Parallel Computation of Matching Statistics and Average Common Substring Fabio Garofalo Daniele Greco² Giovanna Rosone² Marinella Sciortino¹ ¹Dipartimento di Matematica e Informatica Università di Palermo, Italy > ²Dipartimento di Informatica Università di Pisa, Italy BITS 2019 - Analysis of Big Omics Data June 26th, 2019 - Increased availability of large sets of biological sequences - Tools for sequence comparison a fortiori need alignment-free based approaches - Most alignment-free approaches require the computation of statistics when comparing sequences - Such computations may not scale well in internal memory when very large collections of long sequences are considered - Increased availability of large sets of biological sequences - Tools for sequence comparison a fortiori need alignment-free based approaches - Most alignment-free approaches require the computation of statistics when comparing sequences - Such computations may not scale well in internal memory when very large collections of long sequences are considered - Our contribution: - Increased availability of large sets of biological sequences - Tools for sequence comparison a fortiori need alignment-free based approaches - Most alignment-free approaches require the computation of statistics when comparing sequences - Such computations may not scale well in internal memory when very large collections of long sequences are considered - Our contribution: - the Colored Longest Common Prefix array: a new conceptual data structure that uses an alignment-free approach and can be computed via sequential scans in semi-external memory - Increased availability of large sets of biological sequences - Tools for sequence comparison a fortiori need alignment-free based approaches - Most alignment-free approaches require the computation of statistics when comparing sequences - Such computations may not scale well in internal memory when very large collections of long sequences are considered - Our contribution: - the Colored Longest Common Prefix array: a new conceptual data structure that uses an alignment-free approach and can be computed via sequential scans in semi-external memory - it implicitly stores all the information necessary to compute statistics on distinguishing, repeating, or matching substrings within collections of strings. - Increased availability of large sets of biological sequences - Tools for sequence comparison a fortiori need alignment-free based approaches - Most alignment-free approaches require the computation of statistics when comparing sequences - Such computations may not scale well in internal memory when very large collections of long sequences are considered - Our contribution: - the Colored Longest Common Prefix array: a new conceptual data structure that uses an alignment-free approach and can be computed via sequential scans in semi-external memory - it implicitly stores all the information necessary to compute statistics on distinguishing, repeating, or matching substrings within collections of strings. - efficient lightweight strategy to solve the multi-string Average Common Substring (ACS) Problem and experimental results. #### **Preliminaries** - $\Sigma = \{c_1, c_2, \dots, c_{\sigma}\}$ be a finite ordered alphabet - ullet ${\cal S}$ is a collection of m strings over Σ - n_i is the length of the string s_i - ullet A distinct end-marker symbol $\$_i < c_1$ is appended to each string s_i - $N = \sum_{i=1}^{m} n_i + m$ is the length of the collection S - Each string (or subset of strings) is identified by a specific color Let $S = \{s_1, s_2, \dots, s_m\}$ be a collection of strings. | String collection ${\mathcal S}$ | | | | | | | | |----------------------------------|---|---|---|---|---|---|-----| | | 0 | 1 | 2 | 3 | 4 | 5 | 6 | | s ₁ | G | С | С | Α | Α | С | \$1 | | s 2 | G | Α | G | С | T | С | \$2 | | <i>5</i> 3 | T | С | G | С | T | T | \$3 | Let $S = \{s_1, s_2, \dots, s_m\}$ be a collection of strings. • The extended Burrows-Wheeler Transform for a string collection \mathcal{S} , known as EBWT or multi-string BWT, is a reversible transformation that produces a string (denoted by $ebwt(\mathcal{S})$) that is a permutation of the characters of all strings in \mathcal{S} | String collection ${\cal S}$ | | | | | | | | |------------------------------|---|---|---|---|---|---|-----| | | 0 | 1 | 2 | 3 | 4 | 5 | 6 | | <i>s</i> ₁ | G | С | С | Α | Α | С | \$1 | | s 2 | G | Α | G | С | T | С | \$2 | | <i>5</i> 3 | T | С | G | С | T | T | \$3 | Let $S = \{s_1, s_2, \dots, s_m\}$ be a collection of strings. • The extended Burrows-Wheeler Transform for a string collection \mathcal{S} , known as EBWT or multi-string BWT, is a reversible transformation that produces a string (denoted by $ebwt(\mathcal{S})$) that is a permutation of the characters of all strings in \mathcal{S} • $ebwt(\mathcal{S})$ • Sorted Suffixes of \mathcal{S} | String collection ${\cal S}$ | | | | | | | | |------------------------------|---|---|---|---|---|---|-----| | | 0 | 1 | 2 | 3 | 4 | 5 | 6 | | s ₁ | G | С | С | Α | Α | С | \$1 | | s ₂ | G | Α | G | С | T | С | \$2 | | 5 3 | T | С | G | С | T | T | \$3 | • Sort all the suffixes of the strings in S; | | | lune 26th 2010 | 4 / 30 | |---|------------------------|---|--------------| | • | \$ ₃ | TT\$3 4 | 199 (| | | €
\$a | TCGCTT\$3 | | | | C | TC\$ ₂ | | | | T | GCTT\$ ₃
T\$ ₃ | | | | A
C | GCTC\$2 | | | | \$ ₁ | $GCCAAC$ $_1$ | | | | \$ 2 | $GAGCTC\$_2$ | | | | G | CTT\$3 | | | | G | CTC\$ ₂ | | | | T | CGCTT\$3 | | | | G | CCAAC\$1 | | | | Ċ | CAAC\$ ₁ | | | | T | C\$2 | | | | A | C\$ ₁ | | | | G | AGCTC\$2 | | | | A | AC\$ ₁ | | | | Ċ | AAC\$ ₁ | | | | T | \$3 | | Let $S = \{s_1, s_2, \dots, s_m\}$ be a collection of strings. • The extended Burrows-Wheeler Transform for a string collection \mathcal{S} , known as EBWT or multi-string BWT, is a reversible transformation that produces a string (denoted by $ebwt(\mathcal{S})$) that is a permutation of the characters of all strings in \mathcal{S} $ebwt(\mathcal{S})$ Sorted Suffixes of \mathcal{S} | String collection ${\mathcal S}$ | | | | | | | | |----------------------------------|---|---|---|---|---|---|-----------------| | | 0 | 1 | 2 | 3 | 4 | 5 | 6 | | s ₁ | G | С | С | Α | Α | С | \$ 1 | | s 2 | G | Α | G | С | T | С | \$ ₂ | | <i>5</i> 3 | T | С | G | С | T | T | \$3 | - ullet Sort all the suffixes of the strings in ${\cal S}$; - The output $\operatorname{ebwt}(\mathcal{S})$ is obtained by concatenating the symbols that (circularly) precede the first symbol of each suffix in the list of (lexicographically) sorted suffixes of \mathcal{S} . #### LCP and Colored EBWT • The longest common prefix (LCP) array of the collection S is the array lcp(S) of length N+1, such that lcp(S)[i], with $2 \le i \le N$, is the length of the longest common prefix between the suffixes associated to the positions i and i-1 in ebwt(S). By default, lcp(S)[1] = lcp(S)[N+1] = -1 | $lcp(\mathcal{S})$ | $id(\mathcal{S})$ | $ebwt(\mathcal{S})$ | Sorted Suffixes of ${\mathcal S}$ | |--------------------|-------------------|---------------------|-----------------------------------| | -1 | 1 | С | \$ 1 | | 0 | 2 | C | \$ ₂ | | 0 | 3 | T | \$ ₃ | | 0 | 1 | C | AAC\$ ₁ | | 1 | 1 | Α | AC\$1 | | 1 | 2 | G | $AGCTC\$_2$ | | 0 | 1 | A | C\$ ₁ | | 1 | 2 | T | C\$ ₂ | | 1 | 1 | C | CAAC\$ ₁ | | 1 | 1 | G | CCAAC\$ ₁ | | 1 | 3 | T | $CGCTT\$_3$ | | 1 | 2 | G | CTC\$2 | | 2 | 3 | G | CTT\$3 | | 0 | 2 | \$ 2 | GAGCTC\$2 | | 1 | 1 | \$ ₁ | GCCAAC\$1 | | 2 | 2 | Ā | GCTC\$ ₂ | | 3 | 3 | C | $GCTT\$_3$ | | 0 | 3 | T | T\$3 | | 1 | 2 | С | TC\$ ₂ | | 2 | 3 | \$ ₃ | TCGCTT\$3 | | 1 | 3 | Č | TT\$3 | -1 #### LCP and Colored EBWT - The longest common prefix (LCP) array of the collection S is the array lcp(S) of length N+1, such that lcp(S)[i], with $2 \le i \le N$, is the length of the longest common prefix between the suffixes associated to the positions i and i-1 in ebwt(S). By default, lcp(S)[1] = lcp(S)[N+1] = -1 - lcp(i,j) the length of the LCP between the suffixes at positions i and j, i.e. $min\{lcp(S)[l]: i < l < j\}$. | $lcp(\mathcal{S})$ | $id(\mathcal{S})$ | $ebwt(\mathcal{S})$ | Sorted Suffixes of ${\cal S}$ | |--------------------|-------------------|---------------------|-------------------------------| | -1 | 1 | C | \$ ₁ | | 0 | 2 | C | \$ ₂ | | 0 | 3 | T | \$ ₃ | | 0 | 1 | C | AAC\$ ₁ | | 1 | 1 | A | AC\$ ₁ | | 1 | 2 | G | AGCTC\$2 | | 0 | 1 | A | C\$ ₁ | | 1 | 2 | T | C\$2 | | 1 | 1 | C | CAAC\$ ₁ | | 1 | 1 | G | CCAAC\$ ₁ | | 1 | 3 | T | CGCTT\$3 | | 1 | 2 | G | CTC\$2 | | 2 | 3 | G | $CTT\$_3$ | | 0 | 2 | \$ 2 | GAGCTC\$2 | | 1 | 1 | \$ 1 | GCCAAC\$1 | | 2 | 2 | Ā | GCTC\$2 | | 3 | 3 | C | GCTT\$3 | | 0 | 3 | T | T\$3 | | 1 | 2 | С | TC\$ ₂ | | 2 | 3 | \$2 | TCGCTT\$3 | | 1 | 3 | \$ ₃ | TT\$3 | | | | | . 3 | -1 #### LCP and Colored EBWT - The longest common prefix (LCP) array of the collection S is the array lcp(S) of length N+1, such that lcp(S)[i], with $2 \le i \le N$, is the length of the longest common prefix between the suffixes associated to the positions i and i-1 in ebwt(S). By default, lcp(S)[1] = lcp(S)[N+1] = -1 - lcp(i, j) the length of the LCP between the suffixes at positions i and j, i.e. $min\{lcp(S)[l]: i < l \le j\}$. - The output string $\operatorname{ebwt}(\mathcal{S})$, $\operatorname{enhanced}$ with the N-integer array of colors $\operatorname{id}(\mathcal{S})$ where $\operatorname{id}(\mathcal{S})[i] = r$, with $1 \leq r \leq m$ and $1 \leq i \leq N$, if $\operatorname{ebwt}(\mathcal{S})[i]$ is a symbol of the string $s_r \in \mathcal{S}$, is called *colored* EBWT. | $lcp(\mathcal{S})$ | id(S) | $ebwt(\mathcal{S})$ | Sorted Suffixes of ${\mathcal S}$ | |--------------------|-------|---------------------|-----------------------------------| | -1 |
1 | С | \$ ₁ | | 0 | 2 | С | \$ 2 | | 0 | 3 | T | \$ ₃ | | 0 | 1 | C | AAC\$ ₁ | | 1 | 1 | Α | AC\$ ₁ | | 1 | 2 | G | AGCTC\$ ₂ | | 0 | 1 | Α | C\$ ₁ | | 1 | 2 | T | C\$ ₂ | | 1 | 1 | C | CAAC\$ ₁ | | 1 | 1 | G | CCAAC\$ ₁ | | 1 | 3 | T | CGCTT\$3 | | 1 | 2 | G | CTC\$ ₂ | | 2 | 3 | G | CTT\$3 | | 0 | 2 | \$ 2 | GAGCTC\$2 | | 1 | 1 | \$ 1 | GCCAAC\$1 | | 2 | 2 | Α | $GCTC\$_2$ | | 3 | 3 | C | GCTT\$3 | | 0 | 3 | T | T\$3 | | 1 | 2 | \$3
C | TC\$2 | | 2 | 3 | \$ 3 | TCGCTT\$3 | | 1 | 3 | Č | TT\$3 | | -1 | | | • | # Some recent lightweight implementations of EBWT and LCP - Bauer, M., Cox, A., Rosone, G.: Lightweight algorithms for constructing and inverting the BWT of string collections. Theor. Comput. Sci. 483(0), 134–148 (2013) (known as BCR implementation) - Cox, A.J., Garofalo, F., Rosone, G., Sciortino, M.: Lightweight LCP construction for very large collections of strings. J. Discrete Algorithms 37, 17–33 (2016) - Egidi, L., Louza, F.A., Manzini, G., Telles, G.P.: External memory BWT and LCP computation for sequence collections with applications. WABI 2018 - Louza, F., Telles, G., Hoffmann, S., Ciferri, C.: Generalized enhanced suffix array construction in external memory. Algorithms Mol. Biol. 12(1), 26 (2017) # Colored Longest Common Prefix (cLCP) array cLCP is an $(N \times m)$ -integer array representing the longest common prefix between any specific suffix of a (r-colored) string $s_r \in \mathcal{S}$ and the nearest suffixes of a specific (t-colored) string $s_t \in \mathcal{S}$ in the sorted list of suffixes of \mathcal{S} . x = LCP value between the *r*-colored suffix of rank i_r and the nearest *t*-colored suffix in the sorted list of suffixes Given $1 \le i_r \le N$ and t = 1, ... m, how cLCP $[i_r][t]$ is defined? $$prev(i, t) = \max\{x \mid 1 \le x < i, id(\mathcal{S})[x] = t\}$$ $$next(i, t) = \min\{x \mid i < x \le N, id(\mathcal{S})[x] = t\}$$ | i | $lcp(\mathcal{S})$ | $id(\mathcal{S})$ | |----------------|--------------------|-------------------| | : | : | | | $prev(i_r, t)$ | I_1 | t | | ÷ | : | Ţ
≠ t
⊥ | | i _r | 1 | r | | ÷ | : | Ţ
≠ t
⊥ | | $next(i_r,t)$ | I_2 | t | | : | i | i | Given $1 \le i_r \le N$ and t = 1, ... m, how cLCP $[i_r][t]$ is defined? $$prev(i, t) = \max\{x \mid 1 \le x < i, id(\mathcal{S})[x] = t\}$$ $$next(i, t) = \min\{x \mid i < x \le N, id(\mathcal{S})[x] = t\}$$ | i | $lcp(\mathcal{S})$ | $id(\mathcal{S})$ | |----------------|--------------------|-------------------| | : | : | : | | $prev(i_r, t)$ | I_1 | t | | : | ÷ | Ţ
≠ t
⊥ | | ir | 1 | r | | : | : | Ţ
≠ t
⊥ | | $next(i_r,t)$ | I_2 | t | | : | • | : | Upper Colored LCP $UcLCP[i_r][t] = LCP(prev(i_r, t), i_r)$ Given $1 \le i_r \le N$ and t = 1, ... m, how cLCP $[i_r][t]$ is defined? $$prev(i, t) = \max\{x | 1 \le x < i, id(\mathcal{S})[x] = t\}$$ $$next(i, t) = \min\{x | i < x \le N, id(\mathcal{S})[x] = t\}$$ Lower Colored LCP $LcLCP[i_r][t] = LCP(i_r, next(i_r, t))$ Given $1 \le i_r \le N$ and t = 1, ... m, how cLCP $[i_r][t]$ is defined? $$prev(i, t) = \max\{x \mid 1 \le x < i, id(\mathcal{S})[x] = t\}$$ $$next(i, t) = \min\{x \mid i < x \le N, id(\mathcal{S})[x] = t\}$$ | i | $lcp(\mathcal{S})$ | $id(\mathcal{S})$ | |----------------|-----------------------|-------------------| | ÷ | : | : | | $prev(i_r, t)$ | I_1 | t | | : | : | Τ
≠ t
1 | | ir | 1 | r | | ÷ | ÷ | Τ
≠ t
⊥ | | $next(i_r, t)$ | <i>l</i> ₂ | t | | : | • | : | $$cLCP[i_r][t] = max{UcLCP[i_r][t], LcLCP[i_r][t]}$$ ## Colored LCP on disjoint collections cLCP can also be defined for disjoint collections of strings. The value cLCP[i_r][t] is defined for each pair (i_r , t) such that id(S)[i_r] = r, $t \in ID$ and s_r , s_t belongs to different collections. ## Colored LCP on disjoint collections cLCP can also be defined for disjoint collections of strings. The value cLCP[i_r][t] is defined for each pair (i_r , t) such that id(\mathcal{S})[i_r] = r, $t \in \mathrm{ID}$ and s_r , s_t belongs to different collections. Assume $\mathcal{S}^0 = \{s_\chi\}$ and $\mathcal{S}^1 = \mathcal{S} \setminus \{s_\chi\}$. #### χ – intervals A given string $s_\chi \in \mathcal{S}^0$ implicitly induces a partition of $lcp(\mathcal{S})$ into open intervals delimited by consecutive suffixes having color χ (or the positions 1 and N+1 of lcp), called χ -intervals. Let us consider a position i_r contained within a χ -interval such that $id[i_r] = r$ and $s_r \in \mathcal{S}^1$. | i | $lcp(\mathcal{S})$ | $id(\mathcal{S})$ | |---|--------------------|--| | <u>:</u> | : | : | | $\chi_1 = \operatorname{prev}(i_r, \chi)$ | | χ | | :
<i>i</i> _r
: | : | $ \begin{array}{c} \top \\ \neq x \\ \bot \\ r \\ \top \\ \neq x \end{array} $ | | $\chi_2 = next(i_r, \chi)$ | | $\begin{array}{c c} & \bot \\ & \chi \end{array}$ | | : | ÷ | : | #### χ – intervals A given string $s_\chi \in \mathcal{S}^0$ implicitly induces a partition of $lcp(\mathcal{S})$ into open intervals delimited by consecutive suffixes having color χ (or the positions 1 and N+1 of lcp), called χ -intervals. Let us consider a position i_r contained within a χ -interval such that $id[i_r] = r$ and $s_r \in \mathcal{S}^1$. | i | $lcp(\mathcal{S})$ | $id(\mathcal{S})$ | |---|--------------------|-------------------| | <u>:</u> | : | : | | $\chi_1 = prev(i_r, \chi)$ | | χ | | :
i _r | : | | | : | : | ≠ x
 | | $\chi_2 = \operatorname{next}(i_r, \chi)$ | | χ | | i i | : | : | Inside a χ -interval, how to compute UcLCP[i_r][χ] and LcLCP[i_r][χ] by a lightweight strategy? # $UcLCP[i_r][\chi]$ Computation ightharpoonup Keep track of the minimum lcp value since the beginning of each χ -interval. $$UcLCP[i_r][\chi] = LCP(\chi_1, i_r) = \min\{lcp[x] : x \in (\chi_1, i_r]\} = \alpha$$. # $UcLCP[i_r][\chi]$ Computation ightharpoonup Keep track of the minimum lcp value since the beginning of each χ -interval. $$UcLCP[i_r][\chi] = LCP(\chi_1, i_r) = \min\{lcp[x] : x \in (\chi_1, i_r]\} = \alpha$$. $$s_{\chi} = ACGCGCC\$_{\chi}$$, $$s_1 = ACGAGACGAT \$_1$$ $$s_{\chi} = ACGCGCC\$_{\chi}, \quad s_{1} = ACGAGACGAT\$_{1}, \quad s_{2} = AACGCCGCCGGCA\$_{2}$$ | | | | | | | | ı | JcLCI | , | LcLCP | | | |--------|----|---|-----------------|-----------|------------------|----------|---|-------|---|-------|------|---| | | id | S | ebwt | | | | | 1 | _ | ECEC | cLCP | Sorted suffixes of S | | # | _ | | C | lcp
-1 | lcp _χ | α | χ | 1 | 2 | | | | | 1 | χ | 1 | T | | -1 | | | | | | | şχ | | 2 | 2 | 0 | l 'A | 0 | | | | | | | | \$ ₁ | | | | 0 | Ĉ | 0 | | | | | | | | \$2 | | 4
5 | 2 | 0 | \$ ₂ | 1 | | | | | | | | A \$2
A A C G C C G C C G G C A \$ | | 6 | 1 | 0 | \$ ₁ | 1 | | | | | | | | A A C G C C G C C G G C A \$ A C G A G A C G A T \$1 | | 7 | 1 | 0 | G G | 4 | | | | | | | | A C G A T \$1 | | 8 | 2 | 0 | A | 3 | | | | | | | | ACGCCGGCA\$2 | | 9 | | 1 | \$0 | 4 | 0 | | | | | | | A C G C G C C \$x | | 10 | χ | 0 | G | 1 | " | | | | | | | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | | 11 | i | 0 | Ğ | i | | | | | | | | A T \$1 | | 12 | x | 1 | Č | Ô | 0 | | | | | | | C S _x | | 13 | 2 | 0 | G | 1 | - | | | | | | | C A \$2 | | 14 | χ | 1 | G | 1 | 1 | ∞ | | | | | | | | 15 | 2 | 0 | G | 2 | | | | | | | | C C \$\x\ C C G C A \x\2 | | 16 | 2 | 0 | G | 3 | | | | | | | | C C G G C A \$ ₂ | | 17 | 1 | 0 | A | 1 | | | | | | | | CGAGACGAT\$1 | | 18 | 1 | 0 | A | 3 | | | | | | | | C G A T \$1 | | 19 | χ | 1 | G | 2 | 1 | | | | | | | C G C C S _V | | 20 | 2 | 0 | A | 4 | | | | | | | | C G C C G C C A \$2 | | 21 | 2 | 0 | C | 5 | | | | | | | | C G C C G G C A \$2 | | 22 | χ | 1 | Α | 3 | 3 | | | | | | | C G C C C S _X | | 23 | 2 | 0 | С | 2 | | | | | | | | C G G C A \$2 | | 24 | 1 | 0 | A | 0 | l | | 1 | 1 | ı | | | GACGAT \$1 | | 25 | 1 | 0 | C | 2 | l | | 1 | 1 | ı | | | G A G A C G A T \$1 | | 26 | 1 | 0 | C | 2 | l | | 1 | 1 | ı | | | G A T \$1 | | 27 | 2 | 0 | G | 1 | | | | | | | | G C A \$2 | | 28 | χ | 1 | С | 2 | 0 | | | | | | | G C C S _X | | 29 | 2 | 0 | C | 3 | | | | | | | | G C C G G C A \$2 | | 30 | 2 | 0 | C | 4 | L . | | | | | | | G C C G G C A \$2 | | 31 | χ | 1 | C | 2 | 2 | | | | | | | G C G C C \$\chi_{\chi} | | 32 | 2 | 0 | C | 1 | l | | 1 | 1 | ı | | | G G C A \$2
T \$1 | | 33 | 1 | 0 | A | 0 | ١. | | 1 | 1 | ı | | | 1 \$1 | | | | 1 | I | -1 | -1 | 1 | 1 | 1 | | 1 | | | $$s_{\chi} = ACGCGCC\$_{\chi}$$, $$s_1 = ACGAGACGAT \$_1$$ $$s_{\chi} = ACGCGCC\$_{\chi}, \quad s_{1} = ACGAGACGAT\$_{1}, \quad s_{2} = AACGCCGCCGGCA\$_{2}$$ | | | | | | | | Ιι | JcLCI | > | LcLCP | cLCP | | |----------|----|-----|------|-----|--------------|----------|----|-------|---|-------|------|--| | # | id | S | ebwt | lcp | lcp_{χ} | α | _ | 1 | 2 | | | Sorted suffixes of S | | 1 | _ | 1 | C | -1 | -1 | ш | χ | 1 | - | | | \mathbf{s}_{χ} | | 2 | χ | 0 | T | 0 | -1 | | | | | | | *χ
\$1 | | 3 | 2 | 0 | l 'A | ŏ | | | | | | | | \$ ₂ | | 4 | 2 | 0 | Ĉ | ő | | | | | | | | A \$2 | | 5 | 2 | 0 | \$2 | 1 | | | | | | | | A A C G C C G C C G G C A | | 6 | ī | 0 | \$1 | i | | | | | | | | A C G A G A C G A T \$1 | | 7 | ī | ő | Ĝ | 4 | | | | | | | | A C G A T \$1 | | 8 | 2 | 0 | A | 3 | | | | | | | | ACGCCGCCGGCA\$2 | | 9 | χ | 1 | \$0 | 4 | 0 | | | | | | | A C G C G C C \$x | | 10 | 1 | 0 | Ğ | 1 | | | | | | | | A G A C G A T \$1 | | 11 | 1 | 0 | G | 1 | | | | | ı | | | A T \$1 | | 12 | χ | 1 | С | 0 | 0 | | | | | | | C \$ _{\chi} | | 13 | 2 | 0 | G | 1 | | | | | | | | C A \$2 | | 14 | χ | 1 | G | 1 | 1 | ∞ | | | | | | C C \$\(\sigma \) C C G C A \$\(\sigma \) | | 15 | 2 | 0 | G | 2 | | 2 | 2 | | | | | C C G C C G G C A \$2 | | 16 | 2 |
0 | G | 3 | | | | | | | | C C G G C A \$2 | | 17 | 1 | 0 | A | 1 | | | | | | | | CGAGACGAT\$1 | | 18 | 1 | 0 | A | 3 | | | | | | | | C G A T \$1 | | 19 | χ | 1 | G | 2 | 1 | | | | | | | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | | 20 | 2 | 0 | A | 4 | | | | | | | | | | 21 | 2 | 0 | С | 5 | | | | | | | | C G C C G G C A \$2 | | 22 | χ | 1 | Α | 3 | 3 | | | | | | | C G C G C C S _X | | 23 | 2 | 0 | C | 2 | | | | | ı | | | C G G C A \$2 | | 24 | 1 | 0 | A | 0 | | | | | | | | G A C G A T \$1
G A G A C G A T \$1 | | 25 | 1 | 0 | C | 2 | | | | | ı | | | | | 26
27 | 1 | 0 | G | 2 | | | | | | | | G A T \$ ₁ G C A \$ ₂ | | 28 | 2 | 1 | C | 2 | 0 | | | | | | | | | 29 | 2 | 0 | c | 3 | U | | | | | | | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | | 30 | 2 | 0 | c | 4 | | | | | ı | | | G C C G G C A \$2 | | 31 | | 1 | c | 2 | 2 | | | | | | | G C G C C \$x | | 32 | 2 | 0 | c | 1 | | | | | | | | G C G C C \$\chi_X | | 33 | 1 | 0 | Ā | ō | | | | | ı | | | G G C A \$2
T \$1 | | "" | * | ا ا | l | -1 | -1 | | | | | | | • •• | $$s_{\chi} = ACGCGCC\$_{\chi}$$, $$s_1 = ACGAGACGAT$$ $$s_{\chi} = ACGCGCC\$_{\chi}, \quad s_{1} = ACGAGACGAT\$_{1}, \quad s_{2} = AACGCCGCCGGCA\$_{2}$$ | _ | | | | | | | | | | | | | |----|----|---|-----------------|-----|--------------|----------|---|-------|---|-------|------|--| | | | | | | | | Ų | JcLCI | P | LcLCP | cLCP | | | # | id | S | ebwt | lcp | lcp_{χ} | α | χ | 1 | 2 | | | Sorted suffixes of S | | 1 | χ | 1 | С | -1 | -1 | | | | | | | \$ _{\chi} | | 2 | 1 | 0 | T | 0 | | | | | | | | \$ ₁ | | 3 | 2 | 0 | A | 0 | | | | | | | | \$ ₂ | | 4 | 2 | 0 | C | 0 | | | | | | | | A \$2 | | 5 | 2 | 0 | \$ ₂ | 1 | | | | | | | | AACGCCGCCGGCAS | | 6 | 1 | 0 | \$ ₁ | 1 | | | | | | | | ACGAGACGAT \$1 | | 7 | 1 | 0 | G | 4 | | | | | | | | A C G A T \$1
A C G C C G C C G G C A \$2 | | 8 | 2 | 0 | A | 3 | | | | | | | | | | 9 | χ | 1 | \$0 | 4 | 0 | | | | | | | A C G C G C C \$ _{\chi} | | 10 | 1 | 0 | G | 1 | | | | | | | | AGACGAT\$1 | | 11 | 1 | 0 | G | 1 | l | | 1 | 1 | | | | A T \$1 | | 12 | χ | 1 | C | 0 | 0 | | | | | | | C \$ _{\chi} C A \$ ₂ | | 13 | 2 | 0 | G | 1 | | | | | | | | C A \$2 | | 14 | χ | 1 | G | 1 | 1 | ∞ | | | | | | C C \$\x\ C C G C A \x\2 | | 15 | 2 | 0 | G | 2 | | 2 | 2 | | | | | C C G C C G G C A \$2 | | 16 | 2 | 0 | G | 3 | | 2 | 2 | | | | | C C G G C A \$2
C G A G A C G A T \$1 | | 17 | 1 | 0 | A | 1 | | | | | | | | | | 18 | 1 | 0 | A | 3 | | | | | | | | C G A T \$1 | | 19 | χ | 1 | G | 2 | 1 | | | | | | | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | | 20 | 2 | 0 | A | 4 | | | | | | | | C G C C G C C A \$2 | | 21 | 2 | 0 | C | 5 | | | | | | | | C G C C G G C A \$2 | | 22 | χ | 1 | Α | 3 | 3 | | | | | | | C G C C C S _X | | 23 | 2 | 0 | С | 2 | | | | | | | | C G G C A \$2 | | 24 | 1 | 0 | A | 0 | l | | 1 | 1 | | | | GACGAT\$1 | | 25 | 1 | 0 | C | 2 | l | | 1 | 1 | | | | G A G A C G A T \$1 | | 26 | 1 | 0 | C | 2 | | | | | | | | G A T \$1 | | 27 | 2 | 0 | G | 1 | l | | 1 | 1 | | | | G C A \$2 | | 28 | χ | 1 | С | 2 | 0 | | | | | | | G C C S _X | | 29 | 2 | 0 | С | 3 | | | | | | | | G C C G C A \$2 | | 30 | 2 | 0 | C | 4 | l | | 1 | 1 | | | | G C C G G C A \$2 | | 31 | χ | 1 | С | 2 | 2 | | | | | | | G C G C C S _X | | 32 | 2 | 0 | C | 1 | | | | | | | | G G C A \$2 | | 33 | 1 | 0 | A | 0 | l | | 1 | 1 | | | | T \$1 | | | | | | -1 | -1 | l | 1 | l | | | | | $$s_{\chi} = ACGCGCC\$_{\chi}$$, $$s_1 = ACGAGACGAT \$_1$$ $$s_{\chi} = ACGCGCC\$_{\chi}, \quad s_{1} = ACGAGACGAT\$_{1}, \quad s_{2} = AACGCCGCCGGCA\$_{2}$$ | | | | | | | | Π. | JcLCI | _ | LcLCP | cLCP | | |----------|----|---|-----------------|-----|--------------|---|----|-------|---|-------|------|---| | | | | _ | _ | _ | _ | - | _ | | LCLCP | CLCP | | | # | id | S | ebwt | lcp | lcp_{χ} | α | χ | 1 | 2 | | | Sorted suffixes of $\mathcal S$ | | 1 | χ | 1 | С | -1 | -1 | | | | | | | $\$_{\chi}$ | | 2 | 1 | 0 | T | 0 | | | | | | | | \$ ₁ | | 3 | 2 | 0 | A | 0 | | | | | | | | <u>\$2</u> | | 4 | 2 | 0 | C | 0 | | | | | | | | A \$2 | | 5 | 2 | 0 | \$2 | 1 | | | | | | | | A A C G C C G C C G G C A S | | 6 | 1 | 0 | \$ ₁ | 1 | | | | | | | | A C G A G A C G A T \$1 | | 7 | 1 | 0 | G | 4 | | | | | | | | A C G A T \$1 | | 8 | 2 | 0 | A | 3 | L . | | | | | | | ACGCCGCCGGCA\$2 | | 9 | χ | 1 | \$0 | 4 | 0 | | | | | | | A C G C G C C \$x | | 10 | 1 | 0 | G | 1 | l | | | | | | | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | | 11 | 1 | 0 | G | 1 | _ | | | | | | | A T \$1 | | 12 | χ | 1 | C | 0 | 0 | | | | | | | C \$ _{\chi} | | 13 | 2 | 0 | G | 1 | - | | | | | | | C A \$2 | | 14
15 | 2 | 0 | G | 2 | 1 | 2 | 2 | | | | | | | 16 | | 0 | G | 3 | | 2 | 2 | | | | | | | 17 | 2 | 0 | A | 1 | | 1 | 1 | | | | | C C G G C A \$2
C G A G A C G A T \$1 | | 18 | 1 | 0 | A | 3 | | 1 | | | | | | C G A T \$1 | | 19 | | 1 | G | 2 | 1 | | | | | | | | | 20 | 2 | 0 | A | 4 | - | | | | | | | | | 21 | 2 | 0 | l ĉ | 5 | | | | | | | | | | 22 | X | 1 | A | 3 | 3 | | | | | | | C G C G C C \$x | | 23 | 2 | 0 | Ĉ | 2 | , | | | | | | | C G G C A \$2 | | 24 | 1 | ō | Ā | l - | | | | | | | | G A C G A T \$1 | | 25 | 1 | ō | C | 2 | l | | | | | | | G A G A C G A T \$1 | | 26 | 1 | ō | l č | 2 | l | | | | | | | G A T \$1 | | 27 | 2 | ō | Ğ | l ī | l | | | | | | | G C A \$2 | | 28 | χ | 1 | c | 2 | 0 | | | | | | | G C C \$\sum_\chi\$ | | 29 | 2 | 0 | С | 3 | | | | | | | | GCCGCCGGCA\$2 | | 30 | 2 | 0 | C | 4 | | | | | | | | G C C G G C A \$2 | | 31 | X | 1 | С | 2 | 2 | | | | | | | | | 32 | 2 | 0 | C | 1 | | | | | | | | G G C A \$2 | | 33 | 1 | 0 | A | 0 | l | | | | | | | T \$1 | | | | | I | _1 | _1 | I | I | I | 1 | 1 | | | $$s_{\chi} = ACGCGCC\$_{\chi}$$, $$s_1 = ACGAGACGAT \$_1$$ $$s_{\chi} = ACGCGCC\$_{\chi}, \quad s_{1} = ACGAGACGAT\$_{1}, \quad s_{2} = AACGCCGCCGGCA\$_{2}$$ | | | | | | | | | JcLCI | <u> </u> | LcLCP | cLCP | | |----|----|---|------|-----|--------------|----------|---|-------|----------|-------|------|---| | | | _ | | | _ | _ | | JCLU | | LCLCP | CLCP | | | # | id | S | ebwt | lcp | lcp_{χ} | α | χ | 1 | 2 | | | Sorted suffixes of S | | 1 | χ | 1 | С | -1 | -1 | | | | | | | $\$_{\chi}$ | | 2 | 1 | 0 | T | 0 | | | | | | | | \$ ₁ | | 3 | 2 | 0 | A | 0 | | | | | | | | <u>\$2</u> | | 4 | 2 | 0 | C | 0 | | | | | | | | A \$2 | | 5 | 2 | 0 | \$2 | 1 | | | | | | | | A A C G C C G C C G C A | | 6 | 1 | 0 | \$1 | 1 | | | | | | | | ACGAGACGAT\$1 | | 7 | 1 | 0 | G | 4 | | | | | | | | A C G A T \$1 | | 8 | 2 | 0 | A | 3 | L. | | | | | | | ACGCCGCCGCA\$2 | | 9 | χ | 1 | \$0 | 4 | 0 | | | | | | | A C G C G C C \$x | | 10 | 1 | 0 | G | 1 | | | 1 | | | | | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | | 11 | 1 | 0 | G | 1 | | | | | | | | A T \$1 | | 12 | X | 1 | C | 0 | 0 | | | | | | | C S _X | | 13 | 2 | 0 | G | 1 | 1 | | | | | | | C A \$2 | | 15 | 2 | 0 | G | 2 | 1 | 2 | 2 | | | | | C C \$\sqrt{C} C G C A \$\sqrt{2} | | 16 | 2 | 0 | G | 3 | | 2 | 2 | | | | | | | 17 | 1 | 0 | A | 1 | | 1 | 1 | | | | | C G A G A C G A T \$1 | | 18 | 1 | 0 | Â | 3 | | 1 | 1 | | | | | | | 19 | X | 1 | Ĝ | 2 | 1 | - | - | | | | | $\begin{bmatrix} c & G & C & C \end{bmatrix}$ | | 20 | 2 | 0 | A | 4 | - | | | | | | | | | 21 | 2 | ō | C | 5 | | | | | | | | | | 22 | χ | 1 | A | 3 | 3 | | | | | | | C G C G C C \$x | | 23 | 2 | 0 | С | 2 | | | | | | | | C G G C A \$2 | | 24 | 1 | 0 | A | 0 | | | | | | | | GACGAT\$1 | | 25 | 1 | 0 | C | 2 | | | 1 | | | | | G A G A C G A T \$1 | | 26 | 1 | 0 | C | 2 | | | 1 | | | | | G A T \$1 | | 27 | 2 | 0 | G | 1 | | | | | | | | G C A \$2 | | 28 | χ | 1 | С | 2 | 0 | | | | | | | G C C \$\chi_{\chi} | | 29 | 2 | 0 | С | 3 | | | | | | | | GCCGCCGGCA\$2 | | 30 | 2 | 0 | C | 4 | | | 1 | | | | | G C C G G C A \$2 | | 31 | χ | 1 | С | 2 | 2 | | | | | | | G C G C C \$χ
G G C A \$2 | | 32 | 2 | 0 | C | 1 | | | 1 | | | | | G G C A \$2 | | 33 | 1 | 0 | A | 0 | | | 1 | | | | | <u>T</u> \$1 | | | | | | _1 | _1 | | | | | | | | $$s_{\chi} = ACGCGCC\$_{\chi}$$, $$s_1 = ACGAGACGAT$$ \$₁ $$s_{\chi} = ACGCGCC\$_{\chi}, \quad s_{1} = ACGAGACGAT\$_{1}, \quad s_{2} = AACGCCGCCGGCA\$_{2}$$ | UcLCP LcLCP cLCP |------------------|----|---|-----------------|-----|--------------|----------|---|---|---|---|--|----|-------------|--------------------|--------------------|-------------|--------------------|-------------|------------------------|-----------------|-----|-------------|-------------|-----------------|-----|-----| | # | id | S | ebwt | lcp | lcp_{χ} | α | χ | 1 | 2 | | | Sc | orted | suffix | es of a | s | | | | | | | | | | | | 1 | χ | 1 | С | -1 | -1 | ∞ | | | | | | | \$ χ | | | | | | | | | | | | | | | 2 | 1 | 0 | T | 0 | | 0 | 0 | | | | | | \$1 | | | | | | | | | | | | | | | 3 | 2 | 0 | A | 0 | | 0 | 0 | | | | | | \$2 | | | | | | | | | | | | | | | 4 | 2 | 0 | C | 0 | | 0 | 0 | | | | | ΙГ | Α | \$2 | | | | | | | | | | | | | | 5 | 2 | 0 | \$ ₂ | 1 | | 0 | 0 | | | | | | Α | A | С | G | С | С | G | С | С | G | G | С | Α | \$2 | | 6 | 1 | 0 | \$ ₁ | 1 | | 0 | 0 | | | | | l | Α | С | G | A | G | Α | С | G | Α | T | \$1 | | | | | 7 | 1 | 0 | G | 4 | | 0 | 0 | | | | | | Α | C | G | A | T | \$ 1 | | | | | | | | | | 8 | 2 | 0 | A | 3 | | 0 | 0 | | | | | l | Α | С | G | C | C | G | C | С | G | G | С | Α | \$2 | | | 9 | χ | 1 | \$0 | 4 | 0 | ∞ | | | | | | | Α | C | G | C | G | С | С | \$ _x | | | | | | | | 10 | 1 | 0 | G | 1 | | 1 | 1 | | | | | | Α | G | Α | С | G | Α | T | \$1 | | | | | | | | 11 | 1 | 0 | G | 1 | | 1 | 1 | | | | | | Α | T | \$1 | | | | | | | | | | | | | 12 | χ | 1 | С | 0 | 0 | ∞ | | | | | | | С | \$ _{\chi} | | | | | | | | | | | | | | 13 | 2 | 0 | G | 1 | | 1 | 1 | | | | | | C | Â | \$2 | | | | | | | | | | | | | 14 | χ | 1 | G | 1 | 1 | ∞ | | | | | | | С | C | \$ _{\chi} | | | | | | | | | | | | | 15 | 2 | 0
 G | 2 | | 2 | 2 | | | | | | C | C | G | С | С | G | G | С | Α | \$ 2 | | | | | | 16 | 2 | 0 | G | 3 | | 2 | 2 | | | | | | C | C | G | G | С | Α | \$ ₂
G | | | | | | | | | 17 | 1 | 0 | A | 1 | | 1 | 1 | | | | | lF | C | G | Α | G | Α | С | G | Α | T | \$ 1 | | | | | | 18 | 1 | 0 | A | 3 | | 1 | 1 | | | | | | C | G | A | T | \$ 1 | | | | | | | | | | | 19 | χ | 1 | G | 2 | 1 | ∞ | | | | | | | С | G | С | С | \$ _{\chi} | | | | | | | | | | | 20 | 2 | 0 | A | 4 | | 4 | 4 | | | | | | C | G | C | C | G | С | С | G | G | С | Α | \$ ₂ | | | | 21 | 2 | 0 | C | 5 | | 4 | 4 | | | | | | C | G | C | C | G | G | C | Α | \$2 | | | | | | | 22 | χ | 1 | Α | 3 | 3 | ∞ | | | | | | | С | G | С | G | С | С | \$ χ | | | | | | | | | 23 | 2 | 0 | C | 2 | | 2 | 2 | | | | | | С | G | G | C | Α | \$ 2 | | | | | | | | | | 24 | 1 | 0 | A | 0 | | 0 | 0 | 1 | | | | ΙГ | G | A | C | G | Α | T | \$ ₁ | | | | | | | | | 25 | 1 | 0 | C | 2 | | 0 | 0 | | | | | | G | A | G | Α | С | G | Α | T | \$1 | | | | | | | 26 | 1 | 0 | C | 2 | | 0 | 0 | | | | | | G | A | T | \$1 | | | | | | | | | | | | 27 | 2 | 0 | G | 1 | | 0 | 0 | 1 | | | | | G | С | A | \$2 | | | | | | | | | | | | 28 | χ | 1 | С | 2 | 0 | ∞ | | | | | | | G | С | С | \$ χ | | | | | | | | | | | | 29 | 2 | 0 | C | 3 | | 3 | 3 | | | | | | G | C | C | G | С | С | G | G | С | Α | \$ 2 | | | | | 30 | 2 | 0 | C | 4 | | 3 | 3 | 1 | | | | L | G | C | C | G | G | С | Α | \$ 2 | | | | | | | | 31 | χ | 1 | С | 2 | 2 | ∞ | | | | | | | G | С | G | С | С | \$ χ | | | | | | | | | | 32 | 2 | 0 | C | 1 | | 1 | 1 | | | | | | G | G | C | Α | \$ 2 | | | | | | | | | | | 33 | 1 | 0 | A | 0 | | 0 | 0 | 1 | | | | " | T | \$1 | | | | | | | | | | | | | | | | ı | 1 | _1 | _1 | I | 1 | ı | I | 1 | | | | | | | | | | | | | | | | | # $LcLCP[i_r][\chi]$ Computation Problem: LcLCP[i_r][χ] computation would require to look forward and to store many intermediate values. # Colored k-lcp interval A k-lcp interval is an interval [i, j] such that: ## Colored k-lcp interval A colored k-lcp interval is an interval [i, j] such that: s_r and s_t belong one to \mathcal{S}^0 , the other to \mathcal{S}^1 ## Array D Denote with D the (N+1)-integer array such that D[i]=k+1 if a colored k-lcp interval starts at position i and for every colored k-lcp interval starting at position i then $k \leq k-1$. ### LcLCP[i_r][χ] Computation #### Theorem For any $1 \leq i_r \leq N$ such that $id(S)[i_r] = r$, - if $LCP(\chi_1, i_r) > LCP(\chi_1, \chi_2)$ then $LCP(i_r, \chi_2) = LCP(\chi_1, \chi_2)$ - otherwise $$LCP(i_r, \chi_2) = \max\{\max\{D[x] : \chi_1 < x \le i_r\} - 1, LCP(\chi_1, \chi_2)\}$$ ### LcLCP[i_r][χ] Computation #### Theorem For any $1 \leq i_r \leq N$ such that $id(S)[i_r] = r$, - if LCP $(\chi_1, i_r) > \text{LCP}(\chi_1, \chi_2)$ then LCP $(i_r, \chi_2) = \text{LCP}(\chi_1, \chi_2)$ - otherwise $$LCP(i_r, \chi_2) = \max\{\max\{D[x] : \chi_1 < x \le i_r\} - 1, LCP(\chi_1, \chi_2)\}$$ ho Keep track of the maximum D value since the beginning of each χ -interval. | track of th | ie maximum D v | aiue sin | ce the | beginni | |----------------------|---|--------------------|--------|-------------------| | | i | $lcp(\mathcal{S})$ | D | $id(\mathcal{S})$ | | | : | : | : | : | | $\zeta \leftarrow 0$ | $\chi_1 = \operatorname{prev}(i_r, \chi)$ | | | χ | | | : | : | : | Ţ
≠ χ
1 | | | i_r | | | <i>r</i>
т | | | i: | : | : | ≠ x
1 | | | $\chi_2 = \operatorname{next}(i_r, \chi)$ | | | χ | | | : | : | : | : | ### LcLCP[i_r][χ] Computation #### Theorem For any $1 \leq i_r \leq N$ such that $id(S)[i_r] = r$, - if LCP $(\chi_1, i_r) > \text{LCP}(\chi_1, \chi_2)$ then LCP $(i_r, \chi_2) = \text{LCP}(\chi_1, \chi_2)$ - otherwise $$LCP(i_r, \chi_2) = \max\{\max\{D[x] : \chi_1 < x \le i_r\} - 1, LCP(\chi_1, \chi_2)\}$$ > Keep track of the maximum D value since the beginning of each χ -interval. | | | | | | | | | | | JcLCI | | г. | LcLC | n . | cLCP | | |----|--------|---|-----------------|---------|---|--------------|----------|----|----|-------|---|----|------|-----|------|---| | | | | | | - | | _ | Ι. | | | _ | | _ | _ | CLCP | | | # | id | S | ebwt | lcp | D | lcp_{χ} | α | ς | χ | 1 | 2 | χ | 1 | 2 | | Sorted suffixes of S | | 1 | χ | 1 | С | -1 | 0 | -1 | ∞ | | | | | | | | | \mathbf{s}_{χ} | | 2 | 1 | 0 | T | 0 | 0 | | 0 | | 0 | | | | | | | \$ ₁ | | 3 | 2 | 0 | A | 0 | 0 | | 0 | | 0 | | | | | | | \$2 | | 4 | 2 | 0 | C | 0 | 2 | | 0 | | 0 | | | | | | | A \$2 | | 5 | 2 | 0 | \$ ₂ | 1 | 0 | | 0 | | 0 | | | | | | | A C G C C G C C G G C A \$2 | | | 1 | 0 | \$1 | 1 | 4 | | 0 | | 0 | | | | | | | | | 7 | 1 | 0 | G | 4 | 0 | | 0 | | 0 | | | | | | | | | 9 | 2 | 0 | A | 3 | 5 | 0 | 0 | | 0 | | | | | | | | | 10 | χ
1 | 0 | \$ ₀ | 1 | 0 | U | ∞ | | 1 | | | | | | | A C G C G C S _χ A G A C G A T S ₁ | | 11 | 1 | 0 | G | 1 | 0 | | 1 | | 1 | | | | | | | A T \$1 | | 12 | | 1 | c | 0 | 2 | 0 | 00 | | 1 | | | | | | | | | 13 | χ
2 | 0 | G | 1 | 0 | 0 | 1 | | 1 | | | | | | | C \$χ C A \$2 | | 14 | χ | 1 | G | 1 | 3 | 1 | 00 | | 1 | | | | | | | $\begin{vmatrix} c & c & s_{\chi} \end{vmatrix}$ | | 15 | 2 | 0 | G | 2 | 0 | - | 2 | | 2 | | | | | | | CCGGCA\$ | | 16 | 2 | ō | Ğ | 3 | ő | | 2 | | 2 | | | | | | | C C G G C A \$2 | | 17 | 1 | 0 | A | 1 | 3 | | 1 | | 1 | | | | | | | CGAGACGATS | | 18 | 1 | ō | A | 3 | ő | | 1 | | 1 | | | | | | | C G A T \$1 | | 19 | χ | 1 | G | 2 | 5 | 1 | ∞ | | | | | | | | | C G C C S _X | | 20 | 2 | 0 | A | 4 | 0 | | 4 | | 4 | | | | | | | | | 21 | 2 | 0 | C | 5 | 0 | | 4 | | 4 | | | | | | | C G C C G G C A \$2 | | 22 | χ | 1 | Α | 3 | 0 | 3 | ∞ | | | | | | | | | C G C G C C S _{\chi} | | 23 | 2 | 0 | С | 2 | 0 | | 2 | | 2 | | | | | | | C G G C A \$2 | | 24 | 1 | 0 | A | 0 | 2 | | 0 | | 0 | | | | | | | G A C G A T \$1 | | 25 | 1 | 0 | C | 2 | 0 | | 0 | | 0 | | | | | | | G A G A C G A T \$1 | | 26 | 1 | 0 | C | 2 | 0 | | 0 | | 0 | | | | | | | G A T \$1 | | 27 | 2 | 0 | G | 1 | 3 | | 0 | | 0 | | | | | | | G C A \$2 | | 28 | χ | 1 | C | 2 | 4 | 0 | ∞ | | | | | | | | | G C C \$ _{\chi} | | 29 | 2 | 0 | C . | 3 | 0 | | 3 | | 3 | | | | | | | GCCGGCA\$2 | | 30 | 2 | 0 | C | 4 | 0 | | 3 | | 3 | | | | | | | GCCGGCA\$2 | | 31 | X | 1 | C | 2 | 0 | 2 | 000 | | ١. | | | | | | | G C G C C \$x | | 32 | 2 | 0 | С | 1 | 0 | | 1 | | 1 | | | | | | | G G C A \$2 | | 33 | 1 | 0 | A | 0
-1 | 0 | 1 | 0 | 1 | 0 | l | | | I | 1 | I | T \$1 | | | | | | | | | | | | Jel Cl | _ | | LcLCI | _ | cl CP | | |----------|----|----|-----------------|--------|----------|--------------|----------|----|--------------|--------|---|---|-------|---|-------|--| | | | | | | D | Ι. | | ٠. | - | | | | | _ | CLCF | Sorted suffixes of S | | # | id | S | ebwt | lcp | | lcp_{χ} | α | 5 | χ | 1 | 2 | χ | 1 | 2 | | | | 1 | χ | 1 | С | -1 | 0 | -1 | ∞ | | | | | | | | | \mathbf{s}_{χ} | | 2 | 1 | 0 | T | 0 | 0 | | 0 | | 0 | | | | | | | \$ ₁ | | 3 | 2 | 0 | A | 0 | 0 | | 0 | | 0 | | | | | | | \$2 | | 4 | 2 | 0 | C | 0 | 2 | | 0 | | 0 | | | | | | | A \$2 | | 5 | 2 | 0 | \$ ₂ | 1 | 0 | | 0 | | 0 | | | | | | | A A C G C C G C C G G C A \$2 | | 6 | 1 | 0 | \$ ₁ | 1 | 4 | | 0 | | 0 | | | | | | | | | 7 | 1 | 0 | G | 4 | 0 | | 0 | | 0 | | | | | | | A C G C G G C A \$2 | | 8 | 2 | 0 | A | 3 | 5 | | 0 | | 0 | | | | | | | | | 9 | χ | 1 | \$0 | 4 | 0 | 0 | ∞ | | | | | | | | | A C G C G C C \$\chi_{\chi} | | 10 | 1 | 0 | G | 1 | 0 | | 1 | | 1 | | ı | | | | | A G A C G A T \$1
A T \$1 | | 11 | 1 | 0 | | 1 | 0 | | 1 | | 1 | | | | | | | | | 12 | χ | 1 | C | 0 | 2 | 0 | ∞ | | | | | | | | | C S _X | | 13 | 2 | 0 | G | 1 | 0 | | 1 | | 1 | | | | | | | C A \$2 | | 14 | χ | 1 | G | 1 | 3 | 1 | ~ | 0 | _ | | | | | | | | | 15 | 2 | 0 | G | 2 | 0 | | 2 2 | | 2 | | | | | | | | | 16 | 2 | 0 | G | | 0 | | | | 2 | | | | | | | | | 17 | 1 | 0 | A | 1 | 3 | | 1 | | 1 | | | | | | | C G A G A C G A T \$1 | | 18 | 1 | 0 | G | 3 | 0 | | 1 | | 1 | | | | | | | C G A T \$1 | | 19
20 | 2 | 0 | | | 5 | 1 | ∞ | | | | | | | | | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | | 21 | 2 | 0 | A
C | 4
5 | 0 | | 4 | | 4 | | | | | | | | | 22 | | | | 3 | | 3 | | | | | | | | | | | | 23 | χ | 0 | A | 2 | 0 | 3 | 2 | | 2 | | | | | | | | | 24 | 2 | 0 | C
A | 0 | 2 | | 0 | | 0 | | ı | | | | | | | 25 | 1 | 0 | Ĉ | 2 | 0 | | 0 | | 0 | | ı | | | | | G A C G A T \$ ₁
G A G A C G A T \$ ₁ | | 26 | 1 | 0 | 6 | 2 | 0 | | 0 | | 0 | | | | | | | G A T \$1 | | 27 | 2 | 0 | G | 1 | 3 | | 0 | | 0 | | ı | | | | | G C A \$2 | | 28 | | 1 | c | 2 | 4 | 0 | | | , | | | | | | | | | 29 | 2 | 0 | c | 3 | 0 | U | 3 | | 3 | | | | | | | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | | 30 | 2 | 0 | l c | 4 | 0 | | 3 | | 3 | | | | | | | | | 31 | | 1 | c | 2 | 0 | 2 | 00 | | 3 | | | | | | | G C G C C \$x | | 32 | 2 | 0 | c | 1 | 0 | _ | 1 | | 1 | | | | | | | G G C A \$2 | | 33 | 1 | lő | Ā | 0 | 0 | | 0 | | 0 | | | | | | | T \$1 | | 55 | * | ľ | _ ^ | -1 | ľ | -1 | ľ | I | ľ | l | 1 | | l | l | l | . 41 | | | | | | | | | | | Π, | lcl Cl | | | LcLC | n | cl CP | | |----|--------|---|-----------------|-----------|-----|------------------|----------|----|----------|--------|----|---|------|---|-------|--| | # | id | S | ebwt | 1. | р | T | T | | <u> </u> | 1 | 2 | | | 2 | CLCF | Sorted suffixes of S | | | _ | | C | lcp
-1 | 0 | Icp _x | α | ς. | χ | 1 | -2 | χ | 1 | | | | | 1 | χ | 1 | | | | -1 | ∞ | | | | | | | | | \$ _{\chi} | | 2 | 1 | 0 | T | 0 | 0 | | 0 | | 0 | | | | | | | \$ 1 | | 3 | 2 | 0 | A | 0 | 0 | | 0 | | 0 | | | | | | | \$2 | | 5 | 2 | 0 | \$ ₂ | 0 | 2 | | 0 | | 0 | | | | | | | A S ₂
A A C G C C
G C C G G C A S ₁ | | 6 | 1 | 0 | \$ ₁ | 1 | 4 | | 0 | | 0 | | | | | | | A A C G C C G C C G G C A \$2 | | 7 | 1 | 0 | G G | 4 | 0 | | 0 | | 0 | | | | | | | A C G A T \$1 | | 8 | 2 | 0 | A | 3 | 5 | | 0 | | 0 | | | | | | | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | | 9 | | 1 | \$0 | 4 | 0 | 0 | - | | U | | | | | | | A C G C G C C S _X | | 10 | χ
1 | 0 | ₽0
G | 1 | 0 | 0 | ∞ | | 1 | | | | | | | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | | 11 | 1 | 0 | G | 1 | l ŏ | | 1 | | 1 | | ı | | | l | | A T \$1 | | 12 | | 1 | c | 0 | 2 | 0 | 000 | | - | | | | | | | C S _X | | 13 | χ 2 | 0 | G | 1 | 0 | 0 | 1 | | 1 | | | | | | | C A \$2 | | 14 | χ | 1 | G | 1 | 3 | 1 | 000 | 0 | - | | | | | | | C C \$χ | | 15 | 2 | 0 | G | 2 | 0 | | 2 | 0 | 2 | | | 1 | | | | CCGCCGCA\$ | | 16 | 2 | ō | Ğ | 3 | 0 | 1 | 2 | - | 2 | | | | | | | C C G G C A \$2 | | 17 | 1 | 0 | A | 1 | 3 | | 1 | | 1 | | | | | | | CGAGACGAT \$1 | | 18 | 1 | ō | A | 3 | ő | | 1 | | 1 | | | | | | | C G A T \$1 | | 19 | χ | 1 | G | 2 | 5 | 1 | ∞ | | | | | | | | | C G C C S _X | | 20 | 2 | 0 | A | 4 | 0 | | 4 | | 4 | | | | | | | | | 21 | 2 | 0 | C | 5 | 0 | | 4 | | 4 | | | | | | | C G C C G G C A \$2 | | 22 | χ | 1 | Α | 3 | 0 | 3 | ∞ | | | | | | | | | C G C G C C S _X | | 23 | 2 | 0 | С | 2 | 0 | | 2 | | 2 | | | | | | | C G G C A \$2 | | 24 | 1 | 0 | A | 0 | 2 | | 0 | | 0 | | | | | | | G A C G A T \$1 | | 25 | 1 | 0 | C | 2 | 0 | | 0 | | 0 | | | | | | | G A G A C G A T \$1 | | 26 | 1 | 0 | C | 2 | 0 | | 0 | | 0 | | | | | | | G A T \$1 | | 27 | 2 | 0 | G | 1 | 3 | | 0 | | 0 | | ı | | | l | | G C A \$2 | | 28 | χ | 1 | С | 2 | 4 | 0 | ∞ | | | | | | | | | G C C \$χ | | 29 | 2 | 0 | С | 3 | 0 | | 3 | | 3 | | | | | | | G C C G C C G G C A \$2 | | 30 | 2 | 0 | C | 4 | 0 | | 3 | | 3 | | | | | | | G C C G G C A \$2 | | 31 | χ | 1 | C | 2 | 0 | 2 | ∞ | | | | | | | | | G C G C C \$x | | 32 | 2 | 0 | C | 1 | 0 | | 1 | | 1 | | ı | | | l | | G G C A \$2 | | 33 | 1 | 0 | A | 0 | 0 | l . | 0 | | 0 | | | | | | | T \$1 | | | | | | -1 | 1 | -1 | 1 | 1 | l | | 1 | | l | l | | | | | | | | | | | | | | lcl Cl | | | | | 1.00 | | |----------|-----|---|-----------------|-----|---|--------------|----------|---|----|--------|---|---|-------|---|------|--| | - | _ | _ | _ | | _ | | _ | _ | | JcLCI | | | LcLCI | _ | cLCP | | | # | id | S | ebwt | lcp | D | lcp_{χ} | α | ς | χ | 1 | 2 | χ | 1 | 2 | | Sorted suffixes of S | | 1 | χ | 1 | С | -1 | 0 | -1 | ∞ | | | | | | | | | \$ _X | | 2 | 1 | 0 | T | 0 | 0 | | 0 | | 0 | | | | | | | \$ ₁ | | 3 | 2 | 0 | A A | 0 | 0 | | 0 | | 0 | | | | | | | \$2 | | 4
5 | 2 2 | 0 | \$ ₂ | 0 | 2 | | 0 | | 0 | | | | | | | A S ₂
A A C G C C G C C G G C A S ₂ | | 6 | 1 | 0 | \$ ₁ | 1 | 4 | | 0 | | 0 | | | | | | | A A C G C C G C C G G C A \$2 | | 7 | 1 | 0 | G | 4 | 0 | | 0 | | ő | | | | | | | $\begin{vmatrix} A & C & G & A & T & \$_1 \end{vmatrix}$ | | 8 | 2 | 0 | l ă | 3 | 5 | | 0 | | lő | | | | | | | A C G C C G G C A \$2 | | 9 | X | 1 | \$0 | 4 | 0 | 0 | ∞ | | | | | | | | | A C G C G C C S _X | | 10 | 1 | 0 | G | 1 | 0 | | 1 | | 1 | | | | | | | A G A C G A T \$1 | | 11 | 1 | 0 | G | 1 | 0 | | 1 | | 1 | | | | | | | A T \$1 | | 12 | X | 1 | C | 0 | 2 | 0 | ∞ | | | | | | | | | C \$ _{\chi} | | 13 | 2 | 0 | G | 1 | 0 | | 1 | | 1 | | | | | | | C A \$2 | | 14 | χ | 1 | G | 1 | 3 | 1 | ∞ | 0 | | | | | | | | C C \$ _{\chi} | | 15 | 2 | 0 | G | 2 | 0 | | 2 | 0 | 2 | | | 1 | | | | C C G C C G G C A \$2 | | 16 | 2 | 0 | G | 3 | 0 | | 2 | 0 | 2 | | | 1 | | | | C C G G C A \$2 | | 17
18 | 1 | 0 | A
A | 1 3 | 3 | | 1 1 | | 1 | | | | | | | C G A G A C G A T \$1
C G A T \$1 | | 19 | 1 | 1 | G | 2 | 5 | 1 | ∞ | | 1 | | | | | | | C G C S _X | | 20 | 2 | 0 | A | 4 | 0 | | 4 | | 4 | | | | | | | | | 21 | 2 | 0 | Ιĉ | 5 | ő | | 4 | | 4 | | | | | | | | | 22 | χ | 1 | A | 3 | 0 | 3 | ∞ | | | | | | | | | C G C G C C S _X | | 23 | 2 | 0 | С | 2 | 0 | | 2 | | 2 | | | | | | | C G G C A \$2 | | 24 | 1 | 0 | A | 0 | 2 | | 0 | | 0 | | | | | | | G A C G A T \$1 | | 25 | 1 | 0 | C | 2 | 0 | | 0 | | 0 | | | | | | | G A G A C G A T \$1 | | 26 | 1 | 0 | C . | 2 | 0 | | 0 | | 0 | | | | | | | G A T \$1 | | 27 | 2 | 0 | G | 1 | 3 | | 0 | | 0 | | | | | | | G C A \$2 | | 28 | X | 1 | С | 2 | 4 | 0 | ∞ | | | | | | | | | G C C S _X | | 29
30 | 2 2 | 0 | c | 3 | 0 | | 3 | | 3 | | | | | | | G C C G C C G G C A \$2
G C C G G C A \$2 | | 31 | _ | 1 | c | 2 | 0 | 2 | ∞ | | 3 | | | | | | | G C G C C \$x | | 32 | 2 | 0 | C | 1 | 0 | | 1 | | 1 | | | | | | | $G G G C A S_2$ | | 33 | 1 | 0 | Ā | 0 | 0 | | 0 | | ō | | | | | | | T \$1 | | 33 | 1 | " | l ., | -1 | ~ | -1 | ľ | | ا | | | | | | | . ** | | | | | | | | | | | Π. | JcLCI | _ | | LcLC | n | cLCP | | |----|--------|----|-----------------|-----|---|--------------|----------|----|----|-------|---|---|------|---|------|---| | | | | | | _ | Ι. | | ٠. | | | _ | | | _ | CLCP | 0.1.7 | | # | id | S | ebwt | lcp | D | lcp_{χ} | α | ς | χ | 1 | 2 | χ | 1 | 2 | | Sorted suffixes of S | | 1 | χ | 1 | С | -1 | 0 | -1 | ∞ | | | | | | | | | \mathbf{s}_{χ} | | 2 | 1 | 0 | T | 0 | 0 | | 0 | | 0 | | | | | | | \$ 1 | | 3 | 2 | 0 | A | 0 | 0 | | 0 | | 0 | | | | | | | \$2 | | 4 | 2 | 0 | C | 0 | 2 | | 0 | | 0 | | | | | | | A \$2 | | 5 | 2 | 0 | \$2 | 1 | 0 | | 0 | | 0 | | | | | | | AACGCCGCCGGCA\$2 | | 6 | 1 | 0 | \$1 | 1 | 4 | | 0 | 1 | 0 | | | | | | | A C G A G A C G A T \$1 | | 7 | 1 | 0 | G | 4 | 0 | | 0 | | 0 | | | | | | | A C G A T \$1 | | 8 | 2 | 0 | A | 3 | 5 | | 0 | | 0 | | | | | | | A C G C G C C G G C A \$2 | | 9 | χ | 0 | \$ ₀ | | 0 | 0 | 00 | | 1 | | | | | | | | | 11 | 1 | 0 | G | 1 | 0 | | 1 | 1 | 1 | | ı | | | | | A G A C G A T \$1
A T \$1 | | 12 | | 1 | C | 0 | 2 | 0 | | | 1 | | | | | | | | | 13 | χ
2 | 0 | G | 1 | 0 | U | ∞ | | 1 | | | | | | | C \$χ C A \$2 | | 14 | | 1 | G | 1 | 3 | 1 | 000 | 0 | 1 | | | | | | | | | 15 | χ
2 | 0 | G | 2 | 0 | - | 2 | 0 | 2 | | | 1 | | | | C C \$\chi_{\chi} C C G C A \$\(\frac{1}{2}\) | | 16 | 2 | lő | G | 3 | 0 | | 2 | 0 | 2 | | | 1 | | | | | | 17 | 1 | ő | Ā | 1 | 3 | | 1 | 2 | 1 | | | 2 | | | | C G A G A C G A T \$1 | | 18 | 1 | lő | Â | 3 | 0 | | 1 | - | i | | | - | | | | | | 19 | χ | 1 | Ĝ | 2 | 5 | 1 | 00 | | 1 | | | | | | | c G C c s _x | | 20 | 2 | 0 | A | 4 | 0 | - | 4 | | 4 | | | | | | | | | 21 | 2 | ő | C | 5 | ő | | 4 | | 4 | | | | | | | | | 22 | χ | 1 | A | 3 | 0 | 3 | 000 | | | | | | | | | C G C G C C \$x | | 23 | 2 | 0 | Ĉ | 2 | 0 | | 2 | | 2 | | | | | | | C G G C A \$2 | | 24 | 1 | ő | Ā | 0 | 2 | | 0 | 1 | 0 | | ı | | | | | $G A C G A T $_1$ | | 25 | 1 | ō | c | 2 | 0 | | ő | 1 | ō | | | | | | | G A G A C G A T \$1 | | 26 | 1 | 0 | c | 2 | 0 | | 0 | 1 | 0 | | ı | | | | | G A T \$1 | | 27 | 2 | 0 | G | 1 | 3 | | 0 | 1 | 0 | | | | | | | G C A \$2 | | 28 | χ | 1 | С | 2 | 4 | 0 | ∞ | | | | | | | | | G C C S | | 29 | 2 | 0 | С | 3 | 0 | | 3 | | 3 | | | | | | | GCCGGCA\$2 | | 30 | 2 | 0 | C | 4 | 0 | | 3 | 1 | 3 | | ı | | | | | G C C G G C A \$2 | | 31 | χ | 1 | С | 2 | 0 | 2 | ∞ | | | | | | | | | G C G C C \$x | | 32 | 2 | 0 | С | 1 | 0 | | 1 | | 1 | | | | | | | G G C A \$2 | | 33 | 1 | 0 | A | 0 | 0 | | 0 | 1 | 0 | | | | | | | T \$1 | | | | | | -1 | ı | -1 | 1 | 1 | 1 | | 1 | | l | | | | | | | | | | | | | | Π. | Jcl Cl | | | LcLC | n | cl CP | | |--------|--------|-----|-----------------|-----|---|------------------|----------|---|----|--------|---|---|------|---|-------|--| | | id | s | ebwt | 1. | D | L | Г . | | | | | | | 2 | CLCF | Sorted suffixes of S | | # | _ | | | lcp | | Icp _x | α | 5 | χ | 1 | 2 | χ | 1 | 2 | | | | 1 | χ | 1 | C | -1 | 0 | -1 | ∞ | | | | | | | | | \$ _{\chi} | | 2 | 1 | 0 | T | 0 | 0 | | 0 | | 0 | | | | | | | \$ 1 | | 3 | 2 | 0 | A | 0 | 0 | | 0 | | 0 | | | | | | | \$2 | | 4 | 2 | 0 | C | 0 | 2 | | 0 | | 0 | | | | | | | A A C G C C G C C G G C A \$2 | | 5
6 | 2 | 0 | \$ ₂ | 1 | 0 | | 0 | | 0 | | | | | | | | | | | | \$1 | | 4 | | | | | | | | | | | | | 7
8 | 1 | 0 | G | 3 | 0 | | 0 | | 0 | | | | | | | | | 9 | 2 | 0 | A | 4 | 5 | 0 | - | | U | | | | | | | | | 10 | χ | 0 | \$ ₀ | 1 | 0 | 0 | ∞ | | 1 | | | | | | | A C G C G C S _χ A G A C G A T \$ ₁ | | 11 | 1 | 0 | G | 1 | 0 | | 1 | | 1 | | | | | | | A G A C G A 7 \$1 | | 12 | | 1 | c | 0 | 2 | 0 | | | 1 | | | | | | | | | 13 | χ 2 | 0 | G | 1 | 0 | U | ∞ | | 1 | | | | | | | C \$\chi_C A \$\chi_2 | | 14 | | 1 | G | 1 | 3 | 1 | 000 | 0 | 1 | | | | | | | | | 15 | χ
2 | 0 | G | 2 | 0 | - | 2 | 0 | 2 | | | 1 | | | | | | 16 | 2 | ١ŏ | G | 3 | 0 | | 2 | 0 | 2 | | | 1 | | | | | | 17 | 1 | l ö | A | 1 | 3 | | 1 | 2 | 1 | | | 2 | | | | $C G A G A C G A T $_1$ | | 18 | 1 | ١ŏ | Â | 3 | 0 | | 1 | 2 | i | | | 2 | | | | | | 19 | χ | 1 | Ĝ | 2 | 5 | 1 | 00 | _ | 1 | | | - | | | | c G C c s _x | | 20 | 2 | 0 | A | 4 | 0 | - | 4 | | 4 | | | | | | | | | 21 | 2 | lõ | C | 5 | ő | | 4 | | 4 | | | | | | | | | 22 | X | 1 | A | 3 | 0 | 3 | 000 | | | | | | | | | C G C G C C \$x | | 23 | 2 | 0 | C | 2 | 0 | - | 2 | | 2 | | | | | | | C G G C A \$2 | | 24 | 1 | Ó | l A | 0 | 2 | | 0 | | 0 | | | | | | | G A C G A T \$1 | | 25 | 1 | Ó | l c | 2 | 0 | | 0 | | o | | | | | | | GAGACGAT\$ | | 26 | 1 | 0 | c | 2 | 0 | | 0 | | 0 | | | | | | | G A T \$1 | | 27 | 2 | 0 | G | 1 | 3 | | 0 | | 0 | | | | | | | G C A \$2 | | 28 | χ | 1 | С | 2 | 4 | 0 | 00 | | | | | | | | | G C C S _X | | 29 | 2 | 0 | С | 3 | 0 | | 3 | | 3 | | | | | | | GCCGCCGCA\$2 | | 30 | 2 | 0 | C | 4 | 0 | | 3 | | 3 | | | | | | | G C C G G C A \$2 | | 31 | χ | 1 | С | 2 | 0 | 2 | ∞ | | | | | | | | | G C G C C \$x | | 32 | 2 | 0 | С | 1 | 0 | | 1 | | 1 | | | | | | | G G C A \$2 | | 33 | 1 | 0 | A | 0 | 0 | | 0 | | 0 | | ı | | | l | | T \$1 | | | | 1 | | -1 | | -1 | 1 | | | | | | l | l | | | | | | | | | | | | | Π, | lcl Cl
 , | | cLCI | | cl CP | | |----------|-----|-----|-----------------|-----|-----|--------------|----------|-----|--------------|--------|---|---|------|---|-------|--| | | | | | | _ | | | | - | | | | | | CLCF | | | # | id | S | ebwt | lcp | D | lcp_{χ} | α | ζ. | χ | 1 | 2 | χ | 1 | 2 | | Sorted suffixes of S | | 1 | χ | 1 | C | -1 | 0 | -1 | ∞ | 0 | | | | | | | | \$ _X | | 2 | 1 | 0 | T | 0 | 0 | | 0 | 0 | 0 | | | 0 | | | | \$ ₁ | | 3 | 2 | 0 | A | 0 | 0 2 | | 0 | 0 | 0 | | | 0 | | | | \$2
A \$2 | | 5 | 2 | 0 | \$ ₂ | 0 | 0 | | 0 | 1 1 | 0 | | | 1 | | | | A \$2
A A C G C C G C C G G C A \$; | | 6 | 1 | 0 | \$ ₁ | 1 | 4 | | 0 | 3 | 0 | | | 3 | | | | A C G A G A C G A T \$1 | | 7 | 1 | 0 | G | 4 | 0 | | ő | 3 | 0 | | | 3 | | | | $\begin{vmatrix} A & C & G & A & T & \$_1 \end{vmatrix}$ | | 8 | 2 | 0 | Ā | 3 | 5 | | lő | 4 | 0 | | | 4 | | | | $\begin{array}{ c c c c c c c c c c c c c c c c c c c$ | | 9 | χ | 1 | \$0 | 4 | 0 | 0 | 00 | 0 | ľ | | | Ť | | | | A C G C G C C \$x | | 10 | 1 | 0 | G | 1 | 0 | , | 1 | 0 | 1 | | | 0 | | | | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | | 11 | 1 | 0 | Ğ | 1 | ő | | 1 | ١ŏ | 1 | l | | 0 | | | | A T \$1 | | 12 | χ | 1 | С | 0 | 2 | 0 | ∞ | 0 | | | | | | | | c \$χ | | 13 | 2 | 0 | G | 1 | 0 | | 1 | 0 | 1 | | | 1 | | | | C A \$2 | | 14 | χ | 1 | G | 1 | 3 | 1 | ∞ | 0 | | | | | | | | C C \$x | | 15 | 2 | 0 | G | 2 | 0 | | 2 | 0 | 2 | | | 1 | | | | C C G C C G G C A \$2 | | 16 | 2 | 0 | G | 3 | 0 | | 2 | 0 | 2 | | | 1 | | | | C C G G C A \$2 | | 17 | 1 | 0 | A | 1 | 3 | | 1 | 2 | 1 | | | 2 | | | | CGAGACGAT\$1 | | 18 | 1 | 0 | A | 3 | 0 | | 1 | 2 | 1 | | | 2 | | | | C G A T \$1 | | 19 | χ | 1 | G | 2 | 5 | 1 | ∞ | 0 | | | | | | | | C G C C \$ _{\chi} | | 20 | 2 | 0 | A | 4 | 0 | | 4 | 0 | 4 | | | 3 | | | | C G C C G G C A \$2 | | 21 | 2 | 0 | С | 5 | 0 | | 4 | 0 | 4 | | | 3 | | | | C G C C G G C A \$2 | | 22 | χ | 1 | Α | 3 | 0 | 3 | ∞ | 0 | | | | | | | | | | 23 | 2 | 0 | C | 2 | 0 | | 2 | 0 | 2 | | | 0 | | | | C G G C A \$2 | | 24 | 1 | 0 | A | 0 | 2 | | 0 | 1 | 0 | | | 1 | | | | G A C G A T \$1 | | 25 | 1 | 0 | C | 2 | 0 | | 0 | 1 | 0 | | | 1 | | | | G A G A C G A T \$1 | | 26 | 1 | 0 | C | 2 | 0 | | 0 | 1 | 0 | | | 1 | | | | G A T \$1 | | 27 | 2 | 0 | G | 1 | 3 | | 0 | 2 | 0 | | | 2 | | | | G C A \$2 | | 28 | χ | 1 | C | 2 | 4 | 0 | 3 | 0 | 1 | | | _ | | | | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | | 29
30 | 2 | 0 | C | 3 | 0 | | 3 | 2 | 3 | | | 2 | | | | G C C G C C G G C A \$2
G C C G G C A \$2 | | 31 | | 1 | c | 2 | 0 | 2 | - | 0 | 3 | | | 2 | | | | G C G C C S _Y | | 32 | 2 | 0 | c | 1 | 0 | | ∞
1 | 0 | 1 | | | 0 | | | | $G G G C A S_2$ | | 33 | 1 | 0 | Ā | 0 | 0 | | 0 | 0 | 0 | l | | 0 | | | | T \$1 | | 55 | - 1 | ١٠١ | _ ^ | -1 | ١٧ | -1 | ١٧ | 1 " | ľ | ı | | J | l | | ı | | ## Missing LcLCP[χ_1][r], UcLCP[χ_2][r] values For each χ -interval $[\chi_1,\chi_2]$, we are able to compute $\mathrm{UcLCP}[i_r][\chi]$ and $\mathrm{LcLCP}[i_r][\chi]$, but not $\mathrm{LcLCP}[\chi_1][r]$ and $\mathrm{UcLCP}[\chi_2][r]$ values in a single sequential scan. | i | $lcp(\mathcal{S})$ | $id(\mathcal{S})$ | |-----------------|--------------------|--------------------| | : | : | : | | χ_1 | | χ | | :
<i>i</i> r | ÷ | ⊺
≠ χ
⊥
r | | : | : | , | | χ_2 | | χ | | <u> </u> | : | : | What is the reason of this asymmetry? # Missing LcLCP[χ_1][r], UcLCP[χ_2][r] values (2) • The segmentation of lcp(S) in χ -intervals, induced by s_{χ} suffixes, is a shared reference amongst all the suffixes of any other color r. • However, no lcp(S) segmentation in r-intervals (induced by $s_r \in S^1$ suffixes) is maintained for suffixes of s_χ during the sequential scan. ### $LcLCP[\chi_1][r]$ Computation • In fact, it is easy to compute LcLCP[χ_1][r] if there exists a r-colored suffix in (χ_1, χ_2): $$\mathsf{LcLCP}[\chi_1][r] = \mathsf{UcLCP}[i_r][\chi]$$ ### $LcLCP[\chi_1][r]$ Computation - Backward Propagation • However, what if such a suffix does not exists? We need to look beyond χ_2 and backward propagate LcLCP[χ_2][r]: $$LcLCP[\chi_1][r] = min\{LCP(\chi_1, \chi_2), \ UcLCP[i_r][\chi]\}$$ 21 / 39 ### Previous solution: Computational Complexity #### Theorem Let S a collection of m strings partitioned into S^0 and S^1 , let $s_\chi \in S^0$. Given $\mathrm{id}(S)$, $\mathrm{lcp}(S)$ and $\mathrm{lcp}(s_\chi)$, $\mathrm{cLCP}(S)$ can be computed by sequential scans in $\mathcal{O}(N+m|s_\chi|)$ time and $\mathcal{O}(m+\max|\mathrm{lcp}(S))$ space. - Array D: in $\Theta(N)$ time and $\mathcal{O}(\max lcp(\mathcal{S}))$ space. - UcLCP[i_r][χ]/LcLCP[i_r][χ]: sequentially (forward) in $\Theta(N)$ time and $\mathcal{O}(1)$ space. - UcLCP[χ_2][r]/LcLCP[χ_1][r]: add $\mathcal{O}(m|s_\chi|)$ time and $\mathcal{O}(m)$ space for forward and backward propagation. ### Previous solution: Computational Complexity #### Theorem Let S a collection of m strings partitioned into S^0 and S^1 , let $s_\chi \in S^0$. Given $\mathrm{id}(S)$, $\mathrm{lcp}(S)$ and $\mathrm{lcp}(s_\chi)$, $\mathrm{cLCP}(S)$ can be computed by sequential scans in $\mathcal{O}(N+m|s_\chi|)$ time and $\mathcal{O}(m+\max|\mathrm{lcp}(S))$ space. - Array D: in $\Theta(N)$ time and $\mathcal{O}(\max lcp(\mathcal{S}))$ space. - UcLCP[i_r][χ]/LcLCP[i_r][χ]: sequentially (forward) in $\Theta(N)$ time and $\mathcal{O}(1)$ space. - UcLCP[χ_2][r]/LcLCP[χ_1][r]: add $\mathcal{O}(m|s_\chi|)$ time and $\mathcal{O}(m)$ space for forward and backward propagation. ...affordable for solving the (1-vs-all) multi-string ACS problem, BUT unsuitable for an all-vs-all scenario! ### Avoiding backward-forward propagation Can we compute $UcLCP[\chi_2][r]/LcLCP[\chi_1][r]$ without relying on backward-forward propagation? ### Avoiding backward-forward propagation • **Idea**: Get rid of the lcp(S) χ -induced segmentation as a shared reference for all the other suffixes, and keep track of *all* possible t-intervals, for $t \in [1, m]$. ## Avoiding backward-forward propagation (2) • Maintain $\alpha[1, m]$ such that $\alpha[t]$ keeps track of the minimum lcp value since the beginning of each t-interval: $$\alpha[t] = \min\{\mathsf{lcp}(\mathcal{S})[x] : x \in (\mathsf{prev}(i_r, t), i_r]\}$$. • Maintain $\zeta[1, m]$ such that $\zeta[t]$ keeps track of the maximum D_t value since the beginning of each t-interval: $$\zeta[t] = \max\{D_t[x] : x \in (\operatorname{prev}(i_r, t), i_r]\}$$. # Avoiding backward-forward propagation (3) • For the computation of $UcLCP[i_r][t]$, we have: $$\mathsf{UcLCP}[\mathit{i}_r][\mathit{t}] = \min\{\mathsf{lcp}(\mathcal{S})[x] : x \in (\mathit{t}_1, \mathit{i}_r]\} = \alpha[\mathit{t}]$$ • For the computation of LcLCP[i_r][t], we use Theorem 1: #### Theorem For any $1 \le i_r \le N$ such that $id(S)[i_r] = r$, - if $LCP(t_1, i_r) > LCP(t_1, t_2)$ then $LCP(i_r, t_2) = LCP(t_1, t_2)$ - otherwise $$LCP(i_r, t_2) = \max\{\max\{D_t[x] : t_1 < x \le i_r\} - 1, LCP(t_1, t_2)\}$$ # Avoiding backward-forward propagation (3) • For the computation of $UcLCP[i_r][t]$, we have: $$\mathsf{UcLCP}[\mathit{i_r}][t] = \min\{\mathsf{lcp}(\mathcal{S})[x] : x \in (\mathit{t}_1, \mathit{i_r}]\} = \alpha[t]$$ • For the computation of LcLCP[i_r][t], we use Theorem 1: #### Theorem For any $1 \leq i_r \leq N$ such that $id(S)[i_r] = r$, - if $\alpha[t] > LCP(t_1, t_2)$ then $LCP(i_r, t_2) = LCP(t_1, t_2)$ - otherwise $$LCP(i_r, t_2) = \max\{\zeta[t] - 1, LCP(t_1, t_2)\}$$ No more forward-backward propagation: purely sequential $\mathcal{O}(Nm)$ time solution for an all-vs-all ACS computation scenario! $$s_0$$ A C G C G C C s_1 A C G A G A G A C G A T $$MS(s_0, s_1)$$ Given two strings s_0 , s_1 , the matching statistics between of s_0 vs. s_1 is a $|s_0|$ -integer array such that, for any position i of s_0 , stores the length of the longest prefix of the suffix of s_0 starting at position i that is also substring of s_1 . $$s_0$$ $\stackrel{\downarrow}{A}$ $\stackrel{\downarrow}{C}$ $\stackrel{\downarrow}{G}$ $\stackrel{\downarrow}{C}$ $\stackrel{\downarrow}{G}$ $\stackrel{\downarrow}{A}$ $MS(s_0, s_1)$ 3 Given two strings s_0 , s_1 , the matching statistics between of s_0 vs. s_1 is a $|s_0|$ -integer array such that, for any position i of s_0 , stores the length of the longest prefix of the suffix of s_0 starting at position i that is also substring of s_1 . $$s_0$$ A C G C G C C s_1 A C G A G A G A G A C G A T $MS(s_0, s_1)$ 3 2 $$s_0 \quad A \quad C \quad G \quad C \quad G \quad C \quad C \quad C \quad S_1 \quad A \quad C \quad G \quad A \quad G \quad A \quad C \quad G \quad A \quad T$$ $$MS(s_0, s_1) \quad 3 \quad 2 \quad 1 \quad 2 \quad 1 \quad 1 \quad 1$$ Given two strings s_r and s_t over the alphabet Σ of size σ , ACS is computed by proceeding in the following steps: $\mathbf{0}$ MS (s_r, s_t) Given two strings s_r and s_t over the alphabet Σ of size σ , ACS is computed by proceeding in the following steps: - $\mathbf{0}$ MS (s_r, s_t) - $Score(s_r, s_t) = \frac{\sum_{j=1}^{|s_r|} MS(s_r, s_t)[j]}{|s_r|}$ Given two strings s_r and s_t over the alphabet Σ of size σ , ACS is computed by proceeding in the following steps: - \bullet MS(s_r, s_t) - Score $(s_r, s_t) = \frac{\sum_{j=1}^{|s_r|} \mathsf{MS}(s_r, s_t)[j]}{|s_r|}$ Norm $(\mathsf{Score}(s_r, s_t)) = \frac{\log_{\sigma} |s_t|}{\mathsf{Score}(s_r, s_t)} \frac{2\log_{\sigma} |s_r|}{|s_r| + 1}$ $$ACS(s_r, s_t) = \frac{Norm(Score(s_r, s_t)) + Norm(Score(s_t, s_r))}{2}$$ Given two strings s_r and s_t over the alphabet Σ of size σ , ACS is computed by proceeding in the
following steps: \bullet MS(s_r, s_t) $$Score(s_r, s_t) = \frac{\sum_{j=1}^{|s_r|} MS(s_r, s_t)[j]}{|s_r|}$$ Score $(s_r, s_t) = \frac{\sum_{j=1}^{|s_r|} MS(s_r, s_t)[j]}{|s_r|}$ Norm $(Score(s_r, s_t)) = \frac{\log_{\sigma} |s_t|}{Score(s_r, s_t)} - \frac{2 \log_{\sigma} |s_r|}{|s_r| + 1}$ $$ACS(s_r, s_t) = \frac{Norm(Score(s_r, s_t)) + Norm(Score(s_t, s_r))}{2}$$ ### Multi-String ACS Problem 1-vs-all: Compute the pairwise ACS measure between a given string $s_v \in \mathcal{S}^0$ and each string of a set \mathcal{S}^1 of m strings, simultaneously. all-vs-all: Compute the pairwise ACS measure for any pair of strings s_r , $s_t \in \mathcal{S}$. # MS with cLCP (1) ### Proposition $\mathsf{MS}(s_r, s_t)$ is a permutation of the values in $\mathsf{cLCP}(\mathcal{S})$ related to suffixes of s_r versus s_t . j_r the initial position of the r-colored suffix of rank i_r ### MS with cLCP (2) Therefore, we only need to sum up cLCP values related to suffixes of s_r versus s_t (as they are computed) for each pair of strings $s_r, s_t \in \mathcal{S}$: $$\mathsf{Score}(s_r, s_t) = \frac{\sum_{j=1}^{|s_r|} \mathsf{MS}(s_r, s_t)[j]}{|s_r|} = \left(\sum_{\substack{i_r \in [1...N] \\ \mathsf{id}(S)[i_r] = r}} \mathsf{cLCP}[i_r][t]\right) / |s_r|$$ ### Score Matrix Computation (sketch) ``` Initialize Score[1, m][1, m] = [[0, ..., 0], ..., [0, ..., 0]] for t \leftarrow 1 to m do D_t \leftarrow generate_D(t); lcp_t \leftarrow generate_lcp(t); score[][t] \leftarrow COMPUTECOLUMNSCORE(t, D_t, lcp_t, lcp(S), id(S)); COMPUTEACS(score); ``` ### Score Matrix Computation (sketch) ``` Initialize Score[1, m][1, m] = [[0, ..., 0], ..., [0, ..., 0]] for t \leftarrow 1 to m do D_t \leftarrow generate_D(t); lcp_t \leftarrow generate_lcp(t); score[][t] \leftarrow COMPUTECOLUMNSCORE(t, D_t, lcp_t, lcp(S), id(S)); COMPUTEACS(score); ``` Each column score[][t] can be computed separately from the others, provided D_t and lcp_t are pre-computed. ### Score Matrix Computation (sketch) ``` Initialize Score[1, m][1, m] = [[0, ..., 0], ..., [0, ..., 0]] for t \leftarrow 1 to m do D_t \leftarrow generate_D(t); lcp_t \leftarrow generate_lcp(t); score[][t] \leftarrow COMPUTECOLUMNSCORE(t, D_t, lcp_t, lcp(S), id(S)); COMPUTEACS(score); ``` **Straightforward parallel implementation**: distinct columns assigned to distinct threads working concurrently. ### COMPUTECOLUMNSCORE(t) ``` 1: procedure (id(S)[1, N], lcp(S)[1, N+1], D_t[1, N], lcp_t[1, |s_t|, \alpha[t], \zeta[t]) \alpha[t] \leftarrow \infty 3: \zeta[t] \leftarrow 0 h_t \leftarrow 1 \triangleright index for scanning lcp_t for i \leftarrow 1 to N do 6: if id(S)[i] \neq t then \triangleright We are inside a t-interval: [t_1, t_2] \alpha[t] \leftarrow \min\{\alpha[t], \mathsf{lcp}[i]\} 7: \zeta[t] \leftarrow \max\{\zeta[t], \mathsf{D}_t[i] - 1\} 8: if \alpha[t] > \mathsf{lcp}_t[i_t] then 9: Score[id[i]][t] + \leftarrow \alpha[t] 10: 11: else Score[id[i]][t] + \leftarrow max\{\alpha[t], \zeta[t], lcp_t[i_t]\} 12: else \triangleright A new t-interval starts, next [t_1, t_2]. 13: 14: h_t + + \alpha[t] \leftarrow \infty 15: \zeta[t] \leftarrow 0 16: ``` ### **Preliminary Experiments** - Two collections of genomes (the first one contains 932 genomes and the second one contains 4,938 genomes). - In both cases, the value $|s_\chi|$ is greater than the average length of the strings in the respective collection. - k-Mismatch Average Common Substring approach tool¹ (kmacs) with k = 0. | | Size | Min length | Max length | Max Icp | Program | Wall clock | Memory | |---|----------|------------|------------|-----------|---------------|------------|-----------| | | (Gbytes) | | | | | (mm:ss) | (Kbytes) | | 1 | 3.434 | 1,080,084 | 10,657,107 | 1,711,194 | new cLCP-mACS | 2:34 | 110,412 | | | | | | | cLCP-mACS | 13:37 | 10,716 | | | | | | | kmacs* | 23:30 | 4,213,364 | | 2 | 9.258 | 744 | 14,782,125 | 5,714,157 | new cLCP-mACS | 7:43 | 206,164 | | | | | | | cLCP-mACS | 40:21 | 10,780 | | | | | | | kmacs* | 57:43 | 9,637,964 | $|s_\chi|=5,650,368$ for the first collection and $|s_\chi|=3,571,103$ for the second one. All tests were done on a MacBook Pro (13-inch), Intel Core i7 at 3,5 GHz, with 16 GB of RAM, HDD of type SSD #### Future work - Design a dynamic version of our tool (cLCP can be efficiently auto-updated by removing o inserting strings) - Solve the many-to-many pairwise ACS problem on a collection of strings or between all strings of a collection versus all strings of another collection - Use cLCP to define new similarity measures for string collections # Thanks for your attention!