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Abstract. Adaptive multigrid methods solve partial differential equa-
tions through a discrete representation of the domain that introduces
more points in those zones where the equation behavior is highly irreg-
ular. The distribution of the points changes at run time in a way that
cannot be foreseen in advance. We propose a methodology to develop
a highly parallel solution based upon a load balancing strategy that re-
spects the locality property of adaptive multigrid method, where the
value of a point p depends on the points that are ”close” to p according
to a neighborhood stencil. We also describe the update of the mapping
at run time to recover an unbalancing, together with strategies to ac-
quire data mapped onto other processing nodes. A MPI implementation
is presented together with some experimental results.

1 Introduction

Multigrid methods are iterative methods based upon multilevel paradigms to
solve partial differential equations in two or more dimensions. Combined with
the most common discretization techniques, they are among the fastest and most
general methods to solve partial differential equations [6, 7]. Moreover, they do
not require particular properties of the equation, such as the symmetry or the
separability and are applied to problems in distinct scientific fields [4, 5, 12].

The adaptive version of multigrid methods, AMM, discretizes the domain
at run time by increasing the number of the points in those zones where the
behavior of the equation is highly irregular. Hence, the distribution of the points
in the domain is not uniform and not foreseeable.

Since the domain usually includes a large number of points, the adoption
of a parallel architecture is mandatory. We have defined in [1, 2, 3] a paral-
lelization methodology to develop applications to solve irregular problems on
distributed memory parallel architectures. This paper describes the application
of this methodology to develop a MPI implementation of the AMM. Sect. 2
describes the main features of AMM, sect. 3 shows the MPI implementation
resulting from applying our data mapping technique to the AMM. Sect. 4 de-
scribes the technique to gather information mapped onto other processing nodes
and the problems posed by the adoption of MPI collective communications. The
experimental results on a Cray T3E are discussed in sect. 5.
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2 Adaptive Multigrid Methods

An AMM discretizes the domain through a hierarchy of grids built during the
computation, according to the considered equation. In the following, we adopt
the finite difference discretization method. For sake of simplicity, we assume that
the domain belongs to a space with two dimensions and each grid partitions the
domain, or some parts of it, into a set of squares. The values of the equation
are computed in the corners of each square. We denote by g(A, l) the grid to
discretize a subdomain A at level l. To improve the accuracy of the discretization
provided by g(A, l), a finer grid, g(A, l+1), that is obtained by halving the sides
of each square of g(A, l), is introduced. In this way, at run time, finer and finer
grids are added till the desidered accuracy has been reached. Even if, in practice,
the first k levels of the hierarchy are built in advance, to simplify the description
of our methodology, we assume that the initial grid is one square, i.e. k = 0.

The AMM iteratively apply a set of operators on each grid in a predefined or-
der, the V-cycle, until the solution has been computed. The V-cycle includes two
phases: a descending one, that considers the grids from the highest level to the
lowest one, and an ascending one, that considers the grids in the reverse order.
Two versions of the V-cycle exist: the additive and the multiplicative; we adopt
the additive one and briefly describe the involved operators [7]. The smoothing
operator usually consists of some iterations either of the Gauss-Seidel method
or the Jacobi one to improve the current solution on each grid. The restriction
operator maps the current solution on g(A, l) onto g(A, l− 1). The value of each
point on g(A, l−1) is a weighted average of the values of its neighbors on g(A, l).
The prolongation operator maps the current solution on g(A, l) onto g(A, l + 1).
If a point exists on both grids, its value is copied. The value of any other point
of g(A, l + 1) is an interpolation of the values of its neighbors on g(A, l). The
norm operator evaluates the error of the current solution on each square that
has not been further partitioned. The refinement operator, if applied to g(A, l)
adds a new grid g(A, l + 1).

Our methodology represents the grid hierarchy through a quad-tree, the H-
Tree. A quad-tree is well suitable to represent the hierarchical relations among
the squares and it is intrinsically adaptive. Each node N at level l of the H-Tree,
hnode, represents a square, sq(N), of a grid g(A, l) of the hierarchy. The squares
associated to the sons of N, if they exist, represent g(sq(N), l + 1). Because of
the irregularity of the grid hierarchy, the shape of the H-Tree is irregular too.
The quad-tree has been adopted in [9], while alternative representations of the
grid hierarchy have been adopted in [8, 10]. The multigrid operators are applied
to g(A, l) by visiting all the hnodes at level l of the H-Tree. All the operators
are applied to g(A, l) before passing to g(A, l + 1) or g(A, l − 1).

3 Data Mapping and Load Balancing

This section describes the load balancing strategies that, respectively, map each
square at any level of the hierarchy onto a processing node, p-node, and update
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the mapping during the computation to recover an unbalancing. Both strategies
take into account two locality properties of an AMM: the value of a point on
g(A,l) is function of the values of its neighbors i) on the same grid for operators
such as smoothing and norm (intra-grid or horizontal locality); ii) on g(A,l+1) (if
it exists) and g(A,l-1) for the prolongation, restriction and refinement operators
(inter-grid or vertical locality). In the following, we assume that any p-node
executes one process and that the np p-nodes have been ordered so that two
p-nodes close in the interconnection structure of the considered architecture are
close in the ordering as well. Ph denotes the process executed by the h-th p-node.

Our methodology defines a data mapping in three steps: i) determination of
the computational load of each square; ii) squares ordering; iii) order preserving
mapping of the squares onto the p-nodes. In the AMM the same load is statically
assigned to each square, because the number of operations is the same for each
point and does not change at run time. To preserve the locality properties of the
AMM, the squares are ordered through a space filling curve [11] built starting
from the lowest grid of the hierarchy. After a square S in g(A,l), the curve visits
any square in g(S,d), d > l, before the next square in g(A,l). The recursive
definition of the space filling curves preserves the vertical locality. Moreover,
if an appropriate curve is chosen, like the Peano Hilbert or the Morton one,
the horizontal locality is partially preserved. A space filling mapping has been
adopted in [8, 10] too. Since each square is paired with an hnode, any space
filling curve sf defines a visit v(sf) of the H-Tree that returns an ordered sequence
S(v(sf)) = [N0, ..., Nm−1] of hnodes. To preserve the ordering among squares,
S(v(sf)) is mapped onto the ordered sequence of p-nodes through a blocking
strategy. S(v(sf)) is partitioned into np subsequences of consecutive squares;
the h-th subsequence includes m/np hnodes and it is assigned to Ph.

The resulting mapping satisfies the range property: if the hnodes Ni and
Ni+j are assigned to Ph, then all the hnodes in-between Ni and Ni+j in S(v(sf)),
are assigned to Ph as well. This property is fundamental to exploit locality. The
domain subset assigned to Ph, Doh, includes squares at distinct levels of the
hierarchy. To avoid replicate computations, for each square in Doh, Ph applies
the operators of the V-cycle to the rightmost downward corner only.

Our methodology assumes that the whole H-Tree cannot be fully replicated
in each p-node because of memory constraints. Hence, each p-node stores two
subtrees of the H-Tree: the replicated H-Tree and the private H-Tree. The private
H-Tree of Ph includes all the hnodes representing squares in Doh. Even if, in
general, the squares in Doh may correspond to disjoint subtrees of the H-Tree, for
sake of simplicity, we assume that Doh is represented by one connected private
H-Tree only. The replicated H-Tree represent the relation among the private
H-Trees and the H-Tree. It includes all the hnodes on the paths from the root
of the H-Tree to the roots of each private H-Tree, and it is the same for each
process. Each hnode N of the private H-Tree records all the data of the rightmost
downward corner of sq(N), while each hnode N of the replicated H-Tree records
the position of sq(N) in the domain and the identifier of the owner process.
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To determine, during the computation, where the refinement operator has
to introduce finer grids, the processes estimates the current approximation er-
ror through the norm operator. This requires the exchange of the local errors
among all the processes at the end of a V-cycle and the computation of a global
error. Any process estimates its local error and the global error is computed
through the MPI Allreduce primitive. At the end of a V-cycle, to check if the cre-
ation of finer grids has leaded to a load unbalance, the processes exchange their
workloads through the MPI Allgather primitive. Then, each process computes
max unbalance, the largest difference between average load, the ratio between
the overall load and np, and the workload of each process. If max unbalance is
larger than a tolerance threshold T > 0, then each process executes the balancing
procedure. T prevents the procedure from being executed to correct a very low
unbalance. Let us suppose that the workload of Ph is average load + C, C > T ,
while that of Pk, h < k, is average load − C. The balancing procedure cannot
map some of the squares in Doh to Dok because this violates the range property.
Instead, it shifts the squares involving each process Pi in-between Ph and Pk. Let
us define Preci as the set of processes [P0...Pi−1] that precede Pi and Succi as
the set of processes [Pi+1...Pnp−1] that follow Pi. Furthermore, Sbil(Preci) and
Sbil(Succi) are, respectively, the global load unbalances of the sets Preci and
Succi. If Sbil(Preci) = C > T , i.e. processes in Preci are overloaded, Pi receives
from Pi−1 a segment S of hnodes. If, instead, Sbil(Preci) = C < −T , Pi sends
to Pi−1 a segment S of hnodes whose overall computational load is as close as
possible to C. The same procedure is applied to Sbil(Succi) but, in this case, the
hnodes are either sent to or received from Pi+1. To respect the range property, if
[Nq....Nr] is the subsequence of hnodes it has been assigned, Pi sends to Pi−1 a
segment [Nq....Ns], with q ≤ s ≤ r, while it sends to Pi+1 a segment [Nt....Nr],
with q ≤ t ≤ r. Pi communicates with processes Pi−1 and Pi+1 only. All com-
munications exploit the synchronous mode with non–blocking send and receive
primitives. Non–blocking primitives overlap communication and computation,
while the choice of synchronous mode is due to the MPI implementation on the
considered parallel architecture, Cray T3E, that provides system buffering. If the
MPI standard mode is used, a deadlock may occur if a large amount of pending
non–blocking operations has exhausted the system resources. At the end of the
load balancing procedure, all the processes exchange, through MPI Allgather
and MPI Allgatherv, the roots of their private H-Trees to update the replicated
H-Tree. Each process, using MPI Allgather, declares to any other one how many
data it is going to send, i.e how many roots it owns. Then, the MPI Allgatherv
implements the exchange of the roots through a buffer allocated according to
the number of roots returned by the MPI Allgather.

4 Collecting Data from Other P-Nodes

Each process Ph applies the multigrid operators, in the order stated by the V-
cycle, to the points in Doh. While in the most of the cases, any information that
Ph needs is stored in the private H-Tree, for some points in the border of Doh,
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Ph has to collect the values of points in squares assigned to other processes.
We outline the MPI implementation of our remote data collecting procedure,
denoted informed fault prevention, where processes exchanges remote data before
applying the multigrid operators. This procedure allows Ph to receive any data
it needs to apply the operator op without requesting it to the owner processes,
before applying op. In this way, when Pi applies op to g(A, l), it can visit the
H-Tree in any order because it has already collected the data it needs. The
advantages of this technique are discussed in [3].

The informed fault prevention technique consists of two steps: the replicated
H-Tree extension step, executed at the beginning of each V-cycle, and the fault
prevention step, executed before each operator in the V-cycle. Let us define
Boh(op, l) as the set of the squares Si in Doh at level l, such that one of the
neighbors of Si, as defined by the neighborhood relation of op, does not belong to
Doh. Furthermore, let Ih(op, l) be the set of squares outside Doh corresponding
to the points whose values are required by Ph to apply op to the points in the
squares in Boh(op, l).

In the replicated H-Tree extension step the processes exchange some infor-
mations about their private H-Trees. For each point pi in ∪op∪l Boh(op, l) such
that one of its neighbors belongs to Dok, Ph sends to Pk the level of the hnode N
where sq(N) is the smallest square including pi. This information is sent at the
beginning of the V-cycle and it is correct until the end of the V-cycle, when the
refinement operator may add finer grids. Since the refinement operator cannot
remove a grid, if a load balancing has not been executed, at the beginning of a
V-cycle each process sends information on the new grids only.

In a fault prevention step, Pk determines AkIh(op, l) ∀h �= k, i.e. the squares
in Dok belonging to Ih(op, l) by exploiting both the information in the replicated
H-Tree about Doh and the one received in the replicated H-Tree extension step.
Hence, Pk sends to Ph, without any explicit request, the values of the points
in AkIh(op, l). These values are exchanged just before applying op to g(Doh,l),
because they are updated by previous operators in the V-cycle. Notice that Ph

can compute Ih(op, l) by simply merging the subsets AkIh(op, l) received by its
neighbors.

It is worth noticing that, in the case of the refinement operator, AkIh(op, l)
is approximated. In fact, whether Ph, that owns the square including the point
p, needs the value of the point q, in a square owned by Pk, depends not only
upon the neighborhood stencil but also upon the value of the points. Since Ph,
in the replicated H-Tree extension phase, sends to Pk the depth of the hnodes
corresponding to the square in ∪op∪l Boh(op, l), but not the values of the points
in these squares, Pk cannot determine exactly AkIh(op, l). To guarantee that Ph

receives all the data it needs, Pk determines the squares to be sent according to
the neighborhood stencil only, and it could send some useless values.

Both steps are implemented through MPI point to point communications.
Collective communications, i.e. MPI Scatter, have not been adopted, because
each process usually communicates with a few other processes. This implies the
creation, for each process Ph, of one communicator Ch including any neighbor
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of Ph. To this aim, Ph should determine the set of the neighbors of each process
in MPI COMM WORLD, but it has not enough information to do so. More-
over, MPI Comm split cannot be exploited because the communicators associ-
ated with two neighbors processes are not disjoint. Furthermore, at the end of a
V cycle, because of the refinement operator and of load balancing procedure, the
neighbors of Ph changes; this requires the elimination of old communicators and
the creation of new ones. Also notice that, since the collective communications
are blocking, they have to be properly reordered to prevent the deadlock.

In order to overlap a communication with useful computation, in the fault
prevention procedure, each process determines the data to be sent to other pro-
cesses while is waiting for the data from its neighbors. Moreover, data to be
sent to the same process are merged into one message, to reduce the number of
communications and the setup overhead. This is a noticeable advantage of in-
formed fault prevention and it is implemented as follows: each process Pk issues
an MPI Irecv from MPI ANY SOURCE to declare that it is ready to receive the
sets AkIh(op, l) from any Pk. While waiting for these data, Pk determines the
data to be sent to all the other processes, i.e. ∀h �= k it computes AkIh(op, l).
When a predefined amount of data to be sent to the same process has been de-
termined, Pk sends it using an MPI Issend. Subsequently, Pk checks through an
MPI Test the status of the pending MPI Irecv. If the communication has been
completed, Pk inserts the received data in its replicated H-Tree and it posts
another MPI Irecv. In any case, the computation of the data to be sent goes on.
This procedure is iterated until no more data has to be exchanged. After send-
ing AkIh(op, l) for any h, Pk sends, through np-1 MPI Isend, a syncronization
message to any other process and it continues to receive data from them. Since
Pk does not know how many data it will receive, it waits for the syncronization
message from all the other processes. Then, Pk begins to apply the op to Dok.
A MPI barrier has not been used to syncronize the processes because it is a
blocking primitive; hence, after issuing an MPI Barrier, Pk cannot collect data
from other processes. A data exchange among a pair of processes involves vari-
ables with distinct datatypes. In order to merge these values in one message, we
have compared the adoption of MPI Pack/ MPI Unpack against that of derived
datatype; both techniques achieve similar execution times.

5 Experimental Results

We present some experimental results of the MPI parallel version of the AMM.
The parallel architecture we consider is a Cray T3E; each p-node includes a DEC
Alpha EV5 processor and 128Mb of memory. The interconnection network is a
torus. MPI primitives are embedded in the C language.

We consider the Poisson problem on the unit square in two dimensions, i.e.
the Laplace equation subject to the Dirichlet boundary conditions:

−d2u

dx2
− d2u

dy2
= f(x, y) in Ω =]0, 1[×]0, 1[

u = h(x, y) in δΩ



86 Fabrizio Baiardi et al.

90

95

100

105

110

115

120

125

130

0 50 100 150 200 250 300
ex

ec
ut

io
n 

tim
e 

(%
)

tolerance threshold

condition (i)
condition (ii)

Fig. 1. Load balance

with f(x, y) = 0 and two boundary conditions:

(i) h(x, y) = 10 (ii) h(x, y) = 10 cos(2π(x − y))
sinh(2π(x + y + 2))

sinh(8π)

The solution of the Poisson problem is simpler than those of other equations
such as the Navier-Stokes one. Hence, the ratio between computational work and
parallel overhead is low and this is a significant test for a parallel implementation.
The points distribution in the domain in the case of boundary condition (ii) is
more irregular than the one of (i). In fact, given the same maximum H-Tree
depth, the final number of hnodes of H-Tree (i) is three times that of H-Tree (ii)

In order to evaluate the effectiveness of the informed fault prevention tech-
nique, we have measured that, for both the conditions, the data sent in the
informed fault prevention are less than 104% than the data required. As previ-
ously explained, due to the refinement operator, this percentage cannot be equal
to 100%, but the amount of useless data is less than 4%.

Fig. 1 shows the execution time for different values (in percentage) of the tol-
erance threshold T. The balancing procedure considerably reduces the execution
time; in fact, in the worst case, the execution time of an unbalanced computation
may be 25% higher than the optimal one. However, if T is less than the opti-
mal value, no benefit is achieved, because the cost of the balancing procedure is
larger than the unbalance recovered. Fig. 1 also shows that the optimal value of
T depends upon the points distribution in the domain. In fact, the same value
of T results in very different execution times for the two conditions; also the
lowest execution times have been achieved using distinct values of T for the two
equations.

Figure 2 shows the efficiency of the AMM for the two problems, for a fixed
initial grid with k = 7, see sect 2, the same maximum grid level, 12, and a
variable number of p-nodes. The low efficiency resulting in the second problem
is due to an highly irregular grid hierarchy. However, even in the worst case, our
solution achieves an efficiency larger than 50% even on 16 p-nodes.
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