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The Small World of File Sharing
Adriana Iamnitchi, Matei Ripeanu, Elizeu Santos-Neto, and Ian Foster

Abstract— Web caches, content distribution networks, peer-to-
peer file sharing networks, distributed file systems, and data grids
all have in common that they involve a community of users who
use shared data. In each case, overall system performance can
be improved significantly by first identifying and then exploiting
the structure of community’s data access patterns.

We propose a novel perspective for analyzing data access
workloads that considers the implicit relationships that form
among users based on the data they access. We propose a new
structure —the interest-sharing graph— that captures common
user interests in data and justify its utility with studies on
four data-sharing systems: a high-energy physics collaboration,
the Web, the Kazaa peer-to-peer network, and a BitTorrent
file-sharing community. We find small-world patterns in the
interest-sharing graphs of all four communities. We investigate
analytically and experimentally some of the potential causes that
lead to this pattern and conclude that user preferences play a
major role.

The significance of small-world patterns is twofold: it provides
a rigorous support to intuition and it suggests the potential to
exploit these naturally emerging patterns. As a proof of concept,
we design and evaluate an information dissemination system that
exploits the small-world interest-sharing graphs by building an
interest-aware network overlay. We show that this approach leads
to improved information dissemination performance.

Index Terms— File sharing, workload characterization, small-
world graphs, self-organization, peer-to-peer systems.

I. INTRODUCTION

It is well-accepted that understanding a system’s usage charac-
teristics can help guide its architects to an optimal design point.
A well-known example is the relationship between web page
popularity and cache sizes. Previous studies have shown that the
popularity of web pages follows a Zipf distribution [8], [13]: few
pages are highly popular while most pages are requested only few
times. As a result, the efficiency of increasing the cache size is
not linear: caching is most efficient for the most popular items,
and there are diminishing returns from increasing the cache to
provision for less popular items.

A second example is understanding and exploiting the topology
of networked systems. Many real networks have been shown to be
power law. That is, their node degrees are distributed according
to a power law: a small number of nodes have many neighbors,
thus acting as hubs, while most nodes have few neighbors. Such
networks are organically resilient to random node failures, while
they are highly exposed to informed attacks that target the well-
connected nodes [59].

This study applies this intuition to large-scale distributed sys-
tems formed around shared data, such as peer-to-peer media
sharing networks or scientific data grids. Our objective is to
characterize the data-sharing patterns emerging in these commu-
nities and to explore the feasibility of building self-configuring,
decentralized mechanisms that take advantage of these patterns.

To this end, we look at data-sharing communities in a novel
way: we study the relationships that form among users based on

the data in which they are interested. We capture and quantify
these relationships by modeling a community as an interest-
sharing graph (Section II) and justify its utility with studies
on four data-distribution systems (Section III): a high-energy
physics collaboration, the Web, and two peer-to-peer file sharing
networks, Kazaa and BitSoup. The interest-sharing graphs of
all four communities we study have small-world characteristics
(Section IV). We discuss possible causes of these emergent small-
world patterns (Section V) and, finally, as a proof-of-concept, we
design and evaluate a fully decentralized mechanism that exploits
the small-world pattern to disseminate information (Section VI).
Related work, discussed in various places within the article, is
completed in Section VII and a summary of our findings is
provided in Section VIII.

The remaining of this section introduces the intuition that led
to this work and details the contributions of this paper.

A. The Topology of Real Networks

The development of the Internet added significant momentum
to the study of networked systems by both facilitating access to
collections of data and by introducing new networks to study,
such as the Web graph, whose nodes are web pages and edges
are hyperlinks [15], the Internet at the router and the autonomous
system level [23], and the email graph [47].

The study of large networks uncovered recurring patterns in
real networks (see [4], [6], [21], [46] for surveys). For example,
a frequent pattern is the power-law distribution of node degree.
Examples are numerous and from many domains: the long-
distance phone-call network [1], [3], the citation network [53],
and the linguistics network [16] (pairs of words in English texts
that appear at most one word apart). In computer science, the
evidence that the Internet topology has a power-law degree1

distribution [23] led to the replacement of the previously used
random graph-based models. Other results followed: the web
graph [7], [15] and the Gnutella overlay (as of year 2000) [54]
are also power-law networks.

Another class of networks are the “small worlds”. Two charac-
teristics distinguish them from other network topologies: first, a
small average path length, typical of random graphs (here ‘path’
means shortest node-to-node path); second, a large clustering
coefficient that is independent of network size. The clustering
coefficient captures how many of a node’s neighbors are con-
nected to each other. This set of characteristics is identified in
systems as diverse as social networks, in which nodes are people
and edges are relationships; the power grid system of western
USA, in which nodes are generators, transformers, or substations
and edges are transmission lines; and neural networks, in which
nodes are neurons and edges are synapses or gap junctions [64].

1Very recently, however, Willinger et al. [65] challenged the validity of
these results based on limitations in data-collection that may compromise the
claim that the physical Internet topology is power-law, with high degree nodes
in its core and low degree nodes on the edge of the network.
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B. Motivation and Contributions

Newman shows that collaboration networks (i.e., networks
that connect co-authors) in different scientific domains (physics,
biomedical research, neuroscience, and computer science) have
small-world characteristics [43]–[45]. Moreover, Girvan and
Newman [27] show that well-defined groups (such as a research
group in a specific field) can be identified in these collaboration
networks. In parallel, a theoretical model for small-world net-
works by Watts and Strogatz [63] pictures a small world as a
loosely connected set of highly connected sub-graphs.

Since scientists tend to collaborate on publications, they likely
use similar sets of resources: for example, they might use the
same instruments to observe physics phenomena, or they might
analyze the same data, using perhaps the same software tools or
even a common set of computers. This means that if we connect
scientists who use the same resources, we might get a small world.
More interestingly, we might be able to identify groups that share
a set of resources and harness this information to optimize the
design of systems that enable resource sharing.

Motivated by this intuition, we aim to answer the following
two questions:

Q1: Are there any patterns in the way scientists share data?
Furthermore, are these characteristics typical of scientific
communities or are they more general?

Q2: Can these patterns be used to optimize the design of mech-
anisms supporting large-scale distributed systems?

This article gives an empirical answer to both questions: it
shows that small-world patterns exist in diverse data-sharing
communities and that these patterns can be harnessed to design
an efficient, adaptive, interest-aware information dissemination
mechanism.

The significance of this work is twofold: First, it presents
quantitative evidence that supports the intuition described above
and provides formal support to experimental work that might have
benefited from these patterns without identifying the underlying
phenomenon. Second, these patterns suggest solutions to de-
signing efficient infrastructure services that support data-sharing
communities. For example, our proof-of-concept information-
dissemination mechanism (Section VI) that dynamically infers
groups of users with common interests and proactively dissemi-
nates data, meets up to 70% of future requests for data without
asking users to explicitly subscribe to content.

II. THE INTEREST-SHARING GRAPH

To answer question Q1, we introduce a new data structure,
the interest-sharing graph, that captures the implicit relationships
between users who request similar data during some period. We
define the interest-sharing graph as an undirected weighted graph
whose nodes represent users. Two users are connected by an
edge if their interests as expressed by their recent activity are
similar. In this paper, we consider users have similar interests
if the intersection of their recent request sets is larger than some
predefined threshold. The size of the intersection defines the edge
weight.

Formally, let U represent the set of users in a distributed system
and R represent the set of resources to which the users have
shared access. The set of resources requested by a user defines that
user’s activity. In order to preserve time locality, we consider user
activity within intervals of duration τ . Consequently, the activity

of user u during the interval T is the set RT
u ⊂ R. Similarly, UT

is the set of active users over T , that is, users who made requests
for resources during interval T .

The interest-sharing graph is an undirected graph defined as:

GT = (UT ,ET ,wT ) (1)

An edge connects two users if the sets of requests the users
made during T overlap. Formally, the set of undirected edges ET

is defined as:

ET = {(u,v)|(RT
u ∩RT

v ) �= φ ;u,v ∈UT ;RT
u ,RT

v ⊆ R} (2)

The degree of similarity between the activity of two users is
represented by the edge weight function that measures the size
of the intersection:

wT : ET → N,wT (u,v) = |RT
u ∩RT

v | (3)

We note that other similarity criteria are possible, such as based
on semantic knowledge. For example, users accessing different
files with similar content can be recorded as an expression of
similar interests. Also, different weight functions can be consid-
ered, such as the Jaccard Similarity Index [34]. For simplicity,
in this study we chose the size of the intersection between sets
of requested resources as the measure of the similarity between
the interests of two users. In order to evaluate the small-world
characteristics of these interest-sharing graphs along variable
interest similarity criteria, we introduce a parameter μ in the
edge definition: we consider an edge between two users if the
edge weight is above the predefined threshold μ . Formally:

ET
μ = {(u,v)||RT

u ∩RT
v | ≥ μ;u,v ∈UT ;RT

u ,RT
v ⊆ R} (4)

where μ ∈ N
∗ is a system-specific variable that can tune the

degree of overlap in user interests.

III. FOUR DATA-SHARING COMMUNITIES

We study the characteristics of the interest-sharing graph corre-
sponding to four file-sharing communities: a high-energy physics
collaboration (Section III-A), the Web as seen from the Boeing
traces (Section III-B), and two peer-to-peer file-sharing systems—
Kazaa as seen from a large ISP in Israel (Section III-C) and
BitSoup, a BitTorrent-based community (Section III-D).

This section gives a brief description of each community and its
traces. In addition, we present the file popularity and user activity
distribution for each of these traces as they have high impact on
the characteristics of the interest-sharing graph: intuitively, a user
with high activity is likely to map onto a highly connected node
in the interest-sharing graph. Similarly, highly popular files are
likely to produce dense subgraphs in the interest-sharing graph.

TABLE I

CHARACTERISTICS OF TRACES ANALYZED.

System Users Requests Duration
All Distinct Traces

D0 317 2,757,015 193,686 180 days
Web 60,826 16,527,194 4,794,439 10 hours
Kazaa 14,404 976,184 116,509 5 days
BitSoup 56,928 N/A 6,298 15 days
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Fig. 1. D0 trace characteristics. Left: number of file requests per day. Center: the distribution of the number of file requests (total and distinct) made by
users over the 6-month interval. Right: file popularity distribution.

A. The D0 Experiment: A High-Energy Physics Collaboration

The D0 Experiment [19] is a virtual organization of hundreds
of physicists from more than 70 institutions in 18 countries. Its
purpose is to provide a worldwide system of shareable computing
and storage resources to mine Petabytes of experimental and
simulated high-energy physics data. In D0 data files are read-only
and typical jobs analyze and produce new, processed data files.
Tracing system use is possible via a software layer (SAM [41])
that provides centralized data management.

We analyzed logs from the first six months of 2002, amounting
to about 23,000 jobs submitted by more than 300 users and
involving more than 2.5 million requests for about 200,000
distinct files. A data analysis job typically makes requests for
multiple files (117 on average for the traces we analyzed), an
important data-usage pattern in itself, as this level of data co-usage
calls for the redesign of traditional data-management techniques
such as caching [31], [50], prefetching, and job reordering [20].

Figure 1 (left) shows the number of requests per day: the
daily activity is relatively uniform, with a few significant peaks.
User activity, however, is highly variable (Figure 1, center), with
scientists requesting as much as tens of thousands of distinct files
to as little as just a couple of files over the 6-month interval.
In D0 file popularity does not follow the Zipf’s law typical of
Web requests (Figure 1, right). The reason, we believe, is that
data in this scientific application is more uniformly interesting: a
typical job swipes a significant part of the data space in search
of particular physics events.

B. The Web

We use the Boeing proxy traces [12] as a representative sample
for Web data access patterns. These traces represent a five-day
record from May 1999 of all HTTP requests (more than 20 million
requests per day) from a large organization (Boeing) to the Web.

For the study of Web traces, we consider a user as an IP
address. During the 10-hour interval we studied, 60,826 users
sent 16.5 million web requests, of which 4.7 million requests were
distinct. It is possible that multiple users had the same IP address
(for example, due to DHCP reusing IPs or shared workstations).
We do not have any additional information to help us identify
these cases or evaluate their impact. However, given the relatively
short intervals we consider in our studies—from 2 minutes to a
couple of hours—the chances of multiple users using the same
IP are small.
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Fig. 2. Boeing web trace characteristics for a representative 10-hour interval.
Left: Activity level (averaged over 15-minute intervals). Right: Number of
requests per Web user.

C. The Kazaa Peer-to-Peer Network

Kazaa is a popular peer-to-peer file-sharing system with over
3 million concurrent users in July 2006. Few details are pub-
licly available about FastTrack, the protocol Kazaa uses. Kazaa
nodes dynamically elect “supernodes” that form an unstructured
overlay network and use query flooding to locate content. To
search for content, regular nodes connect to one or more super-
nodes and pass them a compressed index of their content and
the queries issued by users. Once content is located, data is
transferred (unencrypted) directly from the provider peer to the
requester using the HTTP protocol. In order to improve transfer
speed, multiple file fragments are downloaded in parallel from
multiple providers. Since control information is encrypted, the
only accessible information can be obtained from the download
channel. As a result, we can only gather information about the
files that are actively downloaded.

We had access to a five-day trace collected at a large ISP.
During this interval 14,404 users generated 976,184 download
requests for 116,509 distinct files. Users are identified based on
their anonymized user ID that appears in the HTTP download
request. The user population is formed of Kazaa users who are
clients of the ISP: similar to the Boeing traces, these traces give
information about a subset of all Kazaa users. Figure 3 presents
the relevant characteristics of the Kazaa trace: activity level, user
activity distribution, and file popularity distribution. A thorough
analysis of the Kazaa traffic and details on trace collection are
presented in [39].

D. The BitSoup Content-Sharing Community

BitTorrent [10] is one of the most popular file-sharing protocols
today and BitSoup [9] is one of the many communities built
around it. A key element for a BitTorrent community is a web
portal that aggregates information about each file published in
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Fig. 3. Kazaa trace characteristics. Left: Activity level (averaged over 100s). Center: Number of requests per user. Right: File popularity distribution.

the community. Information includes the list of shared files and
the set of participating peers that are exchanging chunks of
each file. To collect this data, we developed a simple HTTP
crawler that collects every hour the information published to the
BitSoup portal. The data set studied is over a 15-day period during
February 2007.
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Fig. 4. BitSoup trace characteristics. Left: User activity distribution: number
of file downloads per peer. Right: File popularity distribution.

Since our crawling mechanism records a snapshot of the
community every hour, peers that join and leave between con-
secutive snapshots are not captured by the crawler. However,
two observations suggest that our crawler captures a significant
portion of the peer population. First, there is little variation in the
population of peers across snapshots along the period of observed
activity. Second, at any time, the majority of online peers are
long-lived: Stutzbach et al. [62] find that more than 90% of the
download sessions last more than one hour.

Figure 4, left, plots the number of files each user downloads
during the tracing interval: we note high heterogeneity in the
user activity levels. Figure 4, right, shows the file popularity
distribution, resembling a stretched exponential distribution as
noted in other studies of Internet media traffic [29].

IV. SMALL-WORLD INTEREST-SHARING GRAPHS

Based on the graph definition introduced in Section II (Eq. 1
and 4), we built and analyzed interest-sharing graphs from the
traces recorded from the four communities described above.

The choices of the similarity criterion threshold μ and the time
interval τ are system and purpose specific, and thus they should
be informed by workload characteristics and desired performance
objectives. The distribution of edge weights in Figures 5 and 6
highlights the differences among the sharing communities in
terms of user-interest overlap: the sharing in D0 and the Web is
significantly more pronounced than in Kazaa and BitSoup, having
edge weights with values in the order of hundreds or thousands
in the first two, compared to under 10 in Kazaa and around 20

in Bitsoup. Additionally, Figure 5 highlights the influence of the
time interval on the interest-sharing graph characteristics: a larger
time interval captures more user activity and thus the potential for
larger overlap in user interests, showed as edge weights. There is
also significant difference in the activity intensity in the various
communities, as presented in Section III: for example, in D0, a
user makes on average 48 requests per day; in Kazaa, 13; and in
the Web trace, 652.
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Fig. 5. The distribution of weights in D0 interest-sharing graphs for different
time intervals τ . Left: τ = 7 days. Right: τ = 28 days.

To test the intuition that, similar to scientific collaborations, we
find small-world properties at the file-sharing level, we analyze
the properties of the interest-sharing graphs. We consider the
Watts-Strogatz definition [63]: a graph is a small world if it has
a small average path length (similar to that of a random graph
with the same number of nodes and edges) and a large clustering
coefficient (much larger than that of a random graph with the
same number of nodes and edges).

The clustering coefficient is a measure of how likely it is that
two neighbors of a node are also connected. According to one
commonly used definition (Eq. 5), the clustering coefficient of
a node u in a graph G(V,E) is the ratio between the number
of existing edges and the maximum number of possible edges
connecting its neighbors. The clustering coefficient of a graph is
the average clustering coefficient over all |V | nodes in the graph
(Eq. 6).

CCu =
# edges between u’s neighbors

Maximum # edges between u’s neighbors
(5)

CC1 =
1
|V | ∑u

CCu (6)

An alternative definition (Eq. 7) directly calculates the cluster-
ing coefficient as a ratio between the number of triangles and the
number of triples in the graph, where connected triples are trios
of nodes in which at least one is directly connected to the other
two.
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CC2 =
3×Number of triangles on the graph

Number of connected triples of vertices
(7)

The two definitions of the clustering coefficient simply reverse
the operations—one takes the mean of the ratios, while the other
takes the ratio of the means. The former definition tends therefore
to weight the low-degree nodes more heavily, since they have a
small denominator in Eq. 5.

According to the definition from Eq. 5, the clustering coeffi-
cient for undirected random graphs is given by:

CCr =
2×|E|

|V |× (|V |−1)
(8)

The average path length of a graph is the average over all
distances. The average path length of an undirected random graph
is:

lr =
log(|V |)

log(|E|/|V |) (9)

The results show that the interest-sharing graphs for all four
systems we study over different intervals τ and similarity criteria
μ display small-world properties. Figures 7, 8, 9, and 10 present
the average path lengths and the clustering coefficients for the
observed interest-sharing graphs and for the corresponding2 ran-
dom graphs. Each measurement corresponds to a snapshot of the
traces taken during an interval T of duration τ : only the active
users during that interval are considered. These measurements
are performed over the entire period of our traces in order to
analyze their evolution over time. In all cases and consistently
over time, the interest-sharing graphs display a low average path
length (close to that of the corresponding random graph) and a
large clustering coefficient (significantly larger than that of the
corresponding random graph).

Table II presents the graphs characteristics inferred from all
four communities for some combinations of values of parameters
τ and μ . For large graphs for which measuring all-pair distances
is computationally expensive, an accepted procedure is to measure
it over a random sample of nodes [64]. Thus, we computed the
average path length using a random sample of 5% of all node
pairs for the larger Web interest-sharing graphs in Table II.

We make a special note about the BitSoup results: the corre-
sponding interest-sharing graph naturally exhibits large clustering
coefficient as BitTorrent is designed to exploit the simultaneous

2Corresponding graphs in this case refers to graphs with the same number
of nodes and edges.
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Fig. 10. Clustering coefficient (left) and average path length (right) for
BitSoup interest-sharing graphs and their corresponding random graphs.
Similarity criterion μ = 1 shared request over τ = 12 hours.

interest of multiple users in the same file. As a consequence,
as long as the design intuition of BitTorrent is confirmed, it is
expected that multiple users will simultaneously participate in a
file download. Their simultaneous interest in the same file will
be reflected as a clique in the interest-sharing graph: all users
interested in the same file will be connected to each other. What
is not intuitive in this case is the average path length and the
number of connected components of the interest-sharing graphs.
Indeed, one would expect a large number of isolated cliques, each
including the users interested in one file. Our results prove that
the BitSoup community is well-connected, with a small number
of disconnected components and a small average path length for
the largest connected component, consistent with the results on
our analysis of the other traces.

Finally, we use the intution that small worlds are loosely
connected collections of highly connected sub-graphs, as pictured
by Watts-Strogatz [64], and make two significant observations.
First, well-connected clusters exist; due to the interest-sharing
graph definition, these clusters map onto groups of users with
shared interests in files. Second, there is, on average, a small path
between any two nodes in the interest-sharing graph: therefore,
one could exploit this property, for example, to tune a flooding-
based data dissemination mechanism to use a relatively small
time-to-live, and still cover most of the graph.

V. INVESTIGATING THE SOURCE OF SMALL-WORLD

PATTERNS

Given the diversity of our data sample, we could perhaps
conjecture that the interest-sharing graph of any data or resource-
sharing community is small-world. We need, however, to verify
that the small world property of the graph is indeed an indepen-
dent characteristic of these graphs – and driven by user choices
of file usage – rather than an indirect consequence of the macro
properties of the graph or of the traces. To this end, we address
the following question:

Q3 Are the small-world properties of the interest-sharing graphs
a consequence of user preferences in data? Or are they a
consequence of the graph definition or workload character-
istics that can be decoupled from user preferences?

We explore two separate directions to help us answer this
causality question. In Section V-A we focus on the definition
of the interest-sharing graph and question the large clustering
coefficient as a natural consequence of the graph definition. In
Section V-B we analyze the influence of file access patterns such
as time locality and file popularity distribution.



7

A. Affiliation Networks

An affiliation network (also called “a preference network”) is
a social network in which the participants (actors in sociology
terminology) are linked by common membership to groups. Ex-
amples include scientific collaboration networks (in which actors
belong to the group of authors of a scientific paper), and movie
actors (in which actors belong to the cast of the same movie).

Affiliation networks are therefore bipartite graphs: there are two
types of vertices, for actors and respectively groups, and edges
link nodes of different types only (Figure 11, left). Affiliation
networks are often represented as unipartite graphs of actors
joined by undirected edges that connect actors in the same group.
Therefore, the interest-sharing graph with the similarity criterion
μ = 1 (one request in common) is such a one-mode projection of
a bipartite affiliation network (Figure 11, right).

A

A

E F

G

B

DC

B

C

D

E

F

G

m

n

p

Fig. 11. A bipartite network (left) and its unipartite projection (right). Users
A-G access files m-p. In the unipartite projection, two users are connected if
they requested the same file.

These one-mode projections of bipartite graphs have particular
characteristics. Most relevant to this discussion is the clustering
coefficient: inherently, the clustering coefficient is larger in these
graphs than in random graphs of the same size, since the members
of a group will form a clique in the one-mode projection. Conse-
quently, our comparison with random graphs, although faithful to
the Watts-Strogatz definition of small worlds, may be misleading.

Thus, there are two possible sources of bias in our analysis:
one is that the implicitly large clustering coefficient may be a
consequence of the unimodal projection, as just shown. Another
is that the degree distribution of the interest-sharing graphs which,
as in many other real networks, is far from the Poisson distribution
of a random graph, may lead to a higher clustering coefficient and
low average path length.

To test these conjectures we compare the properties of our
interest-sharing graphs with those of random graphs with a given
degree distribution (rather than the Poisson distribution of the
random graphs constructed by the traditionally used Erdős-Rényi
model). We use the model proposed by Newman et al. [48], [49]
adapted to affiliation networks and deduce a set of parameters
of their unimodal projections. We use this theoretical model to
estimate the clustering coefficient of unimodal projections of
random affiliation networks with the size and degree distributions
implied by our traces and compare these clustering coefficients
with our empirical results from the same traces.

In a bipartite affiliation network, there are two degree distribu-
tions: of actors (how many groups does an actor belong to) and of
groups (how many actors does a group contain). Let us consider
a bipartite affiliation graph of N actors and M groups. Let pj

be the probability that an actor is part of exactly j groups and
qk the probability that a group consists of exactly k members. In

order to easily compute the average node degree and the clustering
coefficient of the unipartite affiliation network, Newman et al. use
three generating functions f0, g0, and G0 defined below. Function
G0 is the generating function for the number of neighbors of
an actor in the unpartite projection of the affiliation network
generated by f0 and g0.

f0(x) =
N

∑
j=1

p jx
j (10)

g0(x) =
M

∑
k=1

qkxk (11)

G0(x) = f0(g′0(x)/g′0(1)) (12)

The average degree for the actors’ one-mode projection of the
affiliation network is:

AvgDegree = G′
0(1) (13)

And the clustering coefficient (as defined in Eq. 7) is:

C =
M
N

g′′′0 (1)
G′′

0(1)
(14)
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Fig. 12. Degree distribution of user (left) and file (right) nodes of a bipartite
affiliation network corresponding to a half-hour interval in the Web traces.

Figure 12 presents the degree distribution p and q in a Web
interest-sharing graph with τ = 30 minutes and with similarity
criterion μ = 1. Using this distributions, we compare the measured
and modeled graph metrics.

Table III shows significant difference between the values of
observed and analytically-modeled clustering coefficient and av-
erage node degree. The measured clustering coefficient is up to
three orders of magnitude larger than the modeled coefficient.
This result proves that the large clustering coefficient is not
due to the definition of the interest-sharing graph as a one-
mode projection of an affiliation network with non-Poisson degree
distributions. The observed average degree is always smaller than
predicted by the Newman model, in some cases (e.g., D0) by three
orders of magnitude. An intuitive explanation for this is that user
requests for files are not random: individual user preferences are
concentrated on a limited set of files. This small set of files will
connect the user with a small set of other users in the interest-
sharing graph, which explains the actual average degree being
much smaller than predicted.

A second observation leads to a possible metric for sharing
intensity: we can obtain a measure of data sharing intensity in
the four communities by comparing their clustering coefficients
and average node degrees with those predicted by the theoretical
model. We see that the Kazaa interest-sharing graphs are the
closest to the theoretical model and the D0 graphs are very
different from their corresponding model. This is different from
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the comparison with the Erdős-Rényi random graphs (Table II),
where the Kazaa community seem to be “more of a small
world” than the D0 community (the ratio between the clustering
coefficients of the interest-sharing graph and the corresponding
Erdős-Rényi random graph was much higher in the case of
Kazaa). The cause of this difference and the significance of this
observation remain to be studied in the future.

B. User Behavior vs. Popularity Distribution and Locality

Some workload characteristics have been shown to be wide-
spread across various systems. Two such characteristics are rele-
vant for our context: event frequency distributions (e.g., popularity
distributions) and locality.

Event frequency has been shown to follow a Zipf distribution in
many systems, from city population to the popularity distribution
of web pages. More recent studies showed that the popularity
of Internet media files is departing from the traditional Zipf
distribution [28]. But be it Zipf, Weibull, stretched exponential,
or others, the agreed-upon model is that a few files are highly
popular while most of them are infrequently requested. This
behavior is apparent in two of the four cases we analyze: the
Web [13] and Kazaa (Figure 3).

Time locality implies that individual items are more popular
during a limited interval, behavior evident in our traces (for
example, see [32] for a detailed study of the DZero traces).
Additionally, the temporal analysis of user activity shows that
users are not uniformly active, but their activity follows daily
and weekly patterns (for example, downloading more music files
during weekends or holidays [54]). Thus, we ask:

Q4 Are the properties we identified in the interest-sharing graph,
especially the large clustering coefficient, an inherent con-
sequence of these well-known usage patterns?

To answer this question, we generate synthetic traces from
the real workloads in such a way as to preserve the real pop-
ularity distributions, time locality, and the temporal distribution
of user activity, but to break the user-request association. We
build interest-sharing graphs from these synthetic traces and
compare their properties with those resulting from the real traces.
The intuition driving these experiments is the following: if the
characteristics of the real and synthetic interest-sharing graphs
are similar, then these characteristics are a direct consequence
of (some of) the properties we preserve across all traces, real
and synthetic. If the characteristics are different, then they reflect
a usage pattern not modeled by these traditionally analyzed
characteristic. We believe this usage pattern reflects user interests
in a focused group of items.

1) Generating Synthetic Traces: The core of our traces is a
triplet of user ID, item requested, and request time. Figure 13
identifies the following correlations in traces, some of which we
want to preserve in the synthetic traces:

(1) User–Time: User’s activity varies over time: for example,
in the D0 traces, some users accessed data only in May.

(2) Request–Time: Items may be more popular during some
intervals: e.g., news sites are more popular in the morning.

(3) User–Request: Users request data of their interest and not
randomly. This is the key to user’s preferences. By breaking
this relationship and randomly recreating it, we can analyze
the effect of user preferences on the properties of the
interest-sharing graph.

(1)

(3)

(5)

(6)

TimeUser(4)

(2)

Request

Fig. 13. The relations between users, their requests, and their request times
determine observed patterns like Zipf frequency of requests or time locality.

(4) User activity: The total number of items requested by a user
may be relevant, as some users are more active than others
(see Figure 2, right for the Web traces).

(5) Time: The time of the day (or in our case, of the periods
studied) is relevant, as the Web traces show (the peak in
Figure 2, left).

(6) Request popularity: specifies the number of requests for the
same item.

The core idea of our trace generation is to dissociate users
from their requests while preserving the other usage patterns.
One can picture a trace as an R× 3 matrix, in which R is the
number of requests in that trace and the three columns correspond
to users, files requested, and request times, respectively. Now
imagine that we shuffle the users column while the other two are
kept unchanged: this breaks relations (3) and (1). If the requests
column is shuffled, relations (3) and (2) are broken. If both user
and request columns are shuffled, then relations (1), (2), and (3)
are broken. In all cases, (4), (5), and (6) are maintained faithful
to the observed behavior: that is, users ask the same number of
requests (4); the times when requests are sent remain the same (5);
and requests preserve their observed popularity (6).

We thus generated the following synthetic traces:

ST1: Removes the relations between users and the time they
make requests, and the requests and the times they were
made, but preserves request popularity, user activity pat-
terns, and the distribution of requests over time: thus, break
relations (1), (2), and (3).

ST2: Maintains the request times as in the real traces: breaks
relations (1) and (3).

ST3: Maintains the user’s activity over time as in the real traces:
breaks (2) and (3).

2) Properties of Synthetic Interest-sharing Graphs: Two sets
of characteristics of the synthetic interest-sharing graphs are
relevant to our study. First, their basic graph properties (size,
edge weights distribution, and number of connected compo-
nents) are significantly different from their corresponding real
graphs (“corresponding” in terms of the similarity criterion used).
Second, the topological properties—especially the small-world
characteristics—are less pronounced than in the observed traces.

Three basic graph properties are different: the size of the largest
connected components, the number of connected components, and
the edge weight distribution. On one hand, for low similarity
thresholds (Figure 14, left), the synthetic interest-sharing graphs
for which user activity in time (relation (1)) is not preserved have
a significantly larger number of nodes. Even when user activity
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TABLE III

PROPERTIES OF INTEREST-SHARING GRAPHS, MEASURED AND MODELED AS UNIMODAL PROJECTION OF AFFILIATION NETWORKS. CLUSTERING

COEFFICIENT ARE MEASURED USING EQ. 7 AND MODELED USING EQ. 14

Clustering Average degree
Interval Users Files Model Measured Model Measured

D0 7 days 74 28638 0.0006 0.65 1242.5 3.3
28 days 151 67742 0.0004 0.64 7589.6 6.0

Web 2 min 3385 39423 0.046 0.63 50.0 22.9
30 min 6757 240927 0.016 1453.1 304.1

Kazaa 1 h 1629 3393 0.55 0.60 2.9 2.4
8 h 2497 9224 0.30 0.48 9.5 8.7

BitSoup N/A 17343 4934 0.23630 0.697 210.48 193.33

in time is preserved (as in the ST3 case), the number of nodes
is larger: this is because in the real interest-sharing graphs, we
ignored the isolated nodes and in the synthetic graphs there are no
isolated nodes. On the other hand, for high similarity thresholds
(e.g., 100 shared files in the D0 case, Figure 15), the synthetic
graphs are much smaller or even disappear in a cloud of singleton
nodes. This behavior is further revealed by the distribution of
weights in the synthetic graphs (Figure 14) compared to the real
graphs (Figure 5): the synthetic graphs have many more edges
with small weights. The median weight in the real D0 interest-
sharing graphs is 356 and the average is 657.9, while for synthetic
graphs the median is 137 (185 for ST3) and the average is 13.8
(75.6 for ST3).

We also note that the synthetic interest-sharing graphs are
always connected, unlike the interest-sharing graphs built from
real traces, that always have multiple connected components, as
shown in Table II. This behavior is due to the uniform distribution
of requests per user in the case of synthetic traces, which is
obviously not true in the real case. What these experimental
results show is that the synthetic traces diffuse the concentration
of interest sharing and distribute it more evenly across the node
population.
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Fig. 14. Distribution of weights in the synthetic interest-sharing graphs built
from shuffling the D0 traces.
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D0 traces

The topological properties of the synthetic interest-sharing
graphs are also different. The synthetic graphs are generally
“less” small world than their corresponding real graphs: the
ratio between the clustering coefficients is smaller and the ratio
between average path lengths is larger than in real interest-sharing
graph (Figure 16). However, these differences are not major: the
synthetic interest-sharing graphs would perhaps pass as small
worlds.
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Fig. 16. Comparison of the small-world interest-sharing graphs as resulted
from the real and synthetic D0 traces.

These results show that user preferences for files have signifi-
cant influence on the interest-sharing graphs: their properties are
not induced (solely) by user-independent trace characteristics.

VI. EXPLOITING THE SMALL-WORLD INTEREST-SHARING

GRAPH: A CASE STUDY

The interest-sharing graph and its properties introduce a novel
way to analyze data-sharing communities: instead of analyzing
individual user behavior, this approach looks at implicit relation-
ships that form among individuals based on shared interest. The
small-world characteristics highlighted using this approach sug-
gest that adaptive divide-and-conquer strategies have the potential
to operate efficiently in large-scale data-sharing communities.
Specifically, we propose to organize the nodes of a distributed
system by mapping the interest-sharing graph onto an overlay
topology. If the small-world properties of the interest-sharing
graph are preserved, then such an overlay will be a loose
collection of dense subgraphs with high clustering coefficients,
thus preserving high interest locality. We propose to identify
these dense subgraphs (or clusters) and run problem-specific
components independently or in a loosely connected fashion in
each of them, thus improving overall system scalability.



10

This section proposes an overlay construction algorithm that
connects nodes with similar interests (Section VI-A); and a graph
partitioning heuristic that identifies densely connected clusters
of nodes (Section VI-B). These two algorithmic components are
general to any problem that aims to exploit the interest-sharing
graph and its small-world topology in this divide-and-conquer
manner; the main challenge they have to overcome is building the
overlay and identifying the clusters without making use of global
information. We note that there are other ways to exploit the
small-world properties of a interest-sharing graph-like structure,
as presented in [17] and discussed in Section VII.

We connect these two algorithmic components in a dynamic
and adaptive information dissemination technique (Section VI-C),
that we call interest-aware, as it exploits the implicit interest-
locality within the identified clusters to disseminate relevant
information. Experimental results based on simulations using real
workloads show that this approach leads to significant perfor-
mance improvements (Section VI-D).

A. Overlay Construction

The overlay construction component builds the interest-sharing
graph in a decentralized, adaptive manner: it allows nodes with
similar interests to identify each other without requiring global
knowledge or centralized components.

Consistent with the definition of the interest-sharing graph, we
use a system model in which nodes submit requests for resources.
A node can represent a user, or, more generally, a group of users
with shared interests (such as a department or a research group
within an institution). In order to reflect the realistic topology of
an interest-sharing graph, the set of requests each node in the
overlay generates must represent a specialized set of interests. In
contrast, nodes with random interests would most likely lead to
a topology closer to that of a random projection of a bipartite
graph than to a small-world graph, thus making the partitioning
into dense subgraphs less reflective of common interests.

We propose a solution that uses resource providers (i.e., the
data storage nodes) as rendezvous points for users interested
in the same data. Figure 17 illustrates this scenario in a file-
location context: node A learns from a file location mechanism
where file F is stored. When A fetches file F from N, N will
record A’s interest in its file and the access time. If user B then
fetches the same file within a time window τ , N informs B about
A’s interest in the same file F . Thus, B can contact A if it is
interested in connecting to new peers and if A’s interests satisfy
B’s interest similarity criterion. For example, B may choose to
contact A only if more than μ common files have been requested
within an interval τ . The value μ can be adapted by each node
independently to satisfy local constraints, such as the number
of connections or better interest overlap. This approach allows
for true adaptability to node heterogeneity relating, for example,
to communication capabilities or high load/reduced processing
power. Because nodes are both resource providers and users, as
typical of peer-to-peer and grid computing contexts, the algorithm
is fully decentralized.

B. Decentralized Graph Partitioning

Once the overlay that mirrors the interest-sharing graph is in
place, nodes need to identify the group to which they belong.
Given the dynamics of a potentially large distributed system with

Fig. 17. Overlay construction: (1) Node A requests file F; (2) A learns that
F is stored on node N; (3) A contacts N to fetch file. N logs A’s request and
time; (4) Node B requests file F; (5) B learns that F is stored on node N; (6)
B contacts N to fetch F; (7) N sends the relevant log with latest requests for
file F; (8) B initiates dialog with A

intermittent participation and changing interests, it is unrealistic
to assume accurate (or even the availability of) global knowledge
about the overlay topology. The challenge is, thus, to design a de-
centralized graph partitioning algorithm that can be independently
run by each node and requires only local information.

We consider a simple, fully decentralized approach where
nodes investigate their neighborhood independently of each other
and label edges in the overlay as long or short. A short edge will
connect either neighboring nodes that form a triangle or a node
with degree of one to the rest of the graph. All other edges are
labeled long. Figure 18 gives an example of the outcome of the
labeling algorithm. While other definitions for long/short labels
are also possible, this triad labeling captures a key principle in
sociology called “triadic closure” [52]: links are much more likely
to form between two people when they have a friend in common.
Similarly, the small-world topology dictates that nodes connected
to the same node will likely connect to each other.

Short edgeLong edge

Fig. 18. Triad labeling: edges in triangles and dead-ends are considered
short, while the others are considered long.

Graph partitioning can then be performed in a fully decentral-
ized manner by “removing” long edges. The result is a collection
of dense subgraphs where nodes are connected by short edges.
Resilience to node churn can be improved through gossip-based
membership protocols [26] that allow nodes to learn about distant
nodes in the cluster.

C. Case Study: Information Dissemination for Locating Files

The two algorithmic components just presented—overlay con-
struction and graph partitioning—are general building blocks for
solutions that exploit the small-world characteristics of resource-
sharing communities as shown by the analysis of the interest-
sharing graph. To complete our proof-of-concept, we propose
an information dissemination mechanism that takes advantage
of the small-world structure of the interest-sharing graph. More
specifically, the proposed information dissemination mechanism
uses autonomically-inferred clusters of interest (corresponding to
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the interest-sharing overlay partitions) to disseminate information
of interest. We place this information dissemination mechanism
in the context of file location such that we can run meaningful
experiments on the same set of traces as the ones we analyzed.
In such a context, disseminating information in clusters of shared
interest can be used to ease the load on a centralized file location
service or to reduce the latency in a fully decentralized solution.

In the context of file location, our generic solution needs to be
instantiated in two respects: the information to disseminate and
the performance metrics. We disseminate the locations of files
retrieved in the previous interval τ and we measure hit rate.

File location information is disseminated via gossip proto-
cols [36]. Gossip messages will be sent by a node only along its
short edges. The information disseminated via gossip includes in-
formation about the source and the destination for the downloads
and the files retrieved during the past interval τ . The destination
node contributes to building the membership information (as
mentioned earlier in this section) and will always be a node in
the current cluster, since gossips propagate only along short edges
and a set of nodes connected only via short edges forms a cluster.

The source node specifies which node stores the list of files
downloaded and can be from outside the current cluster, depend-
ing on what files are advertised: nodes may advertise their own
files as well as remote files of which they learned recently. The
list of files can be compressed using Bloom filters [11] or left
uncompressed to support key-based filename matches.

We stress that the goal of analyzing a file location service is
purely to illustrate the value in exploiting the observed small-
world characteristics in the implicit interest-sharing graph based
on the same real workloads we analyzed. Indeed, there are
numerous alternative decentralized file location solutions [42]
proposed for large-scale distributed systems, and it is not our
intent to claim innovation in this area. A more detailed description
of the algorithms we propose is presented in [33].

D. Proof-of-Concept: Experimental Evaluation

The traditional performance metric in proactive information
dissemination is hit rate, defined as the percentage of requests
can be served from proactively disseminated information. In the
context of file location, the higher the hit rate, the lower the search
time and the communication costs (since a hit is served using
locally available information). The costs in proactive information
replication are storage and communication.

1) Experimental Setup: We present our experiments on two of
the sets of traces described above: D0 and Kazaa (the correspond-
ing results on the Web traces are presented in [30]). For each set
of traces we consider multiple instances of interest-sharing graphs
(i.e., for various values of the time interval τ and the similarity
criterion μ). The two communities behave differently in terms
of the number of files shared: while in D0 there are hundreds
of files shared between two users, in Kazaa this number is most
often close to 1. From the family of interest-sharing graphs we
analyzed, we thus selected μ = 100 for D0 and μ = 1 for Kazaa
as representative examples. The time interval τ varies between 3
and 28 days for D0 and 1 and 8 hours for Kazaa.

Our simulator works as follows: for each graph definition, we
build the interest-sharing graph for the interval τ and “freeze” it at
the end of the interval. We then apply the triad labeling technique
to identify clusters of interest and disseminate information within
clusters along the short edges. We disseminate the location of files

requested (and, we assume, discovered) in the previous interval.
We measure the hit rate: the percentage of queries sent during an
interval τ that can be answered from the information disseminated
in the previous interval.

The hit rate resulted from our experiments is a lower bound
for the performance of a real implementation because of two
simplifications in our simulator. First, we do not cache data for
more than one interval τ to account for the volatility of the
system: nodes unpredictably join and leave the system, files can
be added and removed, users change their interests over time, and
consequently the overlay and the clusters may change frequently
to adapt to these changes. Second, our simulator updates the
overlay at time increments of duration τ . In a real implementation
the overlay adjusts to user behavior smoothly over time. This will
likely lead to better hit rates, since the overlay and clusters adapt
faster to changing in user interests.

The results presented in the following are based on the assump-
tion that all requests are answered within the interval in which
they are asked. This assumption is perfectly supported in a hybrid
scenario in which information dissemination within clusters is
used to reduce the load on an index service or for large τ .

2) The Benefits of Interest-Aware Information Dissemination:
Figure 19 shows the average hit rate for different interest-sharing
graph definitions. The benefits of disseminating information in
D0 are significant: more than 50% of queries can be answered
from the information disseminated within the previous interval.
In terms of file location performance, this means that 50% of
queries do not impose any costs on the network or on a potential
centralized service and their response latency is that of a local
lookup. The decrease of the hit rate with the increase in time
interval can be explained by a stronger time locality in scientific
communities, as shown in [32].

In order to distinguish between the effects of local caching (that
is, remembering the locations of files discovered during previous
τ) and the effects of information dissemination, we evaluate the
impact of local caching. Caching has an impact when the same
user makes the same requests in consecutive intervals: the later
requests can therefore be answered from the local cache. However,
the percentage of requests of this sort is low: up to 15%, with
averages between 5% and 10% for different intervals in D0.
Although it is conceivable that scientists repeat requests for the
same data to run their computations, it is less intuitive that a Kazaa
user repeats requests for same music at intervals of one hour:
surprisingly, Kazaa users show the same behavior, with average
cache-hit rates around 7%. This behavior may be explained by
unsatisfactory downloads: files that were not downloaded properly
or were corrupted.

In Kazaa the hit rate is constantly high (around 70%) for all
durations, in spite of the decrease in the user’s cached repeated
requests (from almost 8% for 1-hour to 5.5% for 8-hour intervals).

Finally, we note that triad labeling leads to clusters with highly
variable sizes in both traces. The resulting unbalanced clusters
are expected: finding an optimal balanced partition is NP-hard,
and approximate almost-balanced partitions known to date require
full knowledge of the graph [5], [22]. Because the performance
and cost of gossip-based dissemination protocols within clusters
depends on cluster size, we isolate in Figure 19 the average hit
rate from the average hit rate when the positive3 effects of the

3The larger the cluster, the more information to share and thus the larger
the chance of finding the answer to a query.
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largest cluster are ignored. In both systems, the influence of the
largest cluster increases with duration: for example, in Kazaa the
hit rate due to the largest cluster varies from 13% for 1-hour to
44% for 8-hour intervals.

 0

 20

 40

 60

 80

 100

3 7 10 14 21 28

Lo
ca

l A
ns

w
er

s 
(%

)

Time Interval (days)

Without LC

 0

 20

 40

 60

 80

 100

1 4 8

Lo
ca

l A
ns

w
er

s 
(%

)

Time Interval (hours)

Without LC

Fig. 19. Hit rate with experience dissemination in D0 (left) and Kazaa
traces (right). Dashed lines show hit rate when the effect of the largest cluster
obtained with the triad clustering method is ignored. Full lines show hit rate
averages over all clusters (including the largest).

3) The Costs of Information-Aware Information Dissemination:
The price for the increased hit rate is the increased dissemination
cost and the additional storage required for the information
disseminated. Table IV presents these costs: the storage space
required per node is a function of the number of files disseminated
within a cluster; communication cost per node depends on the
number of files disseminated within the cluster and the size of the
cluster. Both costs are modest and practical for today’s systems.

TABLE IV

DISSEMINATION COSTS IN D0 AND KAZAA (ASSUMING A PAIR

FILENAME–LOCATION IS 300 BYTES ON AVERAGE).

Trace Storage/node MB/node
(μ) τ # Filenames MB sent during τ

3 days 8787 2.6 4.66
7 days 18182 5.2 11.36

D0 10 days 24912 7.1 18.05
(100) 14 days 32239 9.2 25.40

21 days 44911 12.8 42.47
28 days 56924 16.3 58.10

Kazaa 1 hour 1345 0.3 0.6
(1) 4 hours 5303 1.5 5.2

8 hours 10178 2.9 15.0

Given the gossip-based information dissemination mechanisms
used, the communication costs are estimated by multiplying
storage costs with the natural logarithm from the number of nodes
in cluster. (This is because each message needs to be gossiped to
approximately ln(N) peers in cluster to ensure the message will
reach all N members [36]). Consequently, communication costs
are low: 4.6MB of data transmitted per node in a 3-day interval,
growing to 58MB for the 28-day interval case. These results are
averaged over all participating peers, including the largest cluster.

4) Summary: To summarize, the benefits of disseminating
experience within clusters identified with triad labeling from the
interest-sharing graph topology are significant for both commu-
nities, ranging from 40 to 70% of the queries being answered
locally. Also, even after eliminating the optimistic effects of the
largest cluster, the hit rate is between 30% and 65%. Shorter time
intervals for the interest-sharing graph are preferable to keep costs
down. Interestingly, the average hit rate over all clusters (except
the largest one) is higher for shorter intervals due to more focused
interests, thus recommending a smaller value for τ .

To isolate the effects of interest-aware information dissem-
ination from those of general information dissemination, we

performed the same experiments by disseminating data in random
groups with the same number of users as resulted from triad
labeling. This setup maintains the same storage and communi-
cation costs. We measured again the hit rate due to information
dissemination. The results differ drastically from the results
presented in Figure 19: with random clustering, the average hit
rate is under 5% for both D0 and Kazaa traces when the largest
cluster is ignored. Even for the largest cluster alone the hit rate
with random grouping is significantly lower than in the triad-
labeling experiments (10–30%). These results clearly differentiate
the benefits of information dissemination from the benefits of
interest-aware information dissemination.

VII. RELATED WORK

The idea of exploiting interest for structuring peer-to-peer
overlays has been addressed in various works. In [51] each peer
keeps track of the peers who responded to its requests and moves
closer to them in the overlay. Khan and Tokarchuk propose in [38]
a set of mechanisms for building an overlay where super-peers
are managing communities of peers with the same explicitly-
declared interest. Our approach is to infer overlapping interest
from requests instead of requiring peers to subscribe to interest
categories that might be too general in some instances. Cohen et
al. [18] propose another approach to build unstructured overlays:
nodes connect to other nodes that store the same data, in an
attempt to adapt the market-basket idea to P2P. This approach
assumes that a relationship exists among the files stored on a
node: users do not store random things on their disks. Our study
presents evidence that there is a relationship among what data
users consume: users do not ask for random data items, but their
consumption patterns present clear small-world patterns.

Khambatti et al. proposed a set of algorithms for community
formation and discovery [37] in a distributed fashion similar to
the mechanisms we propose in Section VI. Their solution requires
a set of attributes specified for each peer that can be used to infer
community structures.

Santos-Neto et al. [57] demonstrate the effectiveness of exploit-
ing the interest-sharing graph in tagging communities to predict
user behavior. In this context, two users are linked in the interest-
sharing graph if they display similar tagging activity over time.

A graph somewhat similar to the interest-sharing graph is
analyzed in a recent study [17] on YouTube data: related videos
posted on YouTube are connected via hyperlinks. This resulting
graph is shown to be small world. Similar to the solution proposed
in [60] for adding shortcuts in Gnutella, a peer-to-peer solution
for video sharing is proposed in [17] that assumes that past
downloaders become data providers. This approach leads to
densely connected swarms on top of which an indexing and a
prefetching mechanism are proposed.

Some recommender systems have a similar flavor to the
interest-sharing graph. ReferralWeb [35] attempts to uncover
existing social networks to create a referral chain of named
individuals. It does this by inferring social relationships from web
pages, such as co-authorship, research groups and interests, co-
participation in discussion panels, etc. This social network is then
used to identify experts in particular fields and then guide web
searches toward the pages closer to these experts’ pages.

The emergence of large-scale collaborative systems such as
peer-to-peer networks inspired many trace characterization efforts
that significantly contributed to the understanding of user behavior
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and its consequences, from free riding behavior [2] to caching
opportunities [58], [59] and the network properties of the Gnutella
overlay [54], [61]. We note that our analysis of the graph
topologies are not aimed to the overlay topology but rather to
the implicit relationships that form among users due to common
interests. Other efforts have been directed to identifying locality of
interests based on overlapping content stored by peers [24], [25]
or on semantic information inferred from content processing [40].

VIII. SUMMARY

This article reveals the existence of pattern across diverse data-
sharing communities, from scientific communities to the Web and
file-sharing peer-to-peer systems. This pattern is brought to light
by a structure we introduce: the interest-sharing graph. This struc-
ture captures the implicit relationships that form between users
who are interested in the same files. We present the properties
of the interest-sharing graphs inferred from four communities.
These properties are relevant to and might inspire the design of
a new style of mechanisms in peer-to-peer systems, mechanisms
that take into account, adapt to, and exploit user behavior.

We also present an information dissemination mechanism that
builds online the interest-sharing graph dynamically and in a
decentralized fashion and exploits its small-world properties to
infer communities with shared interest. For consistency with our
trace analysis, we used the same traces to evaluate this approach.
This required us to instantiate the information dissemination
mechanism as a file location problem: given a filename, the
system should return the location(s) of files with that name. The
information dissemination approach we propose disseminates file
locations and satisfies up to 70% of future requests.

Other problems in distributed systems can take advantage
of the interest-sharing graph structure and its properties. For
example, in a distributed mutable data-sharing system, keeping
track of which peers recently requested a data item allows for
the selective propagation of updates in a fully decentralized,
self-organizing fashion. Because users who recently accessed the
same data item(s) are neighbors in the interest-sharing graph, the
timely propagation of file update notifications, as well as efficient
groupings of writing operations by the same user to multiple files
are facilitated. A related idea is explored in [55] by maintaining
independent file-replica chains.

Another example is designing dynamic data replication tech-
niques adaptive to usage patterns that insure data availability and
access performance. In particular, the topology of the interest-
sharing graph suggests where to place replicas closer to the nodes
that access them. Similarly, the idea can be exploited in a dynamic
distributed storage context: if files cannot be stored entirely on a
node, then they can be partitioned among nodes interested in the
same file, i.e., neighbors in the interest-sharing graph. However,
in such cases the size of the files to be transferred becomes an
important design parameter.

A third way to exploit the interest-sharing graph is for data-
intensive job scheduling. Data-intensive job scheduling is a signif-
icant challenge in scientific communities, and it is often expressed
as the dilemma of moving data to computation vs. finding
computation close to the data. In a decentralized architecture
with distributed knowledge, the relationships between users who
requested the same files can be exploited for job management.
If nodes store and share recently downloaded files, they will
become good candidates for running jobs that take those files as

input. This can be used for scheduling, migrating or replicating
data-intensive jobs and is implicitly suggested by Santos-Neto et
al. [56] and Briquet et al. [14].

The relatively diverse set of communities we explore and
long time interval of the traces we analyze give a historical
perspective on a rapidly evolving field: When our initial study
began, Kazaa was one of the most popular peer-to-peer networks.
Meantime, a radically different approach has been promoted
by BitTorrent, who managed to decisively enter the domain of
software and movie distribution. Scientific communities such
as DZero continue to operate and to grow in scale, tackling
ever more impressive challenges and posing more challenging
problems in data management. The Web is moving towards the
new Web 2.0 family of applications. Yet, it appears that the small-
world pattern in data sharing is a representative characteristic
that stands time and solutions.
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