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ABSTRACT
This paper presents PIT, a library for the parallelization
of irregular problems on distributed memory architectures.
All the strategies underlying the definition of the library
can be expressed in terms of operations on a PITree, a par-
allel version of the tree data structure oriented to irregular
problems. We consider the application of PIT to two well
known irregular problems: adaptive multigrid and hierar-
chical radiosity methods. Performance figures that prove
the effectiveness of PIT are presented.
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1 Introduction

Most irregular scientific problems may be modelled as an
iterative computation of properties of each of a set of ele-
ments. These elements are distributed in a problem depen-
dant domain in an irregular and dynamic way. While the
exact definition of the set of properties that characterizes
each element depends upon the problem of interest, some
properties define the position of the element in the domain.
The system evolution is due to the interactions among the
elements that update the system state by updating some of
the properties of the elements, and it is a function of both
time and the required accuracy of the results. A locality
property holds because the evolution of the properties of an
element e depend upon those of a small subset of other ele-
ments, the neighbours of e, n(e). n(e) changes at run time
according to the system evolution due to the property up-
dates. The Barnes-Hut method, adaptive multigrid methods
and hierarchical radiosity [1] [2] [3] are well known prob-
lems in this class. In the following, the specific problem
that is consider is denoted as the target problem.

With reference to this class of problems, we define
PIT, a programming library to support the parallelization
methodology proposed in [4]. The key concept underlying
the methodology and the library is that both the sequential
and the parallel application can be described in terms of
trees. While a sequential application can be described in
terms of operations on a classical tree, a parallel one can be
structured in terms of operations on a parallel irregular tree,

PITree, an evolution of the tree data structure that is ori-
ented to distributed memory systems. Hence, a parallel ap-
plication may be developed from a sequential one by trans-
forming the operations on a tree into operations on PITrees.
The goal of the PIT library is to simplify this transforma-
tion for those users that are familiar with the target prob-
lem but that are not expert in the development of parallel
programs. Alternative approaches for the parallelization of
irregular problems have been presented in [5], [6] and [7].

The paper is structured as follows. Sect. 2 briefly in-
troduces PITrees and their operations. The PIT library and
the operations it implements are described, respectively, in
Sect. 3 and 4. Experimental results of the PIT parallel ver-
sions of an adaptive multigrid method and a hierarchical
radiosity mehod are presented in Sect. 5.

2 A Hierarchical Representation of the Do-
main

Our methodology describes the element distribution
through a multi level hierarchical representation, defined
in terms of a recursive decomposition of the problem do-
main. Each level partitions both the domain into subdo-
mains and the set of elements into subsets, according to
the element positions. The partition strategy we adopt is
Geometric Recursive Bisection, GRB. GBR is applied to
the initial domain and, recursively, to the resulting subdo-
mains, until any subdomains A satisfies a condition C(A).
C(A) is problem dependent and it is a function of both the
number of elements in A and the accuracy of the results
the user requires. If C(A) does not hold, GRB splits each
side of A to produce 2n subdomains where n is the number
of dimensions of the domain. The distribution of the ele-
ments in a subdomain determines the number of times it is
partitioned.

A tree can naturally represent both the hierarchical
relation among the resulting subdomains and the distribu-
tion of the elements in the subsdomains. A hierarchical
tree, Htree, is a tree that represents a domain decomposi-
tion, and its nodes are denoted hnodes. The hierarchical
relation among the hnodes represents the one among the
subdomains resulting from the decomposition. The root of
a Htree represents the whole problem domain, while each
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hnode H at level l represents either an element or a sub-
domains produced by splitting l times the initial domain.
A hnode that represents an element is always a leaf of the
Htree. A leaf represents either an element or an unparti-
tioned, empty, subdomain. In the following, SeqHtree de-
notes the Htree representing all the subdomains resulting
from a domain decomposition. A sequential application
may be defined in terms of operation on the SeqHtree that
represents the element distribution in the domain.

Fig. 1 shows an example of hierarchical decompo-
sition and the corresponding SeqHtree. In this example,
C(A) holds iff the subdomain A includes at most one ele-
ment. Hence, the hnode representing an element e is a son
of the hnode that represents the smallest subdomain that
includes e.

space

element

Figure 1. Domain Decomposition and HTree

2.1 Parallel Irregular Tree

A PITree is a distributed version of the Htree that describes
a mapping of a SeqHTree onto the np processing nodes,
pnodes, of a distribute memory architecture. A PITree pt is
an ordered tuple of np + 1 subsets of a SeqHtree s:

pt ≡ 〈h0, .., hnp−1, mht〉

Each hi, i ∈ 0, ..., np− 1 is a forest that includes all
the subtrees of s whose hnodes have all been mapped onto
the ith pnode. For the sake of simplicity, we assume that
any hi includes just one tree, the private Htree of ith pnode.
Each private Htree represents one of the subsets resulting
from the partition of the domain. Each subdomain result-
ing from the hierarchical decomposition belongs to one of
these subsets only, and it is represented in just one private
Htree. Consequently, there is no intersection between the
subdomains and the elements represented by two distinct
private Htrees of the same PITree. Each hnode of a private

Htree stores the properties of either the sudomain or the el-
ement it represents. Distinct PITrees are equivalent iff they
describe alternative mappings of the same SeqHTree.

The np+1th subset of the PITree, the mapping Htree,
mht, is a further tree that represents both the hierarchical
relation among the private Htrees and their mapping onto
the pnodes. mht is the subset of the SeqHtree that includes
the root R of the SeqHtree and all the hnodes on the paths
from R to the roots of all the private Htrees. Each hnode of
mht corresponds also to a hnode of a private Htree hi and
it records the identifier i. If the mapping strategy preserves
locality, the size of the mapping Htree is fairly lower than
that of the SeqHtree. The mapping Htree is replicated in the
local memory of each pnode and it is the only information
on the mapping of the elements available to each pnode.
Fig. 2 shows a PITree that represents the SeqHTree of Fig.
1.
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Figure 2. Mapping Htree

The main operators defined on a PITree are: Creation,
Completion, Correction and Balance. The parallelization
methodology underlying the definitions these operators has
been proposed in [4]. A detailed and more formal descrip-
tion of the operators can be found in [8].

Creation creates a PITree from the set of elements in
problem domain in two steps. The first one decomposes
the initial domain as described in the previous section, and
it partitions the resulting hierarchy of subdomains into np

subsets so that each subset, that defines a further subdo-
main, preserves locality as much as possible. To this aim,
the subdomains produced by the hierarchical decomposi-
tion are ordered into a sequence S according to a space fill-
ing curve [9]. This way of defining S exploits the properties
of the space filling curves to guarantees that: i) if two sub-
domains are close in S then they are close in the domain,
ii) if two subdomains are close in the domain, are close
in S with an high probability. The domain partition is de-
fined by partitioning S into np subsequences, each with the
same computational load. All the subdomains in the same
subsequence are mapped into the same pnode. After trans-
forming each subsequence into a private Htree, the map-
ping Htree is built according to the roots of all the private
Htrees.



Completion transforms each private Htree hi into the
corresponding essential Htree ehi. ehi is equal to the union
of hi with the set of the hnodes representing the neighbours
of the elements in hi. Hence, ehi includes all the elements
whose properties are required to update those of the ele-
ments in hi.

Correction updates a PITree to avoid inconsistencies
due to the updated values of some properties. After an up-
date, the properties of an element e may be inconsistent
with respect to the mapping of e described by the PITree.
As an example, in the N body problem, properties are re-
lated to the position of a body in the domain. After an up-
date, the position of the body may belong to a subdomain
mapped onto another pnode.

Balance transforms a PITree into an equivalent one
but that describes a mapping that balances the computa-
tional load among the pnodes. This operation should pre-
serve at most locality among the elements and minimize the
number of hnodes whose mapping changes and, as a con-
sequence, are transferred from one private Htree to another
one.

3 PIT Library

Parallel Irregular Tree, PIT, library is a simple, complete
and effective tool for the parallelization of irregular appli-
cations on distributed memory architectures. PIT is ad-
dressed to those users that want to transform a sequential
irregular application into a parallel one but are not familiar
with parallel programming.

The key assumption underlying PIT is that both the
sequential and the parallel versions of the application are
structured in terms of operations on Htrees. In particular,
the sequential code is structured as a sequence of visits of
a SeqHtree. For each visited hnode e, the neighbors of e

are collected and the proper interaction is computed to up-
date the properties of e. These visits are denoted as target
problem, tp, operators, and they define a kernel of both the
sequential and the parallel applications. PIT preserves the
code of this kernel when transforming a sequential appli-
cation into a parallel one. The main problem to be faced
is that the sequential version applies the tp operators to a
SeqHtree stored in the local memory of a single pnode, the
parallel one applies them to a PITree through a parallel visit
where each pnode considers a distinct subset of the PITree.

The code of a tp operator can be preserved when par-
allelizing an application provided that, as in the case of PIT,
the implementation of an operator on a PITree solves any
communication and synchronization issue arising because
of the distributed representation of the Htree. The next sec-
tion briefly describe how this is implemented in the PIT
library.

4 PIT Functions

PIT defines a set of functions on the PITree. Each func-
tion, PITfn, is applied to a PITree in a Single Program
Multiple Data (SPMD) style, where each pnode applies
PITfn to a distinct subset of the PITree, i.e. to its pri-
vate Htree. Distinct pnodes cooperate in the execution of
the same PITfn.

Each of the PIT operators defined in Sect. 2.1 is im-
plemented through one or more PIT functions. We refer to
[8] for a detailed description of the implementation. PIT
defines two APIes, a standard and an advanced one. The
standard API only includes those functions that implement
the PIT operations in the most general case. The advanced
API defines a larger set of functions, to enable a paralleliza-
tion expert user to choose the most appropriate functions
and the most effective way to compose them when paral-
lelizing an application. The main PIT functions are the fol-
lowing.

Creation. It implements the Creation operation with-
out introducing a centralization point. The elements are
distributed among all the pnodes at the beginning of Cre-
ation and exchanged at the end of the operation according
to the adopted mapping. In this way, there is no need to
store all the element in the local memory of one pnode and
the size of this local memory does not constraint the total
number of elements. The inputs of Creation are: np,
the initial set of elements, and some functions to manage
the element properties. In this way, PIT is independent of
the target problem and, in particular, of the element proper-
ties, because the user can define both the structure to record
the properties of an element e and the functions to handle
them. As an example, one of these functions implements
the decomposition of the element of the target problem,
and is exploited by Creation to perform the Geometric
Recursive Bisection. The results of Creation are the pri-
vate Htree of the pnode and the mapping Htree. By setting
np = 1, a sequential application can exploit this function
to decompose the domain and build the SeqHtree.

Completion The standard interface defines a sin-
gle function to implement the Completion operator,
Completion, to be applied just before each tp oper-
ator. Obviously, this simplifies the development of the
parallel version at the expense of efficiency. The expert
user, that knows which element properties each tp op-
erator exploits and updates, can use the advanced API
that implements Completion by composing two PIT func-
tions, Det neighbors and Exch neighbors. The
former exchanges among the pnodes some information
about the PITree that will be exploited by the latter to de-
termine more efficiently the neighbors of each element.
Det neighbors is invoked after Creation as well as
after each tp operator that updates the properties that influ-
ence the neighbourhood stencil. Exch neighbors ac-
tually exchanges the hnodes among the pnodes. It is ap-
plied before any tp operator that needs the updated values
of the elements properties. The inputs of these PIT func-



tions are: the private Htree of the pnode and a function that
implement the neighborhood stencil of the target problem
operator.

Correction and Balance The standard PIT inter-
face defines one function, Update, that implements both
the Correction and the Balance operations. This func-
tion updates the mapping of the PITree taking into ac-
count both the elements that violate the mapping strategy
and the load unbalance. To prevent inconsistencies in the
PITree, the function is applied after any update to the ele-
ment distribution. Hence, in the simplest case, Update
is invoked after each tp operator. The advanced inter-
face includes two distinct functions, Correction and
Balance that, respectively, updates the mapping of the
elements that give rise to an inconsistency and balances
the load. Correction has to be invoked each time the
element distribution changes, and takes as input the pri-
vate Htree of the pnode. Balance, instead, is invoked af-
ter each tp operator that changes the workload paired with
the elements. This function takes as input the load balance
threshould T and the private Htree of the pnode. At first,
it collects the workload of each pnode, and computes the
maximum unbalance of the current mapping. The balanc-
ing procedure is applied only if this unbalance is larger than
T . The workload of each element is recorded in a field of
the corresponding hnode that can be updated by the user.
As an example, if the workload of e changes during the
computation, the user can record in the field of the proper
hnode an estimate of the number of operations to update
the properties of e.

Table 1 shows the skeleton of a simple parallel appli-
cation developed through the PIT library.

In this example, tp op 1,...,tp op n are the target
problem operators, stencil 1,...,stencil n are the
related neighbourhood stencils, and dom represents the
set of elements of the domain. At first, let us suppose
that only tp op j and tp op n update both the Htree
and the neighborhood relation among the elements. In
this case, det neighbors is applied after creation,
after the application of tp op j, tp op n and of the
balance function. Since the neighborhood relation, as
determined by the det neighbors function applied be-
fore tp op 1, is exploited by exch neighbors to col-
lect the hnodes to apply tp op 1, .., tp op j, the
neighborhood stencil exploited by det neighbors is the
union of the stencils of these tp operators. In the same way,
det neighbors applied before tp op j+1 exploits a
neighborhood stencil that is the union of the tp op j+1,
.., tp op n ones.

The exch neighbors function, instead, is in-
voked before each tp operator, to collect the updated
properties values to be used by the tp operator. How-
ever, if tp op j-1 and tp op j exploit the same sten-
cil, while tp op j does not exploit the properties up-
dated by tp op j-1, then tp op j-1 and tp op j
can both exploit the data collected by the instance of
exch neighbors applied before tp op j-1.

thnode *pht_root
pht_root =creation(np, dom, dec_el,

inc_el, rem_el)
while (not solution_computed) {

det_neighbors(pht_root, stencil_1+
+...+stencil_j)

exch_neighbors(pht_root, stencil_1)
tp_op_1(pht_root)
....
....
exch_neighbors(pht_root, stencil_j-1)
tp_op_j-1(pht_root)
tp_op_j(pht_root)
pht_root = correction(pht_root)
pht_root = balance(pht_root, T)
det_neighbors(pht_root, stencil_j+1+

+...+stencil_n)
exch_neighbors(pht_root, stencil_j+1)
tp_op_j+1(pht_root)
....
....
exch_neighbors(pht_root, stencil_n)
tp_op_n(pht_root)
pht_root = correction(pht_root)

}

Table 1. Example of PIT parallel code

correction is invoked after tp op j and
tp op n only, because the other tp operators do not
update the Htree. Notice that det neighbors has been
invoked after correction, because, in general, this
function updates both the PITree and the mapping of some
hnodes.

Finally, in this example we suppose that only the
tp operator tp op j updates the computational load of
each element. Hence, balance has been applied only
after tp op j. Since also correction is applied af-
ter tp op j, balance is applied after correction be-
cause the PITree could be in an inconsistent state after the
execution of tp op j. In this case, correction has to
be applied to the PITree before any other PIT function.

5 Experimental Results

To evaluate the effectiveness of both our methodology and
PIT, we have exploited PIT to parallelize two well known
irregular problems, adaptive multigrid methods and hierar-
chical radiosity methods, on two distributed memory archi-
tectures. The first one is a cluster of 10 PCs, each equipped
with an Intel Pentium II CPU (266 MHz) and 256 MB of
local memory. The interconnection network is a switched
100Mbit Fast Ethernet. The other architecture is an IBM
Linux Cluster with 64 nodes, each with 2 Intel Pentium III
(1.133 GHz) processors and 1Gbyte of local memory. The



interconnection network is a Miricom LAN C with a band-
width of 264 MB.

Adaptive multigrid methods are fast iterative methods
for the numerical resolution of partial differential equations
in two or more dimensions [2] [10]. The considered prob-
lem is a very complex instance of the Poisson problem on
the unit square in two dimensions, i.e. the Laplace equa-
tion:

−
d2u

dx2
−

d2u

dy2
= f(x, y) in Ω =]0, 1[×]0, 1[

u = h(x, y) in δΩ

with f(x, y) = 0 and subject to the Dirichlet boundary
conditions:

h(x, y) = 10 cos(2π(x + y − 1))
sinh(2π(x − y + 3))

sinh(8π)

Fig. 3, shows the highly irregular grid built after just 10
iterations.

Figure 3. Grid hierarchy after 10 iterations

The first experiment evaluates the impact of the load
balancing on the performance of the PIT version. Fig. 4
shows the completion time of 50 iterations on the PC clus-
ter for an initial uniform 64 × 64 points grid and for dif-
ferent values of the threshold that determines the largest
unbalance that is tolerated. The graph shows that the best
result from the point of view of the completion time and,
consequently, of efficiency are achieved with a threshold
of 10%. This curve also shows the influence of load bal-
ancing on the completion time because it shows that a load
balancing threshold of 100% results in an increase of the
completion time of 126% wrt the completion time with the
optimal threshold. Hence, better speed ups can be achieved
by proper exploiting the load balance strategy offered by
the library.

Another set of experiments evaluates the perfor-
mances of the PIT version of the adaptive multigrid meth-
ods. Figures 5 shows the efficiency for a variable number

1550

1600

1650

1700

1750

1800

1850

1900

1950

2000

2050

0 10 20 30 40 50 60 70 80 90 100 110

tim
e 

(s
ec

)

threshold

Figure 4. Completion time with alternative load balancing
thresholds

of pnodes in the case of 50 iterations on the two architec-
tures. In all the experiments, the load balancing threshold
has the optimal value previously determined and very small
initial grid, 64× 64 points, is considered. This corresponds
to a worst case from the scalability point of view, because
the number of points and, consequently, the computational
load, of each pnode decreases as the number of pnodes in-
creases, while the synchronization overhead increases with
the number of pnodes.
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Figure 5. Efficiency for Adaptive Multigrid

Fig. 5 shows that, on both the architectures, our im-
plementation achieves an efficiency larger than 75%, even
on 10 pnodes. On the IBM cluster, the efficiency is larger
than 50% even on 32 pnodes. The efficiency is even larger
for a lower number of pnodes, e.g. on 4 pnodes it is larger
than 85%.

Hierarchical radiosity [3] is another well known ir-
regular method. It computes the global illumination of
a set of objects in a scene by modelling the exchange
of light among the surfaces that compose the scene [11].
For the sake of simplicity, we consider flatland [12], a bi-



dimensional world and a very simple scene including 896
initial segments that compose 192 polygons. Again, this
is a worst case because real images are much larger and
include several millions of initial elements.
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Figure 6. Completion time with alternative load balancing
thresholds

The first results concern again the impact of load bal-
ancing on the efficiency of the parallel application. Fig.
6 shows the completion time of 30 iterations of the par-
allel application for different values of the load balancing
threshold on the 10 nodes cluster. The best completion time
is achieved with a 20% threshold. These results confirm
the importance of load balancing for irregular problems,
because a threshold of 100% results in a completion time
that is 116% of the optimal one. Furthermore, the results
confirm the effectiveness of our methodology as well.
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Figure 7. Efficiency for Hierarchical Radiosity

Fig. 7 shows that, on both architectures, and in the
worst case we have considered, the parallel application
achieves an efficiency larger than 80%, even on 10 pnodes.
On the IBM cluster, the efficiency is larger than 70% even
on 32 pnodes. This is mostly due the ability of the PIT
strategies to exploit at best the high locality of the scene.
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