

Metagenomic analysis through the eBWT

Veronica Guerrini <u>Giovanna Rosone</u>

University of Pisa, Italy Supported by the Project MIUR-SIR CMACBioSeq "Combinatorial Methods for Analysis and Compression of Biological Sequences"

> BITS 2019 Bioinformatics Italian Society Annual Meeting Palermo, June 26 - 28, 2019

Introduction

Metagenomics is the study of genetic material collected from the environment

[Illustration: Spencer Phillips, EMBL-EBI]

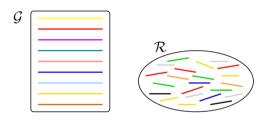
Aim to explore the relations between the microbes and their habitats

Applications. Clinical microbiology, plant-microbe interactions, monitoring pollution, sustainability, ecology, ...

Goal: Identify the taxon of each short read

Introduction

Metagenomics is the study of genetic material collected from the environment


[Illustration: Spencer Phillips, EMBL-EBI]

Aim to explore the relations between the microbes and their habitats

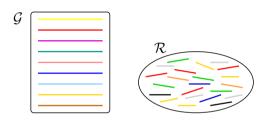
Applications. Clinical microbiology, plant-microbe interactions, monitoring pollution, sustainability, ecology, ...

Goal: Identify the taxon of each short read

Our approach based on (e)BWT

We introduce an alignment-free and assembly-free strategy...

- ... by using the properties of
 - the Burrows-Wheeler Transform (BWT) of a string,
 - an extension of BWT to a multiset of strings (eBWT).


Definition

Given a string v (resp. a string collection S), the Burrows-Wheeler Transform (resp. extended BWT)^a is a reversible transformation that produces a permutation of the symbols of v (resp. S), defined over an ordered alphabet.

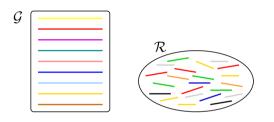
^oBurrows and D. Wheeler, A block sorting lossless data compression algorithm, Technical Report 124, Digital Equipment Corporation, 1994 S. Mantaci, A. Restivo, G. R., M. Sciortino: An extension of the Burrows-Wheeler Transform. TCS 2007

M.Bauer, A. Cox, G. R.: Lightweight algorithms for constructing and inverting the BWT of string collections. TCS 2013

Our approach based on (e)BWT

We introduce an alignment-free and assembly-free strategy...

- ... by using the properties of
 - the Burrows-Wheeler Transform (BWT) of a string,
 - an extension of BWT to a multiset of strings (eBWT).


Definition

Given a string v (resp. a string collection S), the Burrows-Wheeler Transform (resp. extended BWT)^a is a reversible transformation that produces a permutation of the symbols of v (resp. S), defined over an ordered alphabet.

^oBurrows and D. Wheeler, A block sorting lossless data compression algorithm, Technical Report 124, Digital Equipment Corporation, 1994 S. Mantaci, A. Restivo, G. R., M. Sciortino: An extension of the Burrows-Wheeler Transform. TCS 2007

M.Bauer, A. Cox, G. R.: Lightweight algorithms for constructing and inverting the BWT of string collections. TCS 2013

Our approach based on (e)BWT

We introduce an alignment-free and assembly-free strategy...

- ... by using the properties of
 - the Burrows-Wheeler Transform (BWT) of a string,
 - an extension of BWT to a multiset of strings (eBWT).

Definition

Given a string v (resp. a string collection S), the Burrows-Wheeler Transform (resp. extended BWT)^a is a reversible transformation that produces a permutation of the symbols of v (resp. S), defined over an ordered alphabet.

^aBurrows and D. Wheeler, A block sorting lossless data compression algorithm, Technical Report 124, Digital Equipment Corporation, 1994 S. Mantaci, A. Restivo, G. R., M. Sciortino: An extension of the Burrows-Wheeler Transform. TCS 2007

M.Bauer, A. Cox, G. R.: Lightweight algorithms for constructing and inverting the BWT of string collections. TCS 2013

Let $S = \{S_1, S_2, \dots, S_m\}$ be a collection of strings.

• Append an end-marker , where , A < C < G < T (we add subscripts only for illustrative purposes), to each string in S by obtaining a new collection S'.

String collection S									
	0	1	2	3	4	5			
S_1	G	C	C	Α	Α	C			
S_2	G	A	G	C	T	C			
S_3	T	C	G	C	T	T			

- Sort all the suffixes of the strings in S';
- Take the string *eBWT*(S') obtained by concatenating the symbols that (circularly) precede the first symbol of each suffix in the list of (lexicographically) sorted suffixes of S'.

$eBWT(S') = CCTCAGATCGTGG\$_2\$_1ACTC\$_3C$

Note that the colors and suffixes are only for illustrative purposes.

< □ >	· 1812833 ◆ E > ◆ E > _E =	200
June 26-28 , 2019	9 4 / 14	

Let $S = \{S_1, S_2, \dots, S_m\}$ be a collection of strings.

• Append an end-marker , where , A < C < G < T (we add subscripts only for illustrative purposes), to each string in S by obtaining a new collection S'.

String collection S'									
	0	1	2	3	4	5	6		
S_1	G	C	C	A	A	C	\$1		
S_2	G	A	G	C	T	C	\$2		
S_3	T	C	G	C	T	T	\$3		

- Sort all the suffixes of the strings in S';
- Take the string *eBWT*(S') obtained by concatenating the symbols that (circularly) precede the first symbol of each suffix in the list of (lexicographically) sorted suffixes of S'.

$eBWT(\mathsf{S}') = CCTCAGATCGTGG\$_2\$_1ACTC\$_3C$

Note that the colors and suffixes are only for illustrative purposes.

< □ > 7773> <=> = |= <000 June 26-28 . 2019 4 / 14

Let $S = \{S_1, S_2, \dots, S_m\}$ be a collection of strings.

• Append an end-marker , where , A < C < G < T (we add subscripts only for illustrative purposes), to each string in S by obtaining a new collection S'.

String collection S'									
	0	1	2	3	4	5	6		
S_1	G	C	C	Α	Α	C	\$ ₁		
S_2	G	A	G	C	T	C	\$2		
S_3	T	C	G	C	T	T	\$3		

- Sort all the suffixes of the strings in S';
- Take the string *eBWT*(S') obtained by concatenating the symbols that (circularly) precede the first symbol of each suffix in the list of (lexicographically) sorted suffixes of S'.

$eBWT(S') = CCTCAGATCGTGG\$_2\$_1ACTC\$_3C$

Note that the colors and suffixes are only for illustrative purposes.

Sorted Suffixes of S' \$1 \$2 \$2 AAC\$1 $AC\$_1$ AGCTC\$2 C\$1 $C\$_{2}$ CAAC¹ CCAAC¹ CGCTT\$- $CTC\$_2$ $CTT\$_2$ GAGCTC^{\$2} GCCAAC\$1 GCTC\$2 $GCTT\$_2$ T\$2 $TC\$_2$ TCGCTT\$2 $\langle \Box \rangle T T \otimes T$ > < = > = = • • • June 26-28 . 2019 4 / 14

Let $S = \{S_1, S_2, \dots, S_m\}$ be a collection of strings.

• Append an end-marker , where , A < C < G < T (we add subscripts only for illustrative purposes), to each string in S by obtaining a new collection S'.

String collection S'									
	0	1	2	3	4	5	6		
S_1	G	C	C	Α	Α	C	\$ ₁		
S_2	G	A	G	C	T	C	$$_{2}$		
S_3	T	C	G	C	T	T	\$3		

- Sort all the suffixes of the strings in S';
- Take the string *eBWT*(S') obtained by concatenating the symbols that (circularly) precede the first symbol of each suffix in the list of (lexicographically) sorted suffixes of S'.

$eBWT(S') = CCTCAGATCGTGG\$_2\$_1ACTC\$_3C$

Note that the colors and suffixes are only for illustrative purposes.

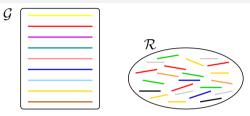
eBWT(S')	Sorted Suffixes of S'
C	\$1
C	\$ ₂
T	\$3
\boldsymbol{C}	$AAC\$_1$
A	$AC\$_1$
G	$AGCTC\$_2$
A	$C\$_1$
T	$C\$_{2}$
C	$CAAC\$_1$
G	$CCAAC\$_1$
T	$CGCTT\$_3$
G	$CTC\$_2$
G	$CTT\$_3$
\$2	GAGCTC ^{\$2}
\$ ₁	$GCCAAC$ $_1$
A	GCTC ^{\$2}
C	$GCTT\$_3$
T	$T\$_{3}$
C	$TC\$_{2}$
\$3	TCGCTT ^{\$} ₃
< C + < =	TT

June 26-28 2019

Let $S = \{S_1, S_2, \dots, S_m\}$ be a collection of strings.

• Append an end-marker , where , A < C < G < T (we add subscripts only for illustrative purposes), to each string in S by obtaining a new collection S'.

String collection S'									
	0	1	2	3	4	5	6		
S_1	G	C	C	Α	Α	C	\$ ₁		
S_2	G	A	G	C	T	C	\$ ₂		
S_3	T	C	G	C	T	T	\$3		

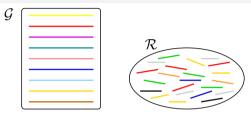

- Sort all the suffixes of the strings in S';
- Take the string *eBWT*(S') obtained by concatenating the symbols that (circularly) precede the first symbol of each suffix in the list of (lexicographically) sorted suffixes of S'.

$eBWT(S') = CCTCAGATCGTGG\$_2\$_1ACTC\$_3C$

Note that the colors and suffixes are only for illustrative purposes.

eBWT(S')	Sorted Suffixes of S $'$
C	\$1
C	\$2
T	\$3
\boldsymbol{C}	$AAC\$_1$
\boldsymbol{A}	$AC\$_1$
G	AGCTC ^{\$2}
\boldsymbol{A}	$C\$_1$
T	$C\$_{2}$
C	$CAAC\$_1$
G	$CCAAC\$_1$
T	$CGCTT\$_3$
G	$CTC\$_2$
G	$CTT\$_3$
$$_{2}$	GAGCTC ^{\$2}
\$ ₁	$GCCAAC\$_1$
A	GCTC ^{\$2}
C	$GCTT\$_3$
T	$T\$_{3}$
C	$TC\$_{2}$
\$3	TCGCTT ^{\$3}
< Ĉ	D TT\$3 > < E > E = ∽

Formalization: Metagenomic classification problem



• $\mathcal{R} = \{r_1, \dots, r_{|R|}\}$ metagenome (collection of short reads) • $\mathcal{G} = \{g_1, \dots, g_{|G|}\}$ reference genomes (collection of long sequences) Pre-processing step: build the data structures eBWT(S), DA(S), LCP(S), where $S = \mathcal{R} \cup \mathcal{G}$.

The data structures for the reference database can be built only once, and updated with the data structures for the reads collection in order to obtain the data structures for S.

Goal: to assign each read r_i in ${\mathcal R}$ to a unique genome g_j in ${\mathcal G}$

Formalization: Metagenomic classification problem

• $\mathcal{R} = \{r_1, \dots, r_{|R|}\}$ metagenome (collection of short reads)

• $\mathcal{G} = \{g_1, \ldots, g_{|G|}\}$ reference genomes (collection of long sequences) Pre-processing step: build the data structures $eBWT(\mathcal{S})$, $DA(\mathcal{S})$, $LCP(\mathcal{S})$, where $\mathcal{S} = \mathcal{R} \cup \mathcal{G}$.

The data structures for the reference database can be built only once, and updated with the data structures for the reads collection in order to obtain the data structures for S.

Goal: to assign each read r_i in \mathcal{R} to a unique genome g_j in \mathcal{G}

Preprocessing: eBWT, DA and LCP array

		$S = \{ GC \}$	GCGTACCA\$1, GGG	GCGTAT	Γ ^{\$2} , ACC	GATTAG	C\$ ₃ }
DA	LCP	eBWT	Sorted suffixes	DA	LCP	eBWT	Sorted suffixes
1	0	А	\$ ₁	3	0	С	$GATTAGC\$_3$
2	0	т	\$ ₂	3	1	А	$GC\$_3$
3	0	С	\$ ₃	1	2	G	$GCGTACCA\$_1$
1	0	С	$A\$_1$	2	5	G	$GCGTAT\$_2$
1	1	т	$ACCA\$_1$	1	1	\$1	$GGCGTACCA\$_1$
3	2	\$ ₃	ACGATTAGC ³	2	6	G	$GGCGTAT\$_2$
3	1	Т	$AGC\$_3$	2	2	G	$GGGCGTAT\$_2$
2	1	т	$AT\$_2$	2	3	\mathbf{s}_2	GGGGCGTAT ^{\$2}
3	2	G	ATTAGC ^{\$3}	1	1	Ċ	$GTACCA\$_1$
3	0	G	$C\$_{3}$	2	3	С	$GTAT\$_2$
1	1	С	$CA\$_1$	2	0	A	$T\$_2$
1	1	A	$CCA\$_1$	1	1	G	$TACCA\$_1$
3	1	A	CGATTAGC ^{\$3}	3	2	Ť	TAGC\$3
1	2	G	$CGTACCA\$_1$	2	2	G	TAT ^{\$2}
2	4	G	$CGTAT\$_2$	3	1	Ā	
						1 00 00	0010

Preprocessing: eBWT, DA and LCP array

		$S = \{GC$	GCGTACCA\$1, GGG	GCGTAT	$[\$_2, ACC]$	GATTAGO	C\$ ₃ }	
DA	LCP	eBWT	Sorted suffixes	DA	LCP	eBWT	Sorted s	uffixes
1	0	А	$\$_1$	3	0	С	GATTA	$AGC\$_3$
2	0	т	\$ ₂	3	1	А	$GC\$_3$	
3	0	С	\$ ₃	1	2	G	GCGT	$ACCA\$_1$
1	0	С	$A\$_1$	2	5	G	GCGT	T_{2}
1	1	Т	$ACCA\$_1$	1	1	$\$_1$	GGCGT	$\Gamma ACCA\$_1$
3	2	\$3	$ACGATTAGC\$_3$	2	6	G	GGCG'	$\Gamma AT\$_2$
3	1	Т	$AGC\$_3$	2	2	G	GGGC	$GTAT\$_2$
2	1	т	$AT\$_2$	2	3	\mathbf{s}_2	GGGGG	CGTAT ^{\$2}
3	2	G	$ATTAGC\$_3$	1	1	С	GTACC	$CA\$_1$
3	0	G	$C\$_3$	2	3	С	GTAT	2
1	1	С	$CA\$_1$	2	0	Α	$T\$_2$	
1	1	Α	$CCA\$_1$	1	1	G	TACCA	4\$ 1
3	1	А	CGATTAGC ^{\$3}	3	2	Т	TAGC	3
1	2	G	$CGTACCA\$_1$	2	2	G	$TAT\$_2$	
2	4	G	$CGTAT\$_2$	3	1	A	TTAGO	2\$3≣► < ≣► ≣⊨ ∽
	Metagenomic analysis through the eBWT						, 2019	6 / 14

Preprocessing: eBWT, DA and LCP array

		$S = \{G($	GCGTACCA\$1, GGG	GCGTAI	Γ ^{\$2} , ACC	GATTAG	$C\$_{3}$ }
DA	LCP	eBWT	Sorted suffixes	DA	LCP	eBWT	Sorted suffixes
1	0	А	$\$_1$	3	0	С	$GATTAGC\$_3$
2	0	т	\$ ₂	3	1	А	$GC\$_3$
3	0	С	\$ ₃	1	2	G	$GCGTACCA\$_1$
1	0	С	$A\$_1$	2	5	G	$GCGTAT\$_2$
1	1	т	$ACCA\$_1$	1	1	$\$_1$	$GGCGTACCA\$_1$
3	2	\$3	ACGATTAGC ³	2	6	G	$\overline{GGCGTA}T\$_2$
3	1	Т	$AGC\$_3$	2	2	G	$\overline{GGGCGTAT\$_2}$
2	1	т	$AT\$_2$	2	3	\$ ₂	$GGGGGCGTAT\$_2$
3	2	G	ATTAGC ₃	1	1	C	$GTACCA\$_1$
3	0	G	$C\$_3$	2	3	С	$GTAT\$_2$
1	1	С	$CA\$_1$	2	0	А	$T\$_2$
1	1	А	$CCA\$_1$	1	1	G	$TACCA\$_1$
3	1	А	CGATTAGC ^{\$3}	3	2	т	TAGC ^{\$3}
1	2	G	$CGTACCA\$_1$	2	2	G	TAT
2	4	G	$CGTAT\$_2$	3	1	A	
			the split the split T			1	2010 6/14

Preprocessing: eBWT, DA and LCP array

		$S = \{ \boldsymbol{G} \}$	GCGTACCA\$1, GGGG	CGTAT	$"\$_2, ACC$	GATTAG	C_3		
DA	LCP	eBWT		DA	LCP	eBWT			
1	0	А		3	0	С			-
2	0	Т		3	1	A			
3	0	С		1	2	G			
1	0	С		2	5	G			
1	1	Т		1	1	$\$_1$			
3	2	$$_{3}$		2	6	G			
3	1	Т		2	2	G			
2	1	Т		2	3	$\$_2$			
3	2	G		1	1	Ċ			
3	0	G		2	3	С			
1	1	С		2	0	А			
1	1	А		1	1	G			
3	1	А		3	2	Т			
1	2	G		2	2	G			
2	4	G		3	1	А	< □ > < ⊡ >	< ■ → ★ ■	▶ ΞΙ= ⑦
	Metageno	omic analysis	through the eBWT			June 26-2	8,2019	6,	/ 14

Intuitive idea

The greater is the number of substrings share by two strings, the smaller is their "distance"

Key property of the eBWT

The greater is the number of substrings shared by u and v, the greater is the mixing of the suffixes of u and v in the sorted list and the greater are the runs (clusters) of the same symbol in the eBWT.

 $u = \underline{GGCGTA}CCA\$_1$. $v = GG\underline{GGCGTA}T\$_2$

DU	C · · ·
eBWT	Sorted suffixes
A	$\$_1$
т	\$ ₂
С	$A\$_1$
Т	$ACCA\$_1$
т	$AT\$_2$
С	$CA\$_1$
А	$CCA\$_1$
G	$CGTACCA\$_1$
G	$CGTAT\$_2$
G	$GCGTACCA\$_1$
G	$GCGTAT\$_2$
$\$_1$	$GGCGTACCA\$_1$
G	$GGCGTAT\$_2$
G	$GGGCGTAT\$_2$
\mathbf{s}_2	$GGGGCGTAT\$_2$
С	$GTACCA\$_1$
С	$GTAT\$_2$
А	$T\$_2$
G	$TACCA\$_1$
G	<i>TAT</i> \$2∂ → < ≥ → < ≥ → ≥ ≥ ∞
June 26-2	

Intuitive idea

The greater is the number of substrings share by two strings, the smaller is their "distance"

Key property of the eBWT

The greater is the number of substrings shared by u and v, the greater is the mixing of the suffixes of u and v in the sorted list and the greater are the runs (clusters) of the same symbol in the eBWT.

 $u = \underline{GGCGTA}CCA\$_1$. $v = GG\underline{GGCGTA}T\$_2$

eBWT	Sorted suffixes
А	\$ ₁
Т	\$ ₂
С	$A\$_1$
(\mathbf{T})	$ACCA\$_1$
$\mathbf{\nabla}$	$AT\$_2$
С	$CA\$_1$
Ă	$CCA\$_1$
G	$CGTACCA\$_1$
G	$CGTAT\$_2$
G	$GCGTACCA\$_1$
G	GCGTAT ^{\$2}
$\$_1$	$GGCGTACCA\$_1$
G	$GGCGTAT\$_2$
G	$GGGCGTAT\$_2$
\mathbf{s}_2	$GGGGCGTAT\$_2$
C C	$GTACCA\$_1$
	$GTAT\$_2$
Α	$T\$_{2}$
G	$TACCA\$_1$
G	TAT
June 26-2	8,2019 7/14

Intuitive idea

The greater is the number of substrings share by two strings, the smaller is their "distance"

Key property of the eBWT

The greater is the number of substrings shared by u and v, the greater is the mixing of the suffixes of u and v in the sorted list and the greater are the runs (clusters) of the same symbol in the eBWT.

 $u = \underline{GGCGTA}CCA\$_1$. $v = GG\underline{GGCGTA}T\$_2$

eBWT	Sorted suffixes
A	\$1
т	\$ ₂
С	$A\$_1$
т	$ACCA\$_1$
т	$AT\$_2$
С	$CA\$_1$
А	$CCA\$_1$
G	$CGTACCA\$_1$
G	$CGTAT\$_2$
T C A G G G G	$GCGTACCA\$_1$
G	$GCGTAT\$_2$
$\$_1$	$GGCGTACCA\$_1$
G	$GGCGTAT\$_2$
G	$GGGCGTAT\$_2$
\mathbf{s}_2	$GGGGCGTAT\$_2$
С	$GTACCA\$_1$
C C A	$GTAT\$_2$
А	$T\$_{2}$
G	$TACCA\$_1$
G	TAT\$2∂→ < E→ < E→ .
lune 26-	

June 26-28 , 2019

= 900

Intuitive idea

The greater is the number of substrings share by two strings, the smaller is their "distance"

Key property of the eBWT

The greater is the number of substrings shared by u and v, the greater is the mixing of the suffixes of u and v in the sorted list and the greater are the runs (clusters) of the same symbol in the eBWT.

 $u = \underline{GGCGTA}CCA\$_1$. $v = GG\underline{GGCGTA}T\$_2$

eBWT	Sorted suffixes
А	\$ ₁
т	\$ ₂
С	$A\$_1$
т	$ACCA\$_1$
т	$AT\$_2$
С	$CA\$_1$
А	$CCA\$_1$
G	$CGTACCA\$_1$
G	$CGTAT\$_2$
G	$GCGTACCA\$_1$
G	$GCGTAT\$_2$
$\$_{1}$	$GGCGTACCA\$_1$
G	$GGCGTAT\$_2$
G	$GGGCGTAT\$_2$
\mathbf{s}_2	$GGGGCGTAT\$_2$
\bigcirc	$GTACCA\$_1$
\bigcirc	GTAT ^{\$2}
A	$T\$_2$
G	$TACCA\$_1$
G	<i>TAT\$</i> 2∂→ < ≥→ < ≥→ ≥ = ∽< <
1 00 0	7/14

Intuitive idea

The greater is the number of substrings share by two strings, the smaller is their "distance"

Key property of the eBWT

The greater is the number of substrings shared by u and v, the greater is the mixing of the suffixes of u and v in the sorted list and the greater are the runs (clusters) of the same symbol in the eBWT.

 $u = \underline{GGCGTA}CCA\$_1$. $v = \underline{GGGGCGTA}T\$_2$

	eBWT	Sorted suffi	xes
_	А	\$ ₁	
	Т	$$_{2}$	
	С	$A\$_1$	
	т	$ACCA\$_1$	
	T C	$AT\$_2$	
		$CA\$_1$	
	А	$CCA\$_1$	
	G	CGTACC	$A\$_1$
	G	$CGTAT\$_2$	
	GG	GCGTAC	$CA\$_1$
	G	GCGTAT	\mathbf{s}_2
	$\$_1$	GGCGTA	$CCA\$_1$
	G	GGCGTA	$T\$_{2}$
	G	GGGCGT	
	\mathbf{s}_2	GGGGCG	$TAT\$_2$
	C C	GTACCA	\mathbf{s}_1
		$GTAT\$_2$	
	Α	$T\$_2$	
	G	$TACCA\$_1$	
	G	TAT $_{2}$	< 코 + < 코 + 로)크
	June 26-2	8,2019	7 / 14

Intuitive idea

The greater is the number of substrings share by two strings, the smaller is their "distance"

Key property of the eBWT

The greater is the number of substrings shared by u and v, the greater is the mixing of the suffixes of u and v in the sorted list and the greater are the runs (clusters) of the same symbol in the eBWT.

 $u = GGCGTACCA\$_1$. $v = GGGGGCGTAT\$_2$

eBWT	Sorted suffixes
А	\$ ₁
Т	\$ ₂
С	$A\$_1$
Т	$ACCA\$_1$
т	$AT\$_2$
C	$CA\$_1$
Ă	$CCA\$_1$
G	$CGTACCA\$_1$
G	$CGTAT\$_2$
G	$GCGTACCA\$_1$
G	GCGTAT\$2
$\$_1$	$GGCGTACCA\$_1$
G	$GGCGTAT\$_2$
G	$GGGCGTAT\$_2$
\mathbf{s}_2	$GGGGCGTAT\$_2$
C C	$GTACCA\$_1$
С	$GTAT\$_2$
А	$T\$_2$
G	$TACCA\$_1$
G	TAT\$20 + () + () +
June 26-2	28.2019 7/14

1.20

Intuitive idea

The greater is the number of substrings share by two strings, the smaller is their "distance"

Key property of the eBWT

The greater is the number of substrings shared by u and v, the greater is the mixing of the suffixes of u and v in the sorted list and the greater are the runs (clusters) of the same symbol in the eBWT.

 $u = \underline{GGCGTA}CCA\$_1$. $v = \underline{GGGCGTA}T\$_2$

eBWT	Sorted suffixes
А	\$ ₁
Т	\$ ₂
С	$A\$_1$
т	$ACCA\$_1$
т	$AT\$_2$
T C	$CA\$_1$
А	$CCA\$_1$
G	$CGTACCA\$_1$
G	$CGTAT\$_2$
G	$GCGTACCA\$_1$
G	$GCGTAT\$_2$
$(\$_1)$	$GGCGTACCA\$_1$
G	GGCGTAT\$2
G	$GGGCGTAT\$_2$
\$ ₂	GGGGGCGTAT ^{\$2}
С	$GTACCA\$_1$
C C	$GTAT\$_2$
А	$T\$_2$
G	$TACCA\$_1$
G	TAT\$20 + + = + + = + =
June 26-2	

= 990

.

Step 1: Build α -clusters and Similarity Arrays (Part I)

Minimum LCP value $\alpha = 3$

i	LCP	eBWT	Sorted suffixes
1	0	A	$\$_i$
2	0	T	\$ _j
3	0	C	$A\$_i$
4	1	T	$ACCA\$_i$
5	1	T	$AGTTT\$_j$
6	1	T	$ATGTATTAGTTT\$_i$
$\overline{7}$	2	T	$ATTAGTTT$_{j}$
8	0	C	$CA\$_i$
9	1	A	$CCA\$_i$
10	1	G	$CGGGGGCGTA \dots \$_j$
11	2	G	$CGTACCA\$_i$
12	4	G	$CGTATGAT \dots \$_i$
13	1	T	CTTTTGGCG
14	0	G	$GCGGGGGCGT \dots \mathring{s}_i$
15	3	G	$GCGTACCA\$_i$
16	5	G	$GCGTATGTAA \dots $
:	:	:	:

$r_i = \underline{KGGCGTA}CCA\$_i$

 $g_j = TTATTTTGGCG \underline{GGGCGTA} TGTATTAGTTT\$_j$

Detect blocks (α -clusters) of eBWT(S): An α -cluster C_{α} of eBWT(S) is any pair of indices (pS, pE) such that

- $\bullet \ LCP[pS] < \alpha \ {\rm and} \ LCP[pE+1] < \alpha, \\$
- $LCP[k] \ge \alpha$, $pS < k \le pE$,
- $DA[s] \in \mathcal{R}$ and $DA[t] \in \mathcal{G}$, $pS \leq s, t \leq pE$.

 $\mathcal{C}_{\alpha}(r_i,g_j) = \{$

Compute the similarity between any read and any genome:

$$Sim_{r}[g] = \sum_{x \in \mathcal{C}_{\alpha}} \sum_{a \in \Sigma} \min(n_{r}, n_{g})$$

 n_r =number of indices s in x such that eBWT[s] = a and DA[s] = r, n_g =number of indices t in x such that eBWT[t] = a and DA[t] = g. i.e. the total number of bases of r and g that match (by using IUPAC list) in each α -cluster.

 $Sim_{r_i}[g_i] =$

June 26-28 , 2019

8 / 14

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

Step 1: Build α -clusters and Similarity Arrays (Part I)

Minimum LCP value $\alpha = 3$

i	LCP	eBWT	Sorted suffixes
1	0	A	$\$_i$
2	0	T	\$ _j
3	0	C	$A\$_i$
4	1	T	$ACCA\$_i$
5	1	T	$AGTTT\$_j$
6	1	T	$ATGTATTAGTTT\$_i$
$\overline{7}$	2	T	$ATTAGTTT$_{j}$
8	0	C	$CA\$_i$
9	1	A	$CCA\$_i$
10	1	G	$CGGGGGCGTA \dots \$_i$
11	2	G	$CGTACCA\$_i$
12	4	$\bigcirc G$	$CGTATGAT \dots \$_i$
13	1	\widetilde{T}	CTTTTGGCG [*]
14	0	G	$GCGGGGGCGT \dots \$_i$
15	3	G	GCGTACCA ^{i}
16	5	G	$GCGTATGTAA \dots \$_j$
:	:	:	:

 $r_i = \underline{KGGCGTA}CCA\$_i$

 $g_j = TTATTTTGGCGGGGGGGGGTATGTATTAGTTT$

Detect blocks (α -clusters) of eBWT(S): An α -cluster C_{α} of eBWT(S) is any pair of indices (pS, pE) such that

- $\ \ \, \mathbb{C} CP[pS] < \alpha \ \, \mathrm{and} \ \, LCP[pE+1] < \alpha, \\$
- $LCP[k] \ge \alpha$, $pS < k \le pE$,
- $DA[s] \in \mathcal{R}$ and $DA[t] \in \mathcal{G}$, $pS \leq s, t \leq pE$.

 $C_{\alpha}(r_i, g_j) = \{(11, 12),$

Compute the similarity between any read and any genome:

$$Sim_{r}[g] = \sum_{x \in \mathcal{C}_{\alpha}} \sum_{a \in \Sigma} \min(n_{r}, n_{g})$$

 n_r =number of indices s in x such that eBWT[s] = a and DA[s] = r, n_g =number of indices t in x such that eBWT[t] = a and DA[t] = g. i.e. the total number of bases of r and g that match (by using IUPAC list) in each α -cluster.

 $Sim_{r_i}[g_i] = 1 +$

June 26-28 . 2019

8 / 14

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

Step 1: Build α -clusters and Similarity Arrays (Part I)

Minimum LCP value $\alpha = 3$

i	LCP	eBWT	Sorted suffixes
1	0	A	\$ _i
2	0	T	\$ _j
3	0	C	$A\$_i$
4	1	T	$ACCA\$_i$
5	1	T	$AGTTT\$_j$
6	1	T	$ATGTATTAGTTT\$_i$
$\overline{7}$	2	T	$ATTAGTTT$_{i}$
8	0	C	$CA\$_i$
9	1	A	$CCA\$_i$
10	1	G	$CGGGGGCGTA \dots \$_i$
11	2	G	$CGTACCA\$_i$
12	4	G	$CGTATGAT \dots \$_i$
13	1	T	CTTTTGGCG [*]
14	0	G	$GCGGGGGCGT \dots \$_i$
15	3	G	$GCGTACCA\$_i$
16	5	\bigcirc	$GCGTATGTAA \dots \$_j$
			•

 $r_i = \underline{KGGCGTA}CCA\$_i$

 $g_j = TTATTTTGGCG \underline{GGGCGTA} TGTATTAGTTT\$_j$

Detect blocks (α -clusters) of eBWT(S): An α -cluster C_{α} of eBWT(S) is any pair of indices (pS, pE) such that

- $\bullet \ LCP[pS] < \alpha \ {\rm and} \ LCP[pE+1] < \alpha, \\$
- $LCP[k] \ge \alpha$, $pS < k \le pE$,
- $DA[s] \in \mathcal{R}$ and $DA[t] \in \mathcal{G}$, $pS \leq s, t \leq pE$.

 $C_{\alpha}(r_i, g_j) = \{(11, 12), (14, 16), \dots$

Compute the similarity between any read and any genome:

$$Sim_{r}[g] = \sum_{x \in \mathcal{C}_{\alpha}} \sum_{a \in \Sigma} \min(n_{r}, n_{g})$$

 n_r =number of indices s in x such that eBWT[s] = a and DA[s] = r, n_g =number of indices t in x such that eBWT[t] = a and DA[t] = g. i.e. the total number of bases of r and g that match (by using IUPAC list) in each α -cluster.

 $Sim_{r_i}[g_j] = 1 + 1 +$

June 26-28 . 2019

8 / 14

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Step 1: Build α -clusters and Similarity Arrays (Part I)

Minimum LCP value $\alpha = 3$

i	LCP	eBWT	Sorted suffixes
1	0	A	\mathbf{s}_i
2	0	T	\$ _j
3	0	C	$A\$_i$
4	1	T	$ACCA\$_i$
5	1	T	$AGTTT\$_j$
6	1	T	$ATGTATTAGTTT\$_i$
$\overline{7}$	2	T	$ATTAGTTT\$_{j}$
8	0	C	$CA\$_i$
9	1	A	$CCA\$_i$
10	1	G	$CGGGGGCGTA \dots $
11	2	G	$CGTACCA\$_i$
12	4	G	$CGTATGAT \dots \$_i$
13	1	T	CTTTTGGCG ^{\$}
14	0	G	$GCGGGGGCGT \dots \$_i$
15	3	G	$GCGTACCA\$_i$
16	5	G	$GCGTATGTAA\$_i$
:	:	:	:

 $r_i = \underline{KGGCGTA}CCA\$_i$

 $g_j = TTATTTTGGCG \underline{GGGCGTA} TGTATTAGTTT\$_j$

Detect blocks (α -clusters) of eBWT(S): An α -cluster C_{α} of eBWT(S) is any pair of indices (pS, pE) such that

- $\ \ \, \mathbb{C} CP[pS] < \alpha \ \, \mathrm{and} \ \, LCP[pE+1] < \alpha, \\$
- $LCP[k] \ge \alpha$, $pS < k \le pE$,
- $DA[s] \in \mathcal{R}$ and $DA[t] \in \mathcal{G}$, $pS \leq s, t \leq pE$.

 $C_{\alpha}(r_i, g_j) = \{(11, 12), (14, 16), \dots \}$

Compute the similarity between any read and any genome:

$$Sim_{r}[g] = \sum_{x \in \mathcal{C}_{\alpha}} \sum_{a \in \Sigma} \min(n_{r}, n_{g})$$

 n_r =number of indices s in x such that eBWT[s] = a and DA[s] = r, n_g =number of indices t in x such that eBWT[t] = a and DA[t] = g. i.e. the total number of bases of r and g that match (by using IUPAC list) in each α -cluster.

 $Sim_{r_i}[g_j] = 1+1+\ldots$

June 26-28 . 2019

8 / 14

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

Step 1: Build α -clusters and Similarity Arrays (Part II)

Minimum LCP value $\alpha = 3$

i	LCP	eBWT	Sorted suffixes
:	:	:	:
17	1	T	$GGCGGGGGCG \dots \$_i$
18	$\overline{4}$	K	$GGCGTACCA\$_i$
19	6	G	$GGCGTATGTAT \dots \$_j$
20	2	G	$GGGCGTAT \dots $
21	3	C	$GGGGCGTAT \dots \$_j$
22	1	C	$GTACCA\$_i$
23	3	C	$GTATGTA \dots \$_j$
24	4	C	$GTATTA\dots \$_j$
25	2	A	$GTTT\$_{j}$
26	0	s_i	$KGGCGTACCA\$_i$
27	0	T	$T\$_i$
28	1	G	$TACCA\$_i$
29	2	T	$TAGTTT\$_j$
1	:	:	:
1	•	•	1

$r_i = \underline{KGGCGTA}CCA\$_i$

 $g_j = TTATTTTGGCG \underline{GGGCGTA} TGTATTAGTTT\$_j$

Detect blocks (α -clusters) of eBWT(S): An α -cluster C_{α} of eBWT(S) is any pair of indices (pS, pE) such that

- $\ \ \, \mathbb{C} CP[pS] < \alpha \ \, \mathrm{and} \ \, LCP[pE+1] < \alpha, \\$
- $LCP[k] \ge \alpha$, $pS < k \le pE$,
- $DA[i] \in \mathcal{R}$ and $DA[j] \in \mathcal{G}$, $pS \leq i, j \leq pE$.

 $C_{\alpha} = \{(11, 12), (14, 16),$

Compute the similarity between any read and any genome:

$$Sim_{r}[g] = \sum_{x \in \mathcal{C}_{\alpha}} \sum_{a \in \Sigma} \min(n_{r}, n_{g})$$

 n_r =number of indices s in x such that eBWT[s] = a and DA[s] = r, n_g =number of indices t in x such that eBWT[t] = a and DA[t] = g. i.e. the total number of bases of r and g that match (by using IUPAC list) in each α -cluster.

 $Sim_{r}[g] = 1 + 1 +$

June 26-28 . 2019

9 / 14

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

Step 1: Build α -clusters and Similarity Arrays (Part II)

Minimum *LCP* value $\alpha = 3$

 $i \ LCP \ eBWT$ Sorted suffixes 17 $GGCGGGGGGG \dots \$_i$ 18GGCGTACCA\$; 196 $GGCGTATGTAT \dots$ 20 $\mathbf{2}$ $GGGCGTAT \dots \$_i$ G21 3 C $GGGGGGTAT \dots \$_i$ 22 $GTACCA\$_i$ C23C $GTATGTA \dots \$_i$ 3 $GTATTA \dots \$_i$ 24 $\mathbf{\Delta}$ C25 $\mathbf{2}$ GTTT\$i A26 KGGCGTACCA^{\$}; 0 \mathbf{s}_i 27TΩ T28G $TACCA\$_i$ T29 $TAGTTT\$_i$ 2

 $K \to \{G \text{ or } T\}$ in the IUPAC list.

 $r_i = KGGCGTACCA\$_i$

 $g_i = TTATTTTGGCGGGGGGGGGGGTATGTATTAGTTT$

Detect blocks (α **-clusters) of** eBWT(S): An α **-cluster** C_{α} of eBWT(S) is any pair of indices (pS, pE) such that

- $LCP[pS] < \alpha$ and $LCP[pE+1] < \alpha$.
- $LCP[k] \ge \alpha, pS < k \le pE$,
- $DA[i] \in \mathcal{R}$ and $DA[j] \in \mathcal{G}$, pS < i, j < pE.

 $C_{\alpha} = \{(11, 12), (14, 16), (17, 19), \}$

Compute the similarity between any read and any genome:

$$Sim_{r}[g] = \sum_{x \in \mathcal{C}_{\alpha}} \sum_{a \in \Sigma} \min(n_{r}, n_{g})$$

 n_r =number of indices s in x such that eBWT[s] = a and DA[s] = r, n_q = number of indices t in x such that eBWT[t] = a and DA[t] = g. i.e. the total number of bases of r and a that match (by using IUPAC list) in each α -cluster.

 $Sim_{r}[q] = 1 + 1 + 1 + 1$

June 26-28 . 2019

9 / 14

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Step 1: Build α -clusters and Similarity Arrays (Part II)

Minimum LCP value $\alpha = 3$

 $i \ LCP \ eBWT$ Sorted suffixes 17 T $GGCGGGGGGG \dots \$_i$ 18 KGGCGTACCA\$; 4 19 6 G $GGCGTATGTAT \dots$ 20 $\mathbf{2}$ $GGGCGTAT \dots \$_i$ 213 $GGGGGGTAT \dots \$_i$ 22 $GTACCA\$_i$ 1 C233 C $GTATGTA \dots \$_i$ $GTATTA \dots \$_i$ 24 $\mathbf{\Delta}$ C25 $GTTT\$_i$ $\mathbf{2}$ A26 KGGCGTACCA^{\$}; 0 s_i 27TΩ T28G $TACCA\$_i$ T29 $TAGTTT\$_i$ 2

it is not cluster (only blue symbols)

 $r_i {=} \underline{KGGCGTA}CCA\$_i$

 $g_j = TTATTTTGGCG\underline{GGGCGTA}TGTATTAGTTT\$_j$

Detect blocks (α -clusters) of eBWT(S): An α -cluster C_{α} of eBWT(S) is any pair of indices (pS, pE) such that

- $\bullet \ LCP[pS] < \alpha \ {\rm and} \ LCP[pE+1] < \alpha, \\$
- $LCP[k] \ge \alpha$, $pS < k \le pE$,
- $DA[i] \in \mathcal{R}$ and $DA[j] \in \mathcal{G}$, $pS \leq i, j \leq pE$.

 $\overline{\mathcal{C}_{\alpha}} = \{(11, 12), (14, 16), (17, 19),$

Compute the similarity between any read and any genome:

$$Sim_{r}[g] = \sum_{x \in \mathcal{C}_{\alpha}} \sum_{a \in \Sigma} \min(n_{r}, n_{g})$$

 n_r =number of indices s in x such that eBWT[s] = a and DA[s] = r, n_g =number of indices t in x such that eBWT[t] = a and DA[t] = g. i.e. the total number of bases of r and g that match (by using IUPAC list) in each α -cluster.

 $Sim_{\mathbf{r}}[\mathbf{g}] = 1 + 1 + 1 + 1$

June 26-28 . 2019

9 / 14

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Step 1: Build α -clusters and Similarity Arrays (Part II)

Minimum LCP value $\alpha = 3$

i	LCP	eBWT	Sorted suffixes
:	:	:	:
17	1	T	. $GGCGGGGGCG \dots $
18	4	K	$GGCGTACCA\$_i$
19	6	G	$GGCGTATGTAT \dots $ \$
20	2	G	$GGGCGTAT \dots $
21	3	C	$GGGGGCGTAT \dots \$_j$
22	1	\overline{C}	$GTACCA\$_i$
23	3	C	$GTATGTA \dots \$_j$
24	4	\bigcirc	$GTATTA \dots \$_{j}$
25	2	A	$GTTT\$_j$
26	0	s_i	$KGGCGTACCA\$_i$
27	0	T	$T\$_j$
28	1	G	$TACCA\$_i$
29	2	T	$TAGTTT\$_j$
1	1	:	:
	1		•

 $r_i = \underline{KGGCGTA}CCA\$_i$

 $g_j = TTATTTTGGCG \underline{GGGCGTA} TGTATTAGTTT\$_j$

Detect blocks (α -clusters) of eBWT(S): An α -cluster C_{α} of eBWT(S) is any pair of indices (pS, pE) such that

- $\ \ \, \mathbb{C} CP[pS] < \alpha \ \, \mathrm{and} \ \, LCP[pE+1] < \alpha, \\$
- $LCP[k] \ge \alpha, \ pS < k \le pE$,
- $DA[i] \in \mathcal{R}$ and $DA[j] \in \mathcal{G}$, $pS \leq i, j \leq pE$.

 $C_{\alpha} = \{(11, 12), (14, 16), (17, 19), (22, 24)\}$

Compute the similarity between any read and any genome:

$$Sim_{r}[g] = \sum_{x \in \mathcal{C}_{\alpha}} \sum_{a \in \Sigma} \min(n_{r}, n_{g})$$

 n_r =number of indices s in x such that eBWT[s] = a and DA[s] = r, n_g =number of indices t in x such that eBWT[t] = a and DA[t] = g. i.e. the total number of bases of r and g that match (by using IUPAC list) in each α -cluster.

 $Sim_r[g] = 1 + 1 + 1 + 1 = 4$ (\Box) (\Box) (Ξ) (Ξ) (Ξ) (Ξ) (\Box) ((\Box) (\Box) (\Box) ((\Box) (\Box) ((\Box)) ((\Box) ((\Box) ((\Box) ((\Box) ((\Box)) ((\Box) ((\Box) ((\Box)) ((\Box) ((\Box)) ((\Box) ((\Box) ((\Box)) ((\Box) ((\Box) ((\Box)) ((\Box) ((\Box) ((\Box)) ((\Box) ((\Box)) ((

Given a threshold value β , the read r_i is

- assigned to g_j if g_j is the only genome such that $Sim_{r_i}[g_j] \sim \max_g Sim_{r_i}[g]$ and $Sim_{r_i}[g_j] > \beta$.
- not classified if $\max_{g} Sim_{r_i}[g] \leq \beta$.
- ambiguous if $\max_g Sim_{r_i}[g] > \beta$, but there exist at least two genomes g_p and g_q s.t. $Sim_{r_i}[g_p] \sim Sim_{r_i}[g_q] \sim \max_g Sim_{r_i}[g]$

Example

Let $\alpha = 3$ and $\beta = 0.4$. Suppose the α -similarity between r_i and g_1 , g_2 , g_3 , g_4 , g_5 is $Sim_{r_i}[g_1] = 0.5$, $Sim_{r_i}[g_2] = 0$, $Sim_{r_i}[g_3] =$, $Sim_{r_i}[g_4] = 0.2$, $Sim_{r_i}[g_5] = 0$.

-

・ロト ・ 一下・ ・ 日 ・ ・ 日

Given a threshold value β , the read r_i is

- assigned to g_j if g_j is the only genome such that $Sim_{r_i}[g_j] \sim \max_g Sim_{r_i}[g]$ and $Sim_{r_i}[g_j] > \beta$.
- not classified if $\max_{g} Sim_{r_i}[g] \leq \beta$.
- ambiguous if $\max_g Sim_{r_i}[g] > \beta$, but there exist at least two genomes g_p and g_q s.t. $Sim_{r_i}[g_p] \sim Sim_{r_i}[g_q] \sim \max_g Sim_{r_i}[g]$

Example

Let $\alpha = 3$ and $\beta = 0.4$. Suppose the α -similarity between r_i and g_1 , g_2 , g_3 , g_4 , g_5 is $Sim_{r_i}[g_1] = 0.5$, $Sim_{r_i}[g_2] = 0$, $Sim_{r_i}[g_3] = 0.8$, $Sim_{r_i}[g_4] = 0.2$, $Sim_{r_i}[g_5] = 0$.

Given a threshold value β , the read r_i is

- assigned to g_j if g_j is the only genome such that $Sim_{r_i}[g_j] \sim \max_g Sim_{r_i}[g]$ and $Sim_{r_i}[g_j] > \beta$.
- not classified if $\max_{g} Sim_{r_i}[g] \leq \beta$.
- ambiguous if $\max_g Sim_{r_i}[g] > \beta$, but there exist at least two genomes g_p and g_q s.t. $Sim_{r_i}[g_p] \sim Sim_{r_i}[g_q] \sim \max_g Sim_{r_i}[g]$

Example

Let $\alpha = 3$ and $\beta = 0.4$. Suppose the α -similarity between r_i and g_1 , g_2 , g_3 , g_4 , g_5 is $Sim_{r_i}[g_1] = 0.5$, $Sim_{r_i}[g_2] = 0$, $Sim_{r_i}[g_3] = 0.8$, $Sim_{r_i}[g_4] = 0.2$, $Sim_{r_i}[g_5] = 0$. $\Rightarrow r_i$ is assigned to g_3 .

Given a threshold value β , the read r_i is

- assigned to g_j if g_j is the only genome such that $Sim_{r_i}[g_j] \sim \max_g Sim_{r_i}[g]$ and $Sim_{r_i}[g_j] > \beta$.
- not classified if $\max_{g} Sim_{r_i}[g] \leq \beta$.
- ambiguous if $\max_g Sim_{r_i}[g] > \beta$, but there exist at least two genomes g_p and g_q s.t. $Sim_{r_i}[g_p] \sim Sim_{r_i}[g_q] \sim \max_g Sim_{r_i}[g]$

Example

Let $\alpha = 3$ and $\beta = 0.4$. Suppose the α -similarity between r_i and g_1 , g_2 , g_3 , g_4 , g_5 is $Sim_{r_i}[g_1] = 0.3$, $Sim_{r_i}[g_2] = 0$, $Sim_{r_i}[g_3] = 0.34$, $Sim_{r_i}[g_4] = 0.2$, $Sim_{r_i}[g_5] = 0$.

Given a threshold value β , the read r_i is

- assigned to g_j if g_j is the only genome such that $Sim_{r_i}[g_j] \sim \max_g Sim_{r_i}[g]$ and $Sim_{r_i}[g_j] > \beta$.
- not classified if $\max_{g} Sim_{r_i}[g] \leq \beta$.
- ambiguous if $\max_g Sim_{r_i}[g] > \beta$, but there exist at least two genomes g_p and g_q s.t. $Sim_{r_i}[g_p] \sim Sim_{r_i}[g_q] \sim \max_g Sim_{r_i}[g]$

Example

Let $\alpha = 3$ and $\beta = 0.4$. Suppose the α -similarity between r_i and g_1 , g_2 , g_3 , g_4 , g_5 is $Sim_{r_i}[g_1] = 0.5$, $Sim_{r_i}[g_2] = 0$, $Sim_{r_i}[g_3] = 0.5$, $Sim_{r_i}[g_4] = 0.2$, $Sim_{r_i}[g_5] = 0$. $\Rightarrow r_i$ is ambiguous.

Preliminary experiments on simulated reads

- Positive and negative control datasets (about 20 millions of paired-reads) designed in [Lindgreen et al., 2016].
- $\bullet~$ Reference database $\mathcal{G}:~930$ genomes from 686 species

	CLARK-S	LightMetaEbwt	LightMetaEbwt	Centrifuge	Centrifuge
setA2	-highconf	$\alpha \ 16 \ \beta \ 0.25$	$\alpha \ 16 \beta \ 0.35$	-min-hitlen 16	-min-hitlen 22
SEN (%)	93.03	93.13	92.69	95.65	93.01
PREC (%)	99.06	99.73	99.74	97.64	99.66
F1 (%)	95.95	96.32	96.08	96.63	96.22
setB2					
SEN (%)	92.84	93.01	92.51	95.53	92.94
PREC (%)	99.11	99.77	99.78	97.68	99.69
F1 (%)	95.87	96.27	96.01	96.59	96.20
	1	I			
setA2Ran					
TN	5,726,336	5,726,294	5,726,357	150,971	5,712,085
FP	22	64	1	5,575,387	14,273
SPEC (%)	99.99	99.99	100.00	2.64	99.75
setB2Ran					
TN	5,406,642	5,406,601	5,406,658	141,994	5,393,260
FP	17	58	1	5,264,665	13,399
SPEC (%)	99.99	99.99	100.00	2.63	99.75

 $\ensuremath{\text{SEN}}\xspace =$ proportion of the actual positives identified by the method.

 $\ensuremath{\textbf{PREC}}\xspace = \ensuremath{\mbox{proportion}}\xspace$ of positives that are correctely identified by the method.

F1 = harmonic mean between SEN and PREC.

SPEC = proportion of actual negatives that are correctely identified as such.

11 / 14

> < = > = = < < <

Preliminary experiments on simulated reads

- Positive and negative control datasets (about 20 millions of paired-reads) designed in [Lindgreen et al., 2016].
- $\bullet~$ Reference database $\mathcal{G}:~930$ genomes from 686 species

	CLARK-S	LightMetaEbwt	LightMetaEbwt	Centrifuge	Centrifuge
setA2	-highconf	$\alpha \ 16 \ \beta \ 0.25$	$\alpha \ 16 \beta \ 0.35$	-min-hitlen 16	-min-hitlen 22
SEN (%)	93.03	93.13	92.69	95.65	93.01
PREC (%)	99.06	99.73	99.74	97.64	99.66
F1 (%)	95.95	96.32	96.08	96.63	96.22
setB2					
SEN (%)	92.84	93.01	92.51	95.53	92.94
PREC (%)	99.11	99.77	99.78	97.68	99.69
F1 (%)	95.87	96.27	96.01	96.59	96.20
100	1	I			
setA2Ran					
TN	5,726,336	5,726,294	5,726,357	150,971	5,712,085
FP	22	64	1	5,575,387	14,273
SPEC (%)	99.99	99.99	100.00	2.64	99.75
setB2Ran					
TN	5,406,642	5,406,601	5,406,658	141,994	5,393,260
FP	17	58	1	5,264,665	13,399
SPEC (%)	99.99	99.99	100.00	2.63	99.75

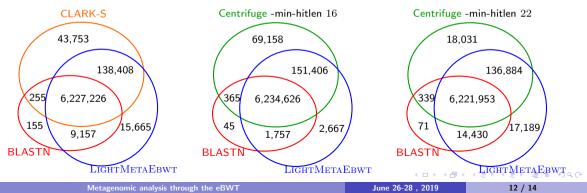
 $\ensuremath{\text{SEN}}\xspace =$ proportion of the actual positives identified by the method.

 $\ensuremath{\textbf{PREC}}\xspace = \ensuremath{\mbox{proportion}}\xspace$ of positives that are correctely identified by the method.

F1 = harmonic mean between SEN and PREC.

SPEC = proportion of actual negatives that are correctely identified as such.

11 / 14

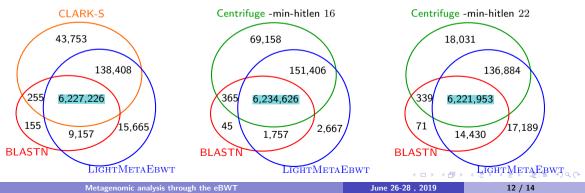

> < = > = = < < <

Results

Preliminary experiments on real data: Mock community

Reference database $\mathcal{G} {:}\ 61$ genomes from 22 species

SRR172902	BLASTN	CLARK-S	LIGHTMETAEBWT	Centrifuge	Centrifuge
	-eval 10^{-5} -id 90	-c 0.75 -g 0.08	$\alpha \ 15 \beta \ 0.2$	-min-hitlen 16	-min-hitlen 22
Classified	6,236,793	6,409,642	6,390,456	6,455,555	6,377,207
Ambiguous	48,310	0	10,570	11,150	8,422
Unclassified	276,962	152,423	161,039	95,360	176,436
SEN (%)	95.04	97.68	97.39	98.38	97.18

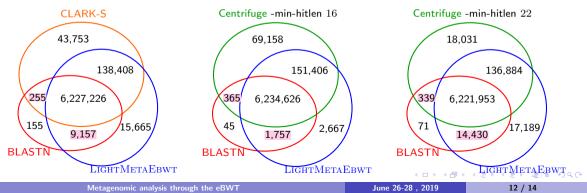


Results

Preliminary experiments on real data: Mock community

Reference database $\mathcal{G} {:}\ 61$ genomes from 22 species

SRR172902	BLASTN	CLARK-S	LIGHTMETAEBWT	Centrifuge	Centrifuge
	-eval 10^{-5} -id 90	-c 0.75 -g 0.08	$\alpha \ 15 \beta \ 0.2$	-min-hitlen 16	-min-hitlen 22
Classified	6,236,793	6,409,642	6,390,456	6,455,555	6,377,207
Ambiguous	48,310	0	10,570	11,150	8,422
Unclassified	276,962	152,423	161,039	95,360	176,436
SEN (%)	95.04	97.68	97.39	98.38	97.18



Results

Preliminary experiments on real data: Mock community

Reference database $\mathcal{G} {:}\ 61$ genomes from 22 species

SRR172902	BLASTN	CLARK-S	LIGHTMETAEBWT	Centrifuge	Centrifuge
	-eval 10^{-5} -id 90	-c 0.75 -g 0.08	$\alpha \ 15 \beta \ 0.2$	-min-hitlen 16	-min-hitlen 22
Classified	6,236,793	6,409,642	6,390,456	6,455,555	6,377,207
Ambiguous	48,310	0	10,570	11,150	8,422
Unclassified	276,962	152,423	161,039	95,360	176,436
SEN (%)	95.04	97.68	97.39	98.38	97.18

Final Remarks

Notice that a like-for-like comparison on the time-consuming and on memory-consuming between $\rm LightMETAEBWT$, CLARK-S and Cenfrifuge is not possible

LIGHTMETAEBWT	Centrifuge	Clark-S
One-core	multi-thread	multi-thread
Analyze all paired-reads at the same time,	Analyze one read at a time	Analyze one read at a time
this implies keeping in memory	and	and
the whole similarity matrix	Pair-reads analyzed in parallel	Concatenate paired-reads
no engineered implementation	engineered implementation	engineered implementation

	Classification for setA2 (21,461,160 paired-reads and 930 genomes)					
	LIGHTMETAEBWT Centrifuge CLARK-S					
setA2	$\alpha \ 16$	-min-hitlen 16	–highconf	last step		
RAM	~ 1 GB (+ ~ 18 GB $$ for the matrix)	$\sim 2 \text{GB}$	$\sim 121 \mathrm{GB}$	$\sim 78 { m GB}$		
Time	~ 54 min	$\sim 27 { m min}$	~ 8 h	$\sim 28 { m min}$		

Here, we improved our previous version of this method presented to AICoB 2019: for instance, considering the IUPAC list. We are now working on a more engineered implementation $\frac{1}{2000} = 0.000$

Preliminary experiments

Dataset	$ \mathcal{R} $	$ \mathcal{G} $	Instance	Efficiency	Wall Clock	RAM
			CLARK-S (8cores)	99%	8:25:17	121.58
setA2	21,461,160	930	LightMetaEbwt	99%	2:29:57	19.45
			Centrifuge	99%	1:55:10+26:38	9.32
setB2	20,249,373	930	CLARK-S (8cores)	69%	14:26:31	121.58
Set D2	20,249,373	930	LightMetaEbwt	96%	3:06:05	18.55
			Centrifuge	99%	1:55:10+21:16	9.32
setA2Ran	5.726.358	930	CLARK-S (8cores)	92%	5:02:22	121.58
SelAZRAII	5,720,556		LightMetaEbwt	98%	18:46	9.94
			Centrifuge	99%	1:55:10+4:08	9.32
setB2Ran	5.406.659	930	CLARK-S (8cores)	99%	5:16:50	121.58
SetDZNan	5,400,059	930	LightMetaEbwt	99%	17:01	9.61
			Centrifuge	99%	1:55:10+3:20	9.32
SRR172902	6.562.065	61	CLARK-S (8cores)	99%	33:40	72.23
51(11/2902	0,302,005		LightMetaEbwt	99%	5:57	0.69
			Centrifuge	99%	1:21+2:29	0.37

• The three data structures for LIGHTMETAEBWT setA2 take 1:23:55 and 4GB of RAM to be constructed.

• For LIGHTMETAEBWT, post-processing time and space usage differ from step to step. For instance, per each set of paired end read in setA2 step 1 takes 1:15 with 1GB of RAM (changeable), step 2 around 36:17 with 19.45GB (18.59GB to keep the matrix of similarities) and step 3 takes 15:55 with 0.06GB.