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Abstract. The development of Next Generation Sequencing has had
a major impact on the study of genetic sequences, and in particular,
on the advancement of metagenomics, whose aim is to identify the mi-
croorganisms that are present in a sample collected directly from the
environment. In this paper, we describe a new lightweight alignment-free
and assembly-free framework for metagenomic classification that compares
each unknown sequence in the sample to a collection of known genomes.
We take advantage of the combinatorial properties of an extension of the
Burrows-Wheeler transform, and we sequentially scan the required data
structures, so that we can analyze unknown sequences of large collections
using little internal memory. For the best of our knowledge, this is the
first approach that is assembly- and alignment-free, and is not based
on k-mers. We show that our experiments confirm the effectiveness of
our approach and the high accuracy even in negative control samples.
Indeed we only classify 1 short read on 5, 726, 358 random shuffle reads.
Finally, the results are comparable with those achieved by read-mapping
classifiers and by k-mer based classifiers.

Keywords: Metagenomics · Next-generation sequencing · Classification
· Alignment-free · Assembly-free · eBWT · LCP Array.

1 Introduction

The advent of “next-generation” DNA sequencing (NGS) technologies has meant
that collections of hundreds of millions of DNA sequences are now commonplace
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in bioinformatics. One research field that has grown extraordinarily in recent years
is metagenomics [26]. The problem of comparing sequences is of fundamental
importance in this field: indeed, the metagenomic studies require computational
tools that are able to analyze large datasets and to extract correct information
about the community under investigation. There exist many metagenomics
statistical/computational tools (among them [30,25,22,11]) and recent surveys
(for instance [13,21]) that offer a thorough benchmarking analysis by comparing
the majority of the state-of-the-art tools.

We propose a new alignment-free and assembly-free method for comparing
sequences (cf. [29,20]), which is combinatorial by nature and allows us to use
little internal memory with respect to other approaches, such as those k-mer
based. Our method is based on an extension of the Burrows-Wheeler Transform
(shortly eBWT) to a collection of sequences. The eBWT has been used in several
application contexts as the circular pattern matching (cf. [9]) and the alignment-
free methods for comparing sequences (cf. [17,18,31,23,14]). Different distance
measures have been defined and successfully applied to several biological datasets,
as for instance mitochondrial DNA genomes [17,18], expressed sequence tags
[23] and proteins [31]. Usually, when the eBWT is applied to a collection S of
sequences, its output string ebwt(S) is enriched by another data structure: the
document array da(S), i.e. a different color can be assigned to each element of S
and each symbol of ebwt(S) is associated with a color in da(S). In other words,
the array da(S) contains a sequence of colors that depends on how the suffixes of
the sequences in S are mixed in the sorted list. In [17,18], the authors define a
class of dissimilarity measures that, by using the eBWT, formalize the intuitive
idea that the greater is the number of substrings shared by two sequences u and
v, the smaller is the “distance” between u and v.

In this paper, inspired by the same intuitive idea, we define a new similarity
measure that is based on an important property of the eBWT (the clustering
effect [28,19] of the input symbols) together with the information on the length
of the contexts that follow them. Then we describe how to apply this notion of
similarity to perform metagenomic classifications.

Finally, in the last section, we describe the results of preliminary experiments
on simulated metagenome collections: we obtain similar or better precision than
CLARK-S [24] (a k-mer based approach), yet using a smaller memory footprint.

We show, moreover, that the sensitivity and precision obtained are similar
to those achieved by Centrifuge [11], a read-mapping classifier. Nevertheless,
our method gets better results than Centrifuge on the negative control datasets
comprising random shuffled reads that do not belong to any known genome.
Indeed, in metagenomic samples, a large number of reads are from “unknown”
organisms whose genomes are not present in any reference database, and thus
they cannot be given a taxonomic assignment. To mimic these reads, negative
control datasets have been designed as to test the reliability of a method [13].
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2 Preliminaries and materials

Let S be a string (or sequence), n its length, and Σ its alphabet set, with σ = |Σ|.
We denote the i-th symbol of S by S[i]. We denote by S = {S1, S2, . . . , Sm} a
collection of m strings. We assume that each string Si ∈ S of length ni is followed
by a special symbol Si[ni + 1] = $i, which is lexicographically smaller than any
other characters in S, and do not appear in S elsewhere — for implementation
purposes, we may simply use a unique end-marker $ for all strings in S. A
substring of any S ∈ S is denoted as S[i, j] = S[i] · · ·S[j], with S[1, j] being
called a prefix and S[i, n + 1] a suffix of S. A range is delimited by a square
bracket if the correspondent endpoint is included.

The Burrows-Wheeler Transform (BWT) [4] is a well known reversible string
transformation widely used that can be extended to a collection of strings. Such
an extension, known as eBWT or multi-string BWT, is a reversible transformation
that produces a string (denoted by ebwt(S)) that is a permutation of the symbols
of all strings in S [17] (see also [2,16,7,6]). The length of ebwt(S) is denoted by
N =

∑m
i=1 ni + m and ebwt(S)[i] = x, with 1≤ i≤N , if x circularly precedes

the i-th suffix Sj [k, nj + 1] (for some 1 ≤ j ≤ m and 1 ≤ k ≤ nj+1), according
to the lexicographic sorting of the suffixes of all strings in S. In this case we
say that the suffix Sj [k, nj + 1] is associated with the position i in ebwt(S) and
with the color j ∈ {1, 2, . . . ,m}. The output string ebwt(S) is enhanced with the
array da(S) of length N where da(S)[i] = j, with 1 ≤ j ≤ m and 1 ≤ i ≤ N , if
ebwt(S)[i] is a symbol of the string Sj ∈ S. See Figure 1 for an example.

The longest common prefix (LCP) array of S is the array lcp(S) of length
N + 1, such that lcp(S)[i], with 2 ≤ i ≤ N , is the length of the longest common
prefix between the suffixes associated with the positions i and i− 1 in ebwt(S),
and lcp(S)[1] = lcp(S)[N + 1] = 0 by default.

The set S will be omitted if it is clear from the context. Moreover, for clarity
of description, we denote by L(S) the sorted list of the suffixes in S, although
we do not need it for our computation.

We call u-occurrence any substring u that occurs in any sequence of S.

Remark 1. Recall that ebwt(S) is implicitly associated with L(S) and all the
suffixes in S starting with the same substring u, with |u| = k, must be consecutive
entries in L(S) in the range [h, j]. Moreover, lcp[i] ≥ k for i = h+ 1, . . . , j and
the symbols of S that are followed by u-occurrences coincide with ebwt[h, j].

Remark 2. Let ` be the total number of u-occurrences in S, with |u| = k, there
exist k − 1 substrings (i.e. all suffixes of u that are not equal to u) which appear
at least ` times in S.

Example 3 (running example). Let S = {S1 = ACGTCGCATTAA,S2 =
CGTCACATNA}. The substring CGT appears exactly once in both sequences.
The two suffixes of S1 and S2 starting with CGT -occurrences occupy consecutive
positions, precisely 14 and 15, and lcp[15] = 4. Moreover, according to Remark 2
the number of GT -occurrences is 2 and the one of T -occurrences is 5.
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index da(S) lcp(S) ebwt(S) L(S)
1 1 0 A $1

2 2 0 A $2

3 1 0 A A$1

4 2 1 N A$2

5 1 1 T AA$1

6 2 1 C ACATNA$2

7 1 2 $1 ACGTCGCATTAA$1

8 2 1 C ATNA$2

9 1 2 C ATTAA$1

10 2 0 T CACATNA$2

11 2 2 A CATNA$2

12 1 3 G CATTAA$1

13 1 1 T CGCATTAA$1

14 2 2 $2 CGTCACATNA$2

15 1 4 A CGTCGCATTAA$1

16 1 0 C GCATTAA$1

17 2 1 C GTCACATNA$2

18 1 3 C GTCGCATTAA$1

19 2 0 T NA$2

20 1 0 T TAA$1

21 2 1 G TCACATNA$2

22 1 2 G TCGCATTAA$1

23 2 1 A TNA$2

24 1 1 T TTAA$1

Fig. 1. The required data structures for our running example, where S is the set
{S1 = ACGTCGCATTAA, S2 = CGTCACATNA}

3 Method

In this section, we introduce a new strategy to tackle the problem of metagenomic
classification that is assembly- and alignment-free, not based on k-mer, and uses
a little amount of memory.

We suppose that S = {S1, . . . , Sm} is a collection of biological sequences
comprising r reads and g genomes, where m = r+ g. More in details, Si ∈ S is a
read if 1 ≤ i ≤ r and Sj ∈ S is a genome if r + 1 ≤ j ≤ m. For simplicity, we
denote by R the subset of reads and by G the subset of genomes. Assume that
Σ is the biological alphabet of these sequences.

We introduce a method that classifies any read Si in R by assigning it to a
unique genome Sj ∈ G through reading in sequential way ebwt(S), da(S) and
lcp(S).

We define a notion of similarity between sequences that exploits the underlying
properties of the eBWT: the clustering effect, i.e. the fact that this transformation
tends to group together symbols that occur in similar contexts in the input strings
collection. Indeed, when applying eBWT to a collection, if a substring u occurs
in one or more sequences, then the suffixes of the collection starting with u
are likely to be close in the sorted list of suffixes. This implies that the greater
the number of substrings shared by two sequences is, the more they are similar.
Roughly speaking, we consider the symbols of S followed by a same substring
(i.e. context) that are clustered together in ebwt(S) and match one-to-one the
symbols belonging to R to the symbols belonging to G.

Our method works in three steps: (1) we detect and keep some blocks of
ebwt(S) in which the suffixes in L(S) share a common context of a minimum
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length α, and to which sequences both in R and G belong; (2) we analyze these
interesting blocks in order to evaluate a degree of similarity between any read
and any genome in S; (3) we perform the read assignment: for every read in R,
either we retrieve the unique genome of belonging, or we report that it is not
possible to identify it.

Build α-clusters collection — In step (1), inspired by Remark 1, we build a
collection Cα of blocks in ebwt(S), which are delimited by pairs of indices called
α-clusters, that are associated with LCP-values exceeding a threshold value α.

Definition 4. Let α be a positive integer, lcp[1, N + 1] be the LCP-array and
da[1, N ] the document array associated with ebwt[1, N ]. An α-cluster of ebwt(S)
of size pE − pS + 1 is any pair of indices (pS, pE) in [1, N ] such that

• lcp[pS] < α, and lcp[pE + 1] < α,

• lcp[i] ≥ α, for every pS < i ≤ pE,

• there exist two indices s, t, pS ≤ s, t ≤ pE, such that da[s] ≤ r and da[t] > r,

where r is the total number of reads in S.

Example 5 (running example). For α = 2, the set C2 of 2-clusters of the ebwt(S)
in Figure 1 is C2 = {(6, 7), (8, 9), (10, 12), (13, 15), (17, 18), (21, 22)}.

In other words, we discard the blocks of ebwt(S) whose associated suffixes do
not share a prefix of length at least α. This step requires a sequential scan of
lcp(S) and da(S) allowing us to use only a small amount of memory to detect
α-clusters.

Remark 6. It is to see that we are computing the similarity between a read
Sj ∈ R and a genome Sk ∈ G by analyzing the entire set of sequences S, not only
the two sequences Sj and Sk. Indeed, let (pS, pE) be an α-cluster of ebwt(S) that
contains at least a symbol of Sj and at least a symbol of Sk. Other symbols that
belong to sequences in S apart from Sj and Sk may also appear in ebwt[pS, pE].
Nevertheless, we can implicitly get a new cluster (pS′, pE′) by deleting from the
ebwt(S) all symbols not belonging to Sj and Sk, and for the properties of the
LCP array, it is easy to verify that (pS′, pE′) forms an α-cluster.

Build similarity arrays — During the second step, we refine each α-cluster of
the ebwt(S) by splitting it according to its symbols, and then we measure the
degree of similarity between the sequences in R and the genomes in G.

We split the alphabet Σ of S in two subsets. We include the DNA bases in
Σ′ = {A,C,G, T} and the end-marker symbols, the (rare) occurrences of N and
other degenerate base symbols (see IUPAC nomenclature) in Σ′′ = Σ \Σ′ ∪ {$}.

Definition 7. Let a be any symbol in Σ′. The a-refinement of an α-cluster
(pS, pE) of ebwt(S) is the set of indices {j1, . . . , jq} in the range [pS, pE], such
that ebwt[j`] = a, for any 1 ≤ ` ≤ q.
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Example 8 (running example). The C-refinement of the cluster (6, 7) ∈ C2 is
the singleton {6}, while the a-refinement, for any a ∈ {A,G, T}, is the empty
set, since neither A nor G nor T appear in ebwt[8, 9]. On the other hand, the
C-refinement of the cluster (8, 9) ∈ C2 is the set {8, 9}.

Now, we define a similarity between two sequences Sj , Sk ∈ S by using the
notion of α-cluster and a-refinement.

Definition 9. Let Cα be the set of all the α-clusters associated with ebwt(S). We
define the α-similarity between two sequences Sj ∈ R and Sk ∈ G as the quantity
Sα(Sj , Sk) =

∑
x∈Cα Qj,k(x), where

Qj,k(x) =
∑
a∈Σ′

min
(
n(j,x,a), n(k,x,a)

)
, (1)

with n(j,x,a) (resp. n(k,x,a)) being the number of symbols belonging to Sj (resp.
Sk) in the a-refinement of the α-cluster x.

Intuitively, during the computation of our measure, we count the symbols of
each read that we can associate with the same symbols of each genome in the
α-cluster, or vice versa. In particular, if the symbol belongs to Σ′, we associate
the nucleotide of a read in R with the exact nucleotide of a genome in G. Whereas
if the symbol belongs to Σ′′, we consider it as placeholder, in the sense that we
associate it with any nucleotide of the sequence of the other collection in order
to maximize the quantity Qi,j(x) in Eq. (1) (see Example 10 below).

More precisely, let m(j,x) (resp. m(k,x)) be the number of Σ′′-symbols be-
longing to Sj (resp. Sk) and appearing in an α-cluster x. For any a ∈ Σ′, if
|n(j,x,a) − n(k,x,a)| > 0 (i.e. the minimum between the number of a-symbols of
Sj appearing in x and the number of a-symbols of Sk appearing in x can be
increased), then we convert some placeholders to a-symbols and decrease the
quantities m(j,x) and m(k,x) accordingly. Note that the symbol a ∈ Σ′ to which
we convert any placeholder symbol appearing in x is unique.

Furthermore, if nj (resp. nk) is the length of Sj (resp. Sk), then the quantity
Sα(Sj , Sk) ranges between 0 and min(nj , nk) + 1−α. We can normalize dividing
by min(nj , nk) + 1− α, as to obtain a similarity value within the range [0, 1].

Example 10 (running example). The 2-similarity between S1 and S2 is given by
S2(S1, S2) = 1 + 1 + 0 + 1 + 1 + 1 = 5, by setting $1 = C and $2 = T , and by
normalizing S2(S1, S2)/9 = 0, 56. On the other hand, for α = 3, the normalized
similarity S3(S1, S2) is equal to 0, 25 if and only if $2 = A.

Concerning the metagenome analysis and the set S, we build a set of similarity
arrays {Sim1, . . . , Simg}. More precisely, for each genome Sk ∈ G, we define the
array Simk−r of length r, whose entry Simk−r[j] stores the normalized similarity
value Sα(Sj , Sk), for every Sj ∈ R.

In order to use only a sequential scan of ebwt(S) and da(S), we analyze the
α-clusters in Cα one by one through |Cα| iterations. At each iteration, we consider
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an α-cluster x and we evaluate the quantities Qj,k(x) of Eq. (1), for every index
j ≤ r and k > r appearing in x, maximizing them by means of placeholder
symbols (if there are any). Then, we update each corresponding entry Simk−r[j]
by adding the quantity Qj,k(x).

Finally, once all the α-clusters in Cα have been examined, we normalize each
entry of {Sim1, . . . , Simg} completing the construction of the similarity arrays.

Classification— The last step consists in assigning a unique provenance to any
read Sj (j ≤ r) with respect to the normalized values Sα(Sj , Sk), r < k ≤ r + g.

For every j ≤ r, we compute the set I of indices q such that the nor-
malized similarity Sα(Sj , Sq) is close to the maximum normalized similarity
M = maxiSα(Sj , Si), i.e.

Sα(Sj , Sq) ∼M, for all q ∈ I . (2)

Moreover, in order to control the assessment score, we set a threshold value β
(0 ≤ β < 1) that the maximum value M of Eq. (2) has to exceed in order to
classify the read Sj with respect to I.

We assign the read Sj (or its reverse complement) to Sq if q ∈ I, |I| =
1 and Sα(Sj , Sq) > β. Whereas, the read Sj is said to be not classified if
maxiSα(Sj , Si) ≤ β. Finally, the read classification of Sj is said to be ambiguous
if Sα(Sj , Sq) > β and |I| > 1. In the last case, if our strategy is used for the
analysis of a paired-end collection, we use the sum of the assignment scores of the
individual mates and assign the read to the genome that obtains the maximum
score. Note that if more than one genome obtains the maximum score, we could
classify the read at higher taxonomic ranks.

4 Results

In this section we evaluate our alignment-free strategy against other tools. We
choose two tools: the first is alignment-free and is based on the use of k-mers,
and the second is based on a read-mapping strategy. To assess the performance
of our sequence analysis method, we have implemented a prototype C++ tool,
named LightMetaEbwt1.

A recent evaluation of the state-of-the-art tools for metagenome classifica-
tion [13] presents the most widely used tools tested on complex and realistic
datasets which have been designed ad hoc for this analysis2. According to this
benchmarking analysis, kraken [30] and CLARK [25] result to be top-performing
tools in terms of both similarity to the correct answer and the fraction of reads
classified [13]. Note that both tools are k-mer based. However, for our evaluation,
we selected the new version of CLARK, called CLARK-S [24], that uses spaced
k-mers rather than simple k-mers, and achieves higher sensitivity than both
CLARK and kraken, while maintaining high precision. Nevertheless, the tool

1 https://github.com/veronicaguerrini/LightMetaEbwt
2 http://www.gardner-binflab.org/our_research/

https://github.com/veronicaguerrini/LightMetaEbwt
http://www.gardner-binflab.org/our_research/
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CLARK-S, as well as CLARK and kraken, is extremely memory-consuming, and
the results obtained by running its lightweight version CLARK-l are indicated to
be a “draft, or first order approximation” of those obtained by running CLARK
or CLARK-S.

We also compare our results with a recent metagenomics classifier, named
Centrifuge [11]. It adapts the data structures of read-mapping algorithms based
on the BWT and the FM-index [8], such as Bowtie [12], which provide very fast
alignment with a relatively small memory footprint. We observe that Light-
MetaEbwt, unlike Centrifuge, processes all reads at the same time.

In order to guarantee a fair evaluation, we use the custom reference database
for the three tools. Notice that a like-for-like comparison on the time-consuming
between LightMetaEbwt, CLARK-S and Cenfrifuge is not possible, since
CLARK-S and Centrifuge are multi-thread and our tool is currently able to use
one core only. In order to run CLARK-S, we use a machine with 128 GB of RAM.
All tests were done on a DELL PowerEdge R630 machine, 24-core machine with
Intel(R) Xeon(R) CPU E5-2620 v3 at 2.40 GHz, with 128 GB of shared memory,
used in not exclusive mode. The system is Ubuntu 14.04.2 LTS.

Dataset description. The reference database G we use for our experiments com-
prises 930 genomes from 686 species belonging to 17 phyla as indicated in [13].

We perform validation of our approach by using two sets of metagenomes
among those provided by Lindgreen et al. [13]: the two datasets of paired end
reads setA2 and setB2 reproduce the size, complexity and characteristics of real
metagenomic samples containing around 20 millions of sequences of length 100
belonging to G. Some phyla are included in equal proportions, whereas some
others vary more substantially between the two sets.

Moreover, as to test the reliability of the tools, each dataset includes a subset
of simulated negative control sequences to mimic sequences from “unknown”
organisms (i.e. their genomes are not present in the reference database) that are
likely to appear in metagenome samples – see [13] for further details. Each of these
negative control datasets, called setA2 Ran and setB2 Ran in our experiments,
includes around 5 million of random shuffled reads.

We precise that the original datasets, downloadable from [13], are not exactly
the datasets setA2 and setB2 we use for our evaluations3. In fact, we first
removed a group of reads associated with the phylum of Eukaryotes whose species
provenance was not specified in [13]. Second, since we use a custom database
and CLARK-S downloads up-to-date taxonomy data (such as taxonomy id, or
accession numbers) from the NCBI website ignoring expiring entries, we preferred
not to include in sets setA2 and setB2 a group of reads associated with 3 genomes
whose entries in the NCBI database have been indicated as obsolete.

Preprocessing step. This task for our tool can be achieved using, for example,
BCR [5], Egsa [16], gsacak [15], GAP [7] or eGAP [6]. As the set G of genomes is
the same for each experiment, we can build the data structures of G only once,

3 https://github.com/veronicaguerrini/LightMetaEbwt/tree/master/Datasets

https://github.com/veronicaguerrini/LightMetaEbwt/tree/master/Datasets


Lightweight Metagenomic classification via eBWT 9

Table 1. Results of metagenome analysis at species level of setA2 and setB2 for positive
control, and setA2 Ran and setB2 Ran for negative control. Best scores are in bold

setA2 REAL
CLARK-S LightMetaEbwt LightMetaEbwt Centrifuge Centrifuge

–highconfidence α 16 β 0.25 α 16 β 0.35 min-hitlen 16 min-hitlen 22
TP 21,461,160 19,789,944 19,908,394 19,815,751 20,062,940 19,897,787
FP 0 187,386 37,232 34,408 485,353 68,722
FN 0 1,483,830 1,515,534 1,611,001 912,867 1,494,651
SEN (%) 100.000 93.025 92.926 92.481 95.648 93.013
PREC (%) 100.000 99.062 99.813 99.827 97.638 99.656
F1 (%) 100.000 95.949 96.247 96.014 96.633 96.220

setB2
TP 20,249,373 18,644,316 18,922,266 18,819,348 18,913,373 18,766,021
FP 0 167,709 73,208 68,154 450,209 58,766
FN 0 1,437,348 1,253,899 1,361,871 885,791 1,424,586
SEN (%) 100.000 92.842 93.785 93.251 95.526 92.944
PREC (%) 100.000 99.109 99.615 99.639 97.675 99.688
F1 (%) 100.000 95.873 96.612 96.340 96.589 96.198

setA2 Ran
TN 5,726,358 5,726,336 5,726,294 5,726,357 150,971 5,712,085
FP 0 22 64 1 5,575,387 14,273
SPEC (%) 100.00 99.99 99.99 100.00 2.64 99.75

setB2 Ran
TN 5,406,659 5,406,642 5,406,601 5,406,658 141,994 5,393,260
FP 0 17 58 1 5,264,665 13,399
SPEC (%) 100.00 99.99 99.99 100.00 2.63 99.75

by using GAP4. Then we can use BCR5 (it is a tool for very large collection of
short reads) for building the data structures for R and use eGAP6 for merging
them obtaining the data structures for the entire collection S. On the other hand,
exploiting the mathematical properties of the permutation associated with the
eBWT and LCP array, by using BCR [2, Remark 3.6] [5], we can update the
data structures of G (without constructing the BWT from scratch) in order to
obtain the data structures for S. To find the best method for building our data
structures is a non-trivial problem and it is not in the aim of this paper.

Validation step. As the provenance of simulated reads is known, we can set TP as
the number of reads correctly classified (i.e. assigned to their right provenance),
FP as the number of reads erroneously classified, and FN as the number of
reads unassigned, from which we can calculate the quality metrics: sensitivity
SEN = TP

TP+FN , precision PREC = TP
TP+FP , and F1 score F1 = 2TP

2TP+FP+FN .
In these experiments, we do not handle the reads classified as ambiguous or
assigned to taxonomic level higher than species (i.e. more species could be assigned
to them), and we count them among unclassified reads in FN . For simulated
negative control sequences that do not exist in any known species, we can set
TN as the number of random reads that are not mapped to any genome and FP
as the number of random reads that are erroneously mapped to some genome,
and calculate the specificity SPEC = TN

TN+FP .

4 http://people.unipmn.it/manzini/gap
5 https://github.com/giovannarosone/BCR_LCP_GSA
6 https://github.com/felipelouza/egap

http://people.unipmn.it/manzini/gap
https://github.com/giovannarosone/BCR_LCP_GSA
https://github.com/felipelouza/egap
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Experiments Our tool is able to classify the reads to several taxonomic levels
such as genomes, species or phylum. For the experiments reported in Table 1, we
choose a deep taxonomic level, i.e. we classify each read to the species level.

CLARK-S runs with default values and the results are filtered by using the
recommended option --highconfidence (e.g., assignment with confidence score
< 0.75 and gamma score < 0.03 are discarded).

For LightMetaEbwt, we set the minimum length of the common context
α = 16, since the length of each paired end read is 100, and provide results for
minimum similarity scores β = 0.25 and β = 0.35. Our similarity score ranges
between 0 and 1: clearly the greater the value is, the higher the read similarity is.
Thus, for β = 0.25 the sensitivity increases and the precision slightly decreases.

Centrifuge begins with a short exact match (16-bp minimum) and extends
the match as far as possible. Based on the exact matches found in the read and
its reverse complement, Centrifuge classifies each read using only those mappings
with at least one match of k bases. This parameter k (named --min-hitlen) is
comparable with α used in our tool. Hence, we perform a first experiment where
we set it to 16 and a second experiment to 22 (default value). For both setA2 and
setB2, the highest sensitivity achieved is given by choosing --min-hitlen=16.
Nevertheless, for --min-hitlen=16 such a higher sensitivity alters the correct
metagenomic classification as the percentage of random shuffled reads classified
(i.e. the specificity) dramatically decreases up to 2.63%. The higher sensitivity for
--min-hitlen=16 increases the F1 score, which is the harmonic mean of precision
and sensitivity. In fact, for setA2 the best F1 score is obtained by Centrifuge
for --min-hitlen=16 followed by LightMetaEbwt with β = 0.25. Further
experiments with β=0.1 show that the F1 score obtained by LightMetaEbwt
increases to 97.1% at the cost of a slightly low specificity (98.4%).

Without considering the pre-processing steps, we observe that the RAM usage
of our tool (by using a semi-external memory approach) is about 17-18GB for
setA2 and setB2 and about 9-10GB for setA2 Ran and setB2 Ran. CLARK-S uses
about 120GB for any dataset, whereas Centrifuge uses less than 2GB. Moreover,
we observe that our method scans sequentially the required data structures, so
that we could analyze unknown sequences of large collections in external memory
by reducing the internal memory usage to a minimum. We have also observed that
our tool is slower than the other two tools, but a more engineered implementation
of our algorithm would improve our performance in terms of time and space, that
we leave as further work.

Overall accuracy for the three tools was very similar, but the highest precision
(keeping high sensitivity) values are obtained by our tool even in the random
shuffled samples (setA2 Ran and setB2 Ran).

5 Conclusions and discussion

In this paper, we present a versatile, alignment-free, lightweight method that by
sequentially scanning some data structures eBWT, LCP and DA array allows
us to identify the genome to which each read belongs. We focused the attention



Lightweight Metagenomic classification via eBWT 11

on species level classifications, but LightMetaEbwt can also work at higher
taxonomic levels such as genus, family, class or phylum. Preliminary experiments
show that the relative phylum abundance estimated meets the real dataset com-
position with very high precision. For instance, we obtain only 31, 666 ambiguous
reads and 868, 456 not classified reads and we correctly classify 19, 349, 193 in
setB2.

Furthermore, we have considered the sequences classified as ambiguous as
those not classified, but we leave a more in-depth analysis of the ambiguous reads
for a further work, for instance using our tool with stronger parameters.

The idea of building the clusters of the eBWT with/without LCP is not
new (see [17,18]). However, we want to specify that our notion differs from the
notion of LCP-interval in the literature [1]: indeed, a LCP-interval is a particular
α-cluster (pS, pE) in which at least an index i, pS < i ≤ pE, is equal to α. It is
well worth mentioning also the difference with the strategies used in [27,10], where
the partitions of ebwt(S) determined by LCP-values are filtered according to
their size. Here, we do not impose any constraint on the α-cluster size. Moreover,
to the best of our knowledge, it is the first time that the notion of cluster is used
on metagenomic classification problems.

Furthermore, it is interesting to note that the data structures used by our
strategy are intrinsically dynamic: the collection S can be modified by inserting
or removing sequences [2, Remark 3.6] [5] exploiting the mathematical properties
of the permutation associated with the eBWT and LCP array (for instance by
using BCR), allowing us to modify α-clusters accordingly. On the other hand,
one can build and store the data structures for the genome database and then,
for each new experiment, build the data structures for the read collection. To
merge them and obtain ebwt(S), da(S) and lcp(S), one could use eGAP.

Finally, note that LightMetaEbwt allows a certain degree of parallelization.
The analysis of the clusters is independent of each other and is thus easily
parallelizable. This allows us to use multiple processors on multi-core servers
that are commonplace nowadays while keeping the computational requirements
low. Moreover, we note that in the recent literature there are several papers with
the aim of introducing new lightweight and parallel computational strategies for
building the data structures we use in our tool, for instance see [3].

In conclusion, we believe that our tool can be useful in a variety of applications
in metagenomics and genomics.
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