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Motivation

@ Increased availability of large sets of biological sequences

@ Tools for sequence comparison a fortiori need alignment-free based
approaches

@ Most alignment-free approaches require the computation of statistics
when comparing sequences

@ Such computations may not scale well in internal memory when very
large collections of long sequences are considered
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@ Increased availability of large sets of biological sequences

@ Tools for sequence comparison a fortiori need alignment-free based
approaches

@ Most alignment-free approaches require the computation of statistics
when comparing sequences

@ Such computations may not scale well in internal memory when very
large collections of long sequences are considered
@ Our contribution:

o the Colored Longest Common Prefix array: a new conceptual data
structure that uses an alignment-free approach and can be computed
via sequential scans in semi-external memory

e it implicitly stores all the information necessary to compute statistics
on distinguishing, repeating, or matching substrings within collections
of strings.

o efficient lightweight strategy to solve the multi-string Average Common
Substring (ACS) Problem and experimental results.
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Preliminaries

Y ={ca,c,...,c} be a finite ordered alphabet

S is a collection of m strings over X

n; is the length of the string s;

A distinct end-marker symbol $; < ¢; is appended to each string s;
N =>"", ni + mis the length of the collection S

Each string (or subset of strings) is identified by a specific color
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EBWT (Mantaci, Restivo, Rosone, S. 2007)

Let S = {s1,%,...,Sm} be a collection of strings.

String collection S

0 1 2 3 4 5 6

5] G C C A A C 9

B G A G C T C %
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EBWT (Mantaci, Restivo, Rosone, S. 2007)

Let S = {s1,%,...,Sm} be a collection of strings.

@ The extended Burrows-Wheeler Transform for a string collection S,
known as EBWT or multi-string BWT, is a reversible transformation
that produces a string (denoted by ebwt(S)) that is a permutation of
the characters of all strings in S

String collection S
1

S1
2
S3

—a|a|o
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OO > w
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C
A
C
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EBWT (Mantaci, Restivo, Rosone, S. 2007)

Let S = {s1,%,...,Sm} be a collection of strings.

@ The extended Burrows-Wheeler Transform for a string collection S,
known as EBWT or multi-string BWT, is a reversible transformation
that produces a string (denoted by ebwt(S)) that is a permutation of
the characters of all strings in S ebwt(S)  Sorted Suffixes of S

String collection S
1

S1
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S3

—a|a|o
QO[O N
OO > w
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—|a| Ao
'?

C
A
C

C$,
CAACS,
CCAACS;
CGCTTS$3
CTC$,
CTT$3
GAGCTCS,
GCCAACS,
GCTC$;
GCTT$3
T$3

TCS$;
TCGCTTS$3
TTS;

@ Sort all the suffixes of the strings in S;

Afaq40xLfo 40N> O>0 500

Sciortino (UniPA) Parallel Computation of MS and ACS June 26th, 2019 4 /39



EBWT (Mantaci, Restivo, Rosone, S. 2007)

Let S = {s1,%,...,Sm} be a collection of strings.

@ The extended Burrows-Wheeler Transform for a string collection S,
known as EBWT or multi-string BWT, is a reversible transformation
that produces a string (denoted by ebwt(S)) that is a permutation of
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String collection S
1
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S3
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OO > w
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—|a| Ao
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C
A
C

C$,
CAACS,
CCAACS;
CGCTTS$3
CTC$,
CTT$3
GAGCTCS,
GCCAACS,
GCTC$;
GCTT$3
T$3

TCS$;
TCGCTTS$3
TTS;

@ Sort all the suffixes of the strings in S;

@ The output ebwt(S) is obtained by
concatenating the symbols that (circularly)
precede the first symbol of each suffix in

the list of (lexicographically) sorted suffixes
of S.

A aq40xLo0 40N> 0 500
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LCP and Colored EBWT

@ The longest common prefix (LCP) array
of the collection S is the array lcp(S) of
length N + 1, such that lcp(S)[i], with
2 < i <N, is the length of the longest
common prefix between the suffixes
associated to the positions i and i — 1 in
ebwt(S). By default,
lep(S)[1] = lep(S)IN+1] = -1

lep(S)

id(S)

ebwt(S)

Sorted Suffixes of S

0

HFNFRFOWNHONKRRKHRERORKOO

|
-
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LCP and Colored EBWT

@ The longest common prefix (LCP) array

of the collection S is the array lcp(S) of
length N + 1, such that lcp(S)[/], with
2 < i <N, is the length of the longest
common prefix between the suffixes
associated to the positions i and i — 1 in
ebwt(S). By default,

lep(S)[1] = lep(S)[N + 1] = -1

lcp(i, j) the length of the LCP between
the suffixes at positions i and j, i.e.
min{lep(S)[/] : i < I <j}.
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LCP and Colored EBWT

@ The longest common prefix (LCP) array

of the collection S is the array lcp(S) of _ ,
lep(S)  id(S)  ebwt(S)  Sorted Suffixes of S

length N + 1, such that lcp(S)[i], with 1 T c 5
2 < i< N, is the length of the longest ; : ¢ ii
common prefix between the suffixes 0 ! < ;‘*C‘gfl
associated to the positions i and i — 1 in 1 2 G AGCTC$;
ebwt(S). By default, R Pl
Icp(S)[1] = Iep(S)[N + 1] = —1 S R </ Y
@ lcp(i,j) the length of the LCP between 1 3 ¢ gggzﬂsa
the suffixes at positions i and j, i.e. (2) 5 $62 gg?rcsz
mind{lep(S)[1: 7 < 1 < J} Loy o
@ The output string ebwt(S), enhanced 0 3 7 %;TT%
with the N-integer array of colors id(S) é ?, $C3 ;géchT$3
where id(S)[i] = r, with 1 < r < m and 1 3 ¢ 7T

-

1<i<N, if ebwt(S)[/] is a symbol of
the string s, € S, is called colored
EBWT.
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Some recent lightweight implementations of EBWT and
LCP

@ Bauer, M., Cox, A., Rosone, G.: Lightweight algorithms for
constructing and inverting the BWT of string collections. Theor.
Comput. Sci. 483(0), 134-148 (2013) (known as BCR
implementation)

e Cox, A.J., Garofalo, F., Rosone, G., Sciortino, M.: Lightweight LCP
construction for very large collections of strings. J. Discrete
Algorithms 37, 17-33 (2016)

e Egidi, L., Louza, F.A., Manzini, G., Telles, G.P.: External memory
BWT and LCP computation for sequence collections with
applications. WABI 2018

o Louza, F., Telles, G., Hoffmann, S., Ciferri, C.: Generalized enhanced
suffix array construction in external memory. Algorithms Mol. Biol.
12(1), 26 (2017)
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Colored Longest Common Prefix (cLCP) array

cLCP is an (N x m)-integer array representing the longest common prefix
between any specific suffix of a (r-colored) string s, € S and the nearest suffixes
of a specific (t-colored) string s; € S in the sorted list of suffixes of S.

Colors
1 2 ... t ... m

1 —

2 [ [

| |

| |

| |

Suffixes I I
Ranks Ll ]

Ir x|
,,,,,,,, D e T

| |

| |

| |

. | |

N | |

L L

x = LCP value between the r-colored suffix of rank i, and the nearest t-colored
suffix in the sorted list of suffixes
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Colored LCP - Formal Definition

i lep(S)  id(S)

prev(iy, t) h
Gvenl<j,<Nandt=1,...m,

how cLCP[i,][t] is defined?
prev(i,t) = max{x|1<x < i,id(S)[x]=t} 7 /
next(i, t) = min{x|i <x<N,id(S)[x]=t}

~ —*r 5 =t s

next(iy, t) h
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Colored LCP - Formal Definition

i Icp(S)  id(S)
prev(iy, t) h t
Gvenl<j,<Nandt=1,...m, T
how cLCP[i;][t] is defined? Y
prev(i, t) = max{x|1<x < i,id(S)[x]=t} 7 / r
next(i,t) = min{x|i <x<N,id(S)[x]=t} jr
1
next(ir, t) | bk t

UcLCP[i][t] = LCP(prev(ir, t), i)
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Colored LCP - Formal Definition

i lep(S)  id(S)

prev(iy, t) h t

Gvenl<j,<Nandt=1,...m, T
how cLCP[i,][t] is defined? j’
prev(i, t) = max{x|1<x < i,id(S)[x] =t} 7 r
next(i,t) = min{x|i <x<N,id(S)[x]=t} L
1

next(iy, t) t

Lower Colored LCP LcLCP[i][t] = LCP(ir, next(ir, t))
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Colored LCP - Formal Definition

i lep(S)  id(S)
prev(iy, t) h t
Gvenl<j,<Nandt=1,...m, T
how cLCP[i,][t] is defined? j’
prev(i, t) = max{x|1<x < i,id(S)[x] =t} 7 / r
next(i,t) = min{x|i <x<N,id(S)[x]=t} jt
: 1
next(iy, t) t

cLCP[i/][t] = max{UcLCP[i][t], LcLCP[i,][t]}
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Colored LCP on disjoint collections

cLCP can also be defined for disjoint collections of strings.

S

-~

SO

~

-

81

v

The value cLCP[i/][t] is defined for each pair (i, t) such that id(S)[i,] = r,
t € ID and s,, s; belongs to different collections.
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Colored LCP on disjoint collections

cLCP can also be defined for disjoint collections of strings.

S

-~

SO

~

-

81

v

The value cLCP[i/][t] is defined for each pair (i, t) such that id(S)[i,] = r,
t € ID and s,, s; belongs to different collections.

Assume S% = {s,} and St =S\ {5, }.
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X — Intervals

A given string s, € SO implicitly induces a partition of Icp(S) into open intervals
delimited by consecutive suffixes having color x (or the positions 1 and N + 1 of
lcp), called y-intervals. Let us consider a position i, contained within a x-interval
such that id[i,] = r and s, € S*.

i lep(S)  id(S)

X1 = prev(ir, X)

e ..
o=

=
— N

o
=<

Lo

X2 = next(ir, X)
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X — Intervals

A given string s, € SO implicitly induces a partition of Icp(S) into open intervals
delimited by consecutive suffixes having color x (or the positions 1 and N + 1 of
lcp), called y-intervals. Let us consider a position i, contained within a x-interval
such that id[i,] = r and s, € S*.

i lep(S)  id(S)

X1 = prev(ir, X)

e ..
o=

=
— N

o
=<

Lo

X2 = next(ir, X)

Inside a x-interval, how to compute UcLCP[i,][x] and LcLCP[i][x]
by a lightweight strategy?
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UcLCP[i;][x] Computation

> Keep track of the minimum Icp value since the beginning of each y-interval.

UcLCP[i][x] = LCP(x1, ir) = min{lep[x] : x € (x1, ]} = «

i lep(S)  id(S)
4 00 x1 = prev(ir, X) X
1
# X
1
i r
1
# X
1
X2 = next(ir, x) X
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UcLCP[i;][x] Computation

> Keep track of the minimum Icp value since the beginning of each y-interval.

UcLCP[i][x] = LCP(x1, ir) = min{lep[x] : x € (x1, ]} = «

i

x1 = prev(ir, x)
a < LCP(xa, i) i

x2 = next(ir, x)

M. Sciortino (UniPA)
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LcLCP[i][x] Computation

i lep(S)  id(S)
X1 = prIeV(ir, X) X
T
# X
1
ir r
1
# X
1
X2 = next(ir, x) X

Problem: LcLCP[i/][x] computation would require to look forward
and to store many intermediate values.
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Colored k-lcp interval

A k-lcp interval is an interval [i,/] such that:

lep(S) suff(S)
: |
i < k :
|
> k I
|
K ?
|
|
> k ;
j I
j+1l <k |
: k
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Colored k-lcp interval

A colored k-lcp interval is an interval [i, ] such that:

lep(S)  id(S) suff(S)
: : |
i < k :
|
> k r |
|
k |
|
> k t [
J _ !
j+1l1 <k : |
o k

sy and s; belong one to SO, the other to St
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Array D

Denote with D the (N + 1)-integer array such that D[i] =k + 1 if a
colored k-Icp interval starts at position i/ and for every colored h-Icp
interval starting at position / then h < k — 1.

D id(S) suff(S)
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LcLCP[i][x] Computation

For any 1 < i, < N such that id(S)[i;] = r,
@ ifLCP(x1,iy) > LCP(x1, x2) then LCP(ir, x2) = LCP(x1, x2)
@ otherwise
LCP(ir, x2) = max{max{D[x] : x1 < x < i} — 1, LCP(x1,x2)}
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LcLCP[i][x] Computation

For any 1 < i, < N such that id(S)[i;] = r,
@ ifLCP(x1,iy) > LCP(x1, x2) then LCP(ir, x2) = LCP(x1, x2)
@ otherwise
LCP(ir, x2) = max{max{D[x] : x1 < x < i} — 1, LCP(x1,x2)}

> Keep track of the maximum D value since the beginning of each x-interval.

i lep(S) D id(S)
C+0 X1 = prév(ir, X) X

T
#X
1

Iy r
T
#X
1

X2 = next(ir, x) X
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LcLCP[i][x] Computation

For any 1 < i, < N such that id(S)[i;] = r,
@ if LCP(x1, i) > LCP(x1, x2) then LCP(i;, x2) = LCP(x1, x2)
@ otherwise
LCP(ir, x2) = max{max{D[x] : x1 < x < i} — 1, LCP(x1,x2)}

> Keep track of the maximum D value since the beginning of each x-interval.
i lep(S) D id(S)

x1 = prev(ir, X)

¢ < maxD(xa, ir] ir

N H
R e I

X2 = next(ir, x)
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Missing LcLCP[x1][r], UcLCP[x2][r] values

For each x-interval [x1, x2], we are able to compute UcLCPJi/][x] and

LcLCPJir][x] , but not LcLCP[x1][r] and UcLCP[x2][r] values in a single
sequential scan.

i lep(S)  id(S)
X'1 Y
T
#X
1
iy r
T
#X
1
X2 X

What is the reason of this asymmetry?

M. Sciortino (UniPA)
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Missing LcLCP[x1][r], UcLCP[x2][r] values (2)

@ The segmentation of lcp(S) in x-intervals, induced by s, suffixes, is a
shared reference amongst all the suffixes of any other color r.

i lep(S)  id(S)
xa Y
T
#X
1
iy r
T
# X
L
X2 X

@ However, no Icp(S) segmentation in r-intervals (induced by s, € St
suffixes) is maintained for suffixes of s, during the sequential scan.
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LcLCP[x1][r] Computation

@ In fact, it is easy to compute LcLCP[x1][r] if there exists a r-colored
suffix in (x1, x2):

i lep(S)  id(S)
x Y
T
FXr
1
ir = next(x1, r) r
T
# X
1
X2 X

LcLCP[x1][r] = UcLCP[i][x]
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LcLCP[x1][r] Computation - Backward Propagation

@ However, what if such a suffix does not exists?

i lep(S)  id(S)
X1 X
T
# X1
1
X2 X
T
*r
1
ir = next(x2, r) r

We need to look beyond y2 and backward propagate LcLCP[x>][r]:
LcLCP[x1][r] = min{LCP(x1, x2), UcLCP[i;][x]}
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Previous solution: Computational Complexity

Let S a collection of m strings partitioned into S° and S, let s, € S°.
Given id(S), lcp(S) and Icp(sy ), cLCP(S) can be computed by sequential
scans in O(N + m|s|) time and O(m + maxlcp(S)) space.

e Array D: in ©(N) time and O(maxlcp(S)) space.

o UcLCPJi][x]/LcLCPi][x]: sequentially (forward) in ©(N) time and
O(1) space.

@ UcLCP[x2][r]/LcLCP[x1][r]: add O(m|s,|) time and O(m) space for
forward and backward propagation.
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Previous solution: Computational Complexity

Let S a collection of m strings partitioned into S° and S, let s, € S°.
Given id(S), lcp(S) and Icp(sy ), cLCP(S) can be computed by sequential
scans in O(N + m|s|) time and O(m + maxlcp(S)) space.

e Array D: in ©(N) time and O(maxlcp(S)) space.

o UcLCPJi][x]/LcLCPi][x]: sequentially (forward) in ©(N) time and
O(1) space.

@ UcLCP[x2][r]/LcLCP[x1][r]: add O(m|s,|) time and O(m) space for
forward and backward propagation.

...affordable for solving the (1-vs-all) multi-string ACS
problem, BUT unsuitable for an all-vs-all scenario!
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Avoiding backward-forward propagation

Can we compute UcLCP[x2][r]/LcLCP[x1][r] without relying
on backward-forward propagation?
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Avoiding backward-forward propagation

o ldea: Get rid of the lcp(S) x-induced segmentation as a shared
reference for all the other suffixes, and keep track of all possible
t-intervals, for t € [1, m].

i lep(S) id(S)

t1 = prev(ir, t)

-

-

=
e =

to = next(iy, t)
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Avoiding backward-forward propagation (2)

e Maintain a1, m| such that «[t] keeps track of the minimum Icp value
since the beginning of each t-interval:

aft] = min{lcp(S)[x] : x € (prev(ir, t), ir]}

e Maintain ¢[1, m] such that ([t] keeps track of the maximum D; value
since the beginning of each t-interval:

C[t] = max{D:[x] : x € (prev(iy,t),ir]}
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Avoiding backward-forward propagation (3)

@ For the computation of UcLCP[i/][t], we have:

UcLCP[i][t] = min{lcp(S)[x] : x € (t1,i]} = at]

@ For the computation of LcLCP[i/][t], we use Theorem 1:

For any 1 < i, < N such that id(S)[i;] =r,
o ifLCP(ty, i) > LCP(ty, ty) then LCP(i,, t;) = LCP(ty, )

e otherwise

LCP(iy, t) = max{max{D[x] : 1 < x < i,} — 1, LCP(t1, &)}
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Avoiding backward-forward propagation (3)

@ For the computation of UcLCP[i/][t], we have:

UcLCP[i][t] = min{lcp(S)[x] : x € (t1,i]} = at]

@ For the computation of LcLCP[i/][t], we use Theorem 1:

For any 1 < i, < N such that id(S)[i;] =r,
o if aft] > LCP(ty, ta) then LCP(i,, t;) = LCP(t1, t)

e otherwise

LCP(iy, t) = max{([t] — 1, LCP(t1, t2)}

No more forward-backward propagation: purely sequential O(Nm) time
solution for an all-vs-all ACS computation scenario!
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Matching Statistics

Given two strings sp, s1, the matching statistics between of sp vs. s1 is a
|so|-integer array such that, for any position i of sp, stores the length of
the longest prefix of the suffix of sy starting at position i that is also
substring of s;.

S0
S1

> >
a0
oo
> 0
(oW
> 0
a0
()

>

~

MS(sp, s1)
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Matching Statistics

Given two strings sp, s1, the matching statistics between of sp vs. s1 is a
|so|-integer array such that, for any position i of sp, stores the length of
the longest prefix of the suffix of sy starting at position i that is also
substring of s;.

i}

ss A C G C G C C

s A C G A G A C G AT
MS(50,51)3
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Matching Statistics

Given two strings sp, s1, the matching statistics between of sp vs. s1 is a
|so|-integer array such that, for any position i of sp, stores the length of
the longest prefix of the suffix of sy starting at position i that is also
substring of s;.

S0
S1

> >
O O <
D O
> 0
D O
> 0
a0

MS(So,Sl) 3 2
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Matching Statistics

Given two strings sp, s1, the matching statistics between of sp vs. s1 is a
|so|-integer array such that, for any position i of sp, stores the length of
the longest prefix of the suffix of sy starting at position i that is also
substring of s;.

1l
ss A C G
51 A C G

> 0
(oW
> 0
a0
()
>
~

MS(So,Sl) 3 2 1
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Matching Statistics

Given two strings sp, s1, the matching statistics between of sp vs. s1 is a
|so|-integer array such that, for any position i of sp, stores the length of
the longest prefix of the suffix of sy starting at position i that is also
substring of s;.

!
s A C G C G C C
s A C G A G A C G AT

MS(So,Sl) 3 2 1 2
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Matching Statistics

Given two strings sp, s1, the matching statistics between of sp vs. s1 is a
|so|-integer array such that, for any position i of sp, stores the length of
the longest prefix of the suffix of sy starting at position i that is also
substring of s;.

1

ss A C G C G C C

ss A C G A G A C G AT
MS(So,Sl) 3 2 1 2 1
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Matching Statistics

Given two strings sp, s1, the matching statistics between of sp vs. s1 is a
|so|-integer array such that, for any position i of sp, stores the length of
the longest prefix of the suffix of sy starting at position i that is also
substring of s;.

!

s AC G C G C C

s A C G A G ACGAT
MS(sp,s1) 3 2 1 2 1 1
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Matching Statistics

Given two strings sp, s1, the matching statistics between of sp vs. s1 is a
|so|-integer array such that, for any position i of sp, stores the length of
the longest prefix of the suffix of sy starting at position i that is also
substring of s;.

S0

1
C
51 C

> >
a0
D O
> 0
D O
> 0

MS(sp,s1) 3 2 1 2 1 1 1
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Average Common Substring (ACS) measure

Given two strings s, and s; over the alphabet ¥ of size o, ACS is
computed by proceeding in the following steps:

0 MS(SH St)
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Average Common Substring (ACS) measure

Given two strings s, and s; over the alphabet ¥ of size o, ACS is
computed by proceeding in the following steps:

Q@ MS(s;, st)
S MS(sy, 5t) ]

@ Score(sy, st) =
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Average Common Substring (ACS) measure

Given two strings s, and s; over the alphabet ¥ of size o, ACS is
computed by proceeding in the following steps:

0 MS(SH St)

Is'l Ms Sr,s)Jf
@ Score(s,,st) = 251 MS(sr, st)U]

jog, Isi]  2log, |
© Norm(Score(s;, st)) = Scorea(s ) Ts |‘:_ 1r
r r

ACS(s,, 50) = Norm(Score(s;, st)) —2F Norm(Score(st, sr))
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Average Common Substring (ACS) measure

Given two strings s, and s; over the alphabet ¥ of size o, ACS is
computed by proceeding in the following steps:

@ MS(s,,st)
S MS(sy, )]

@ Score(sy,st) =

|sr|
log, |s 2log, |s
© Norm(Score(s,, st)) = Scoi_?_l, t|5t) _ |5?1| 1r‘
rs r
Norm(Score(s;, st)) + Norm(Score(st, s,))

ACS(sr, s¢) = >

Multi-String ACS Problem

I-vs-all: Compute the pairwise ACS measure between a given string

Sy € S° and each string of a set S of m strings, simultaneously.
all-vs-all: Compute the pairwise ACS measure for any pair of strings s,
St € S.
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MS with cLCP (1)

Proposition

MS(s,, s¢) is a permutation of the values in cLCP(S) related to suffixes of
Sy VErsus S;.

| [ | |
Jr
777777 | = = = =1 MS(SH St)

|

|

: Jr the initial position of the r-colored
| suffix of rank i,
|

|

|
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MS with cLCP (2)

Therefore, we only need to sum up cLCP values related to suffixes of s,
versus s; (as they are computed) for each pair of strings s,,s; € S:

score

192 = ¢t m

|s’| MS(sr, st)[J
373 MS(sr,se)li] S ecPidiel | /s

i€[1...N]
id(S)[ir]=r

Score(sy, st) =
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Score Matrix Computation (sketch)

Initialize Score[1, m|[1,m] = [[0,...,0],...,[0,...,0]]
for t + 1 tom do
Dy + generate_D(t);
lepy +— generate_lep(t);
score[][t] « cOMPUTECOLUMNSCORE(t, Dy, lcpy, lep(S), id(S));

COMPUTEACS(score);
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Score Matrix Computation (sketch)

Initialize Score[l,m][1,m] = [[0,...,0],...,[0,...,0]]
for t + 1 to m do
Dy + generate_D(t);
lepe < generate_lep(t);
score[][t] + cCOMPUTECOLUMNSCORE(t, Dy, lepy, Iep(S), id(S));

COMPUTEACS(score);

Each column score[ ][t] can be computed separately from the
others, provided D; and lcp; are pre-computed.
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Score Matrix Computation (sketch)

Initialize Score[l,m][1,m] = [[0,...,0],...,[0,...,0]]
for t + 1 to m do
Dy + generate_D(t);
lepe <+ generate_lep(t);
score[ ][t] + cOMPUTECOLUMNSCORE(t, Dy, lepy, lep(S), id(S));

COMPUTEA CS(score);

Straightforward parallel implementation: distinct columns
assigned to distinct threads working concurrently.
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COMPUTECOLUMNSCORE(t)

1. procedure (id(S)[1, N], lep(S)[1, N + 1], Di[1, N, lepe[1, [s¢], a[t], ([t])
2: aft] + o

3 C[t] «0

4: hy + 1 > index for scanning lcp,
5: for i <1 to N do

6 if id(S)[i] # t then > We are inside a t-interval: [t, to]
7 aft] < min{«[t], lcp[d] }

5 ([ + max{C[t], Difi] — 1}

9: if aft] > lep,[iz] then

10: Score[id[i]] [t]+ « at]

1L else

12: Score[id[i]][t]+ « max{alt], ([t], lcp,[i:] }

13 else > A new {-interval starts, next [t1, £a].
14: he + +

15: aft] + oo

16: (]« 0
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Preliminary Experiments

@ Two collections of genomes (the first one contains 932 genomes and the
second one contains 4,938 genomes).

@ In both cases, the value |s, | is greater than the average length of the strings
in the respective collection.

@ k-Mismatch Average Common Substring approach tool* (kmacs) with

k=0.
Size Min length | Max length | Max Icp Program Wall clock | Memory
(Gbytes) (mm:ss) | (Kbytes)
1] 3.434 1,080,084 | 10,657,107 | 1,711,194 || new cLCP-mACS 2:34 110,412
cLCP-mACS 13:37 10,716
kmacs* 23:30 4,213,364
2| 9.258 744 14,782,125 | 5,714,157 || new cLCP-mACS 7:43 206,164
cLCP-mACS 40:21 10,780
kmacs* 57:43 9,637,964

|sx | = 5,650, 368 for the first collection and |sy | = 3,571, 103 for the second one.
All tests were done on a MacBook Pro (13-inch), Intel Core i7 at 3,5 GHz, with 16 GB of RAM, HDD of type SSD

1
C.-A. Leimeister and M. Burkhard, Kmacs: the k-mismatch average common substring approach to alignment-free
sequence comparison. Bioinformatics, 30(14), 2000-2008.
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Future work

@ Design a dynamic version of our tool (cLCP can be efficiently
auto-updated by removing o inserting strings)

@ Solve the many-to-many pairwise ACS problem on a collection of
strings or between all strings of a collection versus all strings of
another collection

@ Use cLCP to define new similarity measures for string collections
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Thanks for your attention!
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