Parallel Computation of Matching Statistics and Average
Common Substring

Fabio Garofalo Daniele Greco?
Giovanna Rosone? Marinella Sciortino?!

IDipartimento di Matematica e Informatica
Universita di Palermo, ltaly

2Dipartimento di Informatica
Universita di Pisa, Italy

BITS 2019 - Analysis of Big Omics Data
June 26th, 2019

M. Sciortino (UniPA) Parallel Computation of MS and ACS June 26th, 2019 1/39

Motivation

@ Increased availability of large sets of biological sequences

@ Tools for sequence comparison a fortiori need alignment-free based
approaches

@ Most alignment-free approaches require the computation of statistics
when comparing sequences

@ Such computations may not scale well in internal memory when very
large collections of long sequences are considered

M. Sciortino (UniPA) Parallel Computation of MS and ACS June 26th, 2019 2 /39

Motivation

@ Increased availability of large sets of biological sequences

@ Tools for sequence comparison a fortiori need alignment-free based
approaches

@ Most alignment-free approaches require the computation of statistics
when comparing sequences

@ Such computations may not scale well in internal memory when very
large collections of long sequences are considered

@ Our contribution:

M. Sciortino (UniPA) Parallel Computation of MS and ACS June 26th, 2019 2 /39

Motivation

@ Increased availability of large sets of biological sequences

@ Tools for sequence comparison a fortiori need alignment-free based
approaches

@ Most alignment-free approaches require the computation of statistics
when comparing sequences
@ Such computations may not scale well in internal memory when very
large collections of long sequences are considered
@ Our contribution:
o the Colored Longest Common Prefix array: a new conceptual data

structure that uses an alignment-free approach and can be computed
via sequential scans in semi-external memory

M. Sciortino (UniPA) Parallel Computation of MS and ACS June 26th, 2019 2 /39

Motivation

@ Increased availability of large sets of biological sequences

@ Tools for sequence comparison a fortiori need alignment-free based
approaches

@ Most alignment-free approaches require the computation of statistics
when comparing sequences

@ Such computations may not scale well in internal memory when very
large collections of long sequences are considered

@ Our contribution:

o the Colored Longest Common Prefix array: a new conceptual data
structure that uses an alignment-free approach and can be computed
via sequential scans in semi-external memory

e it implicitly stores all the information necessary to compute statistics
on distinguishing, repeating, or matching substrings within collections
of strings.

M. Sciortino (UniPA) Parallel Computation of MS and ACS June 26th, 2019 2 /39

Motivation

@ Increased availability of large sets of biological sequences

@ Tools for sequence comparison a fortiori need alignment-free based
approaches

@ Most alignment-free approaches require the computation of statistics
when comparing sequences

@ Such computations may not scale well in internal memory when very
large collections of long sequences are considered
@ Our contribution:

o the Colored Longest Common Prefix array: a new conceptual data
structure that uses an alignment-free approach and can be computed
via sequential scans in semi-external memory

e it implicitly stores all the information necessary to compute statistics
on distinguishing, repeating, or matching substrings within collections
of strings.

o efficient lightweight strategy to solve the multi-string Average Common
Substring (ACS) Problem and experimental results.

M. Sciortino (UniPA) Parallel Computation of MS and ACS June 26th, 2019 2 /39

Preliminaries

Y ={ca,c,...,c} be a finite ordered alphabet

S is a collection of m strings over X

n; is the length of the string s;

A distinct end-marker symbol $; < ¢; is appended to each string s;
N =>"", ni + mis the length of the collection S

Each string (or subset of strings) is identified by a specific color

M. Sciortino (UniPA) Parallel Computation of MS and ACS June 26th, 2019 3/39

EBWT (Mantaci, Restivo, Rosone, S. 2007)

Let S = {s1,%,...,Sm} be a collection of strings.

String collection S

0 1 2 3 4 5 6

5] G C C A A C 9

B G A G C T C %

s3 T C G C T T $3
Sciortino (UniPA) Parallel Computation of MS and ACS June 26th, 2019

4 /39

EBWT (Mantaci, Restivo, Rosone, S. 2007)

Let S = {s1,%,...,Sm} be a collection of strings.

@ The extended Burrows-Wheeler Transform for a string collection S,
known as EBWT or multi-string BWT, is a reversible transformation
that produces a string (denoted by ebwt(S)) that is a permutation of
the characters of all strings in S

String collection S
1

S1
2
S3

—a|a|o
QO[O N
OO > w
==
—|a| Ao
'?

C
A
C

M. Sciortino (UniPA) Parallel Computation of MS and ACS June 26th, 2019 4 /39

EBWT (Mantaci, Restivo, Rosone, S. 2007)

Let S = {s1,%,...,Sm} be a collection of strings.

@ The extended Burrows-Wheeler Transform for a string collection S,
known as EBWT or multi-string BWT, is a reversible transformation
that produces a string (denoted by ebwt(S)) that is a permutation of
the characters of all strings in S ebwt(S) Sorted Suffixes of S

String collection S
1

S1
2
S3

—a|a|o
QO[O N
OO > w
==
—|a| Ao
'?

C
A
C

C$,
CAACS,
CCAACS;
CGCTTS$3
CTC$,
CTT$3
GAGCTCS,
GCCAACS,
GCTC$;
GCTT$3
T$3

TCS$;
TCGCTTS$3
TTS;

@ Sort all the suffixes of the strings in S;

Afaq40xLfo 40N> O>0 500

Sciortino (UniPA) Parallel Computation of MS and ACS June 26th, 2019 4 /39

EBWT (Mantaci, Restivo, Rosone, S. 2007)

Let S = {s1,%,...,Sm} be a collection of strings.

@ The extended Burrows-Wheeler Transform for a string collection S,
known as EBWT or multi-string BWT, is a reversible transformation
that produces a string (denoted by ebwt(S)) that is a permutation of
the characters of all strings in S ebwt(S) Sorted Suffixes of S

String collection S
1

S1
2
S3

—a|a|o
QO[O N
OO > w
==
—|a| Ao
'?

C
A
C

C$,
CAACS,
CCAACS;
CGCTTS$3
CTC$,
CTT$3
GAGCTCS,
GCCAACS,
GCTC$;
GCTT$3
T$3

TCS$;
TCGCTTS$3
TTS;

@ Sort all the suffixes of the strings in S;

@ The output ebwt(S) is obtained by
concatenating the symbols that (circularly)
precede the first symbol of each suffix in

the list of (lexicographically) sorted suffixes
of S.

A aq40xLo0 40N> 0 500

M. Sciortino (UniPA) Parallel Computation of MS and ACS June 26th, 2019 4 /39

LCP and Colored EBWT

@ The longest common prefix (LCP) array
of the collection S is the array lcp(S) of
length N + 1, such that lcp(S)[i], with
2 < i <N, is the length of the longest
common prefix between the suffixes
associated to the positions i and i — 1 in
ebwt(S). By default,
lep(S)[1] = lep(S)IN+1] = -1

lep(S)

id(S)

ebwt(S)

Sorted Suffixes of S

0

HFNFRFOWNHONKRRKHRERORKOO

|
-

M. Sciortino (UniPA) Parallel Computation of MS and ACS

1

WWNWWNRFNWOWNWRRNRENHERWN

Afaq40xEf o400 4>a>0~400

C$,
CAACS;
CCAACS;
CGCTT$3
CTC$;
CTT$3
GAGCTCS,
GCCAACSY,
GCTC$;
GCTTS3
T$3

TC$;
TCGCTTS$3
TTS$3

June 26th, 2019 5 /39

LCP and Colored EBWT

@ The longest common prefix (LCP) array

of the collection S is the array lcp(S) of
length N + 1, such that lcp(S)[/], with
2 < i <N, is the length of the longest
common prefix between the suffixes
associated to the positions i and i — 1 in
ebwt(S). By default,

lep(S)[1] = lep(S)[N + 1] = -1

lcp(i, j) the length of the LCP between
the suffixes at positions i and j, i.e.
min{lep(S)[/] : i < I <j}.

M. Sciortino (UniPA)

lep(S)

id(S)

ebwt(S)

Sorted Suffixes of S

0

HFNFRFOWNHONKRRKHRERORKOO

|
-

Parallel Computation of MS and ACS

1

WWNWWNRFNWOWNWRRNRENHERWN

Afaq40xEf o400 4>a>0~400

June 26th, 2019

C$,
CAACS;
CCAACS;
CGCTT$3
CTC$;
CTT$3
GAGCTCS,
GCCAACSY,
GCTC$;
GCTTS3
T$3

TC$;
TCGCTTS$3
TTS$3

5/ 39

LCP and Colored EBWT

@ The longest common prefix (LCP) array

of the collection S is the array lcp(S) of _ ,
lep(S) id(S) ebwt(S) Sorted Suffixes of S

length N + 1, such that lcp(S)[i], with 1 T c 5
2 < i< N, is the length of the longest ; : ¢ ii
common prefix between the suffixes 0 ! < ;‘*C‘gfl
associated to the positions i and i — 1 in 1 2 G AGCTC$;
ebwt(S). By default, R Pl
Icp(S)[1] = Iep(S)[N + 1] = —1 S R </ Y
@ lcp(i,j) the length of the LCP between 1 3 ¢ gggzﬂsa
the suffixes at positions i and j, i.e. (2) 5 $62 gg?rcsz
mind{lep(S)[1: 7 < 1 < J} Loy o
@ The output string ebwt(S), enhanced 0 3 7 %;TT%
with the N-integer array of colors id(S) é ?, $C3 ;géchT$3
where id(S)[i] = r, with 1 < r < m and 1 3 ¢ 7T

-

1<i<N, if ebwt(S)[/] is a symbol of
the string s, € S, is called colored
EBWT.

M. Sciortino (UniPA) Parallel Computation of MS and ACS June 26th, 2019 5 /39

Some recent lightweight implementations of EBWT and
LCP

@ Bauer, M., Cox, A., Rosone, G.: Lightweight algorithms for
constructing and inverting the BWT of string collections. Theor.
Comput. Sci. 483(0), 134-148 (2013) (known as BCR
implementation)

e Cox, A.J., Garofalo, F., Rosone, G., Sciortino, M.: Lightweight LCP
construction for very large collections of strings. J. Discrete
Algorithms 37, 17-33 (2016)

e Egidi, L., Louza, F.A., Manzini, G., Telles, G.P.: External memory
BWT and LCP computation for sequence collections with
applications. WABI 2018

o Louza, F., Telles, G., Hoffmann, S., Ciferri, C.: Generalized enhanced
suffix array construction in external memory. Algorithms Mol. Biol.
12(1), 26 (2017)

M. Sciortino (UniPA) Parallel Computation of MS and ACS June 26th, 2019 6 /39

Colored Longest Common Prefix (cLCP) array

cLCP is an (N x m)-integer array representing the longest common prefix
between any specific suffix of a (r-colored) string s, € S and the nearest suffixes
of a specific (t-colored) string s; € S in the sorted list of suffixes of S.

Colors
1 2 ... t ... m

1 —

2 [[

| |

| |

| |

Suffixes I I
Ranks Ll]

Ir x|
,,,,,,,, D e T

| |

| |

| |

. | |

N | |

L L

x = LCP value between the r-colored suffix of rank i, and the nearest t-colored
suffix in the sorted list of suffixes

M. Sciortino (UniPA) Parallel Computation of MS and ACS June 26th, 2019 7 /39

Colored LCP - Formal Definition

i lep(S) id(S)

prev(iy, t) h
Gvenl<j,<Nandt=1,...m,

how cLCP[i,][t] is defined?
prev(i,t) = max{x|1<x < i,id(S)[x]=t} 7 /
next(i, t) = min{x|i <x<N,id(S)[x]=t}

~ —*r 5 =t s

next(iy, t) h

M. Sciortino (UniPA) Parallel Computation of MS and ACS June 26th, 2019 8 /39

Colored LCP - Formal Definition

i Icp(S) id(S)
prev(iy, t) h t
Gvenl<j,<Nandt=1,...m, T
how cLCP[i;][t] is defined? Y
prev(i, t) = max{x|1<x < i,id(S)[x]=t} 7 / r
next(i,t) = min{x|i <x<N,id(S)[x]=t} jr
1
next(ir, t) | bk t

UcLCP[i][t] = LCP(prev(ir, t), i)

M. Sciortino (UniPA) Parallel Computation of MS and ACS June 26th, 2019 8 /39

Colored LCP - Formal Definition

i lep(S) id(S)

prev(iy, t) h t

Gvenl<j,<Nandt=1,...m, T
how cLCP[i,][t] is defined? j’
prev(i, t) = max{x|1<x < i,id(S)[x] =t} 7 r
next(i,t) = min{x|i <x<N,id(S)[x]=t} L
1

next(iy, t) t

Lower Colored LCP LcLCP[i][t] = LCP(ir, next(ir, t))

_ Parallel Computation of MS and ACS June 26th, 2019 8 /39

Colored LCP - Formal Definition

i lep(S) id(S)
prev(iy, t) h t
Gvenl<j,<Nandt=1,...m, T
how cLCP[i,][t] is defined? j’
prev(i, t) = max{x|1<x < i,id(S)[x] =t} 7 / r
next(i,t) = min{x|i <x<N,id(S)[x]=t} jt
: 1
next(iy, t) t

cLCP[i/][t] = max{UcLCP[i][t], LcLCP[i,][t]}

_ Parallel Computation of MS and ACS June 26th, 2019 8 /39

Colored LCP on disjoint collections

cLCP can also be defined for disjoint collections of strings.

S

-~

SO

~

-

81

v

The value cLCP[i/][t] is defined for each pair (i, t) such that id(S)[i,] = r,
t € ID and s,, s; belongs to different collections.

M. Sciortino (UniPA)

Parallel Computation of MS and ACS

June 26th, 2019

9 /39

Colored LCP on disjoint collections

cLCP can also be defined for disjoint collections of strings.

S

-~

SO

~

-

81

v

The value cLCP[i/][t] is defined for each pair (i, t) such that id(S)[i,] = r,
t € ID and s,, s; belongs to different collections.

Assume S% = {s,} and St =S\ {5, }.

M. Sciortino (UniPA)

Parallel Computation of MS and ACS

June 26th, 2019

9 /39

X — Intervals

A given string s, € SO implicitly induces a partition of Icp(S) into open intervals
delimited by consecutive suffixes having color x (or the positions 1 and N + 1 of
lcp), called y-intervals. Let us consider a position i, contained within a x-interval
such that id[i,] = r and s, € S*.

i lep(S) id(S)

X1 = prev(ir, X)

e ..
o=

=
— N

o
=<

Lo

X2 = next(ir, X)

M. Sciortino (UniPA) Parallel Computation of MS and ACS June 26th, 2019 10 / 39

X — Intervals

A given string s, € SO implicitly induces a partition of Icp(S) into open intervals
delimited by consecutive suffixes having color x (or the positions 1 and N + 1 of
lcp), called y-intervals. Let us consider a position i, contained within a x-interval
such that id[i,] = r and s, € S*.

i lep(S) id(S)

X1 = prev(ir, X)

e ..
o=

=
— N

o
=<

Lo

X2 = next(ir, X)

Inside a x-interval, how to compute UcLCP[i,][x] and LcLCP[i][x]
by a lightweight strategy?

M. Sciortino (UniPA) Parallel Computation of MS and ACS June 26th, 2019 10 / 39

UcLCP[i;][x] Computation

> Keep track of the minimum Icp value since the beginning of each y-interval.

UcLCP[i][x] = LCP(x1, ir) = min{lep[x] : x € (x1,]} = «

i lep(S) id(S)
4 00 x1 = prev(ir, X) X
1
X
1
i r
1
X
1
X2 = next(ir, x) X

M. Sciortino (UniPA) Parallel Computation of MS and ACS June 26th, 2019 11 /39

UcLCP[i;][x] Computation

> Keep track of the minimum Icp value since the beginning of each y-interval.

UcLCP[i][x] = LCP(x1, ir) = min{lep[x] : x € (x1,]} = «

i

x1 = prev(ir, x)
a < LCP(xa, i) i

x2 = next(ir, x)

M. Sciortino (UniPA)

lcp(S)

id(S)

— 0~ H;L—QX

_ Y
= 1

Parallel Computation of MS and ACS

June 26th, 2019

11 /39

12 /39

s = AACGCCGCCGGCA$,

o
< & =y
I3
o < S =
I
0s U < & I
3
Ok © & @ © <]
3
T © < =~ [& €]
[SACIRNRCRY -~ vo< ©< ~ © &
©LU VLK [LRY) VLUE &< <
LVLITHFLLUT vITL VLU S+OL CCCWA
VORULL VUTFLLLUTTL voug
[CE S 4 e) VOORLUULLBULLTFELLLUT
“ | Nl |
5 VLUVPUINE FLVUVITIVVVUPLLORIVLLOLUL
g
¢
m ST ULLLE LFIVVUVLPVVLVVYPRIIVVLVUUWL G
El
BN R I R Y S { LS CACNCACRT) SRURTACRUNE] S TRCRT) CRTNURCRTICL Y
5
@

LcLCP ‘ cLCP

Parallel Computation of MS and ACS

s1 = ACGAGACGATS,,

UcLCP

T

Icp

(UniPA

VR TSUHFOUITFLLLLLVLLITIVILVLIUILLLLLLLLUST

ebwt

S

H O OCO00O0O0OHMOOHOMOOOOHOOHMOOOOOHMOOHOO

id
X
1
2
2
2
1
1
2
X
1
1
X
2
X
2
2
1
1
X
2
2
X
2
1
1
1
2
X
2
2
X
2
1

sy = ACGCGCCS,,,

Example

12 /39

s = AACGCCGCCGGCA$,

o
< & =y
I3
o < S =
I
0s U < & I
3
Ok © & @ © <]
3
T © < =~ [& €]
[SACIRNRCRY -~ vo< ©< ~ © &
©LU VLK [LRY) VLUE &< <
LVLITHFLLUT vITL VLU S+OL CCCWA
VORULL VUTFLLLUTTL voug
[CE S 4 e) VOORLUULLBULLTFELLLUT
“ | Nl |
5 VLUVPUINE FLVUVITIVVVUPLLORIVLLOLUL
g
¢
m ST ULLLE LFIVVVLPVVLVVYPRIIVVLVUUWL G
El
B R I R Y S { LS S ACNCACRT) SRURTACRUNE] S TRCRT) CRTNURCRTICL Y
5
@

LcLCP ‘ cLCP

Parallel Computation of MS and ACS

s1 = ACGAGACGATS,,

UcLCP

N e

Icp

(UniPA

VR TSUHFOUITFLLLLLVLLITIVILVLIUILLLLLLLLUST

ebwt

S

H O OCO00O0O0OHMOOHOMOOOOHOOHMOOOOOHMOOHOO

id
X
1
2
2
2
1
1
2
X
1
1
X
2
X
2
2
1
1
X
2
2
X
2
1
1
1
2
X
2
2
X
2
1

sy = ACGCGCCS,,,

Example

12 /39

s = AACGCCGCCGGCA$,

o
< & =y
I3
o < S =
I
0s U < & I
3
Ok © & @ © <]
3
T © < =~ [& €]
[SACIRNRCRY -~ vo< ©< ~ © &
©LU VLK [LRY) VLUE &< <
LVLITHFLLUT vITL VLU S+OL CCCWA
VORULL VUTFLLLUTTL voug
[CE S 4 e) VOORLUULLBULLTFELLLUT
“ | Nl |
5 VLUVPUINE FLVUVITIVVVUPLLORIVLLOLUL
g
¢
m ST ULLLE FIVVULVVLVVYPRIIVVLVUUWL G
El
B R I S Y S { LS CACYCACRT) SRURTACRUNE] S TRCRT) CRTNURCRTICL
5
@

LcLCP ‘ cLCP

Parallel Computation of MS and ACS

s1 = ACGAGACGATS,,

UcLCP

N e

Icp

(UniPA

VR TSUHFOUITFLLLLLVLLITIVILVLIUILLLLLLLLUST

ebwt

S

H O OCO00O0O0OHMOOHOMOOOOHOOHMOOOOOHMOOHOO

id
X
1
2
2
2
1
1
2
X
1
1
X
2
X
2
2
1
1
X
2
2
X
2
1
1
1
2
X
2
2
X
2
1

sy = ACGCGCCS,,,

Example

12 /39

s = AACGCCGCCGGCA$,

s1 = ACGAGACGATS,,

(=)}
< & =y
N
o < & =
I
Ls L < & N
3
Ok © & A © < m
3
T © < =~ [& €]
[SACIRNRCRY -~ vo< ©< ~ © &
VU VUK [CIIC} VUE &< O <
LVLITHFLLUT vITL VLU S+OL CCCWA
VoOokULUOOL VLT FLLLUITUL (SRUREINN 1)
(S
[CE S 4 e) VOORLUULLBULLTFELLLUT <
%) —_— o
5 VPVPUVKE FLLVVIIVUVULVUPLVLRIVLULOUL g
¢ (%)
£ SIYLUPLLLRFIVLVVLVVLVLVLLVVLVRIIVLUVLVLLG >
3 5
BN R I R Y S { LS CACNCACRT) SRURTACRUNE] S TRCRT) CRTNURURTITY Y P
A S
=}
S
5] =
3 g
S
a
S =
El [0
3 =
@
&
~
o o
Yl =
3
]
3
= RN
E} IR
Fig o o = - = o ~
s - <
oo O M O AN AN TN NONN AN ™S N O a
AR SUSFLUITSLVLLLVLLUIIVILVIUILULULULUULS —
S
N MO OO0 0O0OHMOOMOMOOOOMOOMOOOOOMOO=OO

id
X
1
2
2
2
1
1
2
X
1
1
X
2
X
2
2
1
1
X
2
2
X
2
1
1
1
2
X
2
2
X
2
1

sy = ACGCGCCS,,,

Example

12 /39

s = AACGCCGCCGGCA$,

s1 = ACGAGACGATS,,

(=)}
< & =y
N
o < & =
I
Ls L < & N
3
Ok © & A © < m
3
T © < =~ [& €]
[SACIRNRCRY -~ vo< ©< ~ © &
VU VUK [CIIC} VUE &< O <
LVLITHFLLUT vITL VLU S+OL CCCWA
VoOokULUOOL VLT FLLLUITUL (SRUREINN 1)
(S
[CE S 4 e) VOORLUULULBULLTFELLLVLUT <
%) —_— o
5 VPVPUBKE FLLVVIIVULUPLVLRIVLUOUL g
¢ (%)
£ SIYLUPLLLREFIVLVVVLVLVLVLLVLVLVRIIVLUVLVLLG >
3 5
B R I S Y S { LS CACNCACRT) SRURTACRUNE] S TRCRT) CRTNURCRTICL P
A S
=}
S
5] =
3 g
S
a
S =
El [0
3 =
@
&
~
o o
Yl =
3
]
3
= INENRS
E} RN
Fig o o = - = o ~
s - <
oo ot O AN A NN TN NONNAN®T N O a
AR SUSFLUITSLVLLLVLLUIIVILVIUILULULULUULS —
S
N MO OO0 0O0OHMOOMOMOOOOMOOMOOOOOMOO=OO

id
X
1
2
2
2
1
1
2
X
1
1
X
2
X
2
2
1
1
X
2
2
X
2
1
1
1
2
X
2
2
X
2
1

sy = ACGCGCCS,,,

Example

s = AACGCCGCCGGCA$,

Sorted suffixes of S

< &

o < &

[CR-SS] < &

Ok © & & © <

o< © < ~ © & & ©

vo CSW(N © < o< ~ (LS

0L LVULk g0 VUG &< <

VT FOLUT [CE 4V} [CRCKSINSINC) [CRCI

VokLOLOL VU FFLLUTTL [SEUYE

GAAHC VOLRLUULULVULLTFELLOLUT

VLVPUVKE FLOVOIIVUVLUPLLRIVLULOL

STILULLLE FIVVVLPVVLVVYPRIIVVLVULWL G

ks sl <lc <lc glc cvvvLULVVLVULUPbLVLVLVLVLLVL~

LcLCP ‘ cLCP

s1 = ACGAGACGATS,,

UcLCP

cocoooco0 e = o

NMH ¥<¥ cNOoOOO mm ~o

goococococoo gmm gm B

NrHgvvgauoocoBmm B0

Icp

cp

MoocommTme O =N

MHNNTOMAONNAN® TN O

ebwt

VU SFLIFVLLLOUL

LVITVILLUILLLULLUULS

S

HoocoocoococomoomMomO

CcocoMOOMOOOOOMOOMOO

id

sy = ACGCGCCS,,,

Example

12 /39

June 26th, 2019

Parallel Computation of MS and ACS

(UniPA

LcLCP[i][x] Computation

i lep(S) id(S)
X1 = prIeV(ir, X) X
T
X
1
ir r
1
X
1
X2 = next(ir, x) X

Problem: LcLCP[i/][x] computation would require to look forward
and to store many intermediate values.

M. Sciortino (UniPA) Parallel Computation of MS and ACS June 26th, 2019 13 /39

Colored k-lcp interval

A k-lcp interval is an interval [i,/] such that:

lep(S) suff(S)
: |
i < k :
|
> k I
|
K ?
|
|
> k ;
j I
j+1l <k |
: k

M. Sciortino (UniPA) Parallel Computation of MS and ACS June 26th, 2019 14 / 39

Colored k-lcp interval

A colored k-lcp interval is an interval [i,] such that:

lep(S) id(S) suff(S)
: : |
i < k :
|
> k r |
|
k |
|
> k t [
J _ !
j+1l1 <k : |
o k

sy and s; belong one to SO, the other to St

M. Sciortino (UniPA) Parallel Computation of MS and ACS June 26th, 2019 14 / 39

Array D

Denote with D the (N + 1)-integer array such that D[i] =k + 1 if a
colored k-Icp interval starts at position i/ and for every colored h-Icp
interval starting at position / then h < k — 1.

D id(S) suff(S)

: : } 1
i k+1 } }
t [[

| |

r | |

| |

| |

| |

| |

| |

| l

‘ l

| |

h ok

M. Sciortino (UniPA) Parallel Computation of MS and ACS June 26th, 2019 15 / 39

LcLCP[i][x] Computation

For any 1 < i, < N such that id(S)[i;] = r,
@ ifLCP(x1,iy) > LCP(x1, x2) then LCP(ir, x2) = LCP(x1, x2)
@ otherwise
LCP(ir, x2) = max{max{D[x] : x1 < x < i} — 1, LCP(x1,x2)}

M. Sciortino (UniPA) Parallel Computation of MS and ACS June 26th, 2019 16 / 39

LcLCP[i][x] Computation

For any 1 < i, < N such that id(S)[i;] = r,
@ ifLCP(x1,iy) > LCP(x1, x2) then LCP(ir, x2) = LCP(x1, x2)
@ otherwise
LCP(ir, x2) = max{max{D[x] : x1 < x < i} — 1, LCP(x1,x2)}

> Keep track of the maximum D value since the beginning of each x-interval.

i lep(S) D id(S)
C+0 X1 = prév(ir, X) X

T
#X
1

Iy r
T
#X
1

X2 = next(ir, x) X

M. Sciortino (UniPA) Parallel Computation of MS and ACS June 26th, 2019 16 / 39

LcLCP[i][x] Computation

For any 1 < i, < N such that id(S)[i;] = r,
@ if LCP(x1, i) > LCP(x1, x2) then LCP(i;, x2) = LCP(x1, x2)
@ otherwise
LCP(ir, x2) = max{max{D[x] : x1 < x < i} — 1, LCP(x1,x2)}

> Keep track of the maximum D value since the beginning of each x-interval.
i lep(S) D id(S)

x1 = prev(ir, X)

¢ < maxD(xa, ir] ir

N H
R e I

X2 = next(ir, x)

_ Parallel Computation of MS and ACS June 26th, 2019 16 / 39

Example

&
< &
© < &
[CIF~N} < &
ok L s & o <
v © < = © & & hd
VO UGS L o< 0 < ~ [T
©U LUk (LS} VLY &< <
VT FLOU o<V VOUSkUL VO
VORLOOL VuUTFLLLLUTTL vouy
[CE S 4 SXE1) VOORLUULLULTFELLLU T
“» - =
5 VLLPURE SLLLVLIIVVUUPULLRIVLULOL
¢
£ AL ULVPULUPLRLFIVVLVVVLVLLVLUVLVPRIIVLLVULLL G
El
F BN (S 6 4 4 S J SHCCAUNU) CRUE CACHERE] U LRURUI THCATRURTY OF
3
o
v
3
o
«
o
Yl
et
°
S
>
o
o
Ol
et
0
S
% cccocococo HH A AAHA ¥¥ NOOOO ®mm ~o
o)
dlgcccccco B Banm- 8t Bno000 gmm o
f5\nl o o =~ -)) [i
g
0o c o NOYTONOOONOMOOMONMOOOONOOMT OO0 0O
SlHcocormmTmer MO M HAM A MmN OMNONN T ND TN O
EURSUEFOTELLULLLLITIVIUILIVLLLLLUUS
S

S

©C0C0O0OHMOOHOHMOOOOMOOMOOOO

omMoomOoO

NN HHO X 2O AN HH XA N RN

17 / 39

June 26th, 2019

(%]
[}
<
o
=
®©
1%}
=
«—
o
<
]
=
©
3
=
a
=
o
()
K}
©
o
©
a

Example

&
< &
© < &
[CIF~N} < &
ok L s & o <
v © < = © & & hd
VO UGS L o< 0 < ~ [T
©U LUk (LS} VLY &< <
VT FLOU o<V VOUSkUL VO
VORLOOL VuUTFLLLLUTTL vouy
[CE S 4 SXE1) VOORLUULLULTFELLLU T
“» - =
5 VLLPURE SLLLVLIIVVUUPULLRIVLULOL
¢
£ AL ULVPULUPLRLFIVVLVVVLVLLVLUVLVPRIIVLLVULLL G
El
F BN (S 6 4 4 S J SHCCAUNU) CRUE CACHERE] U LRURUI THCATRURTY OF
3
o
v
3
o
«
o
Yl
et
°
S
>
o
o
Ol
et
0
S
% cccocococo HH A AAHA ¥¥ NOOOO ®mm ~o
hd e
dlgcccccco B Banm- 8t Bno000 gmm o
f5\nl o o =~ -)) [i
g
0o c o NOYTONOOONOMOOMONMOOOONOOMT OO0 0O
SlHcocormmTmer MO M HAM A MmN OMNONN T ND TN O
EURSUEFOTELLULLLLITIVIUILIVLLLLLUUS
S

S

©C0C0O0OHMOOHOHMOOOOMOOMOOOO

omMoomOoO

NN HHO X 2O AN HH XA N RN

17 / 39

June 26th, 2019

(%]
[}
<
o
=
®©
1%}
=
«—
o
<
]
=
©
3
=
a
=
o
()
K}
©
o
©
a

Example

&
< &
© < &
[CIF~N} < &
ok L s & o <
v © < = © & & hd
VO UGS L o< 0 < ~ [T
©U LUk (LIS} VLY &< <
VT FLOU o<V VOUSkUL VO
VORLOOL VuUTFLLLLUTTL vouy
[CE S 4 SXE1) VOORLUULLLTFELLLU <
“» - =
5 VLLPURE SLLLVLIIVVUUPULLRIVLULL
¢
£ AL ULVPUPRLFIVUVLVVVLVLLVLUVLVPIRIIVLVLVULLL G
El
B BN L (S 6 4 4 S J SHCCAUNTV) CAUECACRERE] U LRURUI THCATRURTY OF
3
o
v
3
o
«
o
Yl
et
°
S
= -
o
o
Ol
et
0
S
% cocococococo HH A AAHA ¥¥ NOOOO ®mm ~o
o) ol
dlgcccccco g BrBanm— Bt Bno000 gmm o
il o o =~ -)) ~ i
0o coNOYTOoONOOONOMOOMOMOOEONOOMT OO 0O
SlHcocormTmer MO M HAM A MmN YT OMNONN T ND TN O
EURSUEFOTELLULLLLITIVIUILIVLLLLLUUS
S

S

0000 OHMOOHMOHMOOOOMOOMOOOO

omMoomOoO

NN HHO X 2O XA N H A XA N RN

17 / 39

June 26th, 2019

(%]
[}
<
o
=
®©
1%}
=
«—
o
<
]
=
©
3
=
a
=
o
()
K}
©
o
©
a

Example

&
< &
© < &
[CIF~N} < &
Ok L s & o <
v L < =~ (U & o
VO UGS L o< 0 < ~ [T
©U LUk (LIS} VLY &< <
VT FLOU o<V VOUSkUL VO
VORLOOL VuUTFLLLLUTTL vouy
[CE S 4 SXE1) VOORLUULLLTFELLLU <
“» - =
5 VLLPURE SLLLVLIIVVUUPULLRIVLULL
¢
£ AL ULVPUPRLFIVUVLVVVLVLLVLUVLVPIRIIVLVLVULLL G
El
B BN (S 6 4 S S J SHCR AUV CAUECACRERE] U LRURUI CHCATRURTY OF
3
o
v
3
o
«
o
Yl
et
°
S
= -
o
o
Ol
et
0
S
% cccocococo HH A AAHA ¥¥ NOOOO ®mm ~o
o) cole
dlgcccccco B Banm— 8t Bno000 gmm o
il o o =~ -)) ~ i
0o c o NOYTONOOONOMOOMOMOOEONOOMT OO0 00
SlHcocormTmer MO M HAM A MmN YT OMNONN T ND TN O
EURSUEFOTELLULLLLITIVIUILIVLLLLLUUS
S

S

0000 OHMOOHMOHMOOOOMOOMOOOO

omMoomOoO

NN HHO X 2O XA N H A XA N RN

17 / 39

June 26th, 2019

(%]
[}
<
o
=
®©
1%}
=
«—
o
<
]
=
©
3
=
a
=
o
()
K}
©
o
©
a

Example

&
< &
© < &
[CIF~N} < &
ok L s & o <
v © < = © & & hd
VO UGS L o< 0 < ~ [T
©U LUk (LIS} VLY &< <
VT FLOU o<V VOUSkUL VO
VORLOOL VuUTFLLLLUTTL vouy
[CE S 4 SXE1) VOORLUULLLTFELLLU <
“» - =
5 VLLPURE SLLLVLIIVVUUPULLRIVLULL
¢
£ AL ULVPUPLRLFIVVLVVVVLLVLVLVPRIIVLVLVULLL G
El
B BN (S S 4 S S J SHCCAURV) CAUECACRERE] U LRURUI THCHTRURTY OF
3
o
v
3
o
«
o
Yl
et
°
S
= [,
o
o
Ol
et
0
S
% cccocococo HH A AAMA ¥¥ NOOOO ®mm ~o
o coo
dlgcccccco B Banm— 8t no000 gmm o
il o o =~ -)) ~ i
0lcCoNOYTOoNOOONOMOOMOMOOEONOOMT OO 00
SlHcocormTmer MO M HAM A MmN YT OMNONN T ND TN O
EURSUEFOTELLULLLLITIVIUILIVLLLLLUUS
S

S

0000 OHMOOHMOHMOOOOMOOMOOOO

omMoomOoO

NN HHO X 2O XA N H A XA N RN

17 / 39

June 26th, 2019

(%]
[}
<
o
=
®©
1%}
=
«—
o
<
]
=
©
3
=
a
=
o
()
K}
©
o
©
a

Example

&
< &
© < &
[CI-NV} < &
Ok L s & o <
v © < = © & & hd
VO UGS L o< 0 < ~ [T
©U LUk (LIS} VLY &< <
VT FLOU o<V VOUSkUL VO
VORLOOL VuUTFLLLLUTTL vouy
[CE S 4 SXE1) VOORLUULLULTFELLLU T
“» - =
5 VLLPURE SLLLVLITIVVUUPLLRIVLULOL
¢
£ AL ULVPUPLRLFIVVLVVVLVLLVLUVLVPIRIIVLVLVULLL G
El
B BN (S 6 4 4 S J SHCRCAURTU) CAUE SRR E) U LRURUI THCATRURTY OF
3
o
v
3
o
«
o
Yl
et
°
S
= R
o
o
Ol
et
0
S
% coccocococo HH A AAHA ¥Y¥ NOOOO ®mm ~o
o oo
dlgcccccco = BrBanm— 8t Bno000 gmmgmo
il o o =~ -)) ~ i
0lcc o NOYTONOOONOMOOMOMOOEONOOMT OO 0O
SlHcocormTmer MO M HAM A MmN YT OMNONN T ND TN O
EURSUEFOTELLULLLLITIVIUILIVLLLLLUUS
S

S

0000 OHMOOHMOHMOOOOMOOMOOOO

omMoomOoO

NN HHO X 2O XA N H A XA N RN

17 / 39

June 26th, 2019

(%]
[}
<
o
=
®©
1%}
=
«—
o
<
]
=
©
3
=
a
=
o
()
K}
©
o
©
a

Example

&

< &
o <
[CIFSN]
Ok L
U ©

&
<

& & ©

< = O &

U o< o<

[CIENU) VL

CEY) voug

&<

=0

LVOUTHFFLLLUITL

$2

© &
<
VO

VoL

LLLRLVLLLLLUITFHLOLLUT

“» - =
s VLUPLVR G FEPVITIVLVLVLLVLORIVLVLOUL
¢
m SV LLULRE LFIVLVUVVVLVLLVLVLVPRIIVLVULUL G
E
F BN { S 4 S { S J SHCHCATHV) CRUR CACRERE) U) URURUI CNCACTRURTY OF
3

a

v

et

S
o

'

Yl

et

°

3
=| COoOHHMM S oo - --ao ™ o O -~ oo oo
~

o

Ol

et

0

3
% cococooco ~H M AAaM~M T NOOOO mm HO
Vo oo MMMt O 0000000 NNO000OHNHANSNMO OO
dlgccccccormBrBaam- 8¢+ Bno000 gmm o
il o o =~ - o o o~
D CoNOYONOOONOMOOMONOOOONOOMTOOD 00
oo oMM T M A MO M AN A NN TOMNONN N TN O
.WCTAC,\QQHGA%GGCGGGGAAGACACACCGCCCCCA
S

S

cocococomoomO~

comoomo

oo

comMoomoOO

id

17 / 39

June 26th, 2019

Parallel Computation of MS and ACS

(UniPA

Missing LcLCP[x1][r], UcLCP[x2][r] values

For each x-interval [x1, x2], we are able to compute UcLCPJi/][x] and

LcLCPJir][x] , but not LcLCP[x1][r] and UcLCP[x2][r] values in a single
sequential scan.

i lep(S) id(S)
X'1 Y
T
#X
1
iy r
T
#X
1
X2 X

What is the reason of this asymmetry?

M. Sciortino (UniPA)

Parallel Computation of MS and ACS June 26th, 2019 18 / 39

Missing LcLCP[x1][r], UcLCP[x2][r] values (2)

@ The segmentation of lcp(S) in x-intervals, induced by s, suffixes, is a
shared reference amongst all the suffixes of any other color r.

i lep(S) id(S)
xa Y
T
#X
1
iy r
T
X
L
X2 X

@ However, no Icp(S) segmentation in r-intervals (induced by s, € St
suffixes) is maintained for suffixes of s, during the sequential scan.

M. Sciortino (UniPA) Parallel Computation of MS and ACS June 26th, 2019 19 / 39

LcLCP[x1][r] Computation

@ In fact, it is easy to compute LcLCP[x1][r] if there exists a r-colored
suffix in (x1, x2):

i lep(S) id(S)
x Y
T
FXr
1
ir = next(x1, r) r
T
X
1
X2 X

LcLCP[x1][r] = UcLCP[i][x]

_ Parallel Computation of MS and ACS June 26th, 2019 20 / 39

LcLCP[x1][r] Computation - Backward Propagation

@ However, what if such a suffix does not exists?

i lep(S) id(S)
X1 X
T
X1
1
X2 X
T
*r
1
ir = next(x2, r) r

We need to look beyond y2 and backward propagate LcLCP[x>][r]:
LcLCP[x1][r] = min{LCP(x1, x2), UcLCP[i;][x]}

_ Parallel Computation of MS and ACS June 26th, 2019 21 /39

Previous solution: Computational Complexity

Let S a collection of m strings partitioned into S° and S, let s, € S°.
Given id(S), lcp(S) and Icp(sy), cLCP(S) can be computed by sequential
scans in O(N + m|s|) time and O(m + maxlcp(S)) space.

e Array D: in ©(N) time and O(maxlcp(S)) space.

o UcLCPJi][x]/LcLCPi][x]: sequentially (forward) in ©(N) time and
O(1) space.

@ UcLCP[x2][r]/LcLCP[x1][r]: add O(m|s,|) time and O(m) space for
forward and backward propagation.

M. Sciortino (UniPA) Parallel Computation of MS and ACS June 26th, 2019 22 /39

Previous solution: Computational Complexity

Let S a collection of m strings partitioned into S° and S, let s, € S°.
Given id(S), lcp(S) and Icp(sy), cLCP(S) can be computed by sequential
scans in O(N + m|s|) time and O(m + maxlcp(S)) space.

e Array D: in ©(N) time and O(maxlcp(S)) space.

o UcLCPJi][x]/LcLCPi][x]: sequentially (forward) in ©(N) time and
O(1) space.

@ UcLCP[x2][r]/LcLCP[x1][r]: add O(m|s,|) time and O(m) space for
forward and backward propagation.

...affordable for solving the (1-vs-all) multi-string ACS
problem, BUT unsuitable for an all-vs-all scenario!

M. Sciortino (UniPA) Parallel Computation of MS and ACS June 26th, 2019 23 /39

Avoiding backward-forward propagation

Can we compute UcLCP[x2][r]/LcLCP[x1][r] without relying
on backward-forward propagation?

M. Sciortino (UniPA) Parallel Computation of MS and ACS June 26th, 2019 24 / 39

Avoiding backward-forward propagation

o ldea: Get rid of the lcp(S) x-induced segmentation as a shared
reference for all the other suffixes, and keep track of all possible
t-intervals, for t € [1, m].

i lep(S) id(S)

t1 = prev(ir, t)

-

-

=
e =

to = next(iy, t)

M. Sciortino (UniPA) Parallel Computation of MS and ACS June 26th, 2019

25 / 39

Avoiding backward-forward propagation (2)

e Maintain a1, m| such that «[t] keeps track of the minimum Icp value
since the beginning of each t-interval:

aft] = min{lcp(S)[x] : x € (prev(ir, t), ir]}

e Maintain ¢[1, m] such that ([t] keeps track of the maximum D; value
since the beginning of each t-interval:

C[t] = max{D:[x] : x € (prev(iy,t),ir]}

M. Sciortino (UniPA) Parallel Computation of MS and ACS June 26th, 2019 26 / 39

Avoiding backward-forward propagation (3)

@ For the computation of UcLCP[i/][t], we have:

UcLCP[i][t] = min{lcp(S)[x] : x € (t1,i]} = at]

@ For the computation of LcLCP[i/][t], we use Theorem 1:

For any 1 < i, < N such that id(S)[i;] =r,
o ifLCP(ty, i) > LCP(ty, ty) then LCP(i,, t;) = LCP(ty,)

e otherwise

LCP(iy, t) = max{max{D[x] : 1 < x < i,} — 1, LCP(t1, &)}

M. Sciortino (UniPA) Parallel Computation of MS and ACS June 26th, 2019 27 / 39

Avoiding backward-forward propagation (3)

@ For the computation of UcLCP[i/][t], we have:

UcLCP[i][t] = min{lcp(S)[x] : x € (t1,i]} = at]

@ For the computation of LcLCP[i/][t], we use Theorem 1:

For any 1 < i, < N such that id(S)[i;] =r,
o if aft] > LCP(ty, ta) then LCP(i,, t;) = LCP(t1, t)

e otherwise

LCP(iy, t) = max{([t] — 1, LCP(t1, t2)}

No more forward-backward propagation: purely sequential O(Nm) time
solution for an all-vs-all ACS computation scenario!

M. Sciortino (UniPA) Parallel Computation of MS and ACS June 26th, 2019 28 / 39

Matching Statistics

Given two strings sp, s1, the matching statistics between of sp vs. s1 is a
|so|-integer array such that, for any position i of sp, stores the length of
the longest prefix of the suffix of sy starting at position i that is also
substring of s;.

S0
S1

> >
a0
oo
> 0
(oW
> 0
a0
()

>

~

MS(sp, s1)

M. Sciortino (UniPA) Parallel Computation of MS and ACS June 26th, 2019 29 / 39

Matching Statistics

Given two strings sp, s1, the matching statistics between of sp vs. s1 is a
|so|-integer array such that, for any position i of sp, stores the length of
the longest prefix of the suffix of sy starting at position i that is also
substring of s;.

i}

ss A C G C G C C

s A C G A G A C G AT
MS(50,51)3

M. Sciortino (UniPA) Parallel Computation of MS and ACS June 26th, 2019 29 / 39

Matching Statistics

Given two strings sp, s1, the matching statistics between of sp vs. s1 is a
|so|-integer array such that, for any position i of sp, stores the length of
the longest prefix of the suffix of sy starting at position i that is also
substring of s;.

S0
S1

> >
O O <
D O
> 0
D O
> 0
a0

MS(So,Sl) 3 2

M. Sciortino (UniPA) Parallel Computation of MS and ACS June 26th, 2019 29 / 39

Matching Statistics

Given two strings sp, s1, the matching statistics between of sp vs. s1 is a
|so|-integer array such that, for any position i of sp, stores the length of
the longest prefix of the suffix of sy starting at position i that is also
substring of s;.

1l
ss A C G
51 A C G

> 0
(oW
> 0
a0
()
>
~

MS(So,Sl) 3 2 1

M. Sciortino (UniPA) Parallel Computation of MS and ACS June 26th, 2019 29 / 39

Matching Statistics

Given two strings sp, s1, the matching statistics between of sp vs. s1 is a
|so|-integer array such that, for any position i of sp, stores the length of
the longest prefix of the suffix of sy starting at position i that is also
substring of s;.

!
s A C G C G C C
s A C G A G A C G AT

MS(So,Sl) 3 2 1 2

M. Sciortino (UniPA) Parallel Computation of MS and ACS June 26th, 2019 29 / 39

Matching Statistics

Given two strings sp, s1, the matching statistics between of sp vs. s1 is a
|so|-integer array such that, for any position i of sp, stores the length of
the longest prefix of the suffix of sy starting at position i that is also
substring of s;.

1

ss A C G C G C C

ss A C G A G A C G AT
MS(So,Sl) 3 2 1 2 1

M. Sciortino (UniPA) Parallel Computation of MS and ACS June 26th, 2019 29 / 39

Matching Statistics

Given two strings sp, s1, the matching statistics between of sp vs. s1 is a
|so|-integer array such that, for any position i of sp, stores the length of
the longest prefix of the suffix of sy starting at position i that is also
substring of s;.

!

s AC G C G C C

s A C G A G ACGAT
MS(sp,s1) 3 2 1 2 1 1

M. Sciortino (UniPA) Parallel Computation of MS and ACS June 26th, 2019 29 / 39

Matching Statistics

Given two strings sp, s1, the matching statistics between of sp vs. s1 is a
|so|-integer array such that, for any position i of sp, stores the length of
the longest prefix of the suffix of sy starting at position i that is also
substring of s;.

S0

1
C
51 C

> >
a0
D O
> 0
D O
> 0

MS(sp,s1) 3 2 1 2 1 1 1

M. Sciortino (UniPA) Parallel Computation of MS and ACS June 26th, 2019 29 / 39

Average Common Substring (ACS) measure

Given two strings s, and s; over the alphabet ¥ of size o, ACS is
computed by proceeding in the following steps:

0 MS(SH St)

M. Sciortino (UniPA) Parallel Computation of MS and ACS June 26th, 2019 30/ 39

Average Common Substring (ACS) measure

Given two strings s, and s; over the alphabet ¥ of size o, ACS is
computed by proceeding in the following steps:

Q@ MS(s;, st)
S MS(sy, 5t)]

@ Score(sy, st) =

M. Sciortino (UniPA) Parallel Computation of MS and ACS June 26th, 2019

30 / 39

Average Common Substring (ACS) measure

Given two strings s, and s; over the alphabet ¥ of size o, ACS is
computed by proceeding in the following steps:

0 MS(SH St)

Is'l Ms Sr,s)Jf
@ Score(s,,st) = 251 MS(sr, st)U]

jog, Isi] 2log, |
© Norm(Score(s;, st)) = Scorea(s) Ts |‘:_ 1r
r r

ACS(s,, 50) = Norm(Score(s;, st)) —2F Norm(Score(st, sr))

M. Sciortino (UniPA) Parallel Computation of MS and ACS June 26th, 2019

30 / 39

Average Common Substring (ACS) measure

Given two strings s, and s; over the alphabet ¥ of size o, ACS is
computed by proceeding in the following steps:

@ MS(s,,st)
S MS(sy,)]

@ Score(sy,st) =

|sr|
log, |s 2log, |s
© Norm(Score(s,, st)) = Scoi_?_l, t|5t) _ |5?1| 1r‘
rs r
Norm(Score(s;, st)) + Norm(Score(st, s,))

ACS(sr, s¢) = >

Multi-String ACS Problem

I-vs-all: Compute the pairwise ACS measure between a given string

Sy € S° and each string of a set S of m strings, simultaneously.
all-vs-all: Compute the pairwise ACS measure for any pair of strings s,
St € S.

M. Sciortino (UniPA) Parallel Computation of MS and ACS June 26th, 2019 30/ 39

MS with cLCP (1)

Proposition

MS(s,, s¢) is a permutation of the values in cLCP(S) related to suffixes of
Sy VErsus S;.

| [| |
Jr
777777 | = = = =1 MS(SH St)

|

|

: Jr the initial position of the r-colored
| suffix of rank i,
|

|

|

RIS~ P-rolicl Computation of MS and ACS June 26th, 2010 31 /39

MS with cLCP (2)

Therefore, we only need to sum up cLCP values related to suffixes of s,
versus s; (as they are computed) for each pair of strings s,,s; € S:

score

192 = ¢t m

|s’| MS(sr, st)[J
373 MS(sr,se)li] S ecPidiel | /s

i€[1...N]
id(S)[ir]=r

Score(sy, st) =

Parallel Computation of MS and ACS June 26th, 2019 32 /39

M. Sciortino (UniPA)

Score Matrix Computation (sketch)

Initialize Score[1, m|[1,m] = [[0,...,0],...,[0,...,0]]
for t + 1 tom do
Dy + generate_D(t);
lepy +— generate_lep(t);
score[][t] « cOMPUTECOLUMNSCORE(t, Dy, lcpy, lep(S), id(S));

COMPUTEACS(score);

o (UniPA) Parallel Computation of MS and ACS June 26th, 2019

33 /39

Score Matrix Computation (sketch)

Initialize Score[l,m][1,m] = [[0,...,0],...,[0,...,0]]
for t + 1 to m do
Dy + generate_D(t);
lepe < generate_lep(t);
score[][t] + cCOMPUTECOLUMNSCORE(t, Dy, lepy, Iep(S), id(S));

COMPUTEACS(score);

Each column score[][t] can be computed separately from the
others, provided D; and lcp; are pre-computed.

M. Sciortino (UniPA) Parallel Computation of MS and ACS June 26th, 2019

34 /39

Score Matrix Computation (sketch)

Initialize Score[l,m][1,m] = [[0,...,0],...,[0,...,0]]
for t + 1 to m do
Dy + generate_D(t);
lepe <+ generate_lep(t);
score[][t] + cOMPUTECOLUMNSCORE(t, Dy, lepy, lep(S), id(S));

COMPUTEA CS(score);

Straightforward parallel implementation: distinct columns
assigned to distinct threads working concurrently.

M. Sciortino (UniPA) Parallel Computation of MS and ACS June 26th, 2019

35 /39

COMPUTECOLUMNSCORE(t)

1. procedure (id(S)[1, N], lep(S)[1, N + 1], Di[1, N, lepe[1, [s¢], a[t], ([t])
2: aft] + o

3 C[t] «0

4: hy + 1 > index for scanning lcp,
5: for i <1 to N do

6 if id(S)[i] # t then > We are inside a t-interval: [t, to]
7 aft] < min{«[t], lcp[d] }

5 ([+ max{C[t], Difi] — 1}

9: if aft] > lep,[iz] then

10: Score[id[i]] [t]+ « at]

1L else

12: Score[id[i]][t]+ « max{alt], ([t], lcp,[i:] }

13 else > A new {-interval starts, next [t1, £a].
14: he + +

15: aft] + oo

16: (]« 0

M. Sciortino (UniPA) Parallel Computation of MS and ACS June 26th, 2019 36 / 39

Preliminary Experiments

@ Two collections of genomes (the first one contains 932 genomes and the
second one contains 4,938 genomes).

@ In both cases, the value |s, | is greater than the average length of the strings
in the respective collection.

@ k-Mismatch Average Common Substring approach tool* (kmacs) with

k=0.
Size Min length | Max length | Max Icp Program Wall clock | Memory
(Gbytes) (mm:ss) | (Kbytes)
1] 3.434 1,080,084 | 10,657,107 | 1,711,194 || new cLCP-mACS 2:34 110,412
cLCP-mACS 13:37 10,716
kmacs* 23:30 4,213,364
2| 9.258 744 14,782,125 | 5,714,157 || new cLCP-mACS 7:43 206,164
cLCP-mACS 40:21 10,780
kmacs* 57:43 9,637,964

|sx | = 5,650, 368 for the first collection and |sy | = 3,571, 103 for the second one.
All tests were done on a MacBook Pro (13-inch), Intel Core i7 at 3,5 GHz, with 16 GB of RAM, HDD of type SSD

1
C.-A. Leimeister and M. Burkhard, Kmacs: the k-mismatch average common substring approach to alignment-free
sequence comparison. Bioinformatics, 30(14), 2000-2008.

M. Sciortino (UniPA)

Parallel Computation of MS and ACS

June 26th, 2019 37 /39

Future work

@ Design a dynamic version of our tool (cLCP can be efficiently
auto-updated by removing o inserting strings)

@ Solve the many-to-many pairwise ACS problem on a collection of
strings or between all strings of a collection versus all strings of
another collection

@ Use cLCP to define new similarity measures for string collections

M. Sciortino (UniPA) Parallel Computation of MS and ACS June 26th, 2019 38 /39

Thanks for your attention!

M. Sciortino (UniPA) Parallel Computation of MS and ACS June 26th, 2019 39 /39

