Collecting Remote Data in Irregular Problems
with Hierarchical Representation of the Domain

Fabrizio Baiardi, Paolo Mori, and Laura Ricci

Dipartimento di Informatica, Universita di Pisa
Corso Italia 40, 56125 Pisa, Italia
{baiardi,mori,ricci}@di.unipi.it

Abstract. Irregular problems require the computation of some prop-
erties of a set of elements irregularly distributed in a domain. These
problems satisfy a locality property because the properties of an element
e depend upon those of its neighbors according to a problem depen-
dent stencil. This paper proposes two strategies, fault prevention and
informed fault prevention, to collect properties of elements mapped onto
remote processing nodes that minimize the corresponding overhead. We
describe an MPI implementation of informed fault prevention and the
experimental results in the case of the adaptive multigrid method.

1 Introduction

Several phenomena, such as the motion of the stars in a galaxy or the illumina-
tion of objects in an image, are modeled by time dependent partial differential
equations systems, that can be efficiently solved through numerical adaptive
iterative algorithms. To apply these algorithms, at least one dimension of the
problem, such as the time interval or the space to be analyzed, is discretized.
Hence, the phenomenon is modeled as a set of elements in a domain of interest
where some properties are computed for each element. The computation satisfies
a locality property because the properties of an element depends upon those of
a subset of all the other ones, according to a problem dependent neighborhood
relation. The main feature of any irregular problem is the non homogeneous
and dynamic distribution of the elements in the domain. This implies that some
subsets of the domain require a larger computational effort than the other ones.

The adoption of parallel architectures for the resolution of these problems is
mandatory because of the large number of elements, but this poses the prob-
lems of the mapping of the elements onto the processing nodes, p-nodes, and
of the communication handling due to the irregularity and the dinamicity of
the distribution. Since no information about the element distribution is stati-
cally available, a sophisticated run time support is required that is even more
important on distributed memory architectures with a sparse interconnection
network.

Any parallel implementation of these problems on this class of architectures
should define, at least, three strategies that, respectively, i) define a load bal-
ancing mapping of the elements onto the p-nodes ii) update this mapping to

Y. Cotronis and J. Dongarra (Eds.): Euro PVM/MPI 2001, LNCS 2131, pp. 304-B11] 2001.
© Springer-Verlag Berlin Heidelberg 2001

Collecting Remote Data in Irregular Problems 305

recover an unbalancing due to the changes in the distribution and 4ii) collect re-
mote data. These three strategies are built around a data structure that describe
the mapping of the elements. In the following we assume that this structure de-
scribes a hierarchical decomposition of the domain. While the first two strategies
are strictly correlated, the third one is independent from the other ones. In this
paper, we focus on this strategy because it has a large influence on the overall
efficiency. The strategies that define and update the mapping have been dis-
cussed in [1] and [2]. Alternative approaches to irregular problems are LPARX
[M], Chaos and Multiblock Parti, [5] and that presented in [6]. However, the study
is focused on the data mapping techniques.

The next section briefly describes the data structure that represents the
mapping of the elements. Sect. Bl describes three strategies to collect remote
data: fault handling, fault prevention and informed fault prevention. Sect. H
discusses the MPI implementation of the informed fault prevention strategy.
Experimental results are presented in the last section.

2 A Hierarchical Representation of the Element Mapping

The Hierarchical Tree, H-Tree, is the data structure that represents both the
distribution of the elements in the domain and their mapping onto the p-nodes,
assuming that the domain is an n-dimensional space. A tree has been adopted
because it naturally represents the hierarchical relations and it is intrinsically
adaptive. The H-Tree defines a multi level hierarchical representation that, at
each level, partitions the domain into a set of equal subdomains, or spaces.
The root of the H-Tree represents the whole domain, while each other node N,
hnode, represents either a space produced by the decomposition, space(N), or an
element, and it records the corresponding information, see Fig. [} If space(N)
has been partitioned, the resulting subspaces are represented by the sons of N.
Each element is paired with a space including it. If an element e is paired with
space(N), then the hnode L representing e is a son of N and is a leaf of the
H-Tree. As the number of elements and their distribution change during the
computation, the decomposition of the domain and the H-Tree are updated to
represent the current distribution.

We do not discuss the mapping strategies that can be supported by the H-
Tree. Here, we only assume that they do not violate the locality property and we
denote by Do(Py) the subdomain including all and only the spaces mapped onto
Py. The mapping of the spaces defines np subsets of the H-Tree, one for each
p-node. The subset assigned to Py is the private H-Tree of P}, that includes an
hnode N iff space(N) € Do(Py,). Notice that, in general, the hnodes assigned to a
p-node could define distinct subtrees of the H-Tree but, for the sake of simplicity,
we assume that they belong to just one subtree. A further subset of the H-Tree,
the replicated H-Tree, is defined by the mapping strategy. This tree includes all
the hnodes in the path from the root of the H-Tree to the root of any private
H-Tree and is replicated in all the p-nodes. Each leaf L of the replicated H-Tree
points to the p-node storing the private H-Tree rooted in L .

306 F. Baiardi, P. Mori, and L. Ricci

® hnodes representing elements

O hnodes representing spaces

Fig. 1. Domain Decomposition and H-Tree

3 Remote Data Collection Techniques

At each iteration of the algorithm, P, updates the properties of each element
e; in Do(Py) by applying one or more operators to the current properties of e;
and to those of its neighbors. Hence, Pj, needs the properties of the neighbors
of e;, as defined by the neighborhood stencil of each operator. The abstraction
level of these properties depends upon several problem dependent features, such
as the operator that is applied or the value of the properties of the element. For
this reason, in the following, we say that a p-node needs the properties of some
spaces to compute the property of an element. Even if the mapping strategy
respects the locality property, some of the neighbors of e; have been allocated
onto other p-nodes. Hence, the definition of a strategy to collect remote spaces,
i.e. spaces allocated onto other p-nodes, is required.

However, a fundamental problem is that a p-node cannot know in advance
where the spaces it needs have been mapped. Moreover, because of the dynamic
mapping, even if, at each iteration, a p-node needs the same spaces, they may
be mapped onto distinct p-nodes at distinct iterations. If locality is preserved,
most of the neighbors of each element e are allocated onto the same p-node of
e. This implies that: i) most of the spaces to be collected are allocated on the
same p-node, and i) the intersection between the set of the neighbors of two
neighbors elements is large. Hence, a remote space should be reused to update
the properties of several elements mapped onto the p-node (reuse property).

3.1 Fault Handling

The simplest strategy to collect remote spaces is fault handling. Each p-node,
while computing the properties of its elements, interacts with the other p-nodes
as soon as it needs some spaces. To compute the properties of each element e;
in Do(Py,), Py, visits its private H-Tree. If P, determines that it needs a space
A, assigned to another p-node, it suspends the computation of the properties of
e;, and it requests the properties of A to the owner, determined by accessing the
replicated H-Tree. The computation can be resumed only when P, has received
all the missing properties. These properties should be cached in the local memory

Collecting Remote Data in Irregular Problems 307

of P, because they may be used to compute the properties of other elements in
Do(Py) by the current operator. The time inbetween the request of the remote
spaces and the reply may be large. If, during this time, P, is idle, a low efficiency
will results. Since the computation of the properties of e; is independent of
that of each other element e;, the waiting time can be overlapped with the
computation of the properties of another element e;, according to an excess
parallelism strategy. If the computatation of e; is suspended too, and all the
spaces required for e; have been received, then the computation of e; can be
resumed, otherwise the computation of another element is started.

This strategy is very general but, as a counterpart, it requires two communi-
cations to collect the properties of a remote space, one for the request and one
to transmit the properties. Moreover, it is not trivial to optimize the communi-
cations. Since the size of the data sent in either a request or a reply is small,
several messages for the same process could be merged into a single message, but
this delays some messages. Hence, message merging increases the time between a
request and the corresponding reply. In turns, this implies that a larger number
of elements has to be computed in parallel by P, and this may result in a large
overhead. Furthermore, to fully exploit the reuse property, only one request for
each space should be sent. This requires that each request for a space should be
checked against those that have already been sent to the same p-node.

3.2 Fault Prevention

The fault prevention strategy generalizes the data exchange in the data parallel
programming model where the compiler determines which spaces are required
by each p-node and the run time support executes the communications before
starting a new iteration. Hence, a p-node does not explicitly request the spaces
it needs because the compiler can exactly determine the spaces to be exchanged.

In the fault prevention strategy, for each operator, the proper spaces are
exchanged among the p-nodes before executing the operator. In this way, when
P, computes the properties of its elements, all the spaces it requires are available
in its local memory. Taking into account the dynamic element mapping, P
computes, before applying an operator, which of its spaces are required by Py,
h # k, by applying to each space A in Do(Py) the inverse of the operator
neighborhood stencil. If A is a neighbor of any element in Do(Py), then Py
sends the properties of A to P,. This fully exploits the reuse property because
each space is sent just once.

Fault prevention assumes that all the p-nodes share some informations about
the domain decomposition that is recorded in the replicated H-Tree. The main
disavantage of this strategy is that the replicated H-Tree records a partial infor-
mation only, hence, Py approximates the set of spaces that P, requires. However,
P, can execute its computation only if the approximation is safe, i.e. P} receives
all the spaces it needs. Safeness requires that, if the replicated H-Tree does not
include enough information to determine whether A belongs to the neighbor-
hood stencil of an element in Do(FPy), Py includes A in the data to be sent. If
the approximation is not accurate, most of the spaces sent to P, are useless.

308 F. Baiardi, P. Mori, and L. Ricci

3.3 Informed Fault Prevention

If the information in the replicated H-Tree does not allow a p-node to compute
an accurate approximation, we propose an improved version of fault prevention,
informed fault prevention. According to this strategy, the p-nodes exchange some
information about their private H-Trees in a separate phase, replicated H-Tree
extension phase, before the fault prevention one. During the fault prevention
phase, each process exploits the information received in the replicated H-Tree
extention phase to determine the spaces it has to send. Due to the locality
property, the information sent by P, to Pk in the replicated H-Tree extention
phase usually describes the distribution of the elements on the boundary of
Do(Py,) that intersect that of Do(Pg). In particular, the information sent by
Py, to Py is related to all the elements e; in Do(Py,) that could have at least
one neighbor in Do(Py). To reduce the overhead of this phase, only the subset
of properties of e; useful to determine its neighborhod stencil are trasmitted.
Moreover, this information is sent from P, to P, in the first replicated H-Tree
extension phase after the creation of e; and an invalidation message is sent
when e; is destroyed, remapped or when the subset of properties have been
updated. When Py receives the creation message, it stores the properties in its
local memory and it will use this information until it receives an invalidation
message.

With respect to fault prevention, the computation of the spaces to be sent is
simplified, because each process Py, for each element e; received in the informa-
tion phase, determines which of its spaces belongs to the neighborhood stencil
of e; and send them to the owner of e;. Hence, while the fault prevention has to
visit all the private H-Trees, the informed fault prevention considers the elements
received in the replicated H-Tree extention phase only, that are considerably less
than those in the private H-Trees.

An advantage of both fault and informed fault prevention is that they concen-
trate the communications in two small sections of the algorithm, the replicated
H-Tree extension phase and the fault prevention phase. This implies that the
trasmission of a set of a data can be delayed because they are not used immedi-
atly. Hence, a group of data to be sent to the same p-node can be merged into
one message. This strategy can be fundamental in cluster of workstations, where
little communication support is provided and the time to set up a communication
cannot be negletted. A further advantage of fault prevention strategies is that
they preserve the sequential code. As a matter of fact, after the fault prevention
phase, all the spaces required by the computation are available on each p-node
and the sequential code can be executed.

An example of application of the methodology to adaptive multigrid method
is showed in fig. 2 In adaptive multigrid method, [3], the final result is basi-
cally computed through the application of five operators: restriction, smoothing,
prolongation, norm and refinement. The restriction and the prolongation oper-
ators are separately applied on each level of the hierarchical representation of
the domain, while the smoothing operator is applied on the whole domain. The
refinement operator is the only one that modifies the domain by adding new

Collecting Remote Data in Irregular Problems 309
data mapping and replicate and private h-trees creation

while (not global error < threshould) {
replicated h-tree extention(union_all_stencils, all_levels)

for level from max_level downto min_level {
fault prevention(restriction_stencil, level)
restriction(level) }

fault prevention(smoothing_stencil, all_levels)
smoothing(all_levels)

for level from min_level to max_level {
fault prevention(prolongation_stencil, level)
prolongation(level) }

fault prevention(norm_stencil, all_levels)
norm(all_levels)
refinement (all_levels)

data mapping and replicate and private h-trees update 1}

Fig. 2. Example of Application of the Methodology

elements in those subdomains where the approximation error is too large. Hence
the replicated H-Tree extention phase can be executed at the begining of each
iteration only, and the values collected are valid until the end of the iteration,
when the refinement operator is applied. The fault prevention phase, instead, has
to be executed before each operator, because each operator updates the values.

4 MPI Implementation of Informed Fault Prevention

In the following, we focus on informed fault prevention, because this strategy
is the most complex one, and consider how it can be implemented through the
MPI primitives to manage the data exchange among the p-nodes.

Both in the replicated H-Tree extention phase and in the fault prevention one,
each process determines the spaces to be sent while receiving the spaces from
the other p-nodes. In this way, the latency of communications is overlapped with
some useful computation. Py issues an MPI_Irecv from each other p-node and
starts the computation of the spaces to be trasmitted. The handles returned by
each MPI Irecv are recorded in the request array, in the position corresponding
to the rank of the sender process. As soon as P, determines that a space is to be
sent, it issues an MPI_Isend, it records the corresponding handle in a buffer and
it polls, through an MPI_Testany invoked on the request array, whether a new
message has been received. If a message has been received from Py, the corre-
sponding hnode is inserted in the replicated H-Tree and a new MPI_Irecv from
P, is posted. The handle returned by MPI_Irecv is recorded in the k" position

310 F. Baiardi, P. Mori, and L. Ricci

of the request array. The polling solution avoids any overhead of interrupt based
solutions. Periodically, each p-node issues an MPI_testall on the buffer contain-
ing the send handles and frees the positions paired with the partners with which
the exchange have been completed.

A process synchronization is executed before applying of each operator, to
ensure that all the processes have terminated the data exchange. Since the num-
ber of messages to be exchanged is not known in advance, a barrier cannot be
adopted to synchronize processes because the MPI_barrier is a blocking primitive
and, once issued, only messages related to the barrier can be received. Hence,
each process, after sending all the data, broadcasts a termination message to
each other process through np point to point MPI_Isend primitives and waits for
the corresponding termination messages from the other processes. In this way,
termination messages are interleaved with the data ones.

If the properties of a space to be exchanged among the p-nodes have different
data types, MPI derived data types may be adopted. Moreover, since the set of
properties exchanged in the replicated H-Tree extention phase are different from
those exchanged in the fault prevention phase, distinct derived data types have
to defined. To reduce the communication overhead, message merging has been
adopted. Hence, each process P, defines a buffers of b positions for each of its
communication partners and it stores in the k" buffer any data to be sent to Py
to immediatly continue the computation of the data to be sent. As soon as the
buffer paired with Py is full, the content of the buffer is sent to Py through an
MPI_ Isend . The value of b is choosen according to the features of the adopted
architecture.

5 Experimental Results

In order to evaluate the performances and the effectiveness of the methodol-
ogy and, in particular, of the informed fault prevention strategy, we have im-
plemented a parallel version of an adaptive multigrid method, using the MPI
primitives embedded in the C language.

The parallel architecture we consider is a cluster of workstations. Each work-
station is a PC with an Intel Pentium II CPU (266 MHz) and 128 Mbyte of
local memory. The interconnection network is a 100Mbit Fast Ethernet switch
and the operative system running on each p-node is LINUX 2.2.13.

The adaptive multigrid method we consider solves an highly irregular partial
differential equation derived from the Poisson problem. In fact, at some iter-
ations of the computation, a very large number of elements is created in few
subdomains. Hence, this is a good test for a parallel implementation.

Figure Bl shows the efficiency of our implementation for a variable number
of p-nodes where the informed fault prevention strategy is adopted. The size
of the problem, i.e. the initial number of elements in the domain, is the same
for all the executions. The optimal size of the buffer used to implement the
message merging strategy is 50, because in a cluster of workstations the cost of
a communication is dominated by the time to setup the communication.

Collecting Remote Data in Irregular Problems 311

70\\/\

efficiency (%)
B o (o2}
o o o

w
s}

N
o

processing nodes

Fig. 3. Efficiency for Adaptive Multigrid Method

Figure Blshows that our implementation arises an efficiency larger than 60%,

even on 10 p-nodes. Moreover, from the point of view of scalability, we observe
that the value of the resulting efficiency is almost independent of the number of
p-nodes. The main reason of this efficiency value is that, even if the replicated
H-Tree extention phase and the fault prevention phase take less than 20% of the
total execution time, more than 10% of the time is lost due to an unbalanced load
distribution in the refinement operator. An improovement of the methodolgy
where, if necessary, two updates of the domain partitioning are executed in the
same iteration, is under development.

References

@

. Baiardi, F., Chiti, S., Mori, P., Ricci, L.: Integrating Load Balancing and Locality in

the Parallelization of Irregular Problems. In: Future Generation Computer Systems,
Vol. 17. Elsevier Science (2001) 969-975

. Baiardi, F., Chiti, S., Mori, P., Ricci, L.: A Hierarchical Approach to Irregular

Problems. In: Proc. of Europar 2000: LNCS, Vol. 1900. (2000) 218-222

Briggs, W.: A multigrid tutorial. STAM (1987)

Fink, J.S., Baden, S.B., Kohn, S.R.: Efficient run-time support for irregular block-
structured applications. In: Journal of Parallel and Distributed Computing, Vol.
50(1) (1998) 61-82

Mukherjee, S.S., Sharma, S.D., Hill, M.D., Larus, J.R., Rogers, A., Saltz, J.: Efficient
support for irregular applications on distributed-memory machines. In ACM SIG-
PLAN Notices, Vol. 30(80) (1995) 68-79.

. Sohn, A., Biswas, R., Simon, H.D.: A Dynamic Load Balancing Framework for

Unstructured Adaptive Computations on Distributed Memory Multiprocessors. In:
Proc. 8th Annual ACM Symposium on Parallel Algorithms and Architectures,
(SIGARCH, ACM, 1996) 189-192.

	Introduction
	A Hierarchical Representation of the Element Mapping
	Remote Data Collection Techniques
	Fault Handling
	Fault Prevention
	Informed Fault Prevention

	MPI Implementation of Informed Fault Prevention
	Experimental Results

