
Approximate Pattern Matching

on Elastic-Degenerate TextI

Giulia Bernardinia, Nadia Pisantib,d, Solon P. Pissisc,d, Giovanna Rosoneb

aDepartment of Informatics, Systems and Communication (DISCo), University of Milano -
Bicocca, Italy

bDepartment of Computer Science, University of Pisa, Italy
cERABLE Team, INRIA, France

dCWI, Amsterdam, The Netherlands

Abstract

An elastic-degenerate string is a sequence of n sets of strings of total length
N . It has been introduced to represent a multiple alignment of several
closely-related sequences (e.g., pan-genome) compactly. In this representation,
substrings of these sequences that match exactly are collapsed, while in
positions where the sequences differ, all possible variants observed at that
location are listed. The natural problem that arises is finding all matches of a
deterministic pattern of length m in an elastic-degenerate text. There exists
a non-combinatorial O(nm1.381 + N)-time algorithm to solve this problem
on-line [1]. In this paper, we study the same problem under the edit distance
model and present an O(k2mG+kN)-time and O(m)-space algorithm, where
G is the total number of strings in the elastic-degenerate text and k is the
maximum edit distance allowed. We also present a simple O(kmG+kN)-time
and O(m)-space algorithm for solving the problem under Hamming distance.

Keywords: uncertain sequences, degenerate strings, elastic-degenerate

I c©2019 c©2020. This manuscript version is made available under the CC-BY-NC-ND
4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0. Final publication
available at https://doi.org/10.1016/j.tcs.2019.08.012. Please, cite the publisher
version: Giulia Bernardini, Nadia Pisanti, Solon P. Pissis, Giovanna Rosone, Approximate
pattern matching on elastic-degenerate text, Theoretical Computer Science, DOI: https:
//doi.org/10.1016/j.tcs.2019.08.012

Email addresses: giulia.bernardini@unimib.it (Giulia Bernardini),
pisanti@di.unipi.it (Nadia Pisanti), solon.pissis@cwi.nl (Solon P. Pissis),
giovanna.rosone@unipi.it (Giovanna Rosone)

Postprint version; to appear on Theoretical Computer Science

strings, pattern matching, pan-genome

1. Introduction

There is a growing interest in the notion of pan-genome [2]. In the last ten
years, with faster and cheaper sequencing technologies, re-sequencing (that is,
sequencing the genome of yet another individual of a species) became more
and more a common task in modern genome analysis workflows. By now,
a huge amount of genomic variations within the same population has been
detected (e.g., in humans for medical applications, but not only), and this
is only the beginning. With this, new challenges of functional annotation
and comparative analysis have been raised. Traditionally, a single annotated
reference genome is used as a control sequence. The reference genome is a
representative example of the genomic sequence of a species. It serves as a
reference text to which, for example, fragments of newly sequenced genomes of
individuals are mapped. Although a single reference genome provides a good
approximation of any individual genome, in loci with polymorphic variations,
mapping and sequence comparison often fail their purposes. This is where a
multiple genome, i.e., a pan-genome, would be a better reference text [3].

In the literature, many different (compressed) representations and thus
algorithms have been considered for pattern matching on a set of similar texts
[4, 5, 6, 7, 8, 9, 10]. A natural representation of pan-genomes, or fragments
of them, that we consider here are elastic-degenerate texts [11]. An elastic-
degenerate text is a sequence which compactly represents a multiple alignment
of several closely-related sequences. In this representation, substrings that
match exactly are collapsed, while in positions where the sequences differ (by
means of substitutions, insertions, and deletions of substrings), all possible
variants observed at that location are listed in so-called degenerate segments.
In the literature, other similar types of uncertain sequences have also been
considered, namely degenerate strings, where each degenerate segment can
contain only single letters (see [12, 13, 14, 15, 16] and references therein) and
generalised degenerate strings [17], where each degenerate segment contains
strings of the same length. Elastic-degenerate texts are more general than
both the previous objects, and they correspond to the Variant Call Format
(VCF), that is, the standard for storing gene sequence variations [18]. A tool
EDSO (available at https://github.com/webmasterar/edso) for creating
elastic-degenerate texts from VCF files was also made available in [19].

2

Consider, for example, the following multiple sequence alignment of three
closely-related sequences:

GAAACAAAACA

GAGAGTGA-CA

G--A-ACAACA

These sequences can be compacted into the single elastic-degenerate string:

T̃ = {G} ·

AA

AG

ε

 · {A} ·

CAA

GTG

AC

 · {A} ·
{
A

ε

}
· {CA}.

The total number of segments is the length of T̃ and the total number of letters
is the size of T̃ . The natural problem that arises is finding all matches of a
deterministic pattern P in text T̃ . We call this the Elastic-Degenerate
String Matching (EDSM) problem. The simplest version of this problem
assumes that a degenerate (sometimes called indeterminate) segment can
contain only single letters [20].

Due to the application of cataloguing human genetic variation [18], there
has been ample work in the literature on the off-line (indexing) version of the
pattern matching problem [3, 21, 22, 23, 24]. The on-line, more fundamental,
version of the EDSM problem has not been studied as much as indexing
approaches. The motivation for considering the on-line version of the problem
is to remove the hardship of building disk-based indexes or rebuilding them
with every update in the sequences. Indexes are often unwieldy, take a lot of
time and space to build, and require lots of disk space to be stored. Their
usage is therefore only convenient when the data is static or changes very
infrequently. Solutions to the on-line version can thus be beneficial for a
number of reasons: (a) efficient on-line solutions can be used in combination
with partial indexes as practical trade-offs; (b) efficient on-line solutions for
exact pattern matching can be applied for fast average-case approximate
pattern matching similar to standard strings [25]; (c) on-line solutions can
be useful when one wants to search for a few patterns in many degenerate
texts similar to standard strings such as protein or DNA sequences [26].

Previous Results. Let us denote by m the length of pattern P , by n the
length of T̃ , and by N > m the size of T̃ . A few results exist on the (exact)
EDSM problem. In [11], an algorithm for solving the EDSM problem in time

3

O(αγmn+N) and space O(N) was presented, where α and γ are parameters,
respectively representing the maximum number of strings in any degenerate
segment of the text and the maximum number of degenerate segments spanned
by any occurrence of the pattern in the text. In [27], two new algorithms
to solve the same problem in an on-line manner1 were presented: the first
one requires time O(nm2 + N) after a pre-processing stage with time and
space O(m); the second requires time O(N · dm

w
e) after a pre-processing

stage with time and space O(m · dm
w
e), where w is the size of the computer

word in the word-RAM model. Later, in [28] a new on-line algorithm was
proposed and the running time was improved to O(nm1.5

√
logm+N); in [19]

the authors extended the algorithm of [27] through adding the ability to
search for multiple patterns simultaneously, achieving time O(NdM/we) with
pre-processing time and space O(M), where M is the total length of the
patterns; a bit-parallel method, that matches the same O(N · dm

w
e) time

complexity as [27] by simpler means, was also proposed in [29], leading to a
fast and practical implementation of the algorithm. A bit-parallel algorithm
to align a sequence to a graph was also presented in [30]. Finally, [1] provides
a conditional lower bound for the EDSM problem. The authors show that
any combinatorial algorithm that solves the problem in O(nm1.5−ε +N) time,
for any ε > 0, refutes the Boolean Matrix Multiplication conjecture. Notably,
the authors also present a non-combinatorial O(nm1.381 +N)-time algorithm
that solves the EDSM problem by applying Fast Matrix Multiplication.

Our Contribution. Since genomic sequences are endowed with poly-
morphisms and sequencing errors, the existence of an exact occurrence can
result into a strong assumption. The aim of this work is to generalize the
studies of [11] and [27] for the exact case, allowing some approximation in the
occurrences of the input pattern. We suggest a simple on-line O(kmG+ kN)-
time and O(m)-space algorithm, G being the total number of strings in T̃
and k > 0 the maximum number of allowed substitutions in a pattern’s
occurrence, that is nonzero Hamming distance. Our main contribution is an
on-line O(k2mG + kN)-time and O(m)-space algorithm where the type of
edit operations allowed is extended to insertions and deletions as well, that is
nonzero edit distance. These results are good in the sense that for small values
of k the algorithms incur (essentially) no increase in time complexity with

1On-line refers to the fact that the algorithm reads the elastic-degenerate text set-by-set
in a serial manner.

4

respect to the O(nm2 +N)-time and O(m)-space algorithm presented in [27]
for the exact case. A preliminary version of this paper appeared in [31].

Structure of the Paper. Section 2 provides some preliminary definitions
and facts as well as the formal statements of the problems we address. Section 3
describes our solution for constant-sized alphabets under the edit distance
model, while Section 4 describes the algorithm under the Hamming distance
model for constant-sized alphabets. Section 5 extends these algorithms to
work for general integer alphabets. We conclude in Section 6.

2. Preliminaries

An alphabet Σ is a non-empty finite set of letters of size |Σ|. We start by
considering the case of a constant-sized alphabet, i.e., |Σ| = O(1), and then
extend all the results to general integer alphabets in Section 5. A string S on
an alphabet Σ is a sequence of elements of Σ. The set of all strings on an
alphabet Σ, including the empty string ε of length 0, is denoted by Σ∗. For
any string S, we denote by S[i . . . j] the substring of S that starts at position
i and ends at position j. In particular, S[0 . . . j] is the prefix of S that ends
at position j, and S[i . . . |S| − 1] is the suffix of S that begins at position i,
where |S| denotes the length of S.

Definition 2.1 ([27]). An elastic-degenerate (ED) string of length n on
alphabet Σ, T̃ = T̃ [0]T̃ [1] . . . T̃ [n − 1], is a finite sequence of n degenerate
letters. Every degenerate letter T̃ [i] is a finite non-empty set of strings
T̃ [i][j] ∈ Σ∗, with 0 ≤ j < |T̃ [i]|. The size N of T̃ is defined as

N =
n−1∑
i=0

|T̃ [i]|−1∑
j=0

|T̃ [i][j]|

assuming (for representation purposes only) that |ε|=1. The total number of
strings in T̃ is defined as G =

∑n−1
i=0 |T̃ [i]|.

Notice that n ≤ G ≤ N . A deterministic string is simply a string in Σ∗.
The Hamming distance is defined between two deterministic strings of equal
length as the number of positions at which the two strings have different
letters. The edit distance between two deterministic strings is defined as the
minimum total cost of a sequence of edit operations (that is, substitution,
insertion, or deletion of a letter) required to transform one string into the

5

other. Here we only count the number of edit operations, considering the
cost of each to be 1. In [27] the authors give a definition of an exact match
between a deterministic string P and an ED string T̃ ; here we extend their
definition to deal with errors.

Definition 2.2. Given an integer k > 0, we say that a string P ∈ Σm kH-
matches (resp. kE-) an ED string T̃ = T̃ [0]T̃ [1] . . . T̃ [n− 1] of length n > 1 if
all of the following hold:

• there exists a non-empty suffix X of some string S ∈ T̃ [0];

• if n > 2, there exist strings Y1 ∈ T̃ [1],. . . ,Yt ∈ T̃ [t], for 1 ≤ t ≤ n− 2;

• there exists a non-empty prefix Z of some string S ∈ T̃ [n− 1];

• the Hamming (resp. edit) distance between P and XY1 . . . YtZ (note
that Y1 . . . Yt can be ε) is no more than k.

We say that P has a kH-occurrence (resp. kE-) ending at position j in
T̃ if either there exists a kH-match (resp. kE-) between P and T̃ [i] . . . T̃ [j]
for some 0 ≤ i < j ≤ n − 1 or P is at Hamming (resp. edit) distance of at
most k from a substring of some string S ∈ T̃ [j]. We say that P has a partial
kH-occurrence (resp. kE-) P [0 . . . `], for some ` < m− 1, ending at position j
of T̃ if P [0 . . . `] kH-matches (resp. kE-) T̃ [i] . . . T̃ [j], for some 0 ≤ i ≤ j.

Example 2.3 (Running example). Consider P = GAACAA of length m = 6.
The following ED string has n = 7, N = 20, and G = 12. An 1H-occurrence
of P is underlined, and an 1E-occurrences of P is overlined.

T̃ = {G} ·

AA

AG

ε

 · {A} ·

CAA

GTG

AC

 · {A} ·
{
A

ε

}
· {CA}

A suffix tree STX for a string X of length m is a tree data structure where
edge-labels of paths from the root to the (terminal) node labelled i spell out
suffix X[i . . .m− 1] of X. For constant-sized alphabets, STX can be built in
time and space O(m). The suffix tree can be generalized to represent the
suffixes of a set of strings {X1, . . . , Xn} (denoted by STX1,...,Xn) with time
and space costs still linear in the length of the input strings (see [32], for
details).

6

Given two strings X and Y and a pair (i, j), with 0 ≤ i ≤ |X| − 1 and
0 ≤ j ≤ |Y |−1, the longest common extension at (i, j), denoted by lceX,Y (i, j),
is the length of the longest substring of X starting at position i that matches
a substring of Y starting at position j. For instance, when X = CGCGT and
Y = ACG, lceX,Y (2, 1) = 2, corresponding to the substring CG. We define
lceX,Y (i, j) = 0 when either i /∈ {0, 1, . . . , |X| − 1} or j /∈ {0, 1, . . . , |Y | − 1}.

Fact 1 ([32]). Given a string X, its STX , and a set of strings W =
{Y1, . . . , Yl} over a constant-sized alphabet, it is possible to build the gen-
eralized suffix tree STX,W extending STX , in time O(

∑l
h=1 |Yh|). Moreover,

given two strings X and Y of total length q, for each index pair (i, j), lceX,Y (i,j)
queries can be computed in constant time per query, after a pre-processing of
STX,Y that takes time and space O(q).

We will denote by ST ∗X,Y such a pre-processed tree for answering lce queries.
The time is ripe now to formally introduce the two problems considered here.

[kE-EDSM] Elastic-Degenerate String Matching under the edit
distance model:

Input: A deterministic pattern P of length m, an ED text T̃ of length n and
size N ≥ m, an integer 0 < k < m.

Output: Pairs (i, d), i being a position in T̃ where at least one kE-occurrence
of P ends and d ≤ k being the minimal number of errors (substitutions,
insertions and deletions) for occurrence i.

[kH-EDSM] Elastic-Degenerate String Matching under the Ham-
ming distance model:

Input: A deterministic pattern P of length m, an ED text T̃ of length n and
size N ≥ m, an integer 0 < k < m.

Output: Pairs (i, d), i being a position in T̃ where at least one kH-occurrence
of P ends and d ≤ k being the minimal number of substitutions for
occurrence i.

3. An Algorithm for kE-EDSM

In [28] the exact EDSM problem (that is, for k = 0) was solved in
time O(nm1.5

√
logm+N). Allowing up to k substitutions, insertions, and

7

deletions in the occurrences clearly entails a time-cost increase, but the
solution proposed here manages to keep the time-cost growth limited, solving
the kE-edsm problem in time O(k2mG+ kN), G being the total number of
strings in the ED text. We assume a constant-sized alphabet. At a high level,
the kE-edsm algorithm (pseudocode shown below) works as follows.

Pre-processing phase: build the suffix tree for the pattern P .

Searching phase: in an on-line manner, scan the text T̃ from left to right
and, for each T̃ [i]:

(1) Find the prefixes of P that are at edit distance at most k from any suffix
of some S ∈ T̃ [i]; if there exists an S ∈ T̃ [i] that is long enough, also
search for kE-occurrences of P that start and end at position i (lines 3
and 13 of the pseudocode)

(2) Try to extend at T̃ [i] each partial kE-occurrence of P which has started
earlier in T̃ (line 19)

(3) In both previous cases, if a full kE-occurrence of P also ends at T̃ [i], then
output position i; otherwise store the prefixes of P extended at T̃ [i]
(lines 4-7, 14-17, 20-28)

Step (1) of algorithm kE-edsm is implemented by algorithm kE-bord
described in Section 3.1. Step (2) is implemented by algorithm kE-ext
described in Section 3.2.

The following lemma follows directly from Fact 1.

Lemma 3.1. Given P of length m and T̃ of length n and size N , to build
ST ∗

P,T̃ [i]
, for all i ∈ [0, n− 1], requires total time O(N).

Besides STP (built once as a pre-processing step) and ST ∗
P,T̃ [i]

(built for

all T̃ [i]’s), the algorithm uses the following data structures:

L′ - a list that temporarily stores the output of functions kE-bord and
kE-ext. It is re-initialized to ∅ (lines 3, 13 and 19) for each S ∈ T̃ [i]
before executing either of the functions.

Vc - a vector of size |P | such that Vc[j] contains the lowest number of errors
for a partial kE-occurrence of P [0 . . . j] ending at T̃ [i]. For each pair
position - edit operations (j, d) in L′, if Vc[j] < d then Vc[j] is updated

8

kE-edsm(P ,STP ,T̃ ,n,k)

1 Vc[0 . . . |P | − 1]←∞; Build ST ∗
P,T̃ [0]

;

2 forall S ∈ T̃ [0] do
3 L′ ← ∅; L′ ← kE-bord(P, S, ST ∗

P,T̃ [0]
, k);

4 forall (j, d) ∈ L′ do
5 if j = |P | − 1 then
6 if d < Vc[|P | − 1] then Vc[|P | − 1]← d;
7 else insert(Lc,(j, d),Vc);

8 if Vc[|P | − 1] 6=∞ then report (0, Vc[|P | − 1]);
9 for i = 1 to n− 1 do

10 Lp ← Lc; Lc ← ∅; Vp ← Vc;
11 Vc[0 . . . |P | − 1]←∞; Build ST ∗

P,T̃ [i]
;

12 forall S ∈ T̃ [i] do
13 L′ ← ∅; L′ ← kE-bord(P, S, ST ∗

P,T̃ [i]
, k);

14 forall (j, d) ∈ L′ do
15 if j = |P | − 1 then
16 if d < Vc[|P | − 1] then Vc[|P | − 1]← d;
17 else insert(Lc,(j, d),Vc);

18 forall p ∈ Lp do
19 L′ ← ∅; L′ ← kE-ext(p+ 1,P ,S,ST ∗

P,T̃ [i]
,k − Vp[p]);

20 forall (j, d) ∈ L′ do
21 if j = |P | − 1 then
22 if d+ Vp[p] < Vc[|P | − 1] then Vc[|P | − 1]← d+ Vp[p];
23 else insert(Lc,(j, d+ Vp[p]), Vc);

24 if Vc[|P | − 1] 6=∞∨ Vp[|P | − 1] < k then
25 report (i,min{Vc[|P | − 1], Vp[|P | − 1] + 1})
26 if Vp[|P | − 1] + minS∈T̃ [i] |S| < k then

27 if Vp[|P | − 1] + minS∈T̃ [i] |S| < Vc[|P | − 1] then

28 Vc[|P | − 1]← Vp[|P | − 1] + minS∈T̃ [i] |S|

9

with d by the function insert. Vc (c stands for current) is re-initialized
to Vc[j] =∞ (line 11) for all j’s each time a new degenerate segment
T̃ [i] is read: Vc[j] =∞ denotes that a partial kE-occurrence of P [0 . . . j]
ending at T̃ [i] has not yet been found.

Lc - a list that contains the rightmost position of the prefixes of P found
in L′. It is filled in by function insert for each prefix P [0 . . . j] where
Vc[j] turns into a value 6=∞. Before reading a new degenerate segment
T̃ [i], it is copied into Lp and re-initialized to ∅ (line 10).

Lp - a list where the Lc list, filled in at iteration i − 1, is copied at the
beginning of each iteration i (line 10). Lp thus stores prefixes of P
found in L′ during the previous iteration (p stands for previous).

Vp - similarly, Vp stores a copy of the vector Vc of the previous position.

Algorithm kE-edsm needs to report each position i in T̃ where some kE-
occurrence of P ends with edit distance d ≤ k, d being the minimal such value
for position i. To this aim, the last position of Vc is updated with the following
criterion: each time we find an occurrence of P ending at T̃ [i], corresponding
to pair (m − 1, d), if Vc[m − 1] > d then we set Vc[m − 1] = d (lines 6, 16
and 22). After all S ∈ T̃ [i] have been examined, if either Vc[m − 1] 6= ∞
or Vp[m − 1] < k (i.e., an occurrence of P at the previous position implies
an occurrence at the current one by deleting a letter in any S ∈ T̃ [i]: see
Example 3.2) the algorithm outputs position i together with the minimum
between Vc[m− 1] and Vp[m− 1] + 1 (lines 24-25). If an occurrence of P at
i− 1 can lead to an occurrence at i+ 1 by deleting a whole string S ∈ T̃ [i]
and a letter of any string in T̃ [i + 1], i.e., if Vp[m − 1] + minS∈T̃ [i] |S| < k,
and if this value is smaller than Vc[m− 1], it eventually updates Vc[m− 1]
(lines 26-28).

Example 3.2 (Running example). Consider text T̃ and pattern P = GAACAA

of Example 2.3. The kE-occurrence of P beginning at position 0 and ending
at position 5 of T̃ with edit distance 0 implies an occurrence of P ending at
position 6 with 1 deletion (namely, letter C).

3.1. Algorithm kE-bord

For each i and for each S ∈ T̃ [i], Step (1) of the algorithm finds the
prefixes of P that are at distance at most k from any suffix of S, as well
as kE-occurrences of P that start and end at position i if S is long enough.
To this end, we use and modify the Landau-Vishkin algorithm [33]. We

10

first recall some relevant definitions concerning the dynamic programming
table [32].

Given an m×q dynamic programming table (m rows, q columns), the main
diagonal consists of cells (h, h) for 0 ≤ h ≤ min {m− 1, q − 1}. The diagonals
above the main diagonal are numbered 1 through (q−1); the diagonal starting
in cell (0, h) is diagonal h. The diagonals below the main one are numbered
−1 through −(m− 1); the diagonal starting in cell (h, 0) is numbered −h. A
d-path in the dynamic programming table is a path that starts in row zero
and specifies a total of exactly d edit operations (substitutions, insertions,
and deletions). A d-path is farthest reaching in diagonal h if it is a d-path
that ends in diagonal h and the index of its ending column c is ≥ to the
ending column of any other d-path ending in diagonal h.

Algorithm kE-bord takes as input a pattern P , a string S ∈ T̃ [i], ST ∗
P,T̃ [i]

and the upper bound k for edit distance; it outputs pairs (j, d), where j is the
rightmost position of the prefix of P that is at distance d ≤ k from a suffix
of S, with the minimal value of d reported for each j. In order to fulfill this
task, at a high level, the algorithm executes the following steps on a table
having P at the rows and S at the columns:

(1a) For each diagonal 0 ≤ h ≤ |S| − 1 it finds lceP,S(0, h). This specifies
the end column of the farthest reaching 0-path on each diagonal from 0
to |S| − 1.

(1b) For each 1 ≤ d ≤ k, it finds the farthest reaching d-path on diagonal
h, for each −d ≤ h ≤ |S| − 1. This path is derived from the farthest
reaching (d− 1)-paths on diagonals (h− 1), h and (h+ 1).

(1c) Any d-path that reaches the last row of the dynamic programming table
indicates a kE-occurrence of P with edit distance d that starts and ends
at position i, thus the algorithm reports (|P | − 1, d); any d-path that
reaches the end of S in row r denotes that the prefix of P ending at
P [r] is at distance d from a suffix of S, and the algorithm reports (r, d).

In Step (1b), the farthest reaching d-path on diagonal h is found by
computing and comparing the following three particular paths that end on
diagonal h:

Ri - consists of the farthest reaching (d− 1)-path on diagonal h+ 1, followed
by a vertical edge to diagonal h, and then by the maximal extension

11

along diagonal h that corresponds to identical substrings. Function Ri

takes as input the length |X| of a string X, whose letters spell the rows
of the dynamic programming table, the length |Y | of a string Y , whose
letters spell the columns, ST ∗X,Y and the pair row-column (r, c) where
the farthest reaching (d− 1)-path on diagonal h+ 1 ends. It outputs
pair (ri, ci) where path Ri ends. This path represents a letter insertion
in X.

Rd - consists of the dual case of Ri with a horizontal edge representing a
letter deletion in X.

Rs - consists of the farthest reaching (d− 1)-path on diagonal h followed by
a diagonal edge, and then by the maximal extension along diagonal h
that corresponds to identical substrings. Function Rs takes as input the
length |X| of a string X, whose letters spell the rows of the dynamic
programming table, the length |Y | of a string Y , whose letters spell
the columns, ST ∗X,Y and the pair row-column (r, c) where the farthest
reaching (d− 1)-path on diagonal h ends. It outputs pair (rs, cs) where
path Rs ends. This path represents a letter substitution.

All such functions output (−∞,−∞) if it is not possible to derive a path
from the given parameters (e.g., if r or c exceed the input dimension).

INSERT(L,(j, d),V)

1 if V [j] > d then
2 if V [j] =∞ then Insert j

in L;
3 V [j]← d;

Ri(|X|, |Y |, ST ∗X,Y , r, c)

1 if −1 ≤ r ≤ |X| − 2 ∧ −1 ≤
c ≤ |Y | − 1 then

2 `← lceX,Y (r + 2, c+ 1);
3 ri ← r + 1 + `;
4 ci ← c+ `;
5 return (ri, ci)

6 else return (−∞,−∞);

Fact 2 ([32]). The farthest reaching path on diagonal h is the path among
Ri, Rd or Rs that extends the farthest along h.

In each one of the iterations in kE-bord, a diagonal h is associated with two
variables Fp(h) and Fc(h), storing the column reached by the farthest reaching
path (FRP) on h in the previous and in the current iteration, respectively. We
define Fp(h) = Fc(h) = −∞ when h /∈ {−(|P | − 1), . . . , |S| − 1}. Notice that

12

Rd(|X|, |Y |, ST ∗X,Y , r, c)

1 if −1 ≤ r ≤ |X| − 1 ∧ −1 ≤
c ≤ |Y | − 2 then

2 `← lceX,Y (r + 1, c+ 2);
3 rd ← r + `;
4 cd ← c+ 1 + `;
5 return (rd, cd)

6 else return (−∞,−∞);

Rs(|X|, |Y |, ST ∗X,Y , r, c)

1 if −1 ≤ r ≤ |X| − 2 ∧ −1 ≤
c ≤ |Y | − 2 then

2 `← lceX,Y (r + 2, c+ 2);
3 rs ← r + 1 + `;
4 cs ← c+ 1 + `;
5 return (rs, cs)

6 else return (−∞,−∞);

at most k + |S| diagonals will be taken into account: the algorithm first finds
the lce’s between P [0] and S[j], for all 0 ≤ j ≤ |S|−1, and hence it initializes
|S| diagonals; after this, for each successive step (there are at most k of them),
it widens to the left one diagonal at a time because an initial deletion can be
added; therefore, it will consider at most k+ |S| diagonals. The only difference
between algorithm kE-bord and the algorithm by Landau and Vishkin [33]
is that kE-bord outputs pairs (`, d) corresponding to FRPs that reach the
last column of the DP table, in addition to the ones corresponding to FRPs
that reach the last row. By construction, these additional pairs correspond to
kE-matches between prefixes of P and suffixes of S. The correctness of the
Landau-Vishkin algorithm thus directly implies the following lemma:

Lemma 3.3. Algorithm kE-bord is correct.

The next lemma provides the time complexity of applying kE-bord to
every S ∈ T̃ [i], for all i = 0, . . . , n− 1.

Lemma 3.4. Given P of length m, T̃ of length n and size N , ST ∗
P,T̃ [i]

for

all i ∈ [0, n− 1], and an integer 0 < k < m, kE-bord finds the minimal edit
distance ≤ k between the prefixes of P and any suffix of S ∈ T̃ [i], as well as
the kE-occurrences of P that start and end at position i, in time O(k2G+kN),
G being the total number of strings in T̃ .

Proof. For a string S ∈ T̃ [i], for each 0 ≤ d ≤ k and each diagonal −k ≤
h ≤ |S| − 1, the kE-bord algorithm retrieves the end of three (d− 1)-paths
(constant-time operations) and computes the path extension along the diagonal
via a constant-time lce query (Fact 1). It thus takes time O(k2 + k|S|) to
find the prefixes of P that are at distance at most k from any suffix of S; the
kE-occurrences of P that start and end at position i are computed within

13

kE-bord(P, S, ST ∗
P,T̃ [i]

, k)

1 for h = −(k + 1) to −1 do Fc(h)← h− 1;
2 for h = 0 to |S| − 1 do
3 `← lceP,S(0, h);
4 Fc(h)← `− 1 + h;
5 if `+ h = |S| then report (`− 1, 0);
6 else
7 if ` = |P | then report (|P | − 1, 0);

8 for d = 1 to k do
9 for h = −(k + 1) to |S| − 1 do Fp(h)← Fc(h);

10 for h = −d to |S| − 1 do
11 (ri, ci)← Ri(|P |, |S|, ST ∗P,T̃ [i]

, Fp(h+ 1)− (h+ 1), Fp(h+ 1));

12 (rd, cd)← Rd(|P |, |S|, ST ∗P,T̃ [i]
, Fp(h− 1)− (h− 1), Fp(h− 1));

13 (rs, cs)← Rs(|P |, |S|, ST ∗P,T̃ [i]
, Fp(h)− h, Fp(h));

14 if max {ci, cd, cs} > −∞ then Fc(h)← max {ci, cd, cs};
15 else Fc(h)← Fp(h);
16 if max {ri, rd, rs} = |P | − 1 then report (|P | − 1, d);
17 if max {ci, cd, cs} = |S| − 1 then report (|S| − 1− h, d);

the same complexity. The total time is O(k2|T̃ [i]| + k
∑|T̃ [i]|−1

j=0 |S|), for all

S ∈ T̃ [i]. Since the size of T̃ is N and the total number of strings in T̃ is G,
the result follows.

Example 3.5 (Running example). Let us consider again text T̃ and pattern
P = GAACAA of Example 2.3, and let k = 1. Suppose we already executed
iteration 0, and we move to position i = 1, where we need to find the suffixes
of all S ∈ T̃ [1] that are at edit distance at most 1 from some prefix of P .
Consider then S = AA ∈ T̃ [1]. The borders at edit distance 1 are the following:

P: GAACAA GAACAA GAACAA

S : -AA AA AA

Output: (2, 1) (1, 1) (0, 1)

To find them, Algorithm kE-bord(P, S, ST ∗
P, ˜T [1]

, 1) executes the following

steps:

14

d = 0: find 0-paths on diagonals 0, 1 via lce queries. lceP,S(0, 0) = lceP,S(0, 1) =
0, thus Fc(−2) = −3, Fc(−1) = −2, Fc(0) = −1, Fc(1) = 0.

d = 1: compute farthest reaching 1-paths for diagonals -1, 0, 1 with Fp(−2) =
−3, Fp(−1) = −2, Fp(0) = −1 and Fp(1) = 0 (Figure 3).

This results in Lc = {0, 1, 2} and Vc = [1, 1, 1,∞,∞,∞].

A A

G

A

A

C

A

A

Ri
(2,1)

(a)

A A

G

A

A

C

A

A

Rs Ri

(1,1)

(b)

A A

G

A

A

C

A

A

Rs (0,1)

(c)

Figure 3: (3a) diagonal h = −1: Ri(|P |, |S|, ST ∗
P,S ,−1,−1) returns (ri, ci) = (2, 1) (as

lceP,S(1, 0) = 2), hence Fc(−1) = 1, the path exhausts S and kE-bord returns pair (2, 1).
(3b) diagonal 0: both Ri(|P |, |S|, ST ∗

P,S ,−1, 0) and Rs(|P |, |S|, ST ∗
P,S ,−1,−1) return (1, 1)

(as lceP,S(1, 1) = 1), thus they reach the end of S and kE-bord returns pair (1, 1).
(3c) diagonal 1: Rs(|P |, |S|, ST ∗

P,S ,−1, 0) returns (0, 1) (as lceP,S(1, 2) = 0), the path
consumes the whole S and kE-bord returns pair (0, 1).

3.2. Algorithm kE-ext

In Step (2), algorithm kE-edsm tries to extend each partial kE-occurrence
that has started earlier in T̃ . That is, at position i, for each p ∈ Lp and
for each string S ∈ T̃ [i], we try to extend P [0 . . . p] with S. Once again, we
modify the Landau-Vishkin algorithm [33] to our purpose: it suffices to look
for the FRPs starting at the desired position only.

kE-ext takes as input a pattern P , a string S ∈ T̃ [i], the ST ∗
P,T̃ [i]

, the

upper bound k for edit distance and the position j in P where the extension
should start; it outputs a list of distinct pairs (h, d), where h is the index of
P where the extension ends, and d is the minimum additional number of edit
operations introduced by the extension. Algorithm kE-ext performs a task

15

similar to that of kE-bord: (i) it builds a |S| × |P | DP table (rather than
a |P | × |S| table) and (ii) instead of searching for occurrences of P starting
anywhere within S, kE-ext checks whether the whole of S can extend the
prefix P [0 . . . j − 1] detected at the previous text position or whether a prefix
of S matches the suffix of P starting at P [j] (and hence a kE-occurrence of
P has been found). In order to fulfill this task, at a high level, the algorithm
executes the following steps on a table having S at the rows and P at the
columns:

(2a) It finds lceS,P (0, j) specifying the end column of the farthest reaching
0-path on diagonal j. The value of the end column of the farthest
reaching 0-path for the rest of the diagonals from j− (k+ 1) to j+k+ 1
is set to −∞ by default. This initialization ensures that any FRP on
the other diagonals will originate from diagonal j.

(2b) For each 1 ≤ d ≤ k, it finds the farthest reaching d-path on diagonal
h, for each j − d ≤ h ≤ j + d. This path is found from the farthest
reaching (d− 1)-paths on diagonals (h− 1), h and (h+ 1).

(2c) Any d-path that reaches the last row of the dynamic programming table
in column c denotes an occurrence of the whole S with edit distance d,
and the algorithm reports (c, d), c being the position in P where this
extension ends; any d-path that reaches the end of P denotes that a
prefix of S is at distance d from a suffix of P starting at position j, and
the algorithm reports (|P | − 1, d).

Example 3.6 (Running example). Let us continue our running example
with pattern P=GAACAA and text T̃ of Example 2.3; let again k = 1, and
let us consider i = 1. After computing the borders as hinted in Example
3.5, we need to extend previous partial kE-occurrences of P with the strings
in T̃ [1]. Consider thus S =AA ∈ T̃ [1], Lp = {0, 1}, Vp = [0, 1,∞,∞,∞,∞].
We try to extend P [0] with S and up to k − Vp[0] = 1 extra errors. kE-
ext(1, P, S, ST ∗

P,T̃ [1]
, 1) performs the following steps:

d = 0 : find a 0-path on diagonal j = 1: Since lceS,P (0, 1) = 2, the value
Fc(1) = 2 is updated and the algorithm reports pair (2, 0) (see Figure
4a). The value of the rest of Fc(h) for h from j − (k + 1) = −1 to
j + k + 1 = 3 is set to −∞ by default.

16

kE-ext(j, P, S, ST ∗
P,T̃ [i]

, k)

1 if S = ε then
2 for d = 0 to k do report (j + d, d);
3 else
4 for h = j − (k + 1) to j + k + 1 do Fc(h)← −∞;
5 `← lceS,P (0, j);
6 Fc(j)← `− 1 + j;
7 if ` = |S| then report (`+ j − 1, 0);
8 for d = 1 to k do
9 for h = j − (k + 1) to j + k + 1 do Fp(h)← Fc(h);

10 for h = j − d to j + d do
11 (ri, ci)← Ri(|S|, |P |, ST ∗P,T̃ [i]

, Fp(h+ 1)− (h+ 1), Fp(h+ 1));

12 (rd, cd)← Rd(|S|, |P |, ST ∗P,T̃ [i]
, Fp(h− 1)− (h− 1), Fp(h− 1));

13 (rs, cs)← Rs(|S|, |P |, ST ∗P,T̃ [i]
, Fp(h)− h, Fp(h));

14 if max {ci, cd, cs} > −∞ then Fc(h)← max {ci, cd, cs};
15 else Fc(h)← Fp(h);
16 if max {ri, rd, rs} = |S| − 1 then report (Fc(h), d);
17 if max {ci, cd, cs} = |P | − 1 then report (|P | − 1, d);

d = 1 : compute FRPs for diagonals j − d = 0, j = 1, j + d = 2. Since the
0-FRP on diagonal 1 reaches the last row of the DP table already, it is
not possible to extend it to 1-paths on lower diagonals: indeed, Ri, Rd

and Rs all return (−∞,−∞) for both diagonals 0 and 1. It is possible
to extend it to a 1-path on diagonal 2 though, as shown in Figure 4b.

This results in Lc = {0, 1, 2, 3} and Vc = [1, 1, 0, 1,∞,∞].

It is easy to see that the correctness of the Landau-Vishkin algorithm directly
implies the correctness of kE-ext, providing the following lemma.

Lemma 3.7. Algorithm kE-ext is correct.

Lemma 3.8. Given a prefix of P , a string S ∈ T̃ [i], ST ∗
P,T̃ [i]

, and an integer

0 < k < m, kE-ext extends the prefix of P with S in time O(k2).

Proof. The kE-ext algorithm does k iterations: at iteration d, for each
diagonal −d ≤ h ≤ d, the end of three paths must be retrieved (constant-time

17

G A A C A A

A

A

(a)

G A A C A A

A

A Rd

(b)

Figure 4: (4a) diagonal j = 1: lceS,P (0, 1) = 2, thus the 0-FRP reaches the last row of the
table and kE-ext correctly returns pair (2, 0).
(4b) diagonal j+d = 2: Rd(|S|, |P |, ST ∗

P,S , 1, 2) returns (rd, cd) = (1, 3) (as lceS,P (2, 4) = 0):
since rd = |S| − 1, this path reaches the last row of the DP table, and kE-ext correctly
returns pair (3, 1).

operations) and the path extension along diagonal h must be computed via a
constant-time lce query (Fact 1). The overall time for the extension is then
bounded by O(1 + 3 + · · ·+ (2k + 1))=O(k2).

Correctness. As for the correctness of algorithm kE-edsm, Lemmas 3.3 and 3.7
ensure that borders and extensions are correctly computed; we further observe
that, by storing just the minimum edit distance for every partial kE-occurrence
of P at a certain position T̃ [i], we do not miss any occurrence of P nor report
spurious occurrences. It is easy to find examples where, should we store
a single value different from the minimum, we would either fail to report
an occurrence (in case we stored a greater value), or report a spurious one
(if we stored a lower value). On the other hand, any additional distance
value beyond the minimum would be redundant according to the following
observation: assume P [0 . . . `] has two partial kE-occurrences at T̃ [i] with
distances, respectively, d and d′ > d. If P [` + 1 . . .m − 1] matches a prefix
of some string in T̃ [i+ 1] with e errors and e+ d′ ≤ k, then also e+ d ≤ k.
Therefore, it suffices to store distance d associated to P [0 . . . `] to output an
occurrence of P (or an extended partial one) at T̃ [i+ 1].

The following lemma summarizes the time complexity of kE-edsm.

Lemma 3.9. Given P of length m, T̃ of length n and total size N , and an
integer 0 < k < m, algorithm kE-edsm solves the kE-edsm problem on-line
in time O(k2mG+ kN), G being the total number of strings in T̃ .

Proof. At the i-th iteration, algorithm kE-edsm tries to extend each p ∈ Lp

with each string S ∈ T̃ [i]. By Lemma 3.1, to build ST ∗
P,T̃ [i]

, for all i ∈ [0, n−1],

requires time O(N). By Lemma 3.8, to extend a single prefix with a string S

18

can be done in time O(k2). Since in Lp there are at most |P | = m prefixes,
to extend them all with a single string S requires time O(mk2). In T̃ [i] there
are |T̃ [i]| strings, so the time cost rises to O(|T̃ [i]|mk2) for each T̃ [i], leading
to an overall time cost of O(k2mG) to perform extensions. By Lemma 3.4,
the prefixes of P that are at distance at most k from any suffix of S as well as
the kE-occurrences of P that start and end at position i can be found in time
O(k2G+ kN); the overall time complexity for the whole kE-edsm algorithm
is then O(N + k2mG + k2G + kN) = O(k2mG + kN). The algorithm is
on-line in the sense that any occurrence of the pattern ending at position i is
reported before reading T̃ [i+ 1].

We thus have the following result.

Theorem 3.10. The kE-edsm problem can be solved on-line in time O(k2mG+
kN) and space O(m) for constant-sized alphabets.

Proof. To obtain the space bound O(m), we need to slightly modify Algorithm
kE-edsm in the following way: each string S ∈ T̃ [i] is (conceptually) divided
into windows of size 2m (except for the last one, whose length is ≤ m)

overlapping by m. Let Wj be the j-th window in S, 1 ≤ j ≤ d |S|
m
e. Instead

of building ST ∗
P,T̃ [i]

for each degenerate letter T̃ [i], the algorithm now builds

ST ∗P,Wj
for each 1 ≤ j ≤ d |S|

m
e and for each S ∈ T̃ [i]: since the windows are of

size 2m, this can be done in both time and space O(m). Both algorithms kE-
bord and kE-ext require space linear in the size of the string that spell the
columns of the dynamic programming table, that is either P (in extensions)
or a window of size 2m (in borders). Each list (Lc, Lp, L

′) and each vector
(Vc, Vp) requires space O(m), so the overall required space is actually O(m).

The time bound is not affected by these modifications of the algorithm:
the maximum number of windows in T̃ [i], in fact, is max {|T̃ [i]|, dNi

m
e}, where

Ni =
∑|T̃ [i]|−1

j=0 |T̃ [i][j]|. This means that it takes timeO(m|T̃ [i]|) orO(mNi

m
) =

O(Ni) to build and pre-process every suffix tree for T̃ [i]. Algorithm kE-bord
requires time O(k2 + km) = O(km) (because k < m) for each window: again,
this must be multiplied by the number of windows in T̃ [i], so the time is
max {O(km|T̃ [i]|),O(kNi))} for T̃ [i]. Coming to algorithm kE-ext, nothing
changes, as prefixes of P can only be extended by prefixes of S, so it suffices
to consider one window for each S: it still requires time O(k2mG) over the

19

whole ED text. Summing up all these considerations, the overall time is

O(
n−1∑
i=0

[max {m|T̃ [i]|, Ni}+ max {km|T̃ [i]|, kNi}] + k2mG) =

= O(
n−1∑
i=0

[max {km|T̃ [i]|, kNi}] + k2mG)

which is clearly bounded by O(k2mG+ kN).

To sum up, the following example shows a full iteration of kE-edsm.

Example 3.11 (Running example). Consider the usual pattern P=GAACAA

and text T̃ of Example 2.3, k = 1, i = 1. Examples 3.5 and 3.6 considered
string S = AA ∈ T̃ [1] to compute borders and extensions respectively, so that
Lc = {0, 1, 2, 3} and Vc = [1, 1, 0, 1,∞,∞] so far: consider now S = AG ∈ T̃ [1].
kE-bord(P, S, ST ,

P,T̃ [1]
1) returns pair (0, 0): since 0 already belongs to Lc

and Vc[0] = 1 > 0, we set Vc[0] = 0, so that Lc = {0, 1, 2, 3} and Vc =
[0, 1, 0, 1,∞,∞]. Now kE-ext(1, P, S, ST ,

P,T̃ [1]
1) returns (2, 1): 2 is already in

the list, but since Vc[2] = 0 < 1 we leave it as it is.
kE-ext(2, P, S, ST ,

P,T̃ [1]
0) does not provide any additional extensions (as it

is not possible to extend P [0, 1] = GA with S = AG and no additional edit
operations), so we move to S = ε ∈ T̃ [1]. Of course the empty string can
only be used to extend the prefixes already matched at T̃ [0]: in this case, kE-
ext(1, P, S, ST ,

P,T̃ [1]
1) outputs pairs (1, 0) and (1, 1), kE-ext(2, P, S, ST ,

P,T̃ [1]
0)

reports pair (2, 1), which are all stored in Lc and Vc already. The whole
iteration thus ends with Lc = {0, 1, 2, 3} and Vc = [0, 1, 0, 1,∞,∞].

4. An Algorithm for kH-EDSM

The overall structure of algorithm kH-edsm (pseudocode not shown) is the
same as kE-edsm. We assume a constant-sized alphabet. The two algorithms
differ in the functions used to perform Step (1) (kH-bord rather than kE-
bord) and Step (2) (kH-ext rather than kE-ext). The new functions take
as input the same parameters as the old ones and, like them, they both return
lists of pairs (j, d) (pseudocode shown below). Unlike kE-bord and kE-ext,
with kH-bord and kH-ext such pairs now represent partial kH-occurrences
of P in T̃ .

20

kH-bord(P ,S,ST ∗
P,T̃ [i]

,k)

1 for h = 0 to |S| − 1 do
2 d← 0; j ← 0; h′ ← h;
3 while d ≤ k do
4 `← lceP,S(j, h′);
5 if h′ + ` = |S| then report (|S| − h− 1, d) ;
6 else
7 if h′ + `+ 1 = |S| ∧ d+ 1 ≤ k then report (|S| − h, d+ 1) ;
8 else
9 if j + ` = |P | then report (|P | − 1, d) ;

10 else
11 if j+ `+ 1 = |P | ∧ d+ 1 ≤ k then report (|P |− 1, d+ 1) ;
12 else d← d+ 1; j ← j + `+ 1; h′ ← h′ + `+ 1 ;

kH-ext(j,P ,S,ST ∗
P,T̃ [i]

,k)

1 if S = ε then report (j, 0);
2 else
3 d← 0; h← 0; j′ ← j;
4 while d ≤ k do
5 `← lceS,P (h, j′);
6 if h+ ` = |S| then report (j′ + `− 1, d) ;
7 else
8 if h+ `+ 1 = |S| ∧ d+ 1 ≤ k then report (j′ + `, d+ 1) ;
9 else

10 if j′ + ` = |P | then report (|P | − 1, d) ;
11 else
12 if j′+ `+ 1 = |P | ∧d+ 1 ≤ k then report (|P |− 1, d+ 1) ;
13 else d← d+ 1; h← h+ `+ 1; j′ ← j′ + `+ 1 ;

21

At the i-th iteration, for each S ∈ T̃ [i] and any position h in S, kH-bord
determines whether a prefix of P is at distance at most k from the suffix
of S starting at position h via executing up to k + 1 lce queries in the
following manner: computing ` = lceP,S(0, h), it finds out that P [0 . . . `− 1]
and S[h . . . h + ` − 1] match exactly and P [`] 6= S[h + `]. It can then skip
one position in both strings (the mismatch P [`] 6= S[h+ `]), increasing the
error-counter d by 1, and compute the lceP,S(`+ 1, h+ `+ 1). This process is
performed up to k+ 1 times, until either (i) the end of S is reached, and then
a prefix of P is at distance at most k from the suffix of S starting at h (lines
7-12 in pseudocode); or (ii) the end of P is reached, then a kH-occurrence
of P has been found (lines 13-17 in pseudocode). If the end of S nor the
end of P are reached, then more than k substitutions are required, and the
algorithm continues with the next position (that is, h+ 1) in S.

The following lemma gives the total cost of all the calls of algorithm
kH-bord in kH-edsm.

Lemma 4.1. Given P of length m, T̃ of length n and size N , the ST ∗
P,T̃ [i]

,

for all i ∈ [0, n− 1], and an integer 0 < k < m, kH-bord finds the minimal
Hamming distance ≤ k between the prefixes of P and any suffix of S ∈ T̃ [i],
as well as the kH-occurrences of P that start and end at position i, in time
O(kN).

Proof. For any position h in S, the kH-bord algorithm finds the prefix of P
that is at distance at most k from the suffix of S starting at position h in
time O(k) by performing up to k + 1 lce queries (Fact 1). Over all positions
of S, the method therefore requires time O(k|S|). Doing this for all S ∈ T̃ [i]
and for all i ∈ [0, n− 1] leads to the result.

At the i-th iteration, for each partial kH-occurrence of P started earlier
(represented by p ∈ Lp similar to algorithm kE-edsm) kH-ext tries to extend
it with a string from the current text position. To this end, for each string
S ∈ T̃ [i], it checks whether some partial kH-occurrence can be extended
with the whole S starting from position j = p + 1 of P , or whether a full
kH-occurrence can be obtained by considering only a prefix of S for the
extension. The algorithm therefore executes up to k + 1 lce queries with the
same possible outcomes and consequences mentioned for kH-bord.

Lemma 4.2. Given P of length m, T̃ of length n and size N , the ST ∗
P,T̃ [i]

, for

all i ∈ [0, n− 1], and an integer 0 < k < m, kH-ext finds all the extensions

22

of prefixes of P required by kH-edsm in time O(kmG), G being the total
number of strings in T̃ .

Proof. Algorithm kH-ext determines in time O(k) whether a partial kH-
occurrence of P can be extended by S by performing up to k+1 constant-time
lce queries (Fact 1); checking whether a full kH-occurrence is obtained by
considering only a prefix of S for the extension can be performed within the
same complexity. Since P has m different prefixes, extending all of them
costs O(km) per each string S. Since there are G such strings, the overall
time is O(kmG).

Lemma 4.3. Given P of length m, T̃ of length n and total size N , and an
integer 0 < k < m, algorithm kH-edsm solves the kH-edsm problem on-line
in time O(kmG+ kN), G being the total number of strings in T̃ .

Proof. At the i-th iteration, algorithm kH-edsm tries to extend each p ∈ Lp

with each string S ∈ T̃ [i]. By Lemma 3.1, building ST ∗
P,T̃ [i]

, for all i ∈ [0, n−1],

requires time O(N). By Lemma 4.2, extending prefixes of P stored in Lp

with each string S ∈ T̃ [i] has an overall time cost of O(kmG). By Lemma 4.1,
the prefixes of P that are at distance at most k from any suffix of S as well
as the kH-occurrences of P that start and end at position i can be found
in time O(kN) in total. Summing up, the overall time complexity for the
whole kH-edsm algorithm is then O(N + kmG+ kN) = O(kmG+ kN), as
G ≥ n. The algorithm is on-line in the sense that any occurrence of the
pattern ending at position i is reported before reading T̃ [i+ 1].

The proof of Theorem 3.10 suggests a way in which algorithm kE-edsm
can be run on-line in space O(m); it should be straightforward to see that a
similar modification of algorithm kH-edsm leads to the following result.

Theorem 4.4. The kH-edsm problem can be solved on-line in time O(kmG+
kN) and space O(m) for constant-sized alphabets.

5. Extension to General Integer Alphabets

The algorithms presented in the previous sections are designed for constant-
sized alphabets only: a straightforward switch to the general integer alphabets
case would entail an increase in the time required to build the suffix trees,
and hence in the complexity of the algorithm. In this section we show
how to extend our results to the case of general integer alphabets, while

23

maintaining the same time and space complexity. We obtain this by using
perfect hashing [34] to build the suffix tree of a window of length (at most)
2m in O(m) time for general integer alphabets. The procedure consists of a
preprocessing phase followed by the proper construction of the suffix tree.

Preprocessing: We hash the letters of pattern P using perfect hashing. For
each key, we assign a rank value from {1, . . . ,m}. This takes O(m)
(expected) time and space [34].

Construction: When reading a window W of length (at most) 2m of the
text we look up its letters using the hash table constructed during the
preprocessing phase. If a letter is in the hash table we replace it in
W by its rank value; otherwise we replace it by rank m + 1. This
operation takes O(1) time [34]. We can now construct the suffix tree of
W in O(m) time and O(m) space using Farach’s suffix tree construction
algorithm [35]. This is because string W is over {1, . . . ,m+ 1}.

We thus have the following lemma.

Lemma 5.1. Given P of length m and T̃ of length n and size N , to build
ST ∗P,Wj

for each window Wj of length 2m, 1 ≤ j ≤ d |S|
m
e, and for each S ∈ T̃ [i],

for all i ∈ [0, n− 1], requires total time O(N) for general integer alphabets.

By plugging this lemma into the algorithms of, respectively, Section 3 and
Section 4, we obtain the following results.

Theorem 5.2. The kE-edsm problem can be solved on-line in time O(k2mG+
kN) and space O(m) for general integer alphabets.

Theorem 5.3. The kH-edsm problem can be solved on-line in time O(kmG+
kN) and space O(m) for general integer alphabets.

6. Final Remarks

In this paper we introduced two algorithms for finding all approximate
matches of a pattern P of length m in an ED text T̃ of length n and size N : an
O(kmG+kN)-time algorithm for Hamming distance; and an O(k2mG+kN)-
time algorithm for edit distance, where G is the total number of strings in T̃
and k is the maximum distance allowed. Both algorithms are on-line, their
working space is O(m), and they work for general integer alphabets.

24

There are at least two directions for future work. The first one is to
improve the time complexity for these problems by perhaps removing the
dependency on parameter G. The second direction is to develop algorithms
for searching multiple patterns simultaneously under the approximate setting.

Acknowledgements

NP and GR are partially supported by the project MIUR-SIR CMACBioSeq
(“Combinatorial methods for analysis and compression of biological sequences”)
grant n. RBSI146R5L. GB, NP, and GR are partially supported by the project
UniPi PRA 2017 44 (“Advanced computational methodologies for the analysis
of biomedical data”). NP, SPP, and GR are partially supported by the Royal
Society project IE 161274 (“Processing uncertain sequences: combinatorics
and applications”).

References

[1] G. Bernardini, P. Gawrychowski, N. Pisanti, S. P. Pissis, G. Rosone, Even
faster elastic-degenerate string matching via fast matrix multiplication,
in: C. Baier, I. Chatzigiannakis, P. Flocchini, S. Leonardi (Eds.), 46th
International Colloquium on Automata, Languages and Programming,
ICALP 2019, Patras, Greece, 8-12 July 2019, Vol. 132 of LIPIcs, Schloss
Dagstuhl - Leibniz-Zentrum fuer Informatik, 2019, pp. 16:1 – 16:15.
URL https://doi.org/10.4230/LIPIcs.ICALP.2019.16

[2] The Computational Pan-Genomics Consortium, Computational pan-
genomics: status, promises and challenges, Briefings in Bioinformatics
19 (1) (2018) 118–135. doi:10.1093/bib/bbw089.
URL https://doi.org/10.1093/bib/bbw089

[3] L. Huang, V. Popic, S. Batzoglou, Short read alignment with
populations of genomes, Bioinformatics 29 (13) (2013) 361–370.
doi:10.1093/bioinformatics/btt215.
URL https://doi.org/10.1093/bioinformatics/btt215

[4] P. Bille, G. M. Landau, R. Raman, K. Sadakane, S. R. Satti, O. Weimann,
Random access to grammar-compressed strings and trees, SIAM J. Com-
put. 44 (3) (2015) 513–539. doi:10.1137/130936889.
URL https://doi.org/10.1137/130936889

25

[5] T. Gagie, P. Gawrychowski, S. J. Puglisi, Faster approximate pattern
matching in compressed repetitive texts, in: T. Asano, S. Nakano,
Y. Okamoto, O. Watanabe (Eds.), Algorithms and Computation - 22nd
International Symposium, ISAAC 2011, Yokohama, Japan, December
5-8, 2011. Proceedings, Vol. 7074 of Lecture Notes in Computer Science,
Springer, 2011, pp. 653–662. doi:10.1007/978-3-642-25591-5 67.
URL https://doi.org/10.1007/978-3-642-25591-5_67

[6] G. Navarro, Indexing highly repetitive collections, in: S. Arumugam,
W. F. Smyth (Eds.), Combinatorial Algorithms, 23rd International Work-
shop, IWOCA 2012, Tamil Nadu, India, July 19-21, 2012, Revised Se-
lected Papers, Vol. 7643 of Lecture Notes in Computer Science, Springer,
2012, pp. 274–279. doi:10.1007/978-3-642-35926-2 29.
URL https://doi.org/10.1007/978-3-642-35926-2_29

[7] S. Wandelt, U. Leser, String searching in referentially compressed
genomes, in: A. L. N. Fred, J. Filipe (Eds.), KDIR 2012 - Proceedings of
the International Conference on Knowledge Discovery and Information
Retrieval, Barcelona, Spain, 4 - 7 October, 2012, SciTePress, 2012, pp.
95–102.

[8] T. Gagie, S. J. Puglisi, Searching and indexing genomic databases via
kernelization, Frontiers in Bioengineering and Biotechnology 3 (2015) 12.
doi:10.3389/fbioe.2015.00012.
URL https://www.frontiersin.org/article/10.3389/fbioe.2015.

00012

[9] C. Barton, C. Liu, S. P. Pissis, On-line pattern matching on uncertain
sequences and applications, in: T. H. Chan, M. Li, L. Wang (Eds.), Com-
binatorial Optimization and Applications - 10th International Conference,
COCOA 2016, Hong Kong, China, December 16-18, 2016, Proceedings,
Vol. 10043 of Lecture Notes in Computer Science, Springer, 2016, pp.
547–562. doi:10.1007/978-3-319-48749-6 40.
URL https://doi.org/10.1007/978-3-319-48749-6_40

[10] T. Kociumaka, S. P. Pissis, J. Radoszewski, Pattern matching and
consensus problems on weighted sequences and profiles, in: S. Hong
(Ed.), 27th International Symposium on Algorithms and Computation,
ISAAC 2016, December 12-14, 2016, Sydney, Australia, Vol. 64 of LIPIcs,

26

Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2016, pp. 46:1–46:12.
doi:10.4230/LIPIcs.ISAAC.2016.46.
URL https://doi.org/10.4230/LIPIcs.ISAAC.2016.46

[11] C. S. Iliopoulos, R. Kundu, S. P. Pissis, Efficient pattern matching in
elastic-degenerate texts, in: F. Drewes, C. Mart́ın-Vide, B. Truthe (Eds.),
Language and Automata Theory and Applications - 11th International
Conference, LATA 2017, Ume̊a, Sweden, March 6-9, 2017, Proceedings,
Vol. 10168 of Lecture Notes in Computer Science, 2017, pp. 131–142.
doi:10.1007/978-3-319-53733-7 9.
URL https://doi.org/10.1007/978-3-319-53733-7_9

[12] K. R. Abrahamson, Generalized string matching, SIAM J. Comput. 16 (6)
(1987) 1039–1051. doi:10.1137/0216067.
URL https://doi.org/10.1137/0216067

[13] M. Crochemore, C. S. Iliopoulos, T. Kociumaka, J. Radoszewski,
W. Rytter, T. Walen, Covering problems for partial words and
for indeterminate strings, Theor. Comput. Sci. 698 (2017) 25–39.
doi:10.1016/j.tcs.2017.05.026.
URL https://doi.org/10.1016/j.tcs.2017.05.026

[14] C. S. Iliopoulos, J. Radoszewski, Truly subquadratic-time extension
queries and periodicity detection in strings with uncertainties, in:
R. Grossi, M. Lewenstein (Eds.), 27th Annual Symposium on Com-
binatorial Pattern Matching, CPM 2016, June 27-29, 2016, Tel Aviv,
Israel, Vol. 54 of LIPIcs, Schloss Dagstuhl - Leibniz-Zentrum fuer Infor-
matik, 2016, pp. 8:1–8:12. doi:10.4230/LIPIcs.CPM.2016.8.
URL https://doi.org/10.4230/LIPIcs.CPM.2016.8

[15] N. Pisanti, H. Soldano, M. Carpentier, J. Pothier, A relational extension
of the notion of motifs: Application to the common 3d protein sub-
structures searching problem, Journal of Computational Biology 16 (12)
(2009) 1635–1660. doi:10.1089/cmb.2008.0019.
URL https://doi.org/10.1089/cmb.2008.0019

[16] H. Soldano, A. Viari, M. Champesme, Searching for flexible repeated
patterns using a non-transitive similarity relation, Pattern Recognition
Letters 16 (3) (1995) 233–246. doi:10.1016/0167-8655(94)00095-K.
URL https://doi.org/10.1016/0167-8655(94)00095-K

27

[17] M. Alzamel, L. A. K. Ayad, G. Bernardini, R. Grossi, C. S. Iliopoulos,
N. Pisanti, S. P. Pissis, G. Rosone, Degenerate string comparison and
applications, in: L. Parida, E. Ukkonen (Eds.), 18th International Work-
shop on Algorithms in Bioinformatics, WABI 2018, August 20-22, 2018,
Helsinki, Finland, Vol. 113 of LIPIcs, Schloss Dagstuhl - Leibniz-Zentrum
fuer Informatik, 2018, pp. 21:1–21:14. doi:10.4230/LIPIcs.WABI.2018.21.
URL https://doi.org/10.4230/LIPIcs.WABI.2018.21

[18] The 1000 Genomes Project Consortium, A global reference for human ge-
netic variation, Nature 526 (7571) (2015) 68–74. doi:10.1038/nature15393.
URL https://www.nature.com/articles/nature15393

[19] S. P. Pissis, A. Retha, Dictionary matching in elastic-degenerate texts
with applications in searching VCF files on-line, in: G. D’Angelo
(Ed.), 17th International Symposium on Experimental Algorithms, SEA
2018, June 27-29, 2018, L’Aquila, Italy, Vol. 103 of LIPIcs, Schloss
Dagstuhl - Leibniz-Zentrum fuer Informatik, 2018, pp. 16:1–16:14.
doi:10.4230/LIPIcs.SEA.2018.16.
URL https://doi.org/10.4230/LIPIcs.SEA.2018.16

[20] J. Holub, W. F. Smyth, S. Wang, Fast pattern-matching on in-
determinate strings, J. Discrete Algorithms 6 (1) (2008) 37–50.
doi:10.1016/j.jda.2006.10.003.
URL https://doi.org/10.1016/j.jda.2006.10.003

[21] R. Rahn, D. Weese, K. Reinert, Journaled string tree -
a scalable data structure for analyzing thousands of similar
genomes on your laptop, Bioinformatics 30 (24) (2014) 3499–3505.
doi:10.1093/bioinformatics/btu438.
URL https://doi.org/10.1093/bioinformatics/btu438

[22] S. Maciuca, C. del Ojo Elias, G. McVean, Z. Iqbal, A natural encoding of
genetic variation in a burrows-wheeler transform to enable mapping and
genome inference, in: M. C. Frith, C. N. S. Pedersen (Eds.), Algorithms
in Bioinformatics - 16th International Workshop, WABI 2016, Aarhus,
Denmark, August 22-24, 2016. Proceedings, Vol. 9838 of Lecture Notes
in Computer Science, Springer, 2016, pp. 222–233. doi:10.1007/978-3-
319-43681-4 18.
URL https://doi.org/10.1007/978-3-319-43681-4_18

28

[23] J. Sirén, Indexing variation graphs, in: S. P. Fekete, V. Ramachan-
dran (Eds.), Proceedings of the Ninteenth Workshop on Algorithm
Engineering and Experiments, ALENEX 2017, Barcelona, Spain,
Hotel Porta Fira, January 17-18, 2017., SIAM, 2017, pp. 13–27.
doi:10.1137/1.9781611974768.2.
URL https://doi.org/10.1137/1.9781611974768.2

[24] J. C. Na, H. Kim, S. Min, H. Park, T. Lecroq, M. Léonard, L. Mouchard,
K. Park, Fm-index of alignment with gaps, Theor. Comput. Sci. 710
(2018) 148–157. doi:10.1016/j.tcs.2017.02.020.
URL https://doi.org/10.1016/j.tcs.2017.02.020

[25] R. A. Baeza-Yates, C. H. Perleberg, Fast and practical approximate
string matching, Inf. Process. Lett. 59 (1) (1996) 21–27. doi:10.1016/0020-
0190(96)00083-X.
URL https://doi.org/10.1016/0020-0190(96)00083-X

[26] S. F. Altschul, W. Gish, W. Miller, E. W. Myers, D. J. Lipman, Basic
local alignment search tool, Journal of Molecular Biology 215 (3) (1990)
403–410. doi:https://doi.org/10.1016/S0022-2836(05)80360-2.
URL http://www.sciencedirect.com/science/article/pii/

S0022283605803602

[27] R. Grossi, C. S. Iliopoulos, C. Liu, N. Pisanti, S. P. Pissis, A. Retha,
G. Rosone, F. Vayani, L. Versari, On-line pattern matching on sim-
ilar texts, in: J. Kärkkäinen, J. Radoszewski, W. Rytter (Eds.),
28th Annual Symposium on Combinatorial Pattern Matching, CPM
2017, July 4-6, 2017, Warsaw, Poland, Vol. 78 of LIPIcs, Schloss
Dagstuhl - Leibniz-Zentrum fuer Informatik, 2017, pp. 9:1–9:14.
doi:10.4230/LIPIcs.CPM.2017.9.
URL https://doi.org/10.4230/LIPIcs.CPM.2017.9

[28] K. Aoyama, Y. Nakashima, T. I, S. Inenaga, H. Bannai, M. Takeda, Faster
online elastic degenerate string matching, in: G. Navarro, D. Sankoff,
B. Zhu (Eds.), Annual Symposium on Combinatorial Pattern Match-
ing, CPM 2018, July 2-4, 2018 - Qingdao, China, Vol. 105 of LIPIcs,
Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2018, pp. 9:1–9:10.
doi:10.4230/LIPIcs.CPM.2018.9.
URL https://doi.org/10.4230/LIPIcs.CPM.2018.9

29

[29] A. Cis lak, S. Grabowski, J. Holub, Sopang: online text search-
ing over a pan-genome, Bioinformatics 34 (24) (2018) 4290–4292.
doi:10.1093/bioinformatics/bty506.
URL http://dx.doi.org/10.1093/bioinformatics/bty506

[30] M. Rautiainen, V. Makinen, T. Marschall, Bit-parallel sequence-to-graph
alignment, Bioinformaticsdoi:10.1093/bioinformatics/btz162.
URL https://doi.org/10.1093/bioinformatics/btz162

[31] G. Bernardini, N. Pisanti, S. P. Pissis, G. Rosone, Pattern matching on
elastic-degenerate text with errors, in: G. Fici, M. Sciortino, R. Venturini
(Eds.), String Processing and Information Retrieval - 24th International
Symposium, SPIRE 2017, Palermo, Italy, September 26-29, 2017, Pro-
ceedings, Vol. 10508 of Lecture Notes in Computer Science, Springer,
2017, pp. 74–90. doi:10.1007/978-3-319-67428-5 7.
URL https://doi.org/10.1007/978-3-319-67428-5_7

[32] D. Gusfield, Algorithms on strings, trees, and sequences, Cambridge
University Press New York, New York, 1997.

[33] G. M. Landau, U. Vishkin, Introducing efficient parallelism into approx-
imate string matching and a new serial algorithm, in: J. Hartmanis
(Ed.), Proceedings of the 18th Annual ACM Symposium on Theory of
Computing, May 28-30, 1986, Berkeley, California, USA, ACM, 1986, pp.
220–230. doi:10.1145/12130.12152.
URL https://doi.org/10.1145/12130.12152

[34] M. L. Fredman, J. Komlós, E. Szemerédi, Storing a sparse table
with O(1) worst case access time, J. ACM 31 (3) (1984) 538–544.
doi:10.1145/828.1884.

[35] M. Farach, Optimal suffix tree construction with large alphabets, in:
38th Annual Symposium on Foundations of Computer Science, FOCS
’97, Miami Beach, Florida, USA, October 19-22, 1997, IEEE Computer
Society, 1997, pp. 137–143. doi:10.1109/SFCS.1997.646102.
URL https://doi.org/10.1109/SFCS.1997.646102

30

