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For angling may be said to be so like the mathematics, that it can never
be fully learnt; at least not so fully, but that there will still be more new
experiments left for the trial of other men that succeed us.

Izaak Walton, The Compleat Angler,To the Reader of this Discourse.
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WHAT IS MATHEMATICAL TRUTH?

1) An absolute.

2) A relative notion.

3) A tautology.

4) Does not exist.

5) A product of culture.
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according to which constructions and rules are allowed.

A serious difficulty: Freewheeling infinite constructions quickly lead
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Platonic Realism : The view that numbers, geometry, hence mathe-
matics, exist in the platonic world of ideas as absolutes.

Plentiful Platonism : It allows for the existence of an objective set of
distinct mathematics.

Formalism : The view that mathematics is only a construction of the
mind (or the collective mind).

The role of the mathematician is analogous to that of an architect,
rather than of an explorer. One has different types of mathematics
according to which constructions and rules are allowed.

A serious difficulty: Freewheeling infinite constructions quickly lead
to antinomies and paradoxes, as in early models of set theory.

Russell’s Paradox: The impossible setR of all sets S with the property
that S is not an element ofS.



Brouwer’s Intuitionism : Everything in mathematics must be ‘effec-
tively’ defined. Mathematical entities do not exist until they have
been constructed.

John Stuart Mill’s Empiricism : Mathematics is the result of em-
pirical research, which puts mathematics on a par with other
sciences.

Lakatos’s Quasi-empiricism (Post-modernism) : It questions the
validity of mathematics as a whole, based on the assertion that no
foundation of mathematics can be proved to exist.

Social Constructivism and Social Realism : Mathematics is only
a product of culture, subject to change. It does not exist until it has
been thought out. Social realism presents a postmodernist view:
Mathematics is shaped by the fashions of the social group doing it.

Hartry Field’s Fictionalism : Mathematics is meaningless in ab-
solute. It is at best a useful fiction.
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Applied mathematics : The subject of study has its roots in the de-
scription of reality.

However, it is very hard to describe actual phenomena by simple
mathematical models. Finding good mathematical models may be
more difficult than the actual mathematics needed to study them.

Hardy, in his well-known short essay “A Mathematician’s Apology”
puts it bluntly in these terms: “most of the finest products of an ap-
plied mathematician’s fancy must be rejected, as soon as they have
been created, by the brutal but sufficient reason that they do not fit
the facts.”

As an example, sophisticated mathematical models of investment fi-
nance have turned out to be grossly insufficient to take into account
the distinction between real wealth and paper profits.
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Most mathematicians agree with the platonic view, but work in the
formalistic way. They are platonists on Sundays but formalists on
week days.

Most mathematicians also believe that the mathematical objects
are not just formulas, propositions, or theorems.

Hardy’s view: “A mathematician, like a painter or poet, is a maker of
patterns. If his patterns are more permanent than theirs, it is because
they are made with ideas.”

My own view: Mathematics is the science of relations. What
matters is the relation between objects, not the objects themselves.
Very different objects can share the same relation. Patterns are
aspects of relations and, sometimes, can be identified with relations.



RATIONAL TRUTH

The School of Athens by Raphael
Aristotle and Plato in the center, Euclid in the lower right corner



MATHEMATICAL TRUTH

The School of Athens by Raphael
Detail of Euclid with his students



QUESTIONS ABOUT MATHEMATICS AND TRUTH

• Is classical mathematics free from contradiction?

• Does mathematics deal with truth?

• Is truth identifiable with verification (i.e. proof)?

• Can truth, or proof, be achieved by consensus?

• Is there a mathematical notion of ‘probable truth’?

• Is automatic verification (i.e by computer) acceptable in mathe-
matics?



TRUTH IN FORMALISTIC MATHEMATICS

Hilbert proposed a program to obtain a complete axiomatization of
mathematics and proof of its consistency, starting from the assump-
tion of the consistency of a small number of intuitive basic axioms.
Hilbert’s program in its original form was brought to a sudden halt by
Gödel second incompleteness theorem: Any sufficiently large model
of mathematics cannot prove its consistency within itself.
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mathematics and proof of its consistency, starting from the assump-
tion of the consistency of a small number of intuitive basic axioms.
Hilbert’s program in its original form was brought to a sudden halt by
Gödel second incompleteness theorem: Any sufficiently large model
of mathematics cannot prove its consistency within itself.

The formalization of mathematics continued quite successfully with
the Bourbaki group with the axiomatization of large parts of algebra,
analysis, and geometry. Unfortunately, Bourbaki’s ideology excluded
entire sectors of mathematics from its program.

Truth in formalistic mathematics is not an absolute about a Platonic
absolute in an absolute world of ideas. However, the formalization of
truth in a suitable formalistic model of mathematics is possible, as
shown by Alfred Tarski in a famous paper.



TARSKI’s SOLUTION, I

At the basis of the difficulty of defining truth in a system with the
classical axiom (A ∨ ¬A) of the excluded middle (either A is true or
the negation of A is true) is the well-known liar’s paradox, embodied
in the sentence

‘This sentence is false’



TARSKI’s SOLUTION, I

At the basis of the difficulty of defining truth in a system with the
classical axiom (A ∨ ¬A) of the excluded middle (either A is true or
the negation of A is true) is the well-known liar’s paradox, embodied
in the sentence

‘This sentence is false’

Tarski’s solution of the problem of truth is exemplified by his
famous phrase (translated in English from German)

‘Snow is white’ is true if and only if snow is white

Here the first ‘Snow is white’ is a sentence, the second ‘snow
is white’ is a proposition. The distinction is a subtle one.



TARSKI’s SOLUTION, II

For Tarski, the definition of truth in a language L (i.e. an alphabet
and a collection of words and phrases according to a certain syntax)
must be given in another language, the metalanguageML. The
metalanguage ML should contain a copy of L and should be able
to talk about the sentences and the syntax of L. Also ML should
contain a predicate symbol True where True(x) means x is a true
sentence of L. A definition of True should be a sentence of the form

For all x, True(x) if and only if ϕ(x)

where True never occurs in ϕ. The equivalence ‘if and only if’
must be provable using axioms of ML that do not contain True. Of
course, one wants to be able to say that, in an adequate definition of
truth, intuitive truths become truths. This is conventionT .



TARSKI’s SOLUTION, III

If the language L is big enough to talk about its own semantics, con-
vention T makes the liar paradox inevitable. To avoid this problem it
is essential that the metalanguage ML should be much larger than
L. Tarski then shows that there is a single formula ϕ in ML which
defines True in L. For a language containing the standard ¬ (“not”),
∧ (“and”), ∨ (“or”), and quantifiers ∀ (“for all”) and ∃ (“there exists”)
the following intuitive truths must hold:

• ¬A is true if and only if A is not true.
• A ∧B is true if and only if A is true and B is true.
• A ∨B is true if and only if A is true or B is true.
• ∀x A(x) is true if and only if each object x satisfies A(x).
• ∃x A(x) is true if and only if there is an object x satisfying A(x).



TARSKI’s SOLUTION, IV

The advantage of Tarski’s definition is that truth in a language L can
be formally defined in a more ample language ML containing L, but
truth cannot be defined inside L itself.

For the working mathematician, Tarski’s notion of truth, taking for
L the mathematics with the Zermelo–Fraenkel axioms and L within
the metalanguage of plain English (with some caveats), is indeed a
satisfactory solution that allows him to continue to explore or create
new relations and new patterns of significant mathematics.
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The advantage of Tarski’s definition is that truth in a language L can
be formally defined in a more ample language ML containing L, but
truth cannot be defined inside L itself.

For the working mathematician, Tarski’s notion of truth, taking for
L the mathematics with the Zermelo–Fraenkel axioms and L within
the metalanguage of plain English (with some caveats), is indeed a
satisfactory solution that allows him to continue to explore or create
new relations and new patterns of significant mathematics.

A question: Is then the Continuum Hypothesis true or false?
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The true in ML The false in ML

True and false overlap in ML No overlaps in the yellow L
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THE CONTINUUM

The simplest infinity ℵ0 is the infinity of counting, i.e. the cardinality
of the set of all natural integers.

The continuum c is the cardinality of the set of all real numbers.

Cantor showed that it is the same as the cardinality of the set of all
subsets of the natural integers, denoted by 2ℵ0 :

c = 2ℵ0.



THE CONTINUUM IS UNCOUNTABLE

Suppose it is countable in an infinite list:

0.643546675432534645600112 . . .
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0.999999999961045674732017 . . .
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0.141592653589793238462643 . . .
0.777777777777777777777777 . . .
0.421047542507075505555001 . . .
0.777777771777777777777777 . . .
0.777777777177777777777777 . . .
0.010010001000010000010000 . . .
0.099999999999999900000000 . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .



THE CONTINUUM IS UNCOUNTABLE

Suppose it is countable in an infinite list:

0.643546675432534645600112 . . .
0.100053453647545546043860 . . .
0.000000000000100004534237 . . .
0.999999999961045674732017 . . .
0.222955600333054564501179 . . .
0.141592653589793238462643 . . .
0.777777777777777777777777 . . .
0.421047542507075505555001 . . .
0.777777771777777777777777 . . .
0.777777777177777777777777 . . .
0.010010001000010000010000 . . .
0.099999999999999900000000 . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Diagonal marker: 0.600952741109 . . . (nth digit of nth number)



THE CONTINUUM IS UNCOUNTABLE

Suppose it is countable in an infinite list:

0.643546675432534645600112 . . .
0.100053453647545546043860 . . .
0.000000000000100004534237 . . .
0.999999999961045674732017 . . .
0.222955600333054564501179 . . .
0.141592653589793238462643 . . .
0.777777777777777777777777 . . .
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0.777777771777777777777777 . . .
0.777777777177777777777777 . . .
0.010010001000010000010000 . . .
0.099999999999999900000000 . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Diagonal marker: 0.600952741109 . . . (nth digit of nth number)

The number 0.711063852210 . . . is not in the above list.
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A binary tree. Level 8.
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With the Axiom of Choice , cardinalities of sets can be ordered. It
gives a meaning to the phrase “The set A has more elements than
the set B ”.

Hence there is a first cardinal number ℵ1 greater than ℵ0.

All attempts by Cantor to construct a ‘small’ uncountable set pro-
duced only the cardinal 2ℵ0 .

The Continuum Hypothesis is the statement

ℵ1 = c.

A common mistake, popularized by the famous physicist George
Gamov in his expository book “One, two, three, infinity” , is to think
that the equation c = 2ℵ0 is the continuum hypothesis.



THE CONTINUUM HYPOTHESIS

Kurt G ödel proved in 1940 that CH is consistent with ZFC. Paul
Cohen proved in 1963 that ¬CH is consistent with ZFC.

With Tarski’s definition of truth there is no contradiction here with the
axiom (A∨¬A); the notion of truth depends on the metalanguage ML

used to define the function True. By Gödel result on the continuum
hypothesis, truth in the language ZFC can be defined in a metalan-
guage M1ZFC where True(CH) holds, but also by Cohen’s result it
can be defined in another metalanguage M2ZFC where True(¬CH)

holds.



THE CONTINUUM HYPOTHESIS

Kurt G ödel proved in 1940 that CH is consistent with ZFC. Paul
Cohen proved in 1963 that ¬CH is consistent with ZFC.

With Tarski’s definition of truth there is no contradiction here with the
axiom (A∨¬A); the notion of truth depends on the metalanguage ML

used to define the function True. By Gödel result on the continuum
hypothesis, truth in the language ZFC can be defined in a metalan-
guage M1ZFC where True(CH) holds, but also by Cohen’s result it
can be defined in another metalanguage M2ZFC where True(¬CH)

holds.

Is one model better than the other? Here ‘better’ is a subjective word,
but the working mathematician is guided by clear aesthetic consid-
erations: Intuition, simplicity of arguments, linearity of patterns, and
a mathematically undefinable aristotelian ‘fitting with reality’. Such
choices may change with time.



IS TRUTH THE SAME AS PROOF?

Certainly not.

The great logicians G ödel and Tarski took great pains to distinguish
between truth and proof. Indeed, even at an elementary level there are
undecidable statements in PA arithmetic that become provable theo-
rems in ZFC mathematics, a famous case being the Paris–Harrington
extension of the classical Ramsey theorem of combinatorics. The dif-
ficulty is that any proof of the Paris–Harrington theorem requires an
ε0-transfinite induction , unreachable by the countable induction al-
lowed in PA. However, each specialization of the Paris-Harrington
theorem reduces to a finite calculation and is (theoretically) provable
in PRA by case enumeration.
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Certainly not.

The great logicians G ödel and Tarski took great pains to distinguish
between truth and proof. Indeed, even at an elementary level there are
undecidable statements in PA arithmetic that become provable theo-
rems in ZFC mathematics, a famous case being the Paris–Harrington
extension of the classical Ramsey theorem of combinatorics. The dif-
ficulty is that any proof of the Paris–Harrington theorem requires an
ε0-transfinite induction , unreachable by the countable induction al-
lowed in PA. However, each specialization of the Paris-Harrington
theorem reduces to a finite calculation and is (theoretically) provable
in PRA by case enumeration.

Why? The number of cases to considers grows so fast that it cannot
be expressed by a formula that can be written in finite terms. So there
is no finitistic proof as Aristotle required for all of mathematics.



TRUTH IN OTHER MODELS

• Field’s fictionalism.

• Empiricism.

• Social constructivism.
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Hartry Field’s fictionalism

Mathematics is dispensable and its statements cannot talk about re-
ality; it is at best a useful fiction. A mathematical statement such as
1 + 1 = 2 is meaningless in absolute and true only in the fictional
world of mathematics.

In a Wikipedia article on philosophy of mathematics, it was stated
that, for Field, “a statement like 2+2 = 4 is just as false as ‘Sherlock
Holmes lived at 22b Baker Street’ – but both are true according to the
relevant fiction.”

A mathematician would answer that the sentence 2 + 2 = 4 is true
in the very simple language PRA of primitive recursive arithmetic
and for the layman as well, while the second statement is false as it
stands, as Hardy would have said, for the brutal but sufficient rea-
son that Sherlock Holmes lived at 221B Baker Street, as seen from a
fragment of the Conan Doyle story “A Study in Scarlet”, beginning of
Chapter 2.



John Stuart Mill’s empiricism

Empiricism denies that mathematics exists independently of us. It is
instead the result of empirical research, which puts mathematics on
a par with other sciences, at least on this point. Mathematical truth
here is only contingent to observation. Quine and Putnam proposed
a form of mathematical empiricism that dispensed with the Platonic
ontology of mathematics and justified the reality of mathematics by
its ability to describe the real world.

Imre Lakatos’s quasi-empiricism

Quasi-empiricism, also described as post-modernism in mathemat-
ics, questions the validity of mathematics as a whole, based on the
assertion that no foundation of mathematics can be proved to exist.
Thus a mathematical proof can transmit falsity from the conclusion
to the premises in the same way that it can transmit truth from the
premises to the conclusion.



String theory in physics has been used as support for empiricism,
since it yielded new insights on space of three and four dimensions
and it has been essential in the solution of long-standing problems in
mathematics.
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String theory in physics has been used as support for empiricism,
since it yielded new insights on space of three and four dimensions
and it has been essential in the solution of long-standing problems in
mathematics.

General relativity can equally be used in the opposite way, since the
mathematics here precedes the physics by half a century and, without
it, general relativity would consist only of empty words.

We may talk of black holes, of the expanding universe, of quanta and
quarks, as is done in popular journalism, but physics at this level is
like saying that a body falls towards the earth in the same way as
a child always goes towards his mother, a view closer to Aristotle’s
than to reality. Attempts to reduce mathematics to an overly simple
picture suffer precisely from the same defects present in journalistic
physics.
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Brouwer’s intuitionism

In intuitionism, mathematical objects cannot be considered unless if
obtained by explicit construction. The statement

True(A ∨ ¬A)

is valid only if we first decide separately about the validity of True(A)

and True(¬A).

Thus in intuitionism the most famous words by Hamlet are indeed
only a question and a good deal of aristotelian and scholastic philos-
ophy turns out to be meaningless.

An example in intuitionism: The ‘evident’ statement “If I put three
objects in two boxes then one box will contain at least two objects”
is meaningless, unless I decide in advance how to put the objects in
the boxes. Proof by contradiction (i.e. the classic tertium non datur )
is not an admissible universal logical truth.



PROOF BY CONTRADICTION: AN EXAMPLE, I

Let π(x) be the function of x > 0 which counts the number of primes
up to x and let

Li(x) =
∫ x

0

dt

log t

be the function called integral logarithm of x. The prime number the-
orem asserts that π(x) and Li(x) are asymptotically the same, in the
sense that their ratio tends to 1 as x tends to ∞.
In 1859 Riemann found a formula for π(x) in terms of the solutions
(the zeros) of the equation ζ(s) = 0 where

ζ(s) =
∞∑

n=1

1

ns

is the Riemann zeta function. Riemann formulated a conjecture about
the zeros of ζ(s) which turned out to be the key for understanding the
finer distribution of prime numbers.



PROOF BY CONTRADICTION: AN EXAMPLE, II

The Riemann hypothesis is equivalent to the statement that

|π(x)− Li(x)| ≤
1

8π

√
x logx

for x > 2657. (The Riemann hypothesis is still unsolved.)

It is an instructive enterprise to examine the deviation of π(x) from
Li(x). The physicist Goldschmidt, a friend of Riemann, provided Rie-
mann with a numerical table showing that

π(x) < Li(x) for all x < 3× 106.

Riemann himself commented on this remarkable fact in his cele-
brated memoir on the distribution of prime numbers. Further cal-
culations with the help of computers showed that this phenomenon
persists at least for all x < 1023.



PROOF BY CONTRADICTION: AN EXAMPLE, III

Is this numerical evidence sufficient for believing that the result must
hold in general? The answer is a resounding “No”. In 1955, the South
African mathematician Stanley Skewes proved that there is an

x < 1010101000

for which π(x) > Li(x). How was such a result proved?
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Skewes’s argument is in two parts. The first, done in 1933, shows
that it holds on the assumption of the Riemann hypothesis.The sec-
ond part of the argument, obtained 22 years later, assumes the failure
of the Riemann hypothesis. Then one can still obtain the same con-
clusion.
Such an argument relies on True(A ∨ ¬A) and is not admitted as a
proof in intuitionistic mathematics. Still, Skewes’s number is explicit!
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Is this numerical evidence sufficient for believing that the result must
hold in general? The answer is a resounding “No”. In 1955, the South
African mathematician Stanley Skewes proved that there is an

x < 1010101000

for which π(x) > Li(x). How was such a result proved?

Skewes’s argument is in two parts. The first, done in 1933, shows
that it holds on the assumption of the Riemann hypothesis.The sec-
ond part of the argument, obtained 22 years later, assumes the failure
of the Riemann hypothesis. Then one can still obtain the same con-
clusion.
Such an argument relies on True(A ∨ ¬A) and is not admitted as a
proof in intuitionistic mathematics. Still, Skewes’s number is explicit!

Today Skewes’s interval has been narrowed down (on RH ) to

[1.39792136× 10316,1.39847567× 10316].



COMPUTER PROOFS: THE FOUR COLOR THEOREM

Some mathematicians and philosophers question the ‘truth’ of com-
puter proofs on the ground that they are uncheckable by the human
mind. The first ‘proof’ of the four color theorem by Appel and Haken
was soundly criticized because the computer ran for thousands of
hours and also one could not verify that the computer really checked
all 1476 possible cases. A new, much simplified, computer proof by
Robertson, Sanders, Seymour, and Thomas, has been accepted as
valid after several independent computer verifications (the computer
time required is about 20 minutes).
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mind. The first ‘proof’ of the four color theorem by Appel and Haken
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TOO LONG PROOFS: CLASSIFICATION OF FINITE SIMPLE GROUPS

The classification of finite simple groups presents other problems.

It is extremely long and complex (originally 10,000 pages, now re-
duced to less than 2,000) and it is fair to say that nobody has been
able to verify by himself the whole proof. Slips, inaccuracies, omit-
ted or wrong analysis of subcases may have occurred and not been
observed.



CLASSICAL PROOFS VERSUS COMPUTER PROOFS

I strongly believe that careful use of the computer tool is beneficial
to the working mathematician and I have no objections in principle to
the use of computers.

In fact, we may view our mathematical brains as biological comput-
ers with their own operating system, slightly different from person to
person.

A mathematical proof is like a program to be run on this biological
computer, with the output ‘true’, ‘false’, or the ‘I don’t understand’
that corresponds to a non-halting state of a Turing machine. The col-
lective classification of finite simple groups is comparable to a pro-
gram running in parallel on several machines in order to speed up its
completion.



THE EFFECT OF FALSE STATEMENTS

In my first encounter with algebra I read how fallacious arguments
(usually based on division by 0) could ‘prove’ that 0 + 1 = 0. The
remarkable thing is that this single statement, if assumed true, can
be used to prove quickly that all numbers are equal to 0.

In a sense, the property of a proposition being false spreads out, like
a malignant growth, to invade the entire domain to which it has ac-
cess. Thus truth needs to be preserved carefully, uncontaminated by
the vicinity of untruth. In real life, lies work in the same way and, more
often than not, they are unmasked because of their consequences.
The negative effects of lies on society and individuals are very clear.
Lies have long-lasting negative effects on the persons affected by
them.

So one may ask what is the long term effect of a false proposition or
axiom in mathematics.



PROBABILISTIC PROOF CHECKING, I

This is a question that very recently has attracted the attention of
computer scientists and they have come up with a truly extraordinary
result. This is the probabilistic checkable proof, or PCP.

Proof checking is done by mathematicians in various ways. The most
convincing method consists of several steps:

• Looking first at the basic idea of the proof. In other words, start
by breaking the proof into several smaller coherent pieces.

• Assuming that each piece is a true theorem, check the validity of
the proof of the main result.

• Analyze the validity of each piece by the same method.

Advantages: Conceptual errors emerge early, complex statements
are broken into simpler statements of easier verification, local errors
can be detected and sometimes fixed. The propagation of non-local
errors can be followed clearly.



PROBABILISTIC PROOF CHECKING, II

Computational proofs cannot be brought so easily to the above for-
mat and in the worst case one needs the dreaded ‘line-by-line check-
ing’. Its complexity is proportional to the length, or size, of the proof.
In complexity theory, it is in the class NP.

In naive terms, PCP says that any mathematical proof can be refor-
mulated in such a way that a small random sampling of a few lines
suffices for checking the truth or falsity of the proof, with probability
as near to 1 as we wish. The PCP theorem is formally stated as

NP = PCP(O(logn), O(1))

(the O(logn) refers to the size of samplings, the O(1) to the bounded
number of random samplings).

Intuitively, the proof to be checked is rewritten in a slightly larger re-
dundant form, in such a way that any false statement in it propagates
almost everywhere inside the rewritten proof.



CONCLUSION

All these different views of mathematics are insufficient to give by
themselves a clear picture of what mathematics really is. Mathemati-
cians compare their work to the work of an artist. They talk of beauty,
elegance, strength, and depth, of a concept or proof. So what gives
to mathematics its monolithic structure?
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CONCLUSION

All these different views of mathematics are insufficient to give by
themselves a clear picture of what mathematics really is. Mathemati-
cians compare their work to the work of an artist. They talk of beauty,
elegance, strength, and depth, of a concept or proof. So what gives
to mathematics its monolithic structure?

My conclusion is that mathematics follows a kind of Darwinian evo-
lution: Some mathematical theories and models survive in harmony
with each other, while others die for lack of interest, or because of
their extreme complication, or because they are absorbed within bet-
ter theories. The “Ockham razor” philosophy applies here.

Truth in mathematics is not absolute and belongs to a language
where its meaning is close to common sense. Mathematical truth
is not irrelevant, nor tautological; it is the glue that holds the fabric of
mathematics together. It is up to us to work to maintain the integrity
of mathematics, its intellectual attraction, as well as its connections
with other sciences and all other aspects of human endeavour.



THE END


