Metagenomic analysis through the eBWT June 26-28 , 2019 8 / 14

Method Steps

Step 1: Build α-clusters and Similarity Arrays (Part I)
Minimum LCP value α = 3 ri=KGGCGTACCA$i

gj=TTATTTTGGCGGGGCGTATGTATTAGTTT$j

i LCP eBWT Sorted suffixes
1 0 A $i
2 0 T $j
3 0 C A$i
4 1 T ACCA$i
5 1 T AGTTT$j
6 1 T ATGTATTAGTTT$j
7 2 T ATTAGTTT$j
8 0 C CA$i
9 1 A CCA$i
10 1 G CGGGGCGTA . . . $j
11 2 G CGTACCA$i
12 4 G CGTATGAT . . . $j
13 1 T CTTTTGGCG . . . $j
14 0 G GCGGGGCGT . . . $j
15 3 G GCGTACCA$i
16 5 G GCGTATGTAA . . . $j
...

...
...

...

Detect blocks (α-clusters) of eBWT (S): An α-cluster Cα of
eBWT (S) is any pair of indices (pS, pE) such that

LCP [pS] < α and LCP [pE + 1] < α,

LCP [k] ≥ α, pS < k ≤ pE,

DA[s] ∈ R and DA[t] ∈ G, pS ≤ s, t ≤ pE.

Cα(ri, gj) = {(11, 12),

Compute the similarity between any read and any genome:

Simr[g] =
∑
x∈Cα

∑
a∈Σ

min(nr, ng)

nr=number of indices s in x such that eBWT [s] = a and DA[s] = r,
ng=number of indices t in x such that eBWT [t] = a and DA[t] = g.

i.e. the total number of bases of r and g that match (by using
IUPAC list) in each α-cluster.

Simri [gj] = 1+
Metagenomic analysis through the eBWT June 26-28 , 2019 8 / 14

Method Steps

Step 1: Build α-clusters and Similarity Arrays (Part I)
Minimum LCP value α = 3 ri=KGGCGTACCA$i

gj=TTATTTTGGCGGGGCGTATGTATTAGTTT$j

i LCP eBWT Sorted suffixes
1 0 A $i
2 0 T $j
3 0 C A$i
4 1 T ACCA$i
5 1 T AGTTT$j
6 1 T ATGTATTAGTTT$j
7 2 T ATTAGTTT$j
8 0 C CA$i
9 1 A CCA$i
10 1 G CGGGGCGTA . . . $j
11 2 G CGTACCA$i
12 4 G CGTATGAT . . . $j
13 1 T CTTTTGGCG . . . $j
14 0 G GCGGGGCGT . . . $j
15 3 G GCGTACCA$i
16 5 G GCGTATGTAA . . . $j
...

...
...

...

Detect blocks (α-clusters) of eBWT (S): An α-cluster Cα of
eBWT (S) is any pair of indices (pS, pE) such that

LCP [pS] < α and LCP [pE + 1] < α,

LCP [k] ≥ α, pS < k ≤ pE,

DA[s] ∈ R and DA[t] ∈ G, pS ≤ s, t ≤ pE.

Cα(ri, gj) = {(11, 12),(14, 16),. . .

Compute the similarity between any read and any genome:

Simr[g] =
∑
x∈Cα

∑
a∈Σ

min(nr, ng)

nr=number of indices s in x such that eBWT [s] = a and DA[s] = r,
ng=number of indices t in x such that eBWT [t] = a and DA[t] = g.

i.e. the total number of bases of r and g that match (by using
IUPAC list) in each α-cluster.

Simri [gj] = 1+1+
Metagenomic analysis through the eBWT June 26-28 , 2019 8 / 14

Method Steps

Step 1: Build α-clusters and Similarity Arrays (Part I)
Minimum LCP value α = 3 ri=KGGCGTACCA$i

gj=TTATTTTGGCGGGGCGTATGTATTAGTTT$j

i LCP eBWT Sorted suffixes
1 0 A $i
2 0 T $j
3 0 C A$i
4 1 T ACCA$i
5 1 T AGTTT$j
6 1 T ATGTATTAGTTT$j
7 2 T ATTAGTTT$j
8 0 C CA$i
9 1 A CCA$i
10 1 G CGGGGCGTA . . . $j
11 2 G CGTACCA$i
12 4 G CGTATGAT . . . $j
13 1 T CTTTTGGCG . . . $j
14 0 G GCGGGGCGT . . . $j
15 3 G GCGTACCA$i
16 5 G GCGTATGTAA . . . $j
...

...
...

...

Detect blocks (α-clusters) of eBWT (S): An α-cluster Cα of
eBWT (S) is any pair of indices (pS, pE) such that

LCP [pS] < α and LCP [pE + 1] < α,

LCP [k] ≥ α, pS < k ≤ pE,

DA[s] ∈ R and DA[t] ∈ G, pS ≤ s, t ≤ pE.

Cα(ri, gj) = {(11, 12),(14, 16),. . .

Compute the similarity between any read and any genome:

Simr[g] =
∑
x∈Cα

∑
a∈Σ

min(nr, ng)

nr=number of indices s in x such that eBWT [s] = a and DA[s] = r,
ng=number of indices t in x such that eBWT [t] = a and DA[t] = g.

i.e. the total number of bases of r and g that match (by using
IUPAC list) in each α-cluster.

Simri [gj] = 1+1+ . . .
Metagenomic analysis through the eBWT June 26-28 , 2019 8 / 14

Method Steps

Step 1: Build α-clusters and Similarity Arrays (Part II)
Minimum LCP value α = 3 ri=KGGCGTACCA$i

gj=TTATTTTGGCGGGGCGTATGTATTAGTTT$j
i LCP eBWT Sorted suffixes
...

...
...

...
17 1 T GGCGGGGCG . . . $j
18 4 K GGCGTACCA$i
19 6 G GGCGTATGTAT . . . $j
20 2 G GGGCGTAT . . . $j
21 3 C GGGGCGTAT . . . $j
22 1 C GTACCA$i
23 3 C GTATGTA . . . $j
24 4 C GTATTA . . . $j
25 2 A GTTT$j
26 0 $i KGGCGTACCA$i
27 0 T T$j
28 1 G TACCA$i
29 2 T TAGTTT$j
...

...
...

...

K → {G or T} in the IUPAC list.

Detect blocks (α-clusters) of eBWT (S): An α-cluster Cα of
eBWT (S) is any pair of indices (pS, pE) such that

LCP [pS] < α and LCP [pE + 1] < α,

LCP [k] ≥ α, pS < k ≤ pE,

DA[i] ∈ R and DA[j] ∈ G, pS ≤ i, j ≤ pE.

Cα = {(11, 12),(14, 16),

Compute the similarity between any read and any genome:

Simr[g] =
∑
x∈Cα

∑
a∈Σ

min(nr, ng)

nr=number of indices s in x such that eBWT [s] = a and DA[s] = r,
ng=number of indices t in x such that eBWT [t] = a and DA[t] = g.

i.e. the total number of bases of r and g that match (by using
IUPAC list) in each α-cluster.

Simr[g] = 1+1+
Metagenomic analysis through the eBWT June 26-28 , 2019 9 / 14

Method Steps

Step 1: Build α-clusters and Similarity Arrays (Part II)
Minimum LCP value α = 3 ri=KGGCGTACCA$i

gj=TTATTTTGGCGGGGCGTATGTATTAGTTT$j
i LCP eBWT Sorted suffixes
...

...
...

...
17 1 T GGCGGGGCG . . . $j
18 4 K GGCGTACCA$i
19 6 G GGCGTATGTAT . . . $j
20 2 G GGGCGTAT . . . $j
21 3 C GGGGCGTAT . . . $j
22 1 C GTACCA$i
23 3 C GTATGTA . . . $j
24 4 C GTATTA . . . $j
25 2 A GTTT$j
26 0 $i KGGCGTACCA$i
27 0 T T$j
28 1 G TACCA$i
29 2 T TAGTTT$j
...

...
...

...

K → {G or T} in the IUPAC list.

Detect blocks (α-clusters) of eBWT (S): An α-cluster Cα of
eBWT (S) is any pair of indices (pS, pE) such that

LCP [pS] < α and LCP [pE + 1] < α,

LCP [k] ≥ α, pS < k ≤ pE,

DA[i] ∈ R and DA[j] ∈ G, pS ≤ i, j ≤ pE.

Cα = {(11, 12),(14, 16),(17, 19),

Compute the similarity between any read and any genome:

Simr[g] =
∑
x∈Cα

∑
a∈Σ

min(nr, ng)

nr=number of indices s in x such that eBWT [s] = a and DA[s] = r,
ng=number of indices t in x such that eBWT [t] = a and DA[t] = g.

i.e. the total number of bases of r and g that match (by using
IUPAC list) in each α-cluster.

Simr[g] = 1+1+1+
Metagenomic analysis through the eBWT June 26-28 , 2019 9 / 14

Method Steps

Step 1: Build α-clusters and Similarity Arrays (Part II)
Minimum LCP value α = 3 ri=KGGCGTACCA$i

gj=TTATTTTGGCGGGGCGTATGTATTAGTTT$j
i LCP eBWT Sorted suffixes
...

...
...

...
17 1 T GGCGGGGCG . . . $j
18 4 K GGCGTACCA$i
19 6 G GGCGTATGTAT . . . $j
20 2 G GGGCGTAT . . . $j
21 3 C GGGGCGTAT . . . $j
22 1 C GTACCA$i
23 3 C GTATGTA . . . $j
24 4 C GTATTA . . . $j
25 2 A GTTT$j
26 0 $i KGGCGTACCA$i
27 0 T T$j
28 1 G TACCA$i
29 2 T TAGTTT$j
...

...
...

...

it is not cluster (only blue symbols)

Detect blocks (α-clusters) of eBWT (S): An α-cluster Cα of
eBWT (S) is any pair of indices (pS, pE) such that

LCP [pS] < α and LCP [pE + 1] < α,

LCP [k] ≥ α, pS < k ≤ pE,

DA[i] ∈ R and DA[j] ∈ G, pS ≤ i, j ≤ pE.

Cα = {(11, 12),(14, 16),(17, 19),

Compute the similarity between any read and any genome:

Simr[g] =
∑
x∈Cα

∑
a∈Σ

min(nr, ng)

nr=number of indices s in x such that eBWT [s] = a and DA[s] = r,
ng=number of indices t in x such that eBWT [t] = a and DA[t] = g.

i.e. the total number of bases of r and g that match (by using
IUPAC list) in each α-cluster.

Simr[g] = 1+1+1+
Metagenomic analysis through the eBWT June 26-28 , 2019 9 / 14

Method Steps

Step 1: Build α-clusters and Similarity Arrays (Part II)
Minimum LCP value α = 3 ri=KGGCGTACCA$i

gj=TTATTTTGGCGGGGCGTATGTATTAGTTT$j
i LCP eBWT Sorted suffixes
...

...
...

...
17 1 T GGCGGGGCG . . . $j
18 4 K GGCGTACCA$i
19 6 G GGCGTATGTAT . . . $j
20 2 G GGGCGTAT . . . $j
21 3 C GGGGCGTAT . . . $j
22 1 C GTACCA$i
23 3 C GTATGTA . . . $j
24 4 C GTATTA . . . $j
25 2 A GTTT$j
26 0 $i KGGCGTACCA$i
27 0 T T$j
28 1 G TACCA$i
29 2 T TAGTTT$j
...

...
...

...

K → {G or T} in the IUPAC list.

Detect blocks (α-clusters) of eBWT (S): An α-cluster Cα of
eBWT (S) is any pair of indices (pS, pE) such that

LCP [pS] < α and LCP [pE + 1] < α,

LCP [k] ≥ α, pS < k ≤ pE,

DA[i] ∈ R and DA[j] ∈ G, pS ≤ i, j ≤ pE.

Cα = {(11, 12),(14, 16),(17, 19),(22, 24)}

Compute the similarity between any read and any genome:

Simr[g] =
∑
x∈Cα

∑
a∈Σ

min(nr, ng)

nr=number of indices s in x such that eBWT [s] = a and DA[s] = r,
ng=number of indices t in x such that eBWT [t] = a and DA[t] = g.

i.e. the total number of bases of r and g that match (by using
IUPAC list) in each α-cluster.

Simr[g] = 1+1+1+1 = 4
Metagenomic analysis through the eBWT June 26-28 , 2019 9 / 14

Method Steps

Step 2: Classification

Given a threshold value β, the read ri is

assigned to gj if gj is the only genome such that Simri [gj] ∼ maxg Simri [g] and
Simri [gj] > β.

not classified if maxg Simri [g] ≤ β.

ambiguous if maxg Simri [g] > β, but there exist at least two genomes gp and gq s.t.
Simri [gp] ∼ Simri [gq] ∼ maxg Simri [g]

Example

Let α = 3 and β = 0.4.
Suppose the α-similarity between ri and g1, g2, g3, g4, g5 is
Simri [g1] = 0.5, Simri [g2] = 0, Simri [g3] = , Simri [g4] = 0.2, Simri [g5] = 0.

Metagenomic analysis through the eBWT June 26-28 , 2019 10 / 14

Method Steps

Step 2: Classification

Given a threshold value β, the read ri is

assigned to gj if gj is the only genome such that Simri [gj] ∼ maxg Simri [g] and
Simri [gj] > β.

not classified if maxg Simri [g] ≤ β.

ambiguous if maxg Simri [g] > β, but there exist at least two genomes gp and gq s.t.
Simri [gp] ∼ Simri [gq] ∼ maxg Simri [g]

Example

Let α = 3 and β = 0.4.
Suppose the α-similarity between ri and g1, g2, g3, g4, g5 is
Simri [g1] = 0.5, Simri [g2] = 0, Simri [g3] = 0.8, Simri [g4] = 0.2, Simri [g5] = 0.

Metagenomic analysis through the eBWT June 26-28 , 2019 10 / 14

Method Steps

Step 2: Classification

Given a threshold value β, the read ri is

assigned to gj if gj is the only genome such that Simri [gj] ∼ maxg Simri [g] and
Simri [gj] > β.

not classified if maxg Simri [g] ≤ β.

ambiguous if maxg Simri [g] > β, but there exist at least two genomes gp and gq s.t.
Simri [gp] ∼ Simri [gq] ∼ maxg Simri [g]

Example

Let α = 3 and β = 0.4.
Suppose the α-similarity between ri and g1, g2, g3, g4, g5 is
Simri [g1] = 0.5, Simri [g2] = 0, Simri [g3] = 0.8, Simri [g4] = 0.2, Simri [g5] = 0.
⇒ ri is assigned to g3.

Metagenomic analysis through the eBWT June 26-28 , 2019 10 / 14

Method Steps

Step 2: Classification

Given a threshold value β, the read ri is

assigned to gj if gj is the only genome such that Simri [gj] ∼ maxg Simri [g] and
Simri [gj] > β.

not classified if maxg Simri [g] ≤ β.

ambiguous if maxg Simri [g] > β, but there exist at least two genomes gp and gq s.t.
Simri [gp] ∼ Simri [gq] ∼ maxg Simri [g]

Example

Let α = 3 and β = 0.4.
Suppose the α-similarity between ri and g1, g2, g3, g4, g5 is
Simri [g1] = 0.3, Simri [g2] = 0, Simri [g3] = 0.34, Simri [g4] = 0.2, Simri [g5] = 0.

Metagenomic analysis through the eBWT June 26-28 , 2019 10 / 14

Method Steps

Step 2: Classification

Given a threshold value β, the read ri is

assigned to gj if gj is the only genome such that Simri [gj] ∼ maxg Simri [g] and
Simri [gj] > β.

not classified if maxg Simri [g] ≤ β.

ambiguous if maxg Simri [g] > β, but there exist at least two genomes gp and gq s.t.
Simri [gp] ∼ Simri [gq] ∼ maxg Simri [g]

Example

Let α = 3 and β = 0.4.
Suppose the α-similarity between ri and g1, g2, g3, g4, g5 is
Simri [g1] = 0.5, Simri [g2] = 0, Simri [g3] = 0.5, Simri [g4] = 0.2, Simri [g5] = 0.
⇒ ri is ambiguous.

Metagenomic analysis through the eBWT June 26-28 , 2019 10 / 14

Results

Preliminary experiments on simulated reads
Positive and negative control datasets (about 20 millions of paired-reads) designed in [Lindgreen et al., 2016].

Reference database G: 930 genomes from 686 species

CLARK-S LightMetaEbwt LightMetaEbwt Centrifuge Centrifuge
setA2 –highconf α 16 β 0.25 α 16 β 0.35 -min-hitlen 16 -min-hitlen 22
SEN (%) 93.03 93.13 92.69 95.65 93.01
PREC (%) 99.06 99.73 99.74 97.64 99.66
F1 (%) 95.95 96.32 96.08 96.63 96.22
setB2
SEN (%) 92.84 93.01 92.51 95.53 92.94
PREC (%) 99.11 99.77 99.78 97.68 99.69
F1 (%) 95.87 96.27 96.01 96.59 96.20

setA2Ran
TN 5,726,336 5,726,294 5,726,357 150,971 5,712,085
FP 22 64 1 5,575,387 14,273
SPEC (%) 99.99 99.99 100.00 2.64 99.75
setB2Ran
TN 5,406,642 5,406,601 5,406,658 141,994 5,393,260
FP 17 58 1 5,264,665 13,399
SPEC (%) 99.99 99.99 100.00 2.63 99.75

SEN = proportion of the actual positives identified by the method.
PREC = proportion of positives that are correctely identified by the method.
F1 = harmonic mean between SEN and PREC.
SPEC = proportion of actual negatives that are correctely identified as such.

Metagenomic analysis through the eBWT June 26-28 , 2019 11 / 14

Results

Preliminary experiments on simulated reads
Positive and negative control datasets (about 20 millions of paired-reads) designed in [Lindgreen et al., 2016].

Reference database G: 930 genomes from 686 species

CLARK-S LightMetaEbwt LightMetaEbwt Centrifuge Centrifuge
setA2 –highconf α 16 β 0.25 α 16 β 0.35 -min-hitlen 16 -min-hitlen 22
SEN (%) 93.03 93.13 92.69 95.65 93.01
PREC (%) 99.06 99.73 99.74 97.64 99.66
F1 (%) 95.95 96.32 96.08 96.63 96.22
setB2
SEN (%) 92.84 93.01 92.51 95.53 92.94
PREC (%) 99.11 99.77 99.78 97.68 99.69
F1 (%) 95.87 96.27 96.01 96.59 96.20

setA2Ran
TN 5,726,336 5,726,294 5,726,357 150,971 5,712,085
FP 22 64 1 5,575,387 14,273
SPEC (%) 99.99 99.99 100.00 2.64 99.75
setB2Ran
TN 5,406,642 5,406,601 5,406,658 141,994 5,393,260
FP 17 58 1 5,264,665 13,399
SPEC (%) 99.99 99.99 100.00 2.63 99.75

SEN = proportion of the actual positives identified by the method.
PREC = proportion of positives that are correctely identified by the method.
F1 = harmonic mean between SEN and PREC.
SPEC = proportion of actual negatives that are correctely identified as such.

Metagenomic analysis through the eBWT June 26-28 , 2019 11 / 14

Results

Preliminary experiments on real data: Mock community

Reference database G: 61 genomes from 22 species

SRR172902
BLASTN CLARK-S LightMetaEbwt Centrifuge Centrifuge

-eval 10−5 -id 90 -c 0.75 -g 0.08 α 15 β 0.2 -min-hitlen 16 -min-hitlen 22
Classified 6,236,793 6,409,642 6,390,456 6,455,555 6,377,207
Ambiguous 48,310 0 10,570 11,150 8,422
Unclassified 276,962 152,423 161,039 95,360 176,436
SEN (%) 95.04 97.68 97.39 98.38 97.18

43,753

CLARK-S

255

155

BLASTN

9,157
15,665

LightMetaEbwt

138,408

6,227,226

69,158

Centrifuge -min-hitlen 16

365

45

BLASTN

1,757
2,667

LightMetaEbwt

151,406

6,234,626

18,031

Centrifuge -min-hitlen 22

339

71

BLASTN

14,430
17,189

LightMetaEbwt

136,884

6,221,953

Metagenomic analysis through the eBWT June 26-28 , 2019 12 / 14

Results

Preliminary experiments on real data: Mock community

Reference database G: 61 genomes from 22 species

SRR172902
BLASTN CLARK-S LightMetaEbwt Centrifuge Centrifuge

-eval 10−5 -id 90 -c 0.75 -g 0.08 α 15 β 0.2 -min-hitlen 16 -min-hitlen 22
Classified 6,236,793 6,409,642 6,390,456 6,455,555 6,377,207
Ambiguous 48,310 0 10,570 11,150 8,422
Unclassified 276,962 152,423 161,039 95,360 176,436
SEN (%) 95.04 97.68 97.39 98.38 97.18

43,753

CLARK-S

255

155

BLASTN

9,157
15,665

LightMetaEbwt

138,408

6,227,226

69,158

Centrifuge -min-hitlen 16

365

45

BLASTN

1,757
2,667

LightMetaEbwt

151,406

6,234,626

18,031

Centrifuge -min-hitlen 22

339

71

BLASTN

14,430
17,189

LightMetaEbwt

136,884

6,221,953

Metagenomic analysis through the eBWT June 26-28 , 2019 12 / 14

Results

Preliminary experiments on real data: Mock community

Reference database G: 61 genomes from 22 species

SRR172902
BLASTN CLARK-S LightMetaEbwt Centrifuge Centrifuge

-eval 10−5 -id 90 -c 0.75 -g 0.08 α 15 β 0.2 -min-hitlen 16 -min-hitlen 22
Classified 6,236,793 6,409,642 6,390,456 6,455,555 6,377,207
Ambiguous 48,310 0 10,570 11,150 8,422
Unclassified 276,962 152,423 161,039 95,360 176,436
SEN (%) 95.04 97.68 97.39 98.38 97.18

43,753

CLARK-S

255

155

BLASTN

9,157
15,665

LightMetaEbwt

138,408

6,227,226

69,158

Centrifuge -min-hitlen 16

365

45

BLASTN

1,757
2,667

LightMetaEbwt

151,406

6,234,626

18,031

Centrifuge -min-hitlen 22

339

71

BLASTN

14,430
17,189

LightMetaEbwt

136,884

6,221,953

Metagenomic analysis through the eBWT June 26-28 , 2019 12 / 14

Results

Final Remarks

Notice that a like-for-like comparison on the time-consuming and on memory-consuming
between LightMetaEbwt, CLARK-S and Cenfrifuge is not possible

LightMetaEbwt Centrifuge Clark-S
One-core multi-thread multi-thread
Analyze all paired-reads at the same time, Analyze one read at a time Analyze one read at a time
this implies keeping in memory and and
the whole similarity matrix Pair-reads analyzed in parallel Concatenate paired-reads
no engineered implementation engineered implementation engineered implementation

Classification for setA2 (21,461,160 paired-reads and 930 genomes)
LightMetaEbwt Centrifuge CLARK-S

setA2 α 16 -min-hitlen 16 –highconf last step
RAM ∼ 1GB (+ ∼ 18GB for the matrix) ∼ 2GB ∼ 121GB ∼ 78GB
Time ∼ 54 min ∼ 27min ∼ 8h ∼ 28min

Here, we improved our previous version of this method presented to AlCoB 2019: for instance,
considering the IUPAC list. We are now working on a more engineered implementation

Metagenomic analysis through the eBWT June 26-28 , 2019 13 / 14

Results

Thank you!

Metagenomic analysis through the eBWT June 26-28 , 2019 14 / 14

Preliminary experiments

Dataset |R| |G| Instance Efficiency Wall Clock RAM

setA2 21,461,160 930
CLARK-S (8cores) 99% 8:25:17 121.58
LightMetaEbwt 99% 2:29:57 19.45

Centrifuge 99% 1:55:10+26:38 9.32

setB2 20,249,373 930
CLARK-S (8cores) 69% 14:26:31 121.58
LightMetaEbwt 96% 3:06:05 18.55

Centrifuge 99% 1:55:10+21:16 9.32

setA2Ran 5,726,358 930
CLARK-S (8cores) 92% 5:02:22 121.58
LightMetaEbwt 98% 18:46 9.94

Centrifuge 99% 1:55:10+4:08 9.32

setB2Ran 5,406,659 930
CLARK-S (8cores) 99% 5:16:50 121.58
LightMetaEbwt 99% 17:01 9.61

Centrifuge 99% 1:55:10+3:20 9.32

SRR172902 6,562,065 61
CLARK-S (8cores) 99% 33:40 72.23
LightMetaEbwt 99% 5:57 0.69

Centrifuge 99% 1:21+2:29 0.37

The three data structures for LightMetaEbwt setA2 take 1:23:55 and 4GB of RAM to be constructed.

For LightMetaEbwt, post-processing time and space usage differ from step to step. For instance, per each set of
paired end read in setA2 step 1 takes 1:15 with 1GB of RAM (changeable), step 2 around 36:17 with 19.45GB
(18.59GB to keep the matrix of similarities) and step 3 takes 15:55 with 0.06GB.

	Introduction
	Preprocessing: eBWT and properties

	Method
	Steps

	Results
	Appendix

