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Abstract

The Burrows-Wheeler Transform (BWT) is a word transformation
introduced in 1994 for Data Compression and later results have con-
tributed to make it a fundamental tool for the design of self-indexing
compressed data structures. The Alternating Burrows-Wheeler Trans-
form (ABWT) is a more recent transformation, studied in the context
of Combinatorics on Words, that works in a similar way, using an al-
ternating lexicographical order instead of the usual one. In this paper
we study a more general class of block sorting-based transformations.
The transformations in this new class prove to be interesting combi-
natorial tools that offer new research perspectives. In particular, we
show that all the transformations in this class can be used as booster
for memoryless compressors and we provide an upper bound on the
number of equal-letter runs in their output. Moreover, we introduce
the notion of rank-invertibility, a property related to the implementa-
tion of an efficient inversion procedure. We show that the BWT and
the Alternating BWT are the only rank-invertible transformations in
the class we have defined.
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1 Introduction

Michael Burrows and David Wheeler introduced in 1994 a reversible word
transformation [?], denoted by BWT , that turned out to have “myriad
virtues”. At the time of its introduction in the field of text compression, the
Burrows-Wheeler Transform was perceived as a magic box: when used as a
preprocessing step it would bring rather weak compressors to be competitive
in terms of compression ratio with the best ones available [?]. In the years
that followed, many studies have shown the effectiveness of BWT and its
central role in the field of Data Compression due to the fact that it can be
seen as a “booster” of the performance of memoryless compressors [?, ?, ?].
Moreover, it was shown [?] that the BWT can be used to efficiently search
for occurrences of patterns inside the original text. Such capabilities of the
BWT have originated the field of Compressed Full-text Self-indices [?, ?].

More in detail, the BWT is defined via a sorting in lexicographic order
of all the cyclic rotations of the input word. The BWT can be computed
in linear time, it produces strings which are provably compressible in terms
of the high order entropy of the input, and it can be inverted in linear
time by just counting operations (such a property will be formalized in
the follows as rank-invertibility). Despite its simplicity, the BWT presents
some combinatorial properties that have aroused great interest both from
the theoretical and applicative points of view [?, ?, ?, ?, ?, ?, ?, ?, ?, ?].

In the context of Combinatorics on Words, many studies have addressed
the characterization of the words that become the most compressible after
the application of the BWT [?, ?, ?, ?, ?, ?]. Recent studies have focused
on measuring the “clustering effect” of BWT . That is, a property related
to its boosting role as preprocessing of a text compressor [?, ?].

In [?], the authors characterize the BWT as the inverse of a known bijec-
tion between words and multisets of primitive necklaces [?]. From this result,
in [?] the authors introduce and study the basic properties of the Alternat-
ing BWT , ABWT from now on. It is a transformation on words analogous
to the BWT but the cyclic rotations of the input word are sorted by using
the alternating lexicographic order instead of the usual lexicographic order.
The alternating lexicographic order is defined for infinite words as follows:
the first letters are compared with the given alphabetic order, in case of
equality the second letters are compared with the opposite order, and so on
alternating the two orders for even/odd positions.

We show that the ABWT satisfies most of the properties that make
the BWT such a useful transformation. Indeed, the ABWT can be com-
puted in linear time and inverted, still in linear time, by simple counting
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operations. However, although these two transformations have some simi-
larities, they represent two very different combinatorial tools. We show that
some combinatorial properties or characterizations proved for BWT , change
considerably when ABWT is considered.

The existence of the ABWT shows that the classical lexicographic order
is not the only order relation that one can use to obtain a reversible transfor-
mation. Indeed, lexicographic and alternating lexicographic order are two
particular cases of a more general class of order relations considered in [?, ?].
In this paper we explore the class of transformations that use the previously
mentioned orders to sort the cyclic rotations of the input word. We prove
that, as for the BWT , each transformation of the class can be used as a
booster of the performance of a memoryless compressor. Furthermore, for
all transformations we show that the number of runs of consecutive equal
symbols is at most twice the number of runs of consecutive equal symbols
the input word.

Finally, we prove that such word transformations are invertible and we
try to establish under which conditions they can be efficiently inverted by
using counting and rank operations as for the BWT and ABWT . To this
end, we introduce the notion of rank-invertibility and we prove that BWT
and ABWT are the only transformations within this class that are rank-
invertible.

2 Preliminaries

Let Σ = {c0, c1, . . . , cσ−1} be a finite ordered alphabet with c0 < c1 < . . . <
cσ−1, where < denotes the standard lexicographic order. We denote by Σ∗

the set of words over Σ. Given a finite word w = w0w1 · · ·wn−1 ∈ Σ∗ with
each wi ∈ Σ, the length of w, denoted |w|, is equal to n. We use ε to denote
the empty word. We denote by |w|c the number of occurrences of a letter
c in w. The Parikh vector Pw of a word w is a σ-length array of integers
such that for each c ∈ Σ, Pw[c] = |w|c. Given a word x and c ∈ Σ, we write
rankc(x, i) to denote the number of occurrences of c in x[0, i].

Given a finite word w, a factor of w is written as w[i, j] = wi · · ·wj with
0 ≤ i ≤ j ≤ n−1. A factor of type w[0, j] is called a prefix, while a factor of
type w[i, n − 1] is called a suffix. The i-th symbol in w is denoted by w[i].
Two words x, y ∈ Σ∗ are conjugate, if x = uv and y = vu, where u, v ∈ Σ∗.
We also say that x is a cyclic rotation of y. A word x is primitive if all
its cyclic rotations are distinct. Conjugacy between words is an equivalence
relation over Σ∗. A word z is called a circular factor of x if it is a factor of
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some conjugate of x.
Given two words of the same length x = x0x1 . . . xs−1 and y = y0y1 . . . ys−1,

we write x ≤lex y if and only if x = y or xi < yi, where i is the smallest
index in which the corresponding characters of the two words differ. Analo-
gously, and with the same notation as before, we write x ≤alt y if and only
if x = y or (a) i is even and xi < yi or (b) i is odd and xi > yi. Notice that
≤lex is the standard lexicographic order relation on words while ≤alt is the
alternating lexicographic order relation. Such orders are used in Section 3
to define two different transformations on words.

The run-length encoding of a word w, denoted by rle(w), is a sequence
of pairs (wi, li) such that wiwi+1 · · ·wi+li−1 is a maximal run of a letter
wi (i.e., wi = wi+1 = · · · = wi+li−1, wi−1 6= wi and wi+li 6= wi), and
all such maximal runs are listed in rle(w) in the order they appear in
w. We denote by ρ(w) = |rle(w)| i.e., is the number of pairs in w, or
equivalently the number of equal-letter runs in w. Moreover we denote by
ρ(w)ci the number of pairs (wj , lj) in rle(w) where wj = ci. Notice that
ρ(w) ≤ ρ(w1) + ρ(w2) + · · ·+ ρ(wp), where w1w2 · · ·wp = w is any partition
of w.

The zero-th order empirical entropy of the word w is defined as

H0(w) = −
σ−1∑
i=0

|w|ci
|w|

log
|w|ci
|w|

(all logarithms are taken to the base 2 and we assume 0 log 0 = 0). The value
|w|H0(w) is the output size of an ideal compressor that uses − log(|w|ci/|w|)
bits to encode each occurrence of symbol ci. This is the minimum size we
can achieve using a uniquely decodable code in which a fixed codeword is
assigned to each symbol.

For any length-k factor x of w, we denote by xw the sequence of charac-
ters preceding the occurrences of x in w, taken from left to right. If x is not
a factor of w the word xw is empty. The k-th order empirical entropy of w
is defined as

Hk(w) =
1

|w|
∑
x∈Σk

|xw|H0(xw).

The value |w|Hk(w) is a lower bound to the output size of any compressor
that encodes each symbol with a code that only depends on the symbol itself
and on the k preceding symbols. Since the use of a longer context helps
compression, it is not surprising that for any k ≥ 0 it is Hk+1(w) ≤ Hk(w).
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3 BWT and Alternating BWT

In this section we describe two different invertible transformations on words
based on the lexicographic and alternating lexicographic order respectively.
Given a primitive word w of length n in Σ∗, the Burrows-Wheeler transform
denoted by BWT [?] (resp. the Alternating Burrows-Wheeler transform
denoted by ABWT [?]) for w is defined constructively as follows:

1. Create the matrix M(w) of the cyclic rotations of w;

2. Create the matrix Mlex(w) by sorting the rows of M(w) according to
≤lex (resp. the matrix Malt(w) by sorting the rows of M(w) according
to ≤alt);

3. Return as output bwt(w) (resp. abwt(w)) the last column L in the
matrix Mlex(w) (resp. Malt(w)) and the integer I giving the position
of w in that matrix.

The output ofBWT (resp. ABWT ) is the pair (bwt(w), I) (resp. (abwt(w), I)).
An example of the above process, together with the corresponding output,
is provided in Fig. 1.

a b r a c a
b r a c a a
r a c a a b
a c a a b r
c a a b r a
a a b r a c

M(w)

F L
↓ ↓
a a b r a c
a b r a c a

I → a c a a b r
b r a c a a
c a a b r a
r a c a a b

Mlex(w)

F L
↓ ↓

I → a c a a b r
a b r a c a
a a b r a c
b r a c a a
c a a b r a
r a c a a b

Malt(w)

Figure 1: Left: the matrix M(w) of all cyclic rotations of the word w =
acaabr. Center: the matrix Mlex(w); the pair (caraab, 2) is the output
bwt(w). Right: the matrix Malt(w); the pair (racaab, 0) is the output of
ABWT (w).

Notice that, if two words are conjugate the BWT (resp. ABWT ) will
have the same column L and differ only in I, whose purpose is only to
distinguish between the different members of the conjugacy class. However,
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I is not necessary in order to recover the matrix M from the last column
L. The following proposition states that three well known properties of the
BWT holds, in a slightly modified form, for the ABWT as well.

Proposition 1. Let w be a word and let (L, I) be the output of BWT or
ABWT applied to w. The following properties hold:

1. Let F denote the first column of Mlex(w) (resp. Malt(w)), then F is
obtained by lexicographically sorting the symbols of L.

2. For every i, 0 ≤ i < n, L[i] circularly precedes F [i] in the original
word, for both BWT and ABWT .

3. For each symbol a, and 1 ≤ j ≤ |w|a, the j-th occurrence of a in F
corresponds

(a) for BWT , to its j-th occurrence in L

(b) for ABWT , to its (|w|a − j + 1)-th occurrence in L.

Proof. Properties 1, 2 and 3a for the BWT have been established in [?].
Properties 1 and 2 for the ABWT are straightforward. To prove property
3b, consider two rows i and j in Malt(w) with i < j starting with the symbol
a. Let wi and wj are the two conjugates of w in rows i and j of Malt(w).
By construction we have wi = au, wj = av and wi ≤alt wj . To establish
Property 3b we need to show that row wj cyclically rotated precedes in the
≤alt order row wi cyclically rotated, in other words we need to show that

au ≤alt av =⇒ va ≤alt ua.

To prove the above implication, we notice that if the first position in which
au and av differ is odd (resp even) then the first position in which va and
ua differ will be in an even (resp. odd) position. The thesis follow by the
alternate use of the standard and reverse order in ≤alt (see [?] for a different
proof of the same property).

It is well known that in the BWT the occurrences of the same symbol
appear in columns F and L in the same relative order; according to Prop-
erty 3b, in the ABWT the occurrences in L appear in the reverse order
than in F . For example, in Fig. 1 (right) we see that the a’s of acaabr in the
columns F appear in the order 1st, 3rd, and 2nd, while in column L they
are in the reverse order: 2nd, 3rd, and 1st.
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Note that, although BWT and ABWT are very similarly defined, they
are very different combinatorial tools. For instance, BWT allows to char-
acterize a family of words very well known in the field of Combinatorics in
Words, the standard Sturmian words [?]. These words have several charac-
terizations as, for instance, a special decomposition into palindrome words
and an extremal property on the periods of the word that is closely related to
Fine and Wilf’s theorem [?, ?]. Moreover they also appear as extremal case
in the Knuth-Morris-Pratt pattern matching algorithm (see [?]). It has been
proved [?] that, for binary alphabets, standard Sturmian words represent the
extremal case of BWT in the sense that the transformation produces a total
clustering of all the instances of any character. Thus, in terms of number
of runs, ρ(bwt(w)) = 2 if and only if w is a conjugate of standard Sturmian
words. The same property does not hold for the ABWT . For example, for
w = abaababa it is bwt(w) = bbbaaaaa and abwt(w) = ababbaaa. More in
general, one can prove that for every not unary word w having length greater
that 2, it is ρ(abwt(w)) > 2. More details on the combinatorial study of the
equal-letter runs in the output of ABWT will be given in the full paper.

Other combinatorial aspects that distinguish ABWT and BWT have
been studied in [?]. In the next section we introduce a generalization of
the BWT that includes the ABWT as a special case. Hence, all properties
established there will held a fortiori for the ABWT .

4 Generalized BWTs

Given the alphabet Σ of size σ, in the following we denote by ΠΣ the set
of σ! permutations of the alphabet symbols. Inside ΠΣ we distinguish two
important permutations: the identity permutation Id corresponding to the
lexicographic order, and the reverse permutation Rev corresponding to the
reverse lexicographic order. We consider generalized lexicographic orders
introduced in [?] (cf. also [?]) that, for the purposes of this paper, can be
formalized as follows.

Definition 1. Given a k-tuple K = (π0, π1, . . . , πk−1) of elements of ΠΣ we
denote by �K the lexicographic order such that given two words of the same
length x = x0x1 · · ·xs−1 and y = y0y1 · · · ys−1 it is x �K y if and only if
x = y or xi <i yi where i is the smallest index such that xi 6= yi, and <i is
the lexicographic order induced by the permutation πi mod k. Without loss of
generality, we can assume π0 = Id.

Using the above definition we can define a class of generalized BWT s as
follows:
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Definition 2. Given a k-tuple K = (Id, π1, . . . , πk−1) of elements of ΠΣ we
denote by BWTK the transformation mapping a primitive word w to the last
column L of the matrix MK(w) containing the cyclic rotations of w sorted
according to the lexicographic order �K . The output of BWTK applied to w
is the pair (bwtK(w), I), where bwtK(w) is the last column L of the matrix
and I is the row of MK(w) containing the word w.

Note that for K = (Id), BWTK is the usual BWT , while for K =
(Id,Rev), BWTK coincides with the ABWT defined in Section 3.

Remark 1. For most applications it is assumed that the last symbol of the
word is a unique end-of-string marker. Under this assumption, lexicographi-
cally sorting the suffixes is equivalent to building the word suffix tree1, which
can be done in linear time. In this setting we can also compute bwtK(w)
in linear time: we build w’s suffix tree and then we do a depth-first visit in
which the children of each node are visited in the order induced by K. In
other words, the children of each node v are visited according to the order
π|v| mod k where |v| is the string-depth2 of node v. Since the suffix tree has
O(|w|) nodes, for constant alphabet the whole procedure takes linear time.

To make the transformations BWTK interesting it is essential they are
invertible, which is guaranteed by the following theorem.

Theorem 1. For every k-tuple K = (Id, π1, . . . , πk−1) the transformation
BWTK is invertible in O(n3) time and O(n2) space, where n = |w|.

Proof. Let w be a primitive word of length n and let bwtK(w) = (L, I) be
the output of BWTK applied to w. We first compute MK(w) and then we
obtain w from it. By definition, L is the last column of the matrix MK(w).
Assume that K0 = (Id),K1 = (Id, π1), . . . ,Kk−1 = (Id, π1, . . . , πk−1). The
first column F of the matrix MK(w) can be recovered from L by sorting it
according to �K0 and, for each 0 ≤ i ≤ n− 1, we know that L[i] circularly
precedes F [i] in w. As in the construction of the matrix Mlex(w) for the
usual BWT , at each step j we can build the list LKj of circular factors of
w of length j + 1 sorted by using the (j + 1)-tuple Kj . The sorted list LK0

is equal to F , so we concatenate, for each 0 ≤ i ≤ n − 1, L[i] and LK0 [i]
and obtain all pairs of consecutive symbols L[i]F [i] in w. Now, by sorting

1It is a tree that represents the suffixes of a word in which any path of non-branching
nodes is merged into a single edge. The labels of the edges are words of positive variable
length [?, ?].

2The number of letters in the word obtained by concatenating the labels of the edges
in the path from the root of the suffix tree to the node v

8



this list of pairs using �K1 we obtain the sorted list LK1 of all circular
factors of length 2, i.e. the first two columns of MK(w). In the same way,
we concatenate L to each element of LK1 and sort the new list using �K2

obtaining the sorted list LK2 of the circular factors of length 3, i.e. the first
three columns of MK(w). In general, for each 1 ≤ j ≤ n− 1 we concatenate
each symbol L[i] in the last column to each circular factor LKj−1 [i] of length
j, i.e. we obtain the circular factor L[i]LKj−1 [i] of length j+1. Then, we sort
this list by using �Kj and obtain the new list LKj of all circular factors of
length j that constitute the first j columns of MK(w). When j = n− 1, the
sorted list LKn−1 contains the circular factors of length n that are exactly
all the cyclic rotations of w in MK(w). By construction, the input word w is
the row at the position I of MK(w). The space and time complexities follow
from the observation that at each step 0 ≤ j ≤ n − 1 the list of n words
of length j + 1 is sorted in O(jn) time by iterating a variant of counting
sort.

Example 1. Let K = ((a, b), (b, a), (b, a), (a, b), (a, b), (b, a)), bwtK(w) =
L = babaab and I = 3. Note that LK0 = F . The steps for constructing
MK(w) are the following.

LK1

L LK0
(a, b) (b,a)

b a a b
a a ⇒ a b
b a a a
a b b b
a b b a
b b b a

⇒

LK2

L LK1
(a, b) (b,a) (b,a)

b a b a b b
a a b ⇒ a b a
b a a a a b
a b b b b a
a b a b a b
b b a b a a

⇒

LK3

L LK2
(a, b) (b,a) (b,a) (a, b)

b ab b a b b a
a ab a ⇒ a b a b
b aa b a a b a
a bb a b b a a
a ba b b a b b
b ba a b a a b

⇒

LK4

L LK3
(a, b) (b,a) (b,a) (a, b) (a, b)

b abba a b b a a
a abab ⇒ a b a b b
b aaba a a b a b
a bbaa b b a a b
a babb b a b b a
b baab b a a b a

⇒

LK5
= MK(w)

L LK4
(a, b) (b,a) (b,a) (a, b) (a, b) (b,a)

b abbaa a b b a a b
a ababb ⇒ a b a b b a
b aabab a a b a b b
a bbaab b b a a b a
a babba b a b b a a
b baaba b a a b a b

Once we have reconstructed MK(w), since I = 3 we conclude that the
original word is w = bbaaba.

The following theorem shows that each transformation BWTK produces
a number of equal-letter runs that is at most the double of the number of
equal-letter runs of the input word, as analogously proved for BWT [?].
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Theorem 2. Given a k-tuple K = (Id, π1, . . . , πk−1) and a word w over a
finite alphabet Σ, then

ρ(bwtK(w)) ≤ 2ρ(w).

Proof. Let Σ = {c0, c1, . . . , cσ−1} with c0 < c1 < · · · < cσ−1 and let
rle(w) = (a1, l1), (a2, l2), . . . , (ak, lk), where a1, a2, . . . ak ∈ Σ.

When we compute bwtK(w), the matrix MK can be split into groups
of rows according to their first letter ci (i = 0, 1, . . . , σ − 1). This splitting
induces a parsing on bwtK(w). We denote by uci the factor in bwtK(w)
associated to the letter ci, i.e., all the letters that in the input word precede
an occurrence of the letter ci. Such words uci , for i = 0, . . . , σ − 1, define a
partition of bwtK(w), i.e. bwtK(w) = uc0uc1 · · ·ucσ−1 .

Each factor ucj contains at most as many letters different from cj as the
number of different equal-letter runs of cj in w. So, the number of runs
contained in uaj is at most equal to 2 ρ(w)cj . Then,

ρ(bwtK(w)) ≤
σ−1∑
i=0

ρ(uci) ≤
σ−1∑
i=0

2 ρ(w)ci = 2

σ−1∑
i=0

ρ(w)ci = 2 ρ(w).

Finally, we study properties of the BWTK transformations in terms of
data compression. Let wR denote the word w reversed. It is well known [?, ?]
that the BWT has the property of reducing the problem of compressing a
string w up to its r-th order entropy to the problem of compressing a collec-
tion of factors of bwt(wR) up to their 0-th order entropy. Thus, combining
the BWT with a zero order (memoryless) compressor, we can achieve the
same high order compression typical of more complex tools such as Lempel-
Ziv encoders. In this sense, the BWT can be seen as a booster of the
performance of simple compressors. The following theorem shows that the
same property holds for the transformation BWTK as well.

Theorem 3. Let K be a k-tuple and u = bwtK(wR), where wR is the reverse
of the word w. For each positive integer r, there exists a factorization of
u = u1u2 . . . um such that

Hr(w) =
1

|u|

m∑
i=1

|ui|H0(ui).

Proof. For each factor x of w of length r > 0, the characters following x in
w are the characters preceding xR in wR. They are grouped together inside
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BWT ABWT
input size output size saving % output size savings %

chr22.dna 34.553.758 7.927.682 77,06 7.929.910 77,05

etext99 105.277.340 26.559.052 74,77 26.558.378 74,77

howto 39.422.105 9.468.681 75,98 9.470.212 75,98

jdk13c 69.728.899 3.945.465 94,34 3.931.722 94,36

sprot34.dat 109.617.186 21.853.565 80,06 21.821.314 80,09

rctail96 114.711.151 12.644.252 88,96 12.651.821 88,97

rfc 116.421.901 19.084.881 83,61 19.100.971 83,59

w3c2 104.201.579 8.219.970 92,11 8.203.311 92,13

Table 1: Output size and space saving achieved by BWT and ABWT when
used within the compression booster paradigm.

bwtK(wR) since all the cyclic rotations starting with xR are consecutive in
the matrix MK(wR). This means that bwtK(wR) contains, as a factor, a
permutation of xw. So, all the factors x of length r define a factorization of
u in factors ui, each of them is a permutation of xw for some x. The thesis
follows from the fact that permuting a word does not change its zeroth order
entropy.

We experimentally tested the above theorem by comparing BWT and
ABWT as compression tools. To compute the ABWT we have adapted the
code of the BCR algorithm 3 [?] originally designed to compute the BWT
(note that BCR computes the two transformations by sorting the suffixes
of the input text and do so appending a unique symbol at the end of the
input, as we mentioned in Remark 1). Both BWT and the ABWT have
been used within the compression booster framework [?] which computes,
in linear time, the partition of the BWT (or ABWT ) that maximizes the
compression. To compress the single elements of the partition we use the
standard combination of move-to-front followed by arithmetic coding using
the tools in the compression boosting library [?]. Table 1 reports the output
size and the space saving achieved by BWT and ABWT on a corpus of files
with different kind of data4 (see [?] for a description of the files content).
The results show that the behavior of the two transformations is essentially
equivalent in terms of compression.

3https://github.com/giovannarosone/BCR_LCP_GSA
4https://people.unipmn.it/~manzini/lightweight/corpus/
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5 Rank-invertible transformations

It is well known that the key to efficiently reverse the original BWT is the
existence of a easy-to-compute permutation mapping, in the matrixMlex(w),
a row index i to the row index LF (i) containing row i right-shifted by one
position. This permutation is called LF -mapping since, by Proposition 1,
LF (i) is the position in the first column F of Mlex(w) corresponding to the
i-th entry in column L: in other words, F [LF (i)] is the same symbol in
w of L[i]. Again, by Proposition 1 we have that L[LF (i)] is the symbol
preceding L[i] inside the input word w. Define LF 0(x) = x and LF j+1(x) =
LF (LF j(x)). If bwt(w) = (L, I) with |w| = n, by construction L[I] = wn−1

we can recover w with the formula:

wn−1−j = L[LF j(I)] (1)

Note that the inversion formula (1) only depends on Properties 1 and 2 of
Proposition (1). Since such properties hold for every generalized transfor-
mation BWTK , (1) provides an inversion formula for every transformation
in that class. In other words, inverting a generalized BWT amounts to
computing n iterations of the LF -mapping.

By Property 3a in Proposition 1 the LF -mapping for the original BWT
can be expressed using the Parikh vector PL of L and a rank operation over
L:

LF (i) =

c<L(i)∑
c∈Σ

PL[c] + rankL[i](L, i) (2)

Note that
∑c<L(i)

c∈Σ PL[c] is simply the total number of occurrences of symbols
smaller than L[i] in L. By Property 3b in Proposition 1, for the ABWT the
corresponding formula is:

LF (i) =

c≤L(i)∑
c∈Σ

PL[c] − rankL[i](L, i) + 1 (3)

Using known data structures [?], both (2) and (3) can be computed in con-
stant time. Hence, we have established that, thanks to the simple structure
of its LF -mapping, also the ABWT can be inverted in linear time. In the
full paper, we will prove that, using the LF -map (3), for any pattern p it is
possible to compute in O(|p|) time the range of rows of the matrix Malt(w)
which are prefixed by p. This implies that the ABWT can be used as a
compressed index in the same way as the BWT [?].
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The above observations suggest us to define the notion of rank-invertibility
for the class of BWTK transformations.

Definition 3. The transformation BWTK is rank-invertible, if there exists
a function fK such that for any word w setting L = bwtK(w) we have

LF (i) = fK(PL, L[i], rankL[i](L, i))

in other words, LF (i) only depends on the Parikh vector PL of L, the symbol
L[i], and the number of occurrences of L[i] in L up to position i.

Note that we pose no limit to the complexity of the function fK , we only
ask that it can be computed using only PL and the number of occurrences
of L[i] inside L[0, i].

We observed that, for K = (Id,Rev), BWTK coincides with ABWT
and it is therefore rank-invertible. The main result of this section is to show
that BWT and ABWT are the only rank-invertible transformations in the
class BWTK .

In the proofs of the following statements we distinguish the case of the
words on binary alphabets and the words on alphabets with cardinality
greater than 2. This depends on the fact that in the binary case the only
possible permutations on binary alphabet are the identity and reverse per-
mutation. We first consider the case in which |K| = 2. Lemma 1 provides a
necessary condition for BWTK to be rank-invertible for ternary alphabets.

Lemma 1. Let Σ = {a, b, c}, and K = (Id, π) where π a permutation of Σ.
If there exist two pairs t1 = (x, y) and t2 = (z, w) of symbols of Σ such that

x <Id y, z <Id w and x <π y, z >π w,

then BWTK is not rank-invertible.

Proof. Consider for example the case π = (c, a, b). Two pairs satisfying the
hypothesis are t1 = (a, b) and t2 = (b, c) since according to the ordering <π
it is

a <π b and b >π c.

Consider now the two words s1 = aabcc and s2 = abacc. Both words
contain two a’s. In the first word the a’s are followed respectively by a, b
(the symbols in t1), and in s2 the a’s are followed by b, c (the symbols in t2).

Let F1, L1 (resp. F2, L2) denote the first and last column of the matrix
MK associated to bwtK(s1) (resp. bwtK(s2)). By definition, each matrix
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is obtained sorting the cyclic rotations of s1 and s2 according to the lex-
icographic order ≺K where symbols in odd positions are sorted according
to the usual alphabetic order, while symbols in even positions are sorted
according to the ordering π. We show the two matrices in Fig. 2, where we
use subscripts to distinguish the two a’s occurrences in s1 and s2.

The relative position of the two a’s in L1 is determined by the symbols
following them in s1, namely those in t1 = (a, b). Since these symbols are
in the first column of the cyclic rotations matrix, which is sorted according
to the usual alphabetic order, the two a’s appear in L1 in the order a1, a2.
The same is true for L2: since the pair t2 is also sorted, the two a’s appear
in L2 in the order a1, a2.

The position of the two a’s in F1 is also determined by the symbols
following them in s1; but since these symbols are now in the second column,
their relative order is determined by the ordering π. Hence the two a’s
appear in F1 in the order a1, a2. In F2 the ordering of the a’s is a2, a1

since it depends from the π-ordering of t2’s symbols which by construction
is different than their Id-ordering.

Note that s1 and s2 have the same Parikh vector 〈2, 1, 2〉. If, by contra-
diction, BWTK were rank invertible, the function fK should give the correct
LF-mapping for both s1 and s2. This is impossible since for s1 we should
have

fK(〈2, 1, 2〉, a, 1) = 1, fK(〈2, 1, 2〉, a, 2) = 2,

while for s2 we should have

fK(〈2, 1, 2〉, a, 1) = 2, fK(〈2, 1, 2〉, a, 2) = 1.

In the general case of an arbitrary permutation π satisfying the hypoth-
esis of the lemma the reasoning is the same. Note that such permutations
are (a, c, b), (b, a, c), (b, c, a) and (c, a, b). Given the two pairs t1 and t2 we
build two words s1 and s2 with Parikh vector 〈2, 1, 2〉 such that in s1 (resp.
s2) the two occurrences of a are followed by the symbols in t1 (resp. t2). We
then build the rotation matrices as before, and we find that in both L1 and
L2 the two a’s are in the order a1, a2. However, in columns F1 and F2 the
two a’s are not in the same relative order since it depends on the ordering
π, and, by construction, such an order is not the same. Reasoning as before,
we get that there cannot exist a function fK giving the correct LF-mapping
for both s1 and s2.

Theorem 4. Let |Σ| ≥ 2 and K = (Id, π). Then BWTK is rank-invertible
if and only if π = Id or π = Rev.
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F1 L1

↓ ↓
s1 → a1 a2 b c c

a2 b c c a1

b c c a1 a2

c c a1 a2 b
c a1 a2 b c

F2 L2

↓ ↓
a2 c c a1 b

s2 → a1 b a2 c c
b a2 c c a1

c c a1 b a2

c a1 b a2 c

Figure 2: Cyclic rotation matrices for the words s1 and s2. We use subscripts
to distinguish the two occurrences of a in each word.

Proof. If |Σ| = 2 the result is trivial. Let us assume |Σ| ≥ 3. We need to
prove that if π 6= Id and π 6= Rev then BWTK is not rank-invertible.

Note that any permutation π over the alphabet Σ induces a new ordering
on any triplets of symbols in Σ. For example, if Σ = {a, b, c, d, e, f} the
permutation π = (d, e, c, f, a, b) induces on the triplet {a, b, c} the ordering
πabc = (c, a, b).

It is easy to prove on induction on the alphabet size that, if π 6= Id and
π 6= Rev, then there exists a triplet {x, y, z}, with x < y < z, such that
πxyz 6= (x, y, z) and πxyz 6= (z, y, x). That is, π restricted to {x, y, z} is dif-
ferent from the identity and reverse permutation. Without loss of generality
we can assume that the triplet is {a, b, c}.

It is easy to see that for any permutation πabc different from (a, b, c) and
(c, b, a) there exist two pairs satisfying the hypothesis of Lemma 1. Hence,
we can build two words s1 and s2 which show that BWTK is not rank-
invertible. Note that the argument in the proof of Lemma 1 is still valid
if we add to s1 and s2 the same number of occurrences of symbols in Σ
different from a, b, c so that s1 and s2 are effectively over an alphabet of size
|Σ|.

Theorem 4 establishes which BWTK transformations are rank-invertible
when |K| = 2. To study the general case |K| > 2, we start by establishing
a simple corollary.

Corollary 1. Let |Σ| ≥ 3 and K = (Id, π, π2, . . . , πk−1). If π 6= Id and
π 6= Rev then BWTK is not rank-invertible.

Proof. We reason as in the proof of Theorem 4, observing that the presence
of the permutations π2, . . . , πk−1 has no influence on the proof since the row
ordering is determined by the first two symbols of each rotation.
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The following three lemmas establish necessary conditions on the struc-
ture of the tuple K for BWTK to be rank-invertible. In particular, the
following lemma shows that BWTK is not rank-invertible if K contains
anywhere a triplet (Id, Id, π) with π 6= Id.

Lemma 2. Let |Σ| ≥ 2 and K = (Id, π1, . . . , πi−1, Id, Id, π, πi+3, . . . , πk−1),
i ≥ 0, with π 6= Id. Then BWTK is not rank-invertible.

Proof. Note that when i = 0 the k-tuple K starts with the triplet (Id, Id, π).
We first analyze the case |Σ| = 2, this means that π = Rev. Let us

consider the words s1 = a1b
ia2b

i+1bb and s2 = a1b
i+1a2b

i+1b where we use
subscripts to distinguish the two different occurrences of the symbol a. It
is easy to see that, in the cyclic rotations matrix for s1, a1 precedes a2 in
both the first and the last column. Hence if BWTK were rank-invertible we
should have

fK(〈2, 2i+ 3〉, a, 1) = 1, fK(〈2, 2i+ 3〉, a, 2) = 2.

At the same time, in the cyclic rotations matrix for s2, a1 precedes a2 in the
last columns, but in the first column a2 precedes a1 since the two rotations
prefixed by a differ in the third column and b <Rev a. Hence we should have

fK(〈2, 2i+ 3〉, a, 1) = 2, fK(〈2, 2i+ 3〉, a, 2) = 1

hence BWTK cannot be rank-invertible.
Let us consider the case |Σ| ≥ 3. Since π 6= Id there are two symbols,

say b and c, such that their relative order according to π is reversed, that
is, b < c and c <π b. Consider now the words s1 = a1c

iba2c
iccc and

s2 = a1c
i+1ba2c

i+1c where we use subscripts to distinguish the two different
occurrences of the symbol a. It is immediate to see that, in the cyclic
rotations matrix for s1, a1 precedes a2 in both the first and the last column.
Hence if BWTK were rank-invertible we should have

fK(〈2, 1, 2i+ 3〉, a, 1) = 1, fK(〈2, 1, 2i+ 3〉, a, 2) = 2.

At the same time, in the cyclic rotations matrix for s2, a1 precedes a2 in the
last columns, but in the first column a2 precedes a1 since the two rotations
prefixed by a differ in the (i + 3)-th column and c <π b. Hence we should
have

fK(〈2, 1, 2i+ 3〉, a, 1) = 2, fK(〈2, 1, 2i+ 3〉, a, 2) = 1

hence BWTK cannot be rank-invertible.
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The following lemma shows that BWTK is not rank-invertible if K con-
tains anywhere a triplet (Id,Rev, π), with π 6= Id.

Lemma 3. Let |Σ| ≥ 2 and K = (Id, π1, . . . , πi−1, Id,Rev, π, πi+3, . . . , πk−1),
i ≥ 0, with π 6= Id. Then BWTK is not rank-invertible.

Proof. As in the proof of Lemma 2, we can consider the words s1 = a1b
ia2b

i+1bb
and s2 = a1b

i+1a2b
i+1b in case of binary alphabet, and the words s1 =

a1c
iba2c

iccc and s2 = a1c
i+1ba2c

i+1c in the general case by assuming that
there are two symbols, say b and c, such that their relative order according
to π is reversed, that is, b < c and c <π b. Recall that we use subscripts
to distinguish the two different occurrences of the symbol a. In the cyclic
rotations matrix for s1, in the first column a2 precedes a1 while in the last
column a1 precedes a2. At the same time, in both the first and the last
column of the cyclic rotations matrix for s2, a2 precedes a1. Reasoning as in
the proof of Lemma 2 we get that BWTK cannot be rank-invertible.

The following lemma shows that BWTK is not rank-invertible if K con-
tains anywhere a triplet (Rev, Id, π), with π 6= Rev.

Lemma 4. Let |Σ| ≥ 2 and K = (Id, π1, . . . , πi−1, Rev, Id, π, πi+3, . . . , πk−1),
i ≥ 0, with π 6= Rev. Then BWTK is not rank-invertible.

Proof. We reason as in the proof of Lemma 3 considering again the words
s1 = abiabi+1bb and s2 = abi+1abi+1b in case of binary alphabet and the
words s1 = acibaciccc and s2 = aci+1baci+1c in the general case.

We are now ready to establish the main result of this section.

Theorem 5. If |Σ| ≥ 2, BWT and ABWT are the only transformations
BWTK which are rank invertible.

Proof. For |K| = 2, the result follows by Theorem 4. Consider now K =
(Id, π1, . . . , πk−1) with k > 2 and suppose that BWTK is rank invertible.
Both in case of binary alphabet and in the general case, by using Corollary
1, we must have π1 = Id or π1 = Rev. Let us consider the case π1 = Id.
If BWTK 6= BWT then the k-tuple K must contain the triplet (Id, Id, π)
with π 6= Id. This fact contradicts Lemma 2. Let us consider now that
π1 = Rev. By Lemma 3 π2 = Id. We have therefore established that K
has the form K = (Id,Rev, Id, π3, . . . , πk−1). By using Lemma 4 π3 = Rev.
By iterating the same reasoning we can conclude that BWTk coincides with
ABWT and the theorem is proved.
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6 Conclusions

In this paper we have considered a class of word transformations BWTK
defined in terms of a k-tuple K of alphabet orderings. This class includes
both the original BWT and the Alternating BWT proposed in [?]. We
have proved that each transformation has combinatorial properties useful to
perform a role of a booster of a memoryless compressor in the same way as
the BWT . We have also introduced the notion of rank-invertibility to ex-
plore which transformations can be efficiently inverted. We have proved that
ABWT and BWT are the only transformations in the class that are rank-
invertible. Our conclusion is that the ABWT , although it is a combinatorial
tool with very peculiar properties, can be considered a good candidate to
replace the BWT in several contexts. We are therefore interested in further
studying the combinatorial properties of ABWT , with the main purpose of
finding new characterizations of word families for which ABWT assumes
a significant behavior, for instance in terms of the number of consecutive
equal-letter runs produced. More in general, since the compressibility of a
text is related with the number of equal-letter runs, it would be interesting
to study how the bounds on the number of equal-letter runs varies according
to the order taken into consideration.

From an algorithmic point of view, we are interested to explore new
block sorting-based transformations in order to investigate the combinatorial
properties that not only guarantee good compression performance, but also
support efficient search operations in compressed indexing data structures.
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