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Abstract. Uncertain sequences are compact representations of sets of similar strings. They high-
light common segments by collapsing them, and explicitly represent varying segments by listing
all possible options. A generalized degenerate string (GD string) is a type of uncertain sequence.
Formally, a GD string Ŝ is a sequence of n sets of strings of total size N , where the ith set con-
tains strings of the same length ki but this length can vary between different sets. We denote by
W the sum of these lengths k0, k1, . . . , kn−1. Our main result is an O(N + M)-time algorithm
for deciding whether two GD strings of total sizes N and M , respectively, over an integer alpha-
bet, have a non-empty intersection. This result is based on a combinatorial result of independent
interest: although the intersection of two GD strings can be exponential in the total size of the
two strings, it can be represented in linear space. We then apply our string comparison tool to
devise a simple algorithm for computing all palindromes in Ŝ in O(min{W,n2}N)-time. We
complement this upper bound by showing a similar conditional lower bound for computing max-
imal palindromes in Ŝ. We also show that a result, which is essentially the same as our string
comparison linear-time algorithm, can be obtained by employing an automata-based approach.

Keywords: degenerate strings, generalized degenerate strings, elastic-degenerate strings, string
comparison, palindromes

1. Introduction

Uncertain sequences are useful for representing sets of similar strings in a compact form. They high-
light common segments by collapsing them, and explicitly represent varying segments by listing all
possible options. A degenerate string (also known as indeterminate string) over an alphabet Σ is a se-
quence of subsets of Σ. A great deal of research has been conducted on this type of uncertain sequence
(see [1, 2, 3, 4, 5, 6] and references therein).

A more general definition of degenerate strings, with the aim of representing multiple closely-
related sequences [7], was introduced in [8]: an elastic-degenerate string (ED string) S̃ over Σ is a
sequence of subsets of Σ∗ (see also network expressions [9]). That is, any set of S̃ does not contain,
in general, only single letters, nor substrings of the same length, as it may contain strings of different
lengths, including the empty string (see Figure 1). In a few recent papers, several algorithms for pattern
matching on ED strings have been presented; specifically, for finding all exact [8, 10, 11, 12, 13] or
approximate [14, 15] occurrences of a standard string pattern in an ED text.

S̃ =

{
A

ε

}
·

{
GC

A

}
·


CTC

GCTT

C

ε

 ·


CTA

GAGA

GT

 · { T}

Figure 1. Example of an ED string.

In [16], the preliminary version of this paper, we introduced another special type of uncertain
sequence called a generalized degenerate string; this can be viewed as an extension of degenerate
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CA--AGCTCTATCTCGTA--TT AGCTCTATCTCG

C---AGCCGAAGCTCGTATATT AGCCGAAGCTCG

CATCAAGTCAACGCAG----TT AAGTCAACGCAG

Figure 2. Multiple sequence alignment (left) and Local Gapless Alignment (right).

Ŝ = {A} ·

{
GC

AG

}
·


TCT

CGA

TCA

 · { A} ·


TCTC

GCTC

CGCA

 · { G}

Figure 3. GD string obtained from the local gapless alignment of Figure 2.

strings or as a restricted variant of ED strings. Formally, a generalized degenerate string (GD string)
Ŝ over Σ is a sequence of n sets of strings of total size N over Σ, where the ith set contains strings
of the same length ki > 0 but this length can vary between different sets. We denote the sum of
these lengths k0, k1, . . . , kn−1 by W . A GD string can be used to represent in a compact form a
gapless multiple sequence alignment (MSA) of fixed width, that is, for example, a high-scoring local
alignment of multiple sequences (see Figure 2 and Figure 3).

In this paper we solve the problem of comparing two GD strings, that is, deciding whether two
GD strings have a non-empty intersection. String comparison is the core computational task in several
string-processing applications, whether they process standard or uncertain strings. For example, to
extract frequent patterns from a single string, to find common substrings among several strings, or to
check whether a string is palindromic, one must have a tool for comparing two strings. Therefore,
we first develop an efficient algorithm to compare two GD strings, and then, as proof of concept, we
apply this algorithm to compute all palindromes in a GD string.

In a standard string, a palindrome is a sequence that reads the same from left to right and from
right to left. Detection of palindromic factors in texts is a classical and well-studied problem in algo-
rithms on strings and combinatorics on words with a lot of variants arising out of different practical
scenarios. A string X = X[0]X[1] . . . X[n− 1] is said to have an initial palindrome of length k if its
prefix of length k is a palindrome. Manacher first discovered an on-line algorithm that finds all initial
palindromes in a string [17]. Later Apostolico et al. observed that the algorithm given by Manacher
is actually able to find all maximal palindromic factors in the string in O(n) time [18]. Gusfield gave
an off-line linear-time algorithm to find all maximal palindromes in a string and also discussed the
relation between biological sequences and gapped palindromes [19].

With uncertain sequences, we first need to have an algorithm for efficient string comparison,
where automata provide the following baseline. Let X̂ and Ŷ be two GD (or two ED) strings of
total sizes N and M , respectively. We first construct the non-deterministic finite automaton (NFA)
A of X̂ and the NFA B of Ŷ in time O(N + M). We then construct the product NFA C such that
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L(C) = L(A) ∩ L(B) in time O(NM). The non-emptiness decision problem, namely, checking
if L(C) 6= ∅, is decidable in time linear in the size of C, using breadth-first search (BFS). Hence
the comparison of X̂ and Ŷ can be done in time O(NM). It is known that if there existed faster
methods for obtaining the automata intersection, then significant improvements would be implied
to many long standing open problems [20]. Hence an immediate reduction to the problem of NFA
intersection does not particularly help. For GD strings, specifically, we show that we can construct an
ad-hoc deterministic finite automaton (DFA) for X̂ and Ŷ , so that the intersection can be performed
efficiently, but this simple solution cannot achieve O(N +M) time for integer alphabets as its cost is
alphabet-dependent.

Our Contribution. Our first result is an O(N + M)-time algorithm for deciding whether the
intersection of two GD strings of sizes N and M , respectively, over a constant-sized alphabet is non-
empty. We show this by means of DFAs (see Section 3). This result is based on a combinatorial result
of independent interest: although the intersection of two GD strings can be exponential in the total size
of the two strings, it can be represented in linear space. We next present an efficient implementation
of this result in the standard word RAM model with word size w = Ω(log(N + M)) that works also
for integer alphabets. Specifically, we show an O(N + M)-time algorithm for deciding whether the
intersection of two GD strings of sizes N and M , respectively, over an integer alphabet is non-empty
(see Section 4). We then apply our string comparison tool to compute palindromes in GD strings.
We present a simple O(min{W,n2}N)-time algorithm for computing all palindromes in Ŝ; a proof-
of-concept experiment is also presented (see Section 5). Notably, we complement this upper bound
with a non-trivial Ω(n2|Σ|) lower bound under the Strong Exponential Time Hypothesis [21, 22] for
computing all maximal palindromes in Ŝ (see Section 6). Let us remark that there exists an infinite
family of GD strings over an integer alphabet of size |Σ| = Θ(N) on which our algorithm requires
time O(n2N), thus matching the conditional lower bound. We conclude this paper with some open
problems (see Section 7).

A preliminary version of this paper appeared in [16].

2. Preliminaries

A string X is a sequence of elements on an alphabet Σ, where the alphabet Σ is a non-empty finite
set of letters of size σ= |Σ|. The set of all finite strings over an alphabet Σ, including the empty string
ε of length 0, is denoted by Σ∗. The set of all strings of length k > 0 over Σ is denoted by Σk. For
any string X , we denote by X[i . . j] the substring or factor of X that starts at position i and ends
at position j. In particular, X[0 . . j] is the prefix of X that ends at position j, and X[i . . |X| − 1]
is the suffix of X that starts at position i, where |X| denotes the length of X . The suffix tree of X
(generalized suffix tree for a set of strings) is a compact trie representing all suffixes of X . We denote
the reversal of X by string XR, i.e., XR = X[|X| − 1]X[|X| − 2] . . . X[0].

We say that a string P is a palindrome if and only if P =PR. If factor X[i . . j], 0≤ i≤j≤n− 1,
of stringX of length n is a palindrome, then i+j

2 is the center ofX[i . . j] inX and j−i+1
2 is the radius

of X[i . . j]. In other words, a palindrome is a string that reads the same forward and backward, i.e., a
string P is a palindrome if P = YaY R where Y is a string, Y R is the reversal of Y and a is either a
single letter (when the center is an integer) or the empty string (when it is not). Moreover, X[i . . j] is
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called a palindromic factor of X . It is said to be a maximal palindrome if there is no other palindrome
inX with center i+j2 and larger radius. HenceX has exactly 2n−1 maximal palindromes. A maximal
palindrome P of X can be encoded as a pair (c, r), where c is the center of P in X and r is the radius
of P .

Definition 2.1. A generalized degenerate string (GD string) Ŝ = Ŝ[0]Ŝ[1] . . . Ŝ[n − 1] of length n
over an alphabet Σ is a finite sequence of n degenerate letters. Every degenerate letter Ŝ[i] of width
ki>0, denoted also by w(Ŝ[i]), is a finite non-empty set of strings such that Ŝ[i][0], . . . , Ŝ[i][|Ŝ[i]|−
1] ∈ Σki . For any GD string Ŝ, we denote by Ŝ[i] . . . Ŝ[j] the GD substring of Ŝ that starts at position
i and ends at position j.

In this work, we generally consider GD strings over an integer alphabet of size σ =NO(1). We
now define some parameters that describe the structure of a GD string.

Definition 2.2. The total size N and total width W , denoted also by w(Ŝ), of a GD string Ŝ are
respectively defined as N =

∑n−1
i=0 |Ŝ[i]| · ki and W =

∑n−1
i=0 ki.

Example 2.3. The GD string Ŝ of Figure 3 has length n=6, size N=28, and W =12.

Definition 2.4. Given two degenerate letters X̂ and Ŷ , their Cartesian concatenation is

X̂ ⊗ Ŷ = {xy | x ∈ X̂, y ∈ Ŷ }.

When Ŷ = ∅ (resp. X̂ = ∅) we set X̂ ⊗ Ŷ = X̂ (resp. = Ŷ ). Notice that ⊗ is associative.

Definition 2.5. Consider a GD string Ŝ of length n. The language of Ŝ is

L(Ŝ) = Ŝ[0]⊗ Ŝ[1]⊗ · · · ⊗ Ŝ[n− 1].

Our goal for GD string comparison is to establish, given two GD strings R̂ and Ŝ, whether the
intersection of their language is non-empty. To this purpose, we define the notions of chop and active
suffixes.

Definition 2.6. Let X̂ = {xi ∈ Σk } and Ŷ = { yj ∈ Σh } be two degenerate letters on alphabet Σ.
Further let us assume without loss of generality that w(Ŷ ) < w(X̂) (i.e., h < k). We define the set
chop of X̂ and Ŷ and the set active suffixes of X̂ and Ŷ as follows:

• chopX̂,Ŷ = { yj ∈ Ŷ | yj matches a prefix of some xi ∈ X̂ }

• activeX̂,Ŷ = {xi[h . . k − 1] | xi[0 . . h− 1] ∈ chopX̂,Ŷ }

Let w(chopX̂,Ŷ ) = min{w(X̂), w(Ŷ )}. When activeX̂,Ŷ = {ε}, we set activeX̂,Ŷ = ∅. We then have

that activeX̂,Ŷ = ∅ either if h=k or if there is no match between any of the strings in Ŷ and the prefix

of a string in X̂; i.e., chopX̂,Ŷ = ∅.
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Example 2.7. (for Definition 2.6)
Consider the following degenerate letters X̂ and Ŷ where w(Ŷ )<w(X̂). The underlined strings in
letter Ŷ are prefixes of strings in letter X̂ , hence they are in chopX̂,Ŷ . The suffixes of such strings in

X̂ are the active suffixes in activeX̂,Ŷ .

X̂ =


T C C T A

A T C G A

T C CA C

C A T T A

 Ŷ =


G C A

C A T

T C C

 chopX̂,Ŷ = {C A T , T C C} activeX̂,Ŷ = {T A , A C}

Definition 2.8. Let R̂ and Ŝ be two GD strings of length r and s, respectively. R̂[0] . . . R̂[i] is the
prefix of R̂ that ends at position i. It is called proper if i 6= r − 1. We say that R̂[0] . . . R̂[i] is
synchronized with Ŝ[0] . . . Ŝ[j] if w(R̂[0] . . . R̂[i]) = w(Ŝ[0] . . . Ŝ[j]). We call these the shortest
synchronized prefixes of R̂ and Ŝ, respectively, when for all i′, j′ such that i′ < i and j′ < j, we have
that w(R̂[0] . . . R̂[i′]) 6= w(Ŝ[0] . . . Ŝ[j′]).

Example 2.9. (for Definition 2.8)
The GD string Ŝ of Figure 3 and the GD string R̂ below have no synchronized proper prefixes, while Ŝ
and the GD string T̂ below have synchronized prefix of length 1 and 6 (because w(Ŝ[0]) = w(T̂ [0]) =
1 and w(Ŝ[0]Ŝ[1]Ŝ[2]) = w(T̂ [0]T̂ [1]) = 6) , and thus their shortest synchronized prefix has length 1.

R̂ =


C G C A C

A G C C G

A G C C G

 ·
{
A A T

T A G

}
·


C T C G

G C A G

C T C A

 T̂ =

{
C

A

}
·


C C A C T

G C C C A

T C C T T

 ·
{
A T

A G

}
·


A T C G

A G C T

G G C A


3. GD String Comparison for Small Alphabets Using Automata

In this section we describe a simple algorithm for GD string comparison that is based on DFAs. It
works in linear time for constant-sized alphabets, and it is generalized in the subsequent section to
work for integer alphabets.

Given R̂ and Ŝ of total size N and M , respectively, each degenerate letter of R̂ and Ŝ can be rep-
resented by a trie, where its leaves are collapsed to a single one. For every two consecutive degenerate
letters, the collapsed leaves of the former trie coincide with the root of the latter trie. An acyclic DFA
is obtained in this way, as illustrated in Example 3.1 below. We can perform the comparison of R̂ and
Ŝ by intersecting their corresponding DFAs using BFS on their product DFA. The trivial upper bound
on the number of reachable states is O(NM), and the traditional method for constructing the DFA
for L(R̂) ∩ L(Ŝ) is non-linear, but this can be improved to O(N +M) by exploiting the structure of
the two input DFAs. Each state in such a DFA has a unique level: the common length of paths from
the initial state. This structure is inherited by the product DFA. In other words, a level-i state in the
product DFA corresponds to a pair of level-i states in the input DFAs. Observe that a level-i state in
one DFA is uniquely represented by the label of the path from the root of its trie, and for a fixed DFA
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r0start

r2

r3

r5 r7 r9 r11

r12

r4 r6 r8 r10r1

A

C

C C

A

A C C

C

C A A

CC

Figure 4. The DFA for L(R̂)

s0start

s1 s3

s5

s6 s8

s10 s11

s2 s4 s7 s9

A

C

C

A C

A

C

C

A

C

A

C

C

Figure 5. The DFA for L(Ŝ)

and level, these labels have uniform lengths. Considering the two states composing a reachable state
in the product DFA, it is easy to see that the shorter label must be a suffix of the longer label. Hence,
the state in the DFA with longer labels at level i uniquely determines the state in the DFA with shorter
labels at level i. Consequently, the number of reachable level-i states in the product DFA is bounded
by the number of level-i states in the input DFAs, and the size is O(N +M).

Note that computing the product DFA is alphabet-dependent, due to branching (transition function)
on the same letter in the states of the two input DFAs.

Example 3.1. Say we want to compare the following two GD strings:

R̂ =

{
A C

C C

}
·

{
A C A A C

C A C C C

}
Ŝ =

{
A C A

C C C

}
·

{
A C C

C A A

}
·
{
C
}

We start by constructing the DFA for L(R̂) and the DFA for L(Ŝ), shown in Figure 4 and Figure 5,
respectively. We then construct their product DFA, shown in Figure 6, which gives the intersection of
L(R̂) and L(Ŝ): ACACAAC and CCCACCC.

4. GD String Comparison for Integer Alphabets

In this section we describe a more general algorithm for the problem of GD string comparison ad-
dressed also in Section 3. Let R̂ and Ŝ be of total size N and M , respectively. We provide an
O(N + M)-time algorithm in the standard word RAM model with word size w = Ω(log(N + M))
to decide whether the intersection of R̂ and Ŝ is non-empty, which also works for integer alphabets.

We show that, even if the size of L(R̂) ∩ L(Ŝ) can be exponential in the total sizes of R̂ and Ŝ
(Fact 4.1), the problem of GD string comparison, i.e., deciding whetherL(R̂)∩L(Ŝ) is non-empty, can
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r0, s0start

r2, s1

r1, s2

r3, s3

r3, s4

r4, s5

r5, s5

r6, s6

r7, s7

r8, s8

r9, s9

r10, s10

r11, s10

r12, s11

A

C

C A C A A

C

C C A C C

C

Figure 6. The product DFA for L(R̂) ∩ L(Ŝ)

be solved in time linear with respect to the sum of the total sizes of the two GD strings (Theorem 4.10)
and is thus of independent interest.

Fact 4.1. Given two GD strings R̂ and Ŝ, L(Ŝ) ∩ L(R̂) can have size exponential in the total sizes
of R̂ and Ŝ. A trivial example of this is given when R̂ = Ŝ and they are a sequence of n degenerate
letters of, for example, 2 strings of 2 characters each: the total size of both R̂ and Ŝ is 4n, while
|L(Ŝ) ∩ L(R̂)| = |L(R̂)| = 2n.

We next show when it is possible to factorize L(R̂) ∩ L(Ŝ) into a Cartesian concatenation.

Lemma 4.2. Consider two GD strings Ŝ = Ŝ′Ŝ′′ and R̂ = R̂′R̂′′ such that w(Ŝ) = w(R̂). If Ŝ′ is
synchronized with R̂′, then L(R̂) ∩ L(Ŝ) = (L(R̂′) ∩ L(Ŝ′))⊗ (L(R̂′′) ∩ L(Ŝ′′)).

By applying Lemma 4.2 wherever R̂ and Ŝ have synchronized prefixes, we are then left with the
problem of intersecting GD strings with no synchronized proper prefixes. We now define an alternative
decomposition within such strings (see also Example 4.4).

Definition 4.3. Let R̂ and Ŝ be two GD strings of length r and s, respectively, with no synchronized
proper prefixes. We define

c-chain(R̂, Ŝ) = max
q
{0 ≤ q ≤ r + s− 2 | chopq 6= ∅},

where chopi denotes the set chopÂi,B̂i
, and (Â0, B̂0), (Â1, B̂1), . . . , (Âq, B̂q), pos(Âi), pos(B̂i) are

recursively defined as follows:

Â0 = R̂[0], B̂0 = Ŝ[0], and pos(Â0) = pos(B̂0) = 0. For 0 < i ≤ r + s− 2, if chopi−1 6= ∅,

Âi =

{
R̂[pos(Âi−1) + 1] and pos(Âi) = pos(Âi−1) + 1 if w(chopi−1) = w(Âi−1)

activeÂi−1,B̂i−1
and pos(Âi) = pos(Âi−1) otherwise

B̂i =

{
Ŝ[pos(B̂i−1) + 1] and pos(B̂i) = pos(B̂i−1) + 1 if w(chopi−1) = w(B̂i−1)

activeÂi−1,B̂i−1
and pos(B̂i) = pos(B̂i−1) otherwise
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The generation of pairs (Âi, B̂i) stops at i=q either if q=r+s−2, or when chopq+1 = ∅, in which
case R̂ and Ŝ only match until (Âq, B̂q). Intuitively, Âi (respectively, B̂i) represents suffixes of the
current position of R̂ (respectively, of Ŝ), while pos(B̂i) (respectively, pos(Âi)) tells which position of
R̂ (respectively, Ŝ) we are chopping.

Example 4.4. (for Definition 4.3)
Consider the following GD strings R̂ and Ŝ with no synchronized proper prefixes: chop0 is the first
red set from the left, chop1 is the first blue one, chop2 is the second red one, etc. The c-chain(R̂, Ŝ)
terminates when q = 7.

R̂ =



C G C A C

A G C C G

A A G T C
Â2

Â1

Â0


·



A A T

T A G
Â5

Â4

Â3


·



C T C G

G C A G

C T C A
Â7

Â6


Ŝ =

{
A
B̂0

}
·


G C

A G
B̂1

 ·


T C T

C G A

T CA
B̂3

B̂2


·
{
A
B̂4

}
·



T C T C

G C T C

C G C A
B̂6

B̂5


·
{
G
B̂7

}

Definition 4.5. Let R̂ and Ŝ be two GD strings of length r and s, respectively, with w(R̂) = w(Ŝ)
and no synchronized proper prefixes. We define GR̂,Ŝ as a directed acyclic graph with a structure of
up to r + s − 1 levels, each node being a set of strings, as follows, where we assume without loss of
generality that w(R̂[0]) > w(Ŝ[0]):

Level k = 0 consists of a single node:
n0 = {x ∈ R̂[0] |x = y0 . . . yq0with yj ∈ chopj ∀j : 0 ≤ j ≤ q0}, where q0 is the index of the
rightmost chop containing suffixes of R̂[0].

Level k > 0 consists of ` = |chopqk−1
| nodes. Assuming without loss of generality that level k−1

has been built with suffixes of R̂[pos(Âqk−1
)], level k contains suffixes of a position of Ŝ. Let

c0, . . . , c`−1 denote the elements of chopqk−1
. Then, for 0 ≤ i≤`−1, the i-th node of level k is:

ni = {yqk−1+1 . . . yqk | ciyqk−1+1 . . . yqk∈B̂qk−1
with yj ∈ chopj ∀j : qk−1+1 ≤ j≤ qk}, where

qk is the index of the rightmost chop containing suffixes of Ŝ[pos(B̂qk−1
)].

Every string in level k − 1 whose suffix is ci is the source of an edge having the whole node ni
as a sink.

We define paths(GR̂,Ŝ) as the set of strings spelled by a path in GR̂,Ŝ that starts at n0 and ends at the
last level.

Note that the size of GR̂,Ŝ is at most linear in the sum of the sizes of R̂ and Ŝ, as the nodes contain

strings either in R̂ or in Ŝ with no duplications, and each node has out-degree equal to the number of
strings it contains.

Example 4.6. (for Definition 4.5)
The graph GR̂,Ŝ for the GD strings R̂, Ŝ of Example 4.4 is the following:
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q0 = 2 and the strings in level 0 belong to (chop0⊗chop1⊗chop2)∩R̂[0]. Level 1 contains suffixes of
strings in B̂2 (and of strings in B̂3 as chop3 = {A, T} and indeed q1 = 3), level 2 suffixes of strings in
Â3 (as q2 = 5), level 3 suffixes of strings in B̂5 (q3 = 6), level 4 suffixes of strings in Â6 (q4 = 7). The
three paths from level 0 to level 4 correspond to the three strings in L(R̂) ∩ L(Ŝ): AGCCGAATCTCG,
AAGTCAATCTCG, AAGTCTAGCTCG.

Let Gk
R̂,Ŝ

be GR̂,Ŝ truncated at level k, and let |Gk
R̂,Ŝ
| be the length of the strings it spells. Let

Lk(Ŝ) denote the set of prefixes of length |Gk
R̂,Ŝ
| of L(Ŝ).

Lemma 4.7. Let R̂, Ŝ be two GD strings with w(R̂) =w(Ŝ) =W and no synchronized proper pre-
fixes. Then Lk(Ŝ) ∩ Lk(R̂) = paths(Gk

R̂,Ŝ
) for all levels k of GR̂,Ŝ such that Lk(Ŝ) ∩ Lk(R̂) 6= ∅.

Proof:
Again, let us assume without loss of generality that w(R̂[0]) > w(Ŝ[0]). We prove the result by
induction on k.
Level k = 0. By construction, n0 contains strings in R̂[0]∩ (chop0⊗· · ·⊗chopq0), which have length
|G0

R̂,Ŝ
|, and are also in Ŝ[0], and hence belong to both L0(Ŝ) and L0(R̂).

Level k > 0. By inductive hypothesis, we have that Lk−1(Ŝ) ∩ Lk−1(R̂) = paths(Gk−1
R̂,Ŝ

); suppose

that Lk(Ŝ) ∩ Lk(R̂) 6= ∅, otherwise the graph ends at level k − 1. We first show that paths(Gk
R̂,Ŝ

) ⊆
Lk(Ŝ) ∩ Lk(R̂): by Definition 4.5, any z ∈ paths(Gk

R̂,Ŝ
) can be written as z = z′z′′ with z′ in

paths(Gk−1
R̂,Ŝ

) and with z′′ that belongs to some node at level k of Gk
R̂,Ŝ

reached by an edge leaving

a suffix of z′. By inductive hypothesis z′ ∈ Lk−1(Ŝ) ∩ Lk−1(R̂) and, again by Definition 4.5, z′′ ∈
chopqk−1+1

⊗ · · · ⊗ chopqk ; since Lk(Ŝ) ∩ Lk(R̂) 6= ∅ these chops are not empty, their concatenation
contains the suffix of length |Gk

R̂,Ŝ
| − |Gk−1

R̂,Ŝ
| of strings in both Lk(R̂) and Lk(Ŝ), and hence z ∈

Lk(Ŝ) ∩ Lk(R̂).
We now show that Lk(Ŝ) ∩ Lk(R̂) ⊆ paths(Gk

R̂,Ŝ
). Consider string u ∈ Lk(Ŝ) ∩ Lk(R̂) that can be

written as u = u′u′′ with u′ the prefix of u having length |Gk−1
R̂,Ŝ
| which then belongs to Lk−1(Ŝ) ∩

Lk−1(R̂); then, by inductive hypothesis, u′ ∈ paths(Gk−1
R̂,Ŝ

) and, since u ∈ Lk(Ŝ) ∩ Lk(R̂), then

there is an edge linking a suffix of u′ at level k − 1 with a node at level k of Gk
R̂,Ŝ

containing a

|Gk
R̂,Ŝ
| − |Gk−1

R̂,Ŝ
| long suffix u′′ of u, and hence u ∈ paths(Gk

R̂,Ŝ
). ut
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As a special case of Lemma 4.7, if L(Ŝ) ∩ L(R̂) 6= ∅, then GR̂,Ŝ is built up to the last level and
the following holds.

Theorem 4.8. Let R̂, Ŝ be two GD strings having lengths, respectively, r and s, with w(R̂) =w(Ŝ)
and no synchronized proper prefixes. Then GR̂,Ŝ has exactly r + s − 1 levels, and we have that

L(Ŝ) ∩ L(R̂) = paths(GR̂,Ŝ).

GR̂,Ŝ is thus a linear-sized representation of the possibly exponential-sized (see Fact 4.1) set

L(Ŝ) ∩ L(R̂).
We now show an O(N + M)-time algorithm for the standard word RAM model, denoted by

GDSC, that decides whether L(R̂) and L(Ŝ) share at least one string (returns 1) or not (returns 0).
GDSC starts with constructing the generalized suffix tree TR̂,Ŝ of all the strings in R̂ and Ŝ. Then

it scans R̂ and Ŝ starting with R̂[0] and Ŝ[0], storing in chopR̂,Ŝ the latest chopi and in activeR̂,Ŝ the
latest activeÂi,B̂i

, using TR̂,Ŝ . To efficiently implement GDSC, rather than explicitly storing suffixes

in activeR̂,Ŝ , they are stored as index positions of R̂[i] or Ŝ[j]. A variable suff is used to keep track of
the starting position of the suffixes. Note that this starting position is the same for every index that has
been stored in activeR̂,Ŝ . Given that w( ˆS[0]) < w( ˆR[0]), the next comparison is made between the

corresponding suffixes of R̂[0] of length w( ˆR[0]) − suff and Ŝ[1], proceeding with the same process.
The comparison of letters can be: (i) between R̂[i] and Ŝ[j]; or (ii) between the corresponding suffixes
of activeR̂,Ŝ and R̂[i]; or (iii) between the corresponding suffixes of activeR̂,Ŝ and Ŝ[j]. If the two GD

strings have a synchronized proper prefix, this will result in activeR̂,Ŝ = ∅ at positions i in R̂ and j in

Ŝ. At this point, the comparison is restarted with the immediately following pair of degenerate letters.

Example 4.9. Consider the GD strings R̂ and Ŝ below. The set L(R̂) ∩ L(Ŝ) contains the strings
ATACGACTAACGTT, ATACGACTAGCACT, TATCCGACTACGTT, TATCCGACTGCACT.

R̂ =

{
A T A

T A T

}
·


G A C C

C C G A

C G A C

 ·

C G

C T

T A

 ·
{
A C G T

G C A C

}
·
{
T
}

Ŝ =


T A T C C

T A T G A

A T A C G

 ·
{
A C T A

G A C T

}
·


G C A

A A T

A C G

 ·

C

A

T

 · {T}

Theorem 4.10. Algorithm GDSC is correct. Given two GD strings R̂ and Ŝ of total sizes N and M ,
respectively, over an integer alphabet, algorithm GDSC requires O(N +M) time.

Proof:
The correctness follows directly from Lemma 4.2, Lemma 4.7, and Theorem 4.8.

As for the complexity, we have the following: constructing the generalized suffix tree TR̂,Ŝ can

be done in time O(N + M) [23]; for the sets pair (Âi, B̂i) as in Definition 4.3, such that w(Âi) = k
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and w(Âi) ≤ w(B̂i), we query TR̂,Ŝ with the k-length prefixes of strings in B̂i; for integer alphabets,
instead of spelling the strings from the root of TR̂,Ŝ , we locate the corresponding terminal nodes

for (Âi, B̂i). It then suffices to find longest common prefixes between these suffixes to simulate the
querying process. Since all suffixes are lexicographically sorted during the construction of TR̂,Ŝ ,

we can also have the suffixes considered by pair (Âi, B̂i) lexicographically ranked with respect to
(Âi, B̂i). Hence we do not perform the longest common prefix operation for all possible suffix pairs,
but only for the lexicographically adjacent ones within this group. This can be done in O(1) time per
pair after O(N + M)-time pre-processing over TR̂,Ŝ [24]. chopi is thus populated with the k-length

prefixes of strings in B̂i found in Âi. The set activeÂi,B̂i
of active suffixes can be found by chopping

the suffixes of the string in B̂i from their prefixes successfully queried in TR̂,Ŝ . This requires time

O(|Âi|+ |B̂i|) for processing (Âi, B̂i).
Let R̂ and Ŝ be of length r and s, respectively. Assume that R̂ and Ŝ have no synchronized proper

prefixes. Then Theorem 4.8 ensures that the total number of comparisons cannot exceed r + s − 2:
this results in a time complexity of O(N +M +

∑r+s−2
i=0 (|Âi|+ |B̂i|)) = O(N +M).

If R̂ and Ŝ have synchronized proper prefixes, we perform the comparison up to the shortest
synchronized prefixes (i.e., the set of active suffixes becomes empty) and then restart the procedure
from the immediately following pair of degenerate letters. Clearly the total number of comparisons
also in this case cannot be more than r + s− 2. ut

5. Computing Palindromes in GD Strings

Armed with the efficient GD string comparison tool, we shift our focus on computing palindromes in
GD strings.

Definition 5.1. A GD string Ŝ is a GD palindrome if there exists a string in L(Ŝ) that is a palindrome.

A GD palindrome Ŝ[i] . . . Ŝ[j] in Ŝ, whose total width is w(Ŝ[i] . . . Ŝ[j]), can be encoded as

a pair (c, r), where its center is c = w(Ŝ[0]...Ŝ[i−1])+w(Ŝ[0]...Ŝ[j])−1
2 , when i > 0, otherwise, c =

w(Ŝ[0]...Ŝ[j])−1
2 , when i = 0; its radius is r = w(Ŝ[i]...Ŝ[j])

2 . Ŝ[i] . . . Ŝ[j] is called maximal if no other
GD palindrome (c, r′) exists in Ŝ with r′ > r. Note that we only consider the GD palindromes
Ŝ[i] . . . Ŝ[j] that start with the first letter of some string X ∈ Ŝ[i] and end with the last letter of some
string Y ∈ Ŝ[j], while the center can be anywhere: in between or inside degenerate letters. That is, in
Ŝ there are 2 · w(Ŝ)− 1 = 2W − 1 possible centers.

Example 5.2. (for Definition 5.1)
In the GD string

Ŝ = {G} ·


A C A

T T T

G T C

 ·

T G

A G

T T

 ·
{
G A

G T

}
·


C A G G C T T T

C C A G T T A C

A T T T C A G G

 · {A}
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we have palindrome ACATTGACCAGTTACA (underlined) at Ŝ[1] . . . Ŝ[5] which corresponds to GD palin-
dome (8.5,8), palindrome TTT at Ŝ[1] (underlined twice) which corresponds to GD palindrome (2,1.5)
and palindrome TGGT at Ŝ[2] . . . Ŝ[3] (overlined) which corresponds to GD palindrome (5.5,2). Ob-
serve that GD palindrome (5.5,2) is maximal for center 5.5. Note that CTGGTC does not correspond to
a valid GD palindrome as it neither starts at the beginning of a degenerate letter, nor ends at the end of
a degenerate letter.

In this section, we consider the following problem. Given a GD string Ŝ of length n, total size N ,
and total width W , find all GD strings Ŝ[i] . . . Ŝ[j], with 0 ≤ i ≤ j ≤ n−1, that are GD palindromes.
We give two alternative algorithms: one finds all GD palindromes seeking them for all (i, j) pairs of
starting and ending positions, and the other one finds them starting from all possible centers. The two
algorithms have different time complexities: which one is faster depends on W , N , and n. In fact,
they compute all GD palindromes, but report only the maximal ones.

5.1. Algorithms for Computing GD Palindromes

We first describe algorithm MAXPALPAIRS. For all i, j positions within Ŝ, in order to check whether
Ŝ[i] . . . Ŝ[j] is a GD palindrome, we apply the GDSC algorithm to Ŝ[i] . . . Ŝ[j] and its reverse, de-
noted by rev(Ŝ[i] . . . Ŝ[j]); the reverse is defined by reversing the sequence of degenerate letters and
also reversing the strings in every degenerate letter. GD palindromes are, finally, sorted per center,
and the maximal GD palindromes are reported. Sorting the (i, j) pairs by their centers can be done in
O(W ) time using bucket sort, which is bounded by O(N) since N ≥W .

Since there are O(n2) pairs (i, j), and since by Theorem 4.10 algorithm GDSC takes time pro-
portional to the total size of Ŝ[i] . . . Ŝ[j] to check whether Ŝ[i] . . . Ŝ[j] is a GD palindrome, algo-
rithm MAXPALPAIRS takes O(n2N) time in total. In algorithm MAXPALCENTERS, we consider all
possible centers c of Ŝ. In the case when c is in between two degenerate letters we simply try to
extend to the left and to the right via applying GDSC. In the case when c is inside a degenerate letter
we intuitively split the letter vertically into two letters and try to extend to the left and to the right via
applying GDSC. At each extension step of this procedure we maintain two GD strings L̂ (left of the
center) and R̂ (right of the center) such that they are of the same total width. We consider the reverse
of L̂ (similar to algorithm MAXPALPAIRS) for the comparison. In the case where c occurs inside a
degenerate letter to make sure we do not identify palindromes which do not exist, for all j split strings
of the degenerate letter, we check that L̂R[0][j][0 . . . k− 1] = R̂[0][j][0 . . . k− 1] where L̂R = rev(L̂)
and k = min(w(LR[0]), w(R̂[0])). If no matches are found, we move onto the next center. Otherwise,
when a match is found, we update rev(L̂) and R̂ with the remainder of the split degenerate letter (if
its length is greater than k), as well as the next degenerate letters. Algorithm GDSC is applied to
compare rev(L̂) and R̂. After a positive comparison, we overwrite L̂ and R̂ by adding the degenerate
letters of the current extension until w(L̂) = w(R̂) (or until the end of the string is reached). This
process is repeated as long as GDSC returns a positive comparison, that is, until the maximal GD
palindrome with center c is found. The radius reported is then the total sum of all values of w(L̂). If
GDSC returns a negative comparison at center c, we proceed with the next center, because we clearly
cannot have a GD palindrome centered at c extended further if rev(L̂) ∩ R̂ is empty.
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By Theorem 4.10 and the fact that there are 2W−1 possible centers, we have that algorithm MAX-
PALCENTERS takes O(WN) time in total. We obtain the following result.

Theorem 5.3. Given a GD string of length n, total size N , and total width W , over an integer alpha-
bet, all (maximal) GD palindromes can be computed in time O(min{W,n2}N).

The problem that gained significant attention recently is the factorization of a string X of length n
into a sequence of palindromes [25, 26, 27, 28, 29, 30]. We say that X1, X2, . . . , X` is a (maximal)
palindromic factorization of string X , if every Xi is a (maximal) palindrome, X = X1X2 . . . X`, and
` is minimal. In biological applications we need to factorize a sequence into palindromes in order to
identify hairpins, patterns that occur in single-stranded DNA or, more commonly, in RNA. Next, we
define and solve the same problem for GD strings.

Alatabbi et al. gave an off-line O(n)-time algorithm for finding a maximal palindromic factoriza-
tion ofX [25]. Fici et al. presented an on-lineO(n log n)-time algorithm for computing a palindromic
factorization of X [26]; a similar algorithm was presented by I et al. [31]. In addition, Rubinchik and
Shur [27] devised an O(n)-sized data structure that helps to locate palindromes in a string; they also
showed how it can be used to compute a palindromic factorization of X inO(n log n) time. Borozdin
et al. recently improved this by presenting anO(n)-time algorithm [28]. Alzamel et al. considered the
factorization problem for weighted sequences [29] and Adamczyk et al. considered the factorization
problem with gaps and errors [30]. In what follows, we define and solve the same problem for GD
strings.

Definition 5.4. A (maximal) GD palindromic factorization of a GD string Ŝ is a sequence P̂1, . . . , P̂`
of GD strings, such that: (i) every P̂i is either a (maximal) GD palindrome or a degenerate letter of Ŝ;
(ii) Ŝ = P̂1 . . . P̂`; (iii) ` is minimal.

After locating all (maximal) GD palindromes in Ŝ using Theorem 5.3, we are in a position to
amend the algorithm of Alatabbi et al. [25] to find a (maximal) GD palindromic factorization of Ŝ.
We define a directed graph GŜ = (V, E), where V = {i | 0 ≤ i ≤ n} and E = {(i, j+1) | Ŝ[i] . . . Ŝ[j]

(maximal) GD palindrome of Ŝ}∪{(i, i+1)|0 ≤ i < n}. Note that V contains a node n that is the sink
of edges representing (maximal) GD palindromes ending at Ŝ[n− 1]. For maximal GD palindromes,
E contains no more than 3W edges, as the maximum number of maximal GD palindromes is 2W − 1.
For GD palindromes, E containsO(n2) edges, as the maximum number of GD palindromes isO(n2).
A shortest path in GŜ from 0 to n gives a (maximal) GD palindromic factorization. For maximal GD
palindromes, the size of GŜ is O(W ), as n ≤ W , and so finding this shortest path requires O(W )
time using a standard algorithm. For GD palindromes, the size of GŜ , and thus the time, is O(n2).

Theorem 5.5. Given a GD string Ŝ of length n, total size N , and total width W , over an integer
alphabet, a (maximal) GD palindromic factorization of Ŝ can be computed in timeO(min{W,n2}N).

Remark 5.6. As a final remark, notice that a way to check whether a GD string is a GD palindrome
is to compare it with its reverse. Since it is not a simple pattern matching between two GD strings,
one can reduce the number of comparisons by comparing the r-th string in Ŝ[s] and the r-th string in
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Ŝ[n− 1− s]R, for all 0 ≤ s ≤ n− 1. It means that the comparison is not free, but constrained to the
positions that contain the first half of the palindrome contained in Ŝ.

5.2. Computing GD Palindromes in Protein Sequences

Hypervariable Region
I II

V [32] This paper [32] This paper

VkII
18-27 11-36 119-130 118-131

104-113 104-113 169-180 169-180

VkIII 18-27 11-30 132-142 131-145

VλII 63-74 62-81 140-152 140-152

VλIII 51-74 50-75 132-143 131-144

VλV 96-104 95-104 134-141 134-141

Table 1. Coordinates of (maximal) palindromes identified within hypervariable regions I and II.

We have implemented algorithm MAXPALPAIRS in C++. We present here a proof-of-concept
experiment but we anticipate that the algorithmic tools developed in this paper are applicable in a
wide range of biological applications.

We first obtained the amino acid sequences of 5 immunoglobulins within the human V regions [33]
and converted these into mRNA sequences [34]. The letters X, S, T, Y, Z, R and H were replaced by
degenerate letters according to IUPAC [35]. Each other letter, c ∈ {A, C, G, U}, was treated as a single
degenerate letter {c}. An average of 47% of the total number of positions within the 5 sequences
consisted of one of the following: X, S, T, Y, Z, R and H. We then used algorithm MAXPALPAIRS to
find all maximal palindromes in the 5 sequences. Table 1 shows the palindromes identified within
hypervariable regions I and II. Our results are in accordance with Wuilmart et al [32] who presented a
statistical (fundamentally different) method to identify the location of palindromes within regions of
immunoglobulin genes. The ranges we report are greater than or equal to the ones of [32] due to the
maximality criterion used in the computation of GD palindromes by algorithm MAXPALPAIRS.

6. A Conditional Lower Bound under SETH

In this section, we show a conditional lower bound for computing palindromes in degenerate strings.
Let us first define the 2-Orthogonal Vectors problem. Given two sets A = {α1, α2, . . . , αn} and B =
{β1, β2, . . . , βn} of d-bit vectors, where d = ω(log n), the 2-Orthogonal Vectors problem asks the
following question: is there any pair αi, βj of vectors that is orthogonal? Namely, is

∑d−1
k=0 αi[k]·βj [k]

equal to 0 for some i, j ∈ [1, n]? For the moderate dimension of this problem, we follow [36],
assuming n2−εdO(1) ≤ n2d. The following result is known.
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Theorem 6.1. ([36, 21, 22, 37])
The 2-Orthogonal Vectors problem cannot be solved in O(n2−ε · dO(1)) time, for any ε > 0, unless
the Strong Exponential Time Hypothesis fails.

We next show that the 2-Orthogonal Vectors problem can be reduced to computing maximal palin-
dromes in degenerate strings thus obtaining a conditional lower bound similar to the upper bound
obtained in Theorem 5.3 for computing all GD palindromes.

Theorem 6.2. Given a degenerate string of length 4n over an alphabet of size σ = ω(log n), all
maximal GD palindromes cannot be computed in O(n2−ε · σO(1)) time, for any ε > 0, unless the
Strong Exponential Time Hypothesis fails.

Proof:
Let d = σ and consider the alphabet Σ = {0, 1, . . . , σ − 1}. We say that two subsets of Σ match
if they have a common element. Given a d-bit vector α, we define µ(α) to be the following subset
of Σ: s ∈ µ(α) if and only if α[s] = 1. Thus, two vectors α and β are orthogonal if and only if
the sets µ(α) and µ(β) are disjoint. In the string comparison setting, two degenerate letters µ(α) and
µ(β) do not match if and only if α and β are orthogonal. The reduction works as follows. Given
A = {α1, α2, . . . , αn} and B = {β1, β2, . . . , βn}, we construct the following simple degenerate
string of length 4n in time O(nσ):

S = µ(α1)µ(β1)µ(α2)µ(β2) . . . µ(αn)µ(βn)µ(α1)µ(β1)µ(α2)µ(β2) . . . µ(αn)µ(βn).

· · ·

Then the 2-Orthogonal Vectors problem for the sets A and B has a positive answer if and only
if at any position of S, from 0 to 2n, there does not occur a palindrome of length at least 2n. All
such occurrences can be easily verified from the respective palindrome centers in time O(n). In other
words, if at any position of S there does not occur a palindrome of length at least 2n, this is because
we have a mismatch between a pair µ(αi), µ(βj) of letters, which implies that there exists a pair αi, βj
of orthogonal vectors. Also, by the construction, all such pairs are to be (implicitly) compared, and
thus, if there exists any pair that is orthogonal, the corresponding mismatch will result in a palindrome
of length less than 2n. ut

7. Concluding Remarks and Open Problems

In this paper we solved the problem of comparing two GD strings, that is, to decide whether two GD
strings have a non-empty intersection. We then applied our string comparison tool to devise a simple
algorithm for computing all palindromes in a GD string. We also complemented the latter algorithm
by showing a similar conditional lower bound.

In Section 1, we sketched how automata can be used for comparing two ED strings. Recall that an
ED string is a more general notion of degenerate string, where a degenerate letter generally contains
strings of arbitrary lengths as well as the empty string. For GD strings, we showed that this comparison
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can be done in linear time for integer alphabets (Theorem 4.10). An interesting open problem is
whether we can devise a more efficient (than theO(NM)-time automata-based sketched in Section 1)
approach for deciding whether the two languages represented by two ED strings of sizes N and M
have a non-empty intersection; or, more generally, whether they share a sufficiently long substring.
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